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ABSTRACT 

We present an algorithm, inspired by self-organization and stigmergy observed 
in biological swarms, for managing multiple sensors tracking large numbers of tar- 
gets. We devise a decentralized architecture wherein autonomous sensors manage 
their own data collection resources and task themselves. Sensors cannot commu- 
nicate with each other directly: however, a global track Hie. which is continuously 
broadcast, allows the sensors to infer their contributions to the global estimation of 
target states. Sensors can transmit their data (either as raw measurements or some 
compressed format) only to a central processor where their data arc combined to 
update the global track file. We outline information-theoretic rules lor the general 
multiple-sensor Bayesian target tracking problem. We provide specific formulas for 
problems dominated by additive white Gaussian noise. Using Cramer Rao lower 
bounds as surrogates for error eovariances. we illustrate, using numerical scenar- 
ios involving ballistic targets, that the bioinspired algorithm is highly scalable and 
performs very well for large numbers of targets. 

in 
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1.    INTRODUCTION 

A major objective of multiple-sensor target tracking systems is to achieve certain levels of state 
estimation accuracy for as many targets as possible. In applications where a single sensor is tasked 
with collecting measurements on a single target. the management of the sensor's available resources 
does not pose any challenge. However, in situations where a small number of sensors are directed 
to collect measurements on a large number of targets, the decision process that determines which 
sensors are to collect measurements on which targets during the next observation time interval can 
be daunting. The sensor management problem becomes more difficult as the number of targets 
relative to the number of sensors increases. The problem is further exacerbated when targets and 
sensors are not arranged in a favorable geometric constellation. Ideally, one wishes to "service" 
as many targets as possible; that is. one would like to ensure that certain levels of accuracy, or 
"qualities of service." can be achieved in estimating the states of as many targets a„s possible. In this 
report, we present a target selection algorithm that is inspired by principles governing biological 
swarm intelligence. 

In multiple-sensor target tracking systems, data collected by tasked sensors are often corre- 
lated and fused to form a global database of target state estimates and error covariances. referred 
to as the "global track file" (e.g.. see [1] and [2]). Sensor data can be processed either at a cen- 
tral processing node or in a distributed fashion, giving rise to a plethora of data correlation and 
fusion architectures (e.g.. see [3]). In this report, we pursue a mainly decentralized approach to 
sensor management that would be readily adaptable to a bioinspired implementation. However, 
our architecture is not devoid of central processing. In a way. it can be regarded as a hybrid. In 
oui' implementation, sensors are not allowed to directly communicate with each other, yet a global 
track file, maintained by a central processor, is continuously broadcast, and its contents are there 
fore assumed to be always available to all sensors. The sensors operate locally and autonomously 
by tasking their own resources based on the information available in the global track file. In our 
architecture, sensors make adjustments to their tasking decisions based on an assessment of their 
anticipated relative contributions to the global track file over a forthcoming data collection time 
interval; thus, the global track file provides an indirect means for sensors to communicate with 
each other. Sensors transmit their data only to the central processor, where they are correlated 
and fused to update the global track file. 

A decentralized approach to sensor management has many benefits, foremost, it is robust in 
that the overall system performance is not significantly degraded by the failure of a few member 
sensors. More importantly, a decentralized implementation is scalable; thai is. the complexity of 
the implementation does not increase significantly as more sensors are added to the system. Since 
all tasking decisions are made locally by the sensors themselves, the computing and communication 
bandwidth requirements are less stringent, than they would be in a purely centralized approach. 
Many examples of decentralized approaches to sensor management can be found in the literature. 
For example, in [4], the authors apply a novel game-theoretic approach to dynamic target selection. 
Of relevance to our work is [5], wherein the authors employ an information-theoretic approach to 
decentralized sensor management. 



Bioinspired approaches to solving combinatorial optimization problems follow either or both 
of two main principles observed in nature: "self-organization" and "stigmergy." For a full and lucid 
account on swarm intelligence and its applicability to solving combinatorial optimization problems, 
we refer the reader to [6]. There we learn that in biological swarms, such as schools of fish or 
flocks of birds, individual members, without any awareness of actions taken by other members. 
are capable of unconsciously arriving at a meaningful, and often very complex, global behavior by 
merely following a set of very simple rules. This phenomenon is referred to as "self-organization" 
or "emergent behavior." Self-organization is not limited to biological systems and is also observed 
in other complex decentralized systems such as free-market economies. An application of self- 
organization to sensor management was developed in [7] (see also [8]). We extend and formalize 
the rules considered in [7] and [8] using the information-theoretic approaches employed in [5], [9], 
and [10]. 

In biological swarms, simple local rules alone may not be sufficient to provide the means for 
the system as a whole to reach a particular global goal. Although individual members in swarms are 
not consciously aware of actions taken by other members, they can nevertheless communicate with 
each other indirectly through the impact they lay on their environment. As individuals impact their 
environment through their actions, the environment, in turn, influences individual behavior, thereby 
fostering a learning mechanism. This phenomenon is referred to as "stigmergy" or "sematectonic 
communication." A prime example in nature is that of ant trails. Frequently trodden paths to 
existing food sources are doused with pheromone sprayed by passing ants. Pheromone traces, in 
turn, encourage further traffic. Once a particular food source has been exhausted, ants, following 
simple rules, begin searching for new sources of nourishment. At this point, the trail to the empty 
food source becomes less frequented, and extant pheromone traces begin to evaporate, thereby 
discouraging further visitation. Ants who find a new food source by leaving behind new traces of 
pheromone then encourage other ants to visit the new path, and the process begins anew. The 
application of both self-organization and stigmergy to sensor management was first explored in [7], 
By employing the information-theoretic formulation of [10], we extend and formalize ideas originally 
developed in [11], [12], and [7] to allow sensors to communicate with each other indirectly via the 
global track file that represents the "environment" in our application. 

Throughout this report, we assume data association to be perfect. In many real-world prob- 
lems, poor data association can be a major limiting factor to the reliable performance of target 
tracking systems, and its impact on sensor management must therefore be brought to bear (e.g.. 
see [1] and [2]). Nevertheless, even in cases of perfect data association, sensor management can be 
a daunting task when the number of sensors is significantly smaller than the number of targets. 
Although absolute performance predictions would be optimistic, we believe that the formulation 
we present in this report can at least shed light on the relative performance of candidate target 
selection algorithms. We have also ignored the impact of sensor biases that can have an adverse 
effect on data association. We defer to a future investigation the impact of poor data association 
and sensor biases on the performance of the target selection algorithm presented in this report. 

We begin in Section 2 by reviewing the sequential Bayesian formulation of the single-target 
tracking problem. In Section 2, we also present the Renyi o-entropy and a-divergence [13] that are 
extensively utilized in our information-theoretic approach (cf. [9] and [!()])• The bioinspired target 



selection algorithm for the general Bayesian formulation is presented in Section 3. In Section I. 
we present the specific formulation of the multiple-sensor target tracking problem for systems 
dominated by additive white Gaussian noise. In Section r). we focus on targets whose motion can 
be described by a deterministic system dynamic model. Deterministic dynamics allow a simple 
recursive formulation of the Cramer-Rao lower bound on the error covariance associated with the 
estimated target state [14]. In Section 0. we use the Cramer Rao lower bounds derived in Section 5 
as surrogates for target state estimation error covariances to evaluate the performance of the target 
selection algorithm outlined in Section 3 for an example scenario involving ballistic targets. Lastly, 
in Section 7. we summarize our results and discuss how the bioinspired target selection algorithm 
may be further improved for specific applications. 
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2.    RELATIVE INFORMATION GAIN 

In this report, we adopt an information-theoretic approach to targel select ion wherein we favor 
targets whose measurements, once collected during an upcoming observation period, would result in 
the largest reduction in the uncertainties associated with their state estimates (if. [5], [!)]. and [10]). 
We begin this section by reviewing the recursive Bayesian formulation of the single-target tracking 
problem. We then provide general expressions for the information-theoretic measures utilized by 
the bioinspired target selection logic outlined in Section 'A. 

2.1     SEQUENTIAL BAYESIAN ESTIMATION 

Within the Bayesian framework, we seek to estimate the probability density function of a tar- 
get's state vector, xA. G Kn. valid at time /./,., conditioned on a sequence of noisy measurements [15]. 
Useful statistical measures, such as the mean and the covariance. are then obtained directly from 
the conditional density. We limit the discussion to the class of Markov processes. The general 
nonlinear system dynamic model prescribing the temporal evolution of the targel state vector from 
time tk-i to time fj,. is assumed to be given by 

xfe = <pk ^Xfe-i.Wfc-i), (1) 

where wj. i is a random vector sampled from the known probability deusit) function />(wj. \). The 
general nonlinear observation model mapping the target state space to the measurement space is. 
in turn, assumed to be given by 

Zfc=:hjfc(Xfc,Vjfc), (2) 

where vA. is a random vector sampled from the known probability density function p(vfe). The 
noise vectors wjt i and Vfe in (1) and (2). respectively, are assumed to be white and mutually 
independent. 

Given a sequence of measurements 

Z,:A.  =   {Z1.Z2 Zfc}, (3) 

we wish to estimate the posterior conditional density. p(x-k \zi-.k)< of the target state vector, x*., 
valid at time r,A.. Models (1) and (2). with their underlying assumptions of Markovianity and white 
and independent noise vectors, render a recursive formulation. Given the density. p(x/t_] |zit i ). 
of the target state vector valid at time tk- \ conditioned on the sequence of measurements collected 
up to time tk-\- the prior conditional density, p (xA. | Zi:jfc-i). of the target state vector valid at time 
tk can be obtained from the Chapman Kolmogorov equation: 

/ 
P (Xfc I Z\:k-1 ) =   / P (Xfe | Xjfe    i ) p (Xfc-l I Zbfc    | ) tfxA    |, (1) 

where p (xfc | xjt   i) is the state transition density obtained from (1).   The posU rior density, p (xA. | zt:/.•). 
conditioned on the sequence of measurements collected up to time rA. is. in t urn. obtained from I he 
Bayes rule: 

p(ZA;|XA-)p(xfr |z1:A-i) 
p(xjfe z1:fc)= —• . 5 

P{Zk.        Z|;A._1     ) 



where the likelihood function. p(zk lxfc)- is obtained from (2). and 

p(z*|zi:fc-l) =   / p(Zfe|Xfc)p(Xfc|zi:A:-i) <£Xfe. (6) 

It follows that starting with an initial probability density function, p(xo), of the target state vector. 
XQ, valid at a time to prior to any observation, relations (4) and (5) can be applied recursively to 
update the conditional probability density function of the target state vector as new measurements 
become available. 

2.2    ENTROPY AND DIVERGENCE 

The contribution of each new measurement to the conditional probability density function of 
a target's state by means of the Bayes rule (5) amounts to a reduction in the uncertainty associated 
with the target's state estimate. A reduction in uncertainty can be equivalently regarded as a gain 
in information. The Renyi a-entropy provides a general scalar measure of uncertainty [10]: 

Ua (Slrft) = YZT^ 1(>g / ^ (XA' I Zl:*^ (/XA:- (7) 

where 0 < a < 1. In information theory, ''information" is defined as the negative of entropy [16]; 
that is, — ria{z\:k). Applying L'Hopital's rule, it follows that as a approaches unity, the Renyi 
a-entropy (7) reduces to the Shannon entropy: 

TMzi*) = Urni/Ha(zi;fc) = - / p(xk\zhk)\ogp{xk\zi:k) dxk. (8) 
a->l ./ 

A general scalar measure of the relative information between the prior and posterior probability 
density functions. p(xk \ z\-k_\) and p(xk | Zi,k). respectively, is. in turn, obtained from the Renyi 
o-divergence [10]: 

£>o (*!:* ||zi:/l--l) 
a —I      .1 

P (Xfc | z1:fc) 
p(xk |z1:fc_, 

p{xk |z1:fc_i) dxk. (9) 

Again, applying L'Hopital's rule, it follows that as a approaches unity, the Renyi o-divergence 
reduces to the Kullback-Leibler divergence: 

2>l(Zi:fc||z1:fc_i) = tiniPa(Zi:fc||zi:fe-l)=   /p(xfc|z1:jfc)log——^—   ^-dx,,. (10) 

When a = 1/2. we obtain the Hellinger affinity: 

X>l/2(zi:fc||zi:Aj_i) = -2 log / \/p{xk\zl:k)p(xk |Z1;A-I )d.xk, (11) 

where the integral on the right-hand side of (11) is recognized as the Bhattacharyya coefficient. 

The Renyi o-divergence is a measure of dissimilarity between two distributions.   Although 
it violates the symmetry and triangle inequality conditions, it is nevertheless helpful to think of 



the Renyi a-divergence as a distance function. For certain special cases, the Renyi a-divergence 
can in fact be appropriately transformed to yield a proper distance function. For example, in the 
case of Q = 1/2. the Hellinger distance, which satisfies all the conditions required to he a proper 
mathematical metric, is given by 

£>(Z!:A' I|Z1:A-    1 ) =  \/ 1 ~ exp 
Pl/2(zl *I|Z|  <-     I   I 12) 

where the exponential expression  under the square root  sign on the right-hand side of (12)  is 
recognized as the Bhattacharyya distance. 

To determine on which target a sensor should collect measurements during the nexl obser- 
vation period, we adopt the general strategy pursued by [5] and [10] by Favoring the target whose 
expected measurements would result in the largest gain in relative information: that is. we select 
the target whose Renyi a-divergence would be the largest. The choice of Q can have an impact on 
performance. Values of a = 1 and a = 1/2. corresponding to the Kullback Leibler divergence and 
Hellinger affinity, respectively, have been reported to provide favorable results [1()|. The value of 
a = 1/2 appears to serve as a better discriminant between two similar densities such as the prior 
and posterior conditional probability density functions encountered in target tracking problems. 
The choice of a need not remain constant and can be allowed to vary adapt ivelv. The prior and 
posterior conditional probability density functions of newly formed tracks are arguably less similar 
in shape than the prior and posterior conditional densities of mature tracks, thereby suggesting 
values of a closer to unity for newly formed tracks and values of o closer to 1 2 for mature tracks. 
In the numerical example presented in Section 6. we show results for a = 1/2. The optimal choice 
of a for the sensor management algorithm outlined in this report will be pursued as part of a future 
study. 
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3.    DYNAMIC TARGET SELECTION 

The decentralized dynamic- target selection logic we present is predicated upon favoring the 
target whose measurements, once collected during an upcoming observation period, would provide 
the largest weighted information gain. We choose the Renvi a-divergence as a measure of relative 
information gain. The weighting, in turn, enables the local sensor to learn from the environment 
(here, the global track file) the contribution of the other sensors with which it has no direct contact. 
Furthermore, prior to maximization, we apply a set of preselection rules t hat reduce the processing 
load. Since no measurements on any targets are available prior to any data collection, the potential 
information gain is obtained by computing the expected value of the Renvi a-divergence with respect 
to the probability density function of the measurements to be collected dining the forthcoming 
observation period. 

In order to expedite the formulation of the decentralized dynamic targel selection logic, we 
introduce some new notation first.   We denote the set of measurements originating from the /'th 
target (where v = 1 Nf) collected by the //th sensor (where // = I Ns) within the time 

interval [tk-\,tk) with 

< I" = {<:**-! <*,<**}; (13) 
we denote the set of all measurements originating from the i/\h target collected by the //th sensor 
up to (but not including) time r^. with 

/. Uk {<>< <!•• (14) 

and we denote the set of all measurements originating from the i/tb targel collected by all sensors 
up to (but not including) time tk with 

'!:* IK;- us) 
Our bioinspired target selection logic applies the principles of self-organization and stigmergy that 
are often encountered in nature. In the sequel, we give detailed accounts of how we implement each 
principle within the context of sensor management. 

3.1     SELF-ORGANIZATION 

In our application, sensors following simple local target selection rules induce the multiple- 
sensor target tracking system to arrive at a global database of estimated target state vectors that 
meet their desired qualities of service. Here, we consider three simple rules. We begin by selecting 
targets that have not yet met their qualities of service (QoS) at time U   i- 

S? = H H„KA-   t) >QoSH- (16) 

If S'' is empty, then no further action is required as all targets have already met their desired 
qualities of service.   From the list of remaining targets (if any), we then select  those that would 



meet their qualities of service if new measurements were collected on them and were subsequently 
incorporated by the /ith sensor to update their local state estimates: 

$$={v\ve$$,na(*rA-i) <Q°s£}, (i7) 
where 

is the expected entropy of the posterior probability density function, and p (z^'y | z".k_-[) denotes 
the probability density function of the measurements originating from the i/th target expected to 
be collected by the /ith sensor. We revert to S^ if S£ is empty. Lastly, from the list of desired 
targets (if any), we select the target whose measurements would yield the largest gain in relative 
information: 

//„ = arg max (QAf) , (19) 

where 
aAr=y,

P(Znz^_1)pa(zf,zr:fe_1||Z^_1) *g» (20) 
is the expected local information gain. 

3.2     STIGMERGY 

The simple local rules considered thus far do not employ any learning. Although sensors can- 
not communicate with each other directly, they can nevertheless infer the impact of their measure- 
ments on the global track file relative to those of other sensors by comparing their local information 
gain achieved for a particular target during the last observation period with the global information 
gain that was achieved for the same target by the multiple-sensor system as a whole. If the local 
information gain achieved by the /ith sensor for the i/th target is the same or nearly the same as 
the global information gain on the lAh target, then the /ith sensor has been the major contributor 
to updating the global state estimate of the fth target. Under this circumstance, the /ith sensor 
should continue collecting data on the i/th target as it is very likely that the other sensors are unable 
to either observe the uih target or have been obliged by their local rules to attend to other targets. 
On the other hand, if the local information gain achieved by the /ith sensor for the i/th target is 
significantly smaller than the global information gain on the //th target, then the /ith sensor could 
not have been a major contributor and should therefore be induced to collect measurements on 
some other target in urgent need of attention. 

Inspired by biology, the global track file serves as the "environment" in our application and 
provides an indirect method of communication between the sensors. To include the environment's 
impact on the target selection logic, we modify the local rule (19) to read as 

/i,, = arg max (<VA£") , (21) 

where the weight, wj^j, with 0 < wk
iU_l < 1, serves as a learning index. Assuming that all targets 

yield the same expected information gain. aA'fu. relation (21) implies that targets with weights 

10 
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Figure 1. Heuristic function modeling the "forgetting" effect in tin learning index, "'!" , • when the last local 
track update occurs at a time te-i earlier than the last global, track update time, tk   i- 

closer to unity will be favored over targets with weights closer to zero.   When there exists ;i local 
update at time £fc_i, we choose the learning index to be given by 

w fc-l 

a AM* 

_  A. j 
[22) 

where 
O   A II" A/"'      _ <r>    (V"' yV \\y" \ (23) 

is the actual gain in local information obtained by the //th sensor on the rth targel at time It, \. 
and 

aA£ ,=%«.*_, || z£fc_2) (24) 

is the global information gain for the uth target at time tk \. which includes measurements collected 
by all sensors (including the //th sensor). If aAj,"' ( is close to aA£ L. then w?" , is close to unity- 
ruder this circumstance, the //th sensor is perceived as a major contributor to updating the global 
state estimate of the //th target and thus favors to continue collecting data on the1 />th target. On 
the other hand, if aAk

u^_. is significantly smaller than °A£_,. then the //th sensor could not have 
been a major contributor to updating the global state estimate of the / th target and thus should 
attend to other targets. 

When the last local update occurred at some time fy_]  <  1^   \, we choose tin1 following 
heuristic relation: 

III/ U,V        .      I •, III/    \ exp tk-i ~t (   t 
(25) 

when1 T is a globally specified time constant determining the rate at which the learning index 
approaches unity—thereby inducing a "forgetting" effect- when there arc no local measurement 
updates (see Figure 1). 

I I 
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Figure 2.  Data flow diagram for the distributed sensor management architecture for problems with, general 
system dynamic and observation models. 

3.3     DATA FLOW 

The data flow diagram for the distributed sensor management architecture presented in this 
report is shown in Figure 2. In this architecture, autonomous sensors are responsible for allocating 
their own data collection resources based on (1) the information available in the global track file 
(GTF) and (2) the expected relative information to be gained during the forthcoming data collection 
time interval, /.*,._ i < t < tk- The local processing cycle is detailed in the box in the upper right 
corner of Figure 2. While sensor management occurs strictly locally at the sensor level, track 
maintenance occurs globally at the central processing node. In other words, our architecture does 
not require maintenance of local track files The global track file is populated and maintained only 
with reported likelihoods valid during the data collection time interval, t^-i < t < tk- 

As discussed earlier, in this report we assume perfect data association; that is. we assume 
there is no ambiguity as to which measurement is originated from which target. In dense target 
environments, data association imposes a serious challenge and cannot be ignored. Although not 
pursued any further in this report, in our sensor management architecture, data association must 

12 



be performed both at the local and global levels. At the global level, the measurement Likelihoods 
reported from multiple sensors must be correlated with propagated global Hacks prior to fusion. 
At the sensor level (see top-right box in Figure 2). once measurements have been collected, they 
must be associated with the propagated copies of the global tracks. For the scenario shown on 
the left-hand side of Figure 2. each sensor tracks only one target at a time. For example, sensor 1 
has allocated its resources to collect measurements solely on target 2. In iliis case, local data 
association would not be necessary. However, if target 2 in Figure 2 represented a dense target 
complex instead (that is. a family of closely-spaced objects as opposed to a single object), then 
the multiple measurements originating from the complex must be associated with the propagated 
copies of the global tracks that form the cluster. 

13 
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4.    ADDITIVE WHITE GAUSSIAN NOISE 

Although somewhat specialized, the sources of system dynamic and measuremenl uncertain- 
ties in many target tracking problems are often modeled to be additive, while, and Gaussian. Such 
modeling has the advantage of allowing the computation of the prior and posterior conditional 
probability density functions needed for the sequential Bayesian estimation of the targel state to 
be reduced to the computation of their first two statistical moments-   mean and covarianee. 

4.1     SEQUENTIAL BAYESIAN ESTIMATION 

Under the additive white Gaussian noise assumption, the nonlinear system dynamic model (1) 
for the i/th target reduces to 

** = ¥>*   i(xg  O+wJU (26) 
where 

wv
k   , ^.V(w,__,:O.Q^   ,). (27) 

is a white zero-mean Gaussian random vector with covarianee QA   L.  The function A'(x;/i, S) = 

, '      exp  — ^(x — /x)   X}-1(x — n)   denotes the probability density function of a Gaussian ran- 
Vl27rSl L J 

dom variable, x. with mean fi and covarianee X. Similarly, under the additive white Gaussian noise 
assumption, the nonlinear observation model (2) for the //th sensor and the rth target reduces to 

<" = K «D + vf, (28) 

where 

r^K:O.RD (29) v 

is a white zero-mean Gaussian random vector with covarianee Rj£". 

Since the process noise vector. wj,',. is additive, white, and Gaussian, it follows from (26) 
that the state transition probability density function for the state vector of the i/th target from 
time tk  i to time tk is given by 

p(x^|xLi)=^(x^;^ t(x£  L),Q£ ,). (30) 

Starting with a Gaussian probability density function for the t/th target's state vector, xj! ,. valid 
at time £fc_i, conditioned on the sequence of measurements, Z| A_I: 

p(xLi|^-i)=Ar(x^_1;x^1|fc_1,P^  „,   ,). (31) 

multiplying (30) and (31). employing a first-order Taylor expansion of the system dynamic function. 
</>);_ I (•). about the state estimate. x£ _^k _,. and integrating the result with respect to x£ , over 
Rn, it follows that the prior conditional probability density function of the state vector of the /'tli 
target valid at time £*. can be approximated with a Gaussian function: 

p(x^|z^_1)^AT(x^x^_1,P^   ,). (32) 
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where Xu^j and Pjufc_] denote the predicted state estimate and error covariance of the i^th target, 
respectively. It can be shown that they arc given by [17] 

*5*-i = vK-i (**-n*-i) 0») 

and 

P{|*-l"*I-lI^l|*-i(*I-.l}T + QX-1. (34) 
where 

*•• • = —k^ (35) 

is the state transition Jacobian matrix. 

Similarly, since the measurement noise vector. Vt", is additive, white, and Gaussian, it follows 
from (28) that the likelihood function associated with the measurement vector, z£", originating from 
the i/th target and collected by the //th sensor is given by 

where 

denotes the predicted measurement vector. Multiplying (32) and (36). employing a first order 
Taylor expansion of the measurement function. h{J(*), about the predicted state estimate. XM^I, 

and integrating the result with respect to x£ over R", it follows that 

p«|«^)«JV (<';<'• ST). (38) 

where 
T 

sf = Ht!Pt fc    =»fcrfc|fc_1(6j)    + Rf (39) 

is the innovation covariance matrix, and 

Hi' - dKi*U-" (40, 
'>X, 

is the measurement Jacobian matrix evaluated at xjufe-l" In (39). Rfc denotes the anticipated error 
covariance matrix associated with the measurement originating from the uth target to be collected 
by the //th sensor at time tk- We assume that it is possible to compute the measurement error 
covariance matrix associated with a given target prior to its observation. 

Substituting expressions (32), (36). and (39) into (5). it can be shown that the posterior 
conditional probability density function can also be approximated with a Gaussian function: 

p(x^|zffe)^AT(4;x^Pg)1 (41) 
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where x^fl and P'A'^. are the updated state estimate and error covarianre. respectively, of the /'th 
target obtained using the measurement collected by the //th sensor at time U- It can be shown 
that they are given by [17] 

*K=(PK)   K 0 l**i* -' + ("'0 K) 'z 121 

and 

(PS)" =K-0" +(«) ("0" "•• («' 
Equations (42) and (43) can be rewritten as 

and 

respectively, where 

PjJ = Pfo   .-K-SriKD7- (45) 

Kr=p*|fe-i(^)T(sr)l (46) 

is the Kahnan gain matrix [17]. Equations (44) and (45) are recognized, respectively, as the state 
estimate and error covariance update equations of the extended Kahnan filter. The state estimate 
and error covariance prediction equations of the extended Kalman filter, in turn, are given by 
equations (33) and (34). respectively. 

The data flow diagram for the distributed sensor management architecture with system dy- 
namic and observation models governed by additive white Gaussian noise is shown in Figure 3. 
The data flow is similar to that shown in Figure 2 for the general system dynamic and observation 
models with the exception that now only measurement vectors and their associated measurement 
error covariances need be reported. Compared to likelihoods, this is a significant reduction in the 
amount of information that the sensors need to report. As shown in Figure 3. in cases where 
there may be limited communication bandwidth, optionally, data can be further compressed. For 
example, given a sequence of measurements collected over the time interval f* i < / < r^.. for 
certain scenarios, it may be sufficient to report the parameter vector (along with its associated 
estimation error covariance) representing the fit to a polynomial of an appropriately chosen degree. 
The measurement vectors and their associated error covariances (or their compressed versions) are 
conflated and reported as a data bundle, denoted with s[!" for the //th sensor and the uih target in 
Figure 3: 

where 

= {zf,Rf}, 117) 

and 

«f = {«C : **-i < *<„ < **} (48) 

Rf={R{: :',-,< /,,,</,}. (49) 
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Figure 3.   Data flow diagram for the distributed sensor management architecture, for problems with system 
dynamic and observation models governed by additive white Gaussian noise. 

4.2     ENTROPY AND DIVERGENCE 

We next present expressions for the entropy and divergence.  Substituting (41) into (7) and 
evaluating the integral analytically, it can be shown that the posterior o-entropy is given by [5] 

M*f.3l*-l)=^°g( 27TCY1- rk\k ) 
cm 

The expected posterior entropy needed for the dynamic target selection algorithm outlined in Sec- 
tion 3 is. in turn, obtained from substituting (50) and (38) into (18) and evaluating the integral 
analytically. It can be readily shown that it is given by 

TiaOC*!:*   t) = ^°g( 2nal- ^k\k (51) 
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which is the same as (50). Similarly, .substituting (41) into (9) and evaluating the integral analyti- 
cally, it can be shown that the local information gain is given by [10] 

a AA»y 1 
2.(1-o) 

log 

pv a 
rk\k 

l-o 

«PA-,A-I + ( 1 -a / rk\k 

[ 

(52) 

|{(^-%  i)T [<J»K,*-i + (!-«)PJU]   '(xjj-xfo , 

The expected local information gain needed for the target selection algorithm out lined in Section 3 is. 
in turn, obtained from substituting (52) and (38) into (20) and evaluating the integral analytically. 
It can be shown that it is given by 

a^iu> I 

2(l-o) 

M 

li >g 

pv 
*fclfc-- I rk)k 

1      Q 

aP^_1 + (l-a)P kk 

• 

(53) 

/JI/ -tr^KD1   oP^_,+(l-a)P,N Krsr}- 
Using L'Hopital's rule, it can be shown that as a approaches unity, equations (50) and (51) reduce 
to 

W1(zr,z^_1)=ilog(|27reP^|) 

and 

respectively; equations (52) and (53). in turn, reduce to 

1 A A'" iog(ip^i)+2io"(ip^ 'i)+H(p^')lp^--1" 
(XA-|A- ~ XA-|A-I J      (PA-iA--lJ        (xi'iV ~ XA A    I ) 

I 

(.-,1) 

(56) 

and 
lAf = -- k 2 

bg ( *A-|A- + 2loS A k    1 +2tr k\k    \)       x kk       l" + 

tr (sr) l^pU t(«) 
(57) 

respectively.   In (56) and (57). I„ denotes the n x n  identity matrix where n  = dim(x) is the 
dimension of the target state vector. 

When a = 1/2. equations (50) and (51) reduce to 

*./2«"X:A    l)  =   2^(1^1) >8) 

1!) 



and 

w1/2(*r<fc-i) = 5 
lo*( 

respectively; equations (52) and (53). in turn, reduce to 

2 *fe|* )• 

1/2^1/ log 
fc|fc    1 

DC" 

L f-p"        + p'"y -4 

pi' j_ p/'" 
M-|fc-l + ^k\k 

(Xfc|fc      xfe|A-lJ 

and 

1/2£»i> _ 

respectively. 

-log [v 
p* rfc|fe 1 

+ 4tr [l( PA|fe-l "• 
p(«' 

). 

(KDT 
1 

Kfsf 

(59) 

(60) 

(61) 
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5.    DETERMINISTIC MOTION 

In the absence of process noise—that is. when the process noise vector, wj. |. in the system 
dynamic model (1) can be set equal to zero—target motion becomes deterministic. For example, 
in the special case of tracking ballistic targets, target motion is prescribed by well-understood 
forces that can be modeled to a high degree of accuracy (e.g.. see [18. eh. .'<]). Tims, lor ballistic 
targets, motion can be safely assumed to be deterministic. When tracking \, targets following 
deterministic trajectories, the nonlinear system dynamic model prescribing the temporal evolution 
of the i/tta target from time tk-i to time f/,. becomes 

< = ^,(xL,), (62) 

where 

vl ,K ,) = <, + /" v;w)<it (63) 

is a deterministic function prescribing the noise-free transition of the state vector of the i'\\\ target 
from time tk-i to time t^. The function f/'(•) in (63) models the underlying continuous-time forces 
acting on the i/th target; that is. 

*? = ?«), (64) 
where xf' denotes the first derivative of xf with respect to time . Here, we use the subscript / to 
distinguish continuous-time variables from discrete-time variables, which in t urn we denote with the 
subscript A: for time index; thus, using this notation, xjfe = Xtk. Applying (62) and (63) recursively, 
it follows that the state vector. x£, of the fth target, valid at time //,. can be obtained directly 
from the target state vector. x[J, valid at a time to prior to any data collection: 

rtk 
c£ = xg+ [k%W)dt. (65 

Jta 

Thus, in case of deterministic motion, target dynamics are completely characterized by the initial 
state vector. x„, valid at time to. 

In the absence of process noise, the covariance QJ;! | in equation (34). which we use to 
propagate the error covariance of the i/th target's error covariance between measurements, vanishes. 
Hence, starting with the updated global state estimate. X-k-l\k—l' aU(' <ll(" covariance, PJ! .it- i> 
it follows that for a set of A/j[.' measurements expected to be collected by the //th sensor on the fth 
target within the forthcoming observation period. tk-\ < t < 1^-. the covariance propagation and 
update equations equations (34) and (4.3). respectively can be combined and applied recursively 
to yield 

(*S) "1 = K1,t-,)"
1 + 

MS 

e=i 
n-1 

(66) 
1 Assuming that the function f has continuous first partial derivatives, it can be shown thai  the transition ma- 

trix (35) can be obtained from solving <I> - F<J\ where F = ()f/c)x (e.g.. see [19]). 
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where t^r with t^-\ < ti„ < tfc, denotes the time of a particular measurement expected to be 
collected by the fith sensor within the upcoming observation period. Thus, the anticipated M^ 
measurements to be collected by the /j.th sensor on the ut\\ target during the forthcoming observation 
period, t^-i < t < tfc, can potentially produce the local gain: 

W 

in information relative to the inverse of the global error covariance, P^-nfc-i' va^d at time t-k-i- 
In other words, equation (66) can be rewritten as 

$W = Jj-ufc-i + Ajf, (68) 

where Jfc|t = (Pfc|fc) and J/^ i|fc— l = (Pfc-iiA.-i) are the Fisher information matrices as- 
sociated with the local and global updated error covariances valid at times t^ and tk-i, respec- 
tively. Thus, expression (67) provides the expected gain in the Fisher information matrix at time 
tk. Once actual measurements have been collected, the predicted measurement error covariances. 
Rf   . in (67) are replaced with actual measurement error covariances, R£"/ . in order to compute 

the actual Fisher information matrix; that is. at that point, AJfc and J^, in (68) are replaced 
with their actual values, denoted by AJ£" and Jjj*£, respectively. 

5.1  CRAMER RAO LOWER BOUNDS 

Since target dynamics in the absence of process noise are completely characterized by the 
state. Xo. valid at a particular time, <o, we only need to focus on estimating x0- The state estimate 
valid at an any other time can subsequently be obtained from (62). The uncertainty in the state 
estimate valid at time to reduces as we incorporate new measurements. We can express the recursion 
relation (68) in terms of XQ: 

Jf(*S) = JS i(*S) + Ajf(xg), (69) 

where J^.   and J£_j now denote the predicted local and actual global Fisher information matrices 
associated with the estimates of Xg at times t^ and tfc_i, respectively.  Specifically, the local gain 
in the expected Fisher information matrix. AJt , is given by 

K T 

AJJT(*S) = £ \K (*&)*"(«*,*»)    (BT)   H* (xS)4"(^,t0). (70) 

Again, once actual measurements have been collected and incorporated. Jk. . A J^ , and Rf    in (69) 

and (70) are replaced with J^", AJ{T, and R^" . respectively. 

When the estimated state. XQ. of the i/th target in (69) and (70) is replaced with the true state. 
X,". the inverse of the updated Fisher information matrix provides the Cramer-Rao lower bound 
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on the error co-variance [14]. When computing Cramer-Rao lower bounds, the terms involving 

f x^. - x£ife_]) in the expressions for the Qr-divergence that were presented in Section 1 all vanish. 

Subsequently, the expected value of the a-divergence. "A^!". becomes ihe same as the actual a- 

divergence. aA^. and therefore Jfc and A3k become the- same as j£ and A.Jj,!''. respectively. 
Furthermore, the error covariances. P^. and P^. , in the expressions for the o-entropy and o- 

divergence can be replaced with (J^")      and (JJ^_,)     . respectively. 

Without committing to a specific tracking filter, we can evaluate the overall performance of 
the target selection logic outlined in Section 3 using the Cramer Rao lower bounds derived in this 
section2 (cf. [21]). Once a particular sensor selects to collect measurements on a particular target. 
the local Fisher information matrix is computed according to 

jr = JL. + ^A.i';v. el) 

where i/« denotes the index of the target selected by the //th sensor. The global Fisher information 
matrix is. in turn updated according to 

J*=J*   L + X>„Ajf'\ (72) 

For each local measurement cycle, the //th sensor begins the target selection process by accessing 
the global track file that is broadcast to all sensors at regular time intervals. The sensor's local 
processor then selects only those targets that are predicted to be within its field of regard dining 
the forthcoming observation period, tk-i < t < f/,-. Next, the local processor updates the learning 
indices of all visible targets according to (22) or (25) depending on whether or not a particular target 
track was locally updated during the last observation period. Subsequently, the local processor 
selects a target according to the rules outlined in Section 3. Once a target has been selected, the 
local gain. Aj£ p, for the selected target is reported to the central processor. The central processor, 
in turn, collects similar information from all sensors and updates the global track file according 
to (72). 

2For ballistic targets, it has been shown that the batch least-squares Biter provides effi< ient state estimates with 
error covariances that match the Cramer  Rao lower bound (e.g.. see [20]). 
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6.     NUMERICAL RESULTS 

We illustrate the performance of the bioinspired target selection algorithm outlined in Sec- 
tion 3 using simulation. Twenty-one different scenarios are examined, with large! numbers ranging 
from 1 to fOO. Our example scenarios utilize three independently operating narrowband IH cameras 
on board three separate stationary platforms, each of which can track up to 100 ballistic targets. 
Each camera is allowed to pan up to 360 degrees in the horizontal direction, whereas the panning 
movement in the vertical direction is restricted to lie within 0 and 40 degrees. The ballistic tar- 
gets originate at the same time, to = 0, from multiple sources randomly distributed over a fixed 
rectangular area and terminate at the same location. The targets' times of flight are chosen to 
be proportional to the ground range between their points of origin and the final destination; thus, 
different targets arrive at different times. The wide spatial separation ol the targets together with 
the sensors' narrow fields of view guarantee that at most one target can be Hacked by a sensor at 
any given time thus, eliminating the need for any local data association algorithm. However, the 
problem of global data association remains. To compute the entropies and divergences needed by 
the target, selection algorithm outlined in Section 3. we employ the Cramer Rao lower bounds of 
Section 5 as surrogates for the error covariances associated with the state estimates of the ballistic 
targets valid at time to = 0. 

At regular time intervals, a central processor collects data reported by each IH camera here. 
in the form of AJt"" discussed in Section 5 and updates the global track tile using equation (72). 
The global track file, the contents of which are broadcast to all sensors at regular time intervals, is 
assumed to have been already populated with the initial values of all targets' fisher information 
matrices—for example, obtained by means of a separate set of sensors operating at a previous 
processing epoch—prior to the targets' entries into the fields of regard of any of the three 1R 
cameras. We do not account for any search or acquisition time: thus, once a sensor has tasked itself 
to collect data on a target different than the one currently being tracked, local target-to-targe1 
switching is assumed to occur instantaneously3. 

We vary the complexity of the resource allocation problem by starting with a single1 target 
and subsequently increasing the number of targets, in steps of 5. up to 100 (i.e.. 1. 5, 10. br> 95, 
100 targets). Each numerical experiment is repeated 10 times, and results arc averaged to evaluate 
performance. The simulation parameters are listed in Table 1. The global-track-file update occurs 
every 2 seconds; thus, each sensor, with a measurement sampling time of I second, can potentially 
produce up to two measurements per target (i.e.. M£ = 2). Our goal is to ensure that for as 
many targets as possible the state estimates meet a particular level of accuracy as quantified by the 
r»-entropy. Targets whose o-entropies fall below a certain threshold are referred to as "serviced"; 
the threshold itself is referred to as the "quality of service." We have chosen a = 1/2. in which 
case the o-divergence becomes the Ilellinger affinity (see Section 2). We defer the examination of 
the impact of other values of a on system performance to a future study. Since no process noise is 
included in the problem, the value of the global entropy for a particular target does not increase 
once a sufficient number of measurements have been incorporated to lower it below a certain level. 

'Although not pursued here, one can readily account for the time lost in acquiring ;i given target by excluding the 
measurements that would otherwise have been included in the sum (70). 
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TABLE 1. Simulation Parameters 

PARAMETER VALUE 

Maximum Number of Targets 100 

Number of Sensors 3 

Local Sampling Time 1 s 

Global Sampling Time 2 s 

Measurement Noise Standard Deviation    500 /irad 

Quality of Service 25 log (m6/s3) 

Forgetting Time Constant, r 10 s 

Number of Monte Carlo Trials 10 

The average number of targets serviced as a function of the total number of targets in a 
given scenario is shown in Figure 4. Averages are computed over 10 Monte Carlo trials. The 
launch locations of the ballistic targets are randomly varied over a rectangular region from one 
Monte Carlo trial to the next; however, in all trials, all targets terminate at the same location. 
The locations of the three sensor platforms also remain the same throughout the simulation. The 
dashed line in Figure 4 corresponds to the ideal case when all targets meet their qualities of service 
at all times. However, as the number of targets increases, degradation in performance would be 
expected. The green curve labeled as "bio inspired" in Figure 4 is obtained by employing the target 
selection algorithm outlined in Section 3. We see that the bioinspired algorithm performs very well. 
We only observe a relatively small degradation in performance when the number of targets nears 
100. 

For reference, we also compare the performance of the bioinspired algorithm with two other 
target selection algorithms. The red curve labeled as "uniformly random" in Figure 4 is similar to 
the bioinspired algorithm, a decentralized sensor-level target selection algorithm. This algorithm 
randomly selects a target from a list of targets predicted to be visible within the upcoming ob- 
servation period. The targets are assigned equal weights; thus, the random selection is uniform. 
As is evident from Figure 4. for small number of targets (up to around 25 in our example), the 
performance of the uniformly random algorithm is nearly perfect—as is indeed the case for the 
other algorithms. This result suggests that at least for a small number of targets, an algorithm 
as simple as the uniformly random target selection algorithm can be employed reliably to meet all 
resource allocation requirements, and therefore, there may be no need to resort to a more expensive 
solution. 

In addition to the decentralized, uniformly random target selection algorithm, we also compare 
the performance of the bioinspired algorithm to that of a greedy, centrally processed sensor-to-target 
assignment algorithm. The blue curve labeled as "greedy" in Figure 4 shows results obtained using 
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this algorithm.   Our centrally processed algorithm assigns sensors to targets by solving a linear 
assignment problem. The centrally processed algorithm is "greedy" in thai al any time interval. 
(1) it assigns sequentially one sensor per target, and (2) it solves the assignment problem only For 
the forthcoming observation period without any regard to past assignments or prediction of future 
performance. The former restriction prevents the simultaneous coverage of targets by multiple 
sensors, whereas the target selection algorithm of Section 3, although not "consciously," does allow 
for simultaneous multiple-sensor coverage. The lack of simultaneous multiple-sensor coverage over 
a given observation period in the greedy algorithm may partially, although not entirely, explain the 
poorer performance of the algorithm for a larger number of targets (greater than around 60 targets 
in our example). We would expect a more sophisticated centralized algorithm that fully takes takes 
into account the stochastic nature of the scenario to perform at least as good as or better than the 
bioinspired target selection algorithm. However, the main advantages of t he target selection logic of 
Section 3 are: (1) it is scalable, and (2) it requires less processing and communication bandwidth. 
Thus, in many applications, a quick cost-benefit analysis may reveal its implementation to be more 
advantageous as compared to an otherwise optimal, centrally processed algorithm. A complete 
comparative analysis of various centralized and decentralized algorithms is beyond the scope of t his 
report and is deferred to a future study. 

In Figure 4. the average number of targets serviced were computed when the three sensors' 
opportunities to observe all targets had been exhausted. For a subset, of scenarios considered, plots 
of the average number of targets serviced as a function of time are shown in Figure -r>. In addition 
to the three curves that were considered in Figure 4, we have also included a curve labeled as 
"serviceable" in Figure 5. Since not all targets are within the fields of regard of all sensors at all 
times, even the existence of an optimal resource allocation algorithm could not guarantee that the 
quality of service can be met for all targets. This is a purely geometrical restriction. Nevertheless, 
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the "serviceable" curves provide a loose upper bound on performance. As is evident in Figure 5, 
it is not after around 400 s that eventually all targets enter the fields of regard of all sensors in 
our example. From the temporal behavior shown in Figure 5, it is clear that the target selection 
algorithm outlined in Section 3 performs better than the other two algorithms in that larger number 
of targets meet their qualities of service earlier. The superior performance of the bioinspired target 
selection algorithm becomes even more evident as the number of targets increases. 
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7.    SUMMARY AND DISCUSSION 

In this report, we presented a bioinspired algorithm for managing the resources of multi- 
ple sensors tracking multiple targets within the framework of a decentralized sensor management 
architecture. Our target selection logic follows the principles of self-organization and stigmergy 
observed in biological swarms. In our implementation, sensors are self-tasking and are not required 
to communicate with each other directly. Nevertheless, sensors can inlet fit mi the global track 
file, which is continuously broadcast by a central processing node, their relative contributions to 
achieving certain levels of global state estimation accuracy for particular targets. 

We devised local information-theoretic target selection rules lor the general Bayesian formu- 
lation of the target tracking problem. We also provided specific formulas for problems dominated 
by additive white Gaussian noise. We rely on the Renyi ev-entropy and o-divergence as measures of 
absolute and relative information, respectively. We have not examined the impact of the particular 
choice of a. In our examples, following [10], we have chosen a = 1/2. We deter to a future study 
the examination of the impact of the particular choice of a on the performance of the bioinspired 
target selection algorithm. 

For reference, we have compared the performance of the bioinspired target selection algorithm 
with those of other suboptimal algorithms using numerical examples involving ballistic targets (no 
process noise). To demonstrate performance, we have used Cramer -Rao lower bounds as surrogates 
for target state estimation error covariances. Targets following deterministic trajectories such as 
ballistic targets—render a simple recursive formulation of their Cramer Rao lower bounds. We have 
shown that the bioinspired algorithm is highly scalable and performs very well for large numbers of 
targets. Our numerical examples were devised such that data association would pose- no challenge 
to tracking performance. Poor data association can in general impact sensor management. In a 
future study, we will examine the impact of finite process noise, poor data association, and sensor 
biases on the performance of the bioinspired target selection algorithm. 

The target selection rules outlined in Section 3 are by no means the only rules one could de- 
vise. The rules could be extended, and the bioinspired target selection algorithm may be optimized 
for specific applications. For example, in the case of deterministic dynamics, such as the example 
scenarios considered in Section G. the predictable nature of target motion may be exploited to 
improve the formulation of the learning index. Wjt-i. Some knowledge of other sensors' observation 
capabilities, if available, can also be exploited to improve the formulation <>l I he learning index. 
Although in a decentralized sensor management architecture1 sensors are uoi required to communi- 
cate with each other directly, certain information about them, such as their locations and fields of 
regard, can nevertheless be readily broadcast by the central processing node with little added cost. 
We defer the examination of such extensions of the algorithm to a future study. 
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