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ABSTRACT

We present an algorithm. inspired by self-organization and stigniergy observed
in biological swarms, for managing multiple sensors tracking large numbers ol tar-
gets. We devise a decentralized architectnre wherein autonomous sensors manage
their own data collection resources and task themselves. Sensors cannot commu-
nicate with each other directly; however. a global track file. which is continnously
broadcast. allows the sensors to infer their contributions to the global estimation of
target states. Sensors can transinit their data (either as raw measurenments or some
compressed format) only to a central processor where their data are combined to
update the global track file. We outline information-theoretic rules for the general
multiple-sensor Bayesian target tracking problem. We provide specific forinnlas tor
problems dominated by additive white Gaussian noise. Using Cramér Rao lower
bounds as surrogates for error covariances, we illustrate, using nnmerical scenar-
ios involving ballistic targets. that the bioinspired algorithm is highly scalable and
performs very well for large numbers of targets.
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1. INTRODUCTION

A major objective of multiple-sensor target tracking systenis is to achieve certain levels of state
estimation accuracy for as many targets as possible. In applications where a single sensor is tasked
with collecting measurements on a single target. tlie management of the sensor's available resourees
does not pose any challenge. However, in situations where a small number of sensors are directed
to collect measurements on a large nmmber of targets. the decision process that determines which
sensors are to collect measurements on which targets during the next observation time interval can
be daunting. The sensor management problem becomes more difficult as the number of targets
relative to the number of sensors increases. The problem is further exacerbated when targets and
sensors are not arranged in a favorable geometric constellation. ldeally, one wishes to “service”
as many targets as possible; that is. one would like to ensure that certain levels of accuracy. or
“qualities of service.” can be achieved in estimating the states of as iany targets as possible. In this
report, we present a target selection algorithm that is inspired by principles goveriing biological
swarni intelligence.

In multiple-sensor target tracking systems. data collected by tasked seusors arve often corve-
lated and fused to form a global database of target state estimates and error covariances, referred
to as the “global track file” (e.g.. see [1] and [2]). Sensor data can be processed either at a cen-
tral processing node or in a distributed fashion. giving rise to a plethora of data correlation and
fusion architectures (e.g.. see [3]). In this report. we pursue a mainly decentralized approach to
sensor ntanagement that wonld be readily adaptable to a bioinspired hnplementation. However,
our architecture is not devoid of central processing. In a way. it can be regarded as a hybrid. In
our implementation. sensors are not allowed to directly communicate with each other. vet a global
track file, maintained by a central processor. is continuously broadcast. ane its contents are there-
fore assuined to be always available to all sensors. The sensors operate locally and antonomously
by tasking their own resonrees based on the information available hn the global track file. I our
architecture. sensors make adjustments to their tasking decisions based on an assessment of their
anlicipated relative contributions to the global track file over a forthcoming data eollection time
interval; thus, the global track file provides an indirect means for sensors to communicate with
each other. Sensors transmit their data only to the central processor. where they are corvelated
and fused to update the global track file.

A decentralized approach to sensor management has many benefits. Foremost, it is robust in
that the overall system performance is not significantly degraded by the failire of a few member
sensors. More hmportantly, a decentralized imiplementation is scalable: that is. the complexity of
the implementation does not increase significantly as more sensors are added to the systein. Since
all tasking decisions are made locally by the sensors themselves, the computing and connnnmication
bandwidth requirements are less stringent than they would be in a purely centralized approach.
Many examples of decentralized approaches to sensor management can be found in the literature.
For example, in [4], the authors apply a novel game-theoretic approach to dynamic target selection.
Of relevanee to our work is [5], wherein the authors employ an information-theoretic approach to
decentralized sensor management.




Bioinspired approaclhies to solving combinatorial optimization problems follow either or both
of two main principles observed in nature: “self-organization” and “stigmergy.” For a full and lucid
account on swarm intelligence and its applieability to solving combinatorial optimization problems,
we refer the reader to [6]. There we learn that in biological swarms, such as schools of fish or
flocks of birds. individual members, without any awareness of actions taken by other members,
are capable of unconsciously arriving at a meaningful, and often very complex. global behavior by
merely following a set of very simple rules. This phenomenon is referred to as “self-organization”
or “emergent behavior.” Self-organization is not limited to biological systems and is also observed
in other complex decentralized systems such as free-market economies. An applieation of self-
organization to sensor management was developed in [7] (see also [8]). We extend and formalize
the rules considered in [7] and [8] using the information-theoretic approaches employed in [5]. [9],
and [10].

In biological swarms. simple local rules alone may not be sufficient to provide the means for
the system as a whole to reach a particular global goal. Although individual members in swarms are
not consciously aware of actions taken by other members, they can nevertheless communicate with
each other indirectly through the impact they lay on their environment. As individuals impact their
environment through their actions. the environment, in turu, influences individual behavior, thereby
fostering a learning mechanism. This phenomenon is referred to as “stigmergy” or “sematectonic
communication.” A prime example in nature is that of ant trails. Frequently trodden paths to
existing food sonrces are doused with pheromone sprayed by passing ants. Pheromone traces. in
turn. encourage further traffic. Once a particular food source has been exhausted. ants, following
siiple rules. begin searching for new sources of nonrishment. At this point. the trail to the empty
food source becomes less frequented, and extant pheromone traces begin to evaporate, thereby
discouraging further visitation. Auts who find a new food source by leaving behind new traces of
pheromone then enconrage other ants to visit the new path, and the process begins anew. The
application of both self-organization and stigmergy to sensor management was first explored in [7].
By employing the information-theoretic formulation of [10]. we extend and formalize ideas originally
developed in [11], [12]. and [7] to allow sensors to communicate with each other indirectly via the
global traek file that represents the “environment” in our application.

Throughout this report, we assume data association to be perfect. In many real-world prob-
lems. poor data association can be a major himiting factor to the reliable performance of target
tracking systems, and its impact on sensor management must therefore be brought to bear (e.g..
see [1] and [2]). Nevertheless. even in cases of perfect data association. sensor management can be
a daunting task when the number of sensors is significantly smaller than the number of targets.
Although absolute performance predictions would be optimistic. we believe that the formulation
we present in this report can at least shed light on the relative performance of candidate target
selection algorithims. We have also ignored the impact of sensor biases that can have an adverse
effect on data association. We defer to a future investigation the impact of poor data association
and sensor biases on the performance of the target selection algorithin presented in this report.

We begin in Section 2 by reviewing the sequential Bayesian formulation of the single-target
tracking problem. In Section 2, we also present the Rényi a-entropy and a-divergence [13] that are
extensively utilized in our information-theoretic approach (cf. [9} and [10]). The bioinspired target



selection algorithm for the general Bayesian formulation is presented in Section 3. In Section 1,
we present the specific lormulation of the multiple-sensor target tracking problem for systems
dominated by additive white Gaussian noise. In Section 5, we focus on targets whose motion can
be described by a deterministic system dynamic model. Deterministic dynamics allow a simple
recursive formulation of the Cramér-Rao lower bound on the error covariance associated with the
estimated target state [14]. In Section 6. we use the Cramér Rao lower bonnds derived in Section 5
as surrogates for target state estimation error covariatices to evaluate thie perlormance of the target
selection algorithm outlined in Section 3 for an example scenario involving ballistic targets. Lastly,
in Section 7, we summarize our results and discuss how the bioinspired target selection algorithm
may be further improved for specific applications.
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2. RELATIVE INFORMATION GAIN

i this report. we adopt an information-theoretic approach to target selection wherein we favor
targets whose measurements. once collected during an upconming observation period. wonld resnlt in
the largest reduction in the uncertainties associated with their state estimates (cf. [5]. [9]. and [t0]).
We begin this section by reviewing the recnrsive Bayesian formmnlation of the single-target tracking
problem. We then provide general expressions for the information-theoretic measures ntilized by
the hioinspired target selection logic outlined in Section 3.

2.1 SEQUENTIAL BAYESIAN ESTIMATION

Within the Bayesian framework. we seek to estimate the probability density function of a tar-
get's state vector. x; € R". valid at time {;. conditioned on a sequence of noisy measnrenents [15].
Useful statistical measures, such as the mean and the covariance. are then obtained directly from
the conditional density. We limit the discussion to the class of Markov processes. The general
nonlinear system dynamic model prescribing the temporal evolution of the target state vector from
time {41 to time #; is assunmed to be given by

Xk = Pp 1 (Xk-1, Wi 1), (1)

where wy 1 is a random vector sampled from the known probability density function p(wy ). The
general nonlinear observation model mapping the target state space to the measurement space is.
in turn, assumed to be given by

2y = hp(xg, Vi), (2)
where v is a random vector sampled from the known probability density tunction p(vy). The
noise vectors wi ; and vg in (1) and (2). respectively, are assumed to be white and mmtually
independent.

Given a sequence of measurements
AR {Zl.Zz,....Z};}. ({)

we wish to estimate the posterior conditional density. p(xg |2;.4). of the target state vector. xg.
valid at time t;. Models (1) and (2). with their underlying assumptions of Markovianity and white
and independent noise vectors. render a recursive formulation. Given the density, p (x4 |2y4 1 ).
of the target state vector valid at time ty | conditioned on the sequence of measurements cottected
up to time f; 1. the prior conditional density, p (x4 |z 1 ). of the target state veetor valid at time
ti can be obtained from the Chapman Kohnogorov equation:

p(Xe | g )= /P(Xklxk i ) ki | Bim—y J dieni, (1)

where p (x| X% 1) is the state transition density obtained from (1). The posterior density. p (xg | 214 ).
conditioned on the sequence of measurements collected up to time f; is. in turn, obtained from the
Baves rule:

Pl | xe) p (i | 21k 1)

p(Xk|2z1k) = viZe | 291 ) E (5)




where the likelihood function. p(z | xg ). is obtained from (2). and

Plzu| Zaagn Y= /P(Zk | xe ) p(xp | Zrp—1) dXge. (6)

It follows that starting with an initial probability density function, p (xg). of the target state vector.
Xp, valid at a time fy prior to any observation, relations (4) and (5) can be applied recursively to
update the conditional probability density function of the target state vector as new measurements
become available.

2.2 ENTROPY AND DIVERGENCE

The contribution of each new measurement to the conditional probability density function of
a target’s state by means of the Bayes rule (5) amounts to a reduction in the uncertainty associated
with the target’s state estimate. A reduction in uncertainty can be equivalently regarded as a gain
in information. The Rényi a-entropy provides a general scalar measure of uncertainty [10]:

i
He (Zl:k) = 1

—

log/P“ (xi | z11 ) dxy, (7)

where 0 < « < 1. In information theory, “information” is defined as the negative of entropy [16];
that is, —Heq (z1.4). Applying L’Hopital’s rule. it follows that as a approaches unity. the Rényi
a-entropy (7) reduces to the Shannon entropy:

Hi(zix) = lim Hy (z1:4) = — /P (xx | 21:1 ) log p (X | 211 ) dXpe. (8)

A general scalar measure of the relative information between the prior and posterior probability
density functions, p (xg | z1.4—1) and p(xk |z« ), respectively. is. in turn, obtained from the Rényi
a-divergence {10]:

1 p(xk|z1k)
Do (21 | 21:k—1) = — log [ [————=
o (21 || 2161 ) a—1 0;,‘/ [p(xk|21:k--l)

(23
] p(xp|z11) dxp. (9)

Again. applying L’Hoépital’s rule, it follows that as a approaches unity, the Rényi a-divergence
reduces to the Kullback-Leibler divergence:

Y I) X | Z -k
D oas 2 1) = lim Do lzns) = [ sl ona) tog 28D )

When a = 1/2. we obtain the Hellinger affinity:

Dy (z1p || 21k—1) = =2 108‘/ VP (k| 21 ) p (X | Z21k—1 ) dXg, (11)

where the integral on the right-hand side of (11) is recognized as the Bhattacharyya coefficient.

The Rényi a-divergence is a measure of dissimilarity between two distributions. Although
it violates the symmetry and triangle inequality conditions. it is nevertheless helpful to think of

6



the Rényi a-divergence as a distance fumction. For certain special cases. the Rényi a-divergence
can in fact be appropriately transformmed to vield a proper distance Tunction. For example. in the
case of a = 1/2, the Hellinger distance, which satisties all the conditions required to be a proper
mathematical metric, is given by

Dyalzpallzia-1))

/ Ll
B (s llar) = /1 - exp [Pt L], (12)
where the exponential expression under the square root sigin on the right-hand side of (12) is
recognized as the Bhattacharyya distance.

To determine on which target a sensor should collect measurements during the next obser-
vation period. we adopt the general strategy pursued by [5] and [10] by lavoring the target whose
expected measurements would result in the largest gain in relative information: that is. we select
the target whose Rényi a-divergence wounld be the largest. The choice of a can have an impact on
performance. Values of & = 1 and a = 1/2. corresponding to the Kullback Leibler divergence and
Hellinger aflinity. respectively. have been reported to provide favorable resnlts [10]. The value ol
a = 1/2 appears to serve as a better discriminant between two similar densities —such as the prior
and posterior conditional probability density functions encountered in target tracking problems.
The choice of « need not remain constant and can be allowed to vary adaptively. The prior and
posterior conditional probability density functions of newly formed tracks arc argnably less similar
in shape than the prior and posterior conditional densities of mature tracks, thereby suggesting
values of o closer to ity for newly formed tracks and valnes of o closer to 1/2 for mature tracks.
In the mmerical example presented in Section 6. we show results for a = 1,2, The optimal choice
of o for the sensor management algorithm outlined in this report will be pursued as part of a future
study.

-1
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3. DYNAMIC TARGET SELECTION

The decentralized dynamic target selection logic we present is predicated upon favoring the
target whose measurements. once collected during an upeoming observation period. would provide
the largest weighted information gain. We choose the Rényi a-divergence as a measure ol relative
information gain. The weighting. in turn. enables the local sensor to learn from the environment
(here, the global track file) the contribution of the other sensors with which it has no direct contact.
Furthermore, prior to maximization, we apply a set of presclection rules that reduce the processing
load. Since no measurements on any targets are available prior to any data collection, the polential
information gain is obtained by computing the expected value of the Rénvi a-divergence with respect
to the probability density function of the measurements to be collected during the forthconiing
observation period.

In order to expedite the formulation of the decentralized dynamic target selection logic, we
introduce some new notation first. We denote the set of measurements originating from the wth
target (where v = 1,...,N;) ecollected by the uth sensor (where g = 1.... N,) within the time
interval [{p_1, t) with

1 1w v
R e MR I (13)
we denote the set of all measurements originating from the vth target collected by the pth sensor
up to (but not inchiding) time #; with

iy

A = {z‘l'l'.z.’z‘".....z’k’."}: (14)

and we denote the set of all measurements originating from the vth tarzet collected by all sensors
up to (but not including) time ¢y with

B e, g ~
AN Uzl_k. (15)
1

Our bioinspired target selection logic applics the principles of self-organization and stigmergy that
are often encountered in nature. In the sequel. we give detailed accounts ol how we implement each
principle within the context ol sensor management.

3.1 SELF-ORGANIZATION

In our application, sensors lollowing simple local target selection rnles induce the nmltiple-
sensor target tracking system to arrive at a global database ol estimated target state vectors that
meet their desired qualities of service. Here, we consider three simple rules. We begin by selecting
targets that have not yet met their qualities ol service (QoS) at time 4 :

S’f — {I'IHO (z‘l’._k l) > QoS}‘f}. (16)

e % 5 a o i .
If 8§ is empty, then no further action is required as all targets have already met their desired
qualities of service. From the list of remaining targets (il any). we then select those that would




meet their qualities of service if new measurements were collected on them and were subsequently
incorporated by the puth sensor to update their local state estimates:

SH = {1/

v € S Flo (4", 205 1) < oS} |, (17)

where

r’qﬂ (Zicw’ Z'l/rk—l) = /P (Zifu lel.’kf»l ) HO (ZZU' lejzkr-l) dzxu (18)
is the expected entropy of the posterior probability density function, and p (ZZV z'l’:k_l) denotes
the probability density function of the measurements originating from the vth target expected to
be collected by the pth sensor. We revert to S if S5 is empty. Lastly, from the list of desired
targets (if any). we select the target whose measurements would yield the largest gain in relative
information:

fus = arg max ("Aﬁ") . (19)
where
QAZV = /7) (ZZU | lel:k._l ) DO (Zzu, Z'l/:k—l || Z‘l/:k -l) dZi{U (20)

is the ezpected local information gain.

3.2 STIGMERGY

The simple local rules considered thus far do not employ any learning. Although sensors can-
not commurnicate with each other directly, they can nevertheless infer the impact of their measure-
ments on the global track file relative to those of other sensors by comparing their local information
gain achieved for a particular target during the last observation period with the global information
gain that was achieved for the same target by the multiple-sensor system as a whole. If the local
information gain achieved by the pth sensor for the vth target is the same or nearly the same as
the global information gain on the vth target, then the pth sensor has heen the major contributor
to updating the global state estimate of the vth target. Under this circumstance, the uth sensor
should continue collecting data on the vth target as it is very likely that the other sensors are unable
to either observe the vth target or have been obliged by their local rules to attend to other targets.
On the other hand. if the local information gain achieved by the uth sensor for the vth target is
significantly smaller than the global information gait on the vth target. then the pth sensor could
not have been a major contributor and should therefore be induced to collect measurements on
some other target in urgent need of attention.

Inspired by biology. the global track file serves as the “environment” in our application and
p Y & 8 [

provides an indirect method of communication between the sensors. To include the environment’s
intpact on the target selection logic. we modify the local rule (19) to read as

fy = arg max (u';c“:l “A’,f") : (21)

where the weight, wi."’l. with 0 < 'lL";:Zl < 1, serves as a learning index. Assuming that all targets

yield the same expected information gain, “Aﬂ'". relation (21) implies that targets with weights

10
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Figure 1. Heuristic function modeling the “forgetting” effect in the learning index, wi!” |, when the last local
track update occurs at a time ty | earlier than the last global track update time, t; .

closer to unity will be favored over targets with weights closer to zero. When there exists a local
update at time ;. we choose the learning index to be given by

&} A[”’
wht = —=L, (22)
v — e} v \
Ak 1
where
a A - s v I op?” (€)%
ALY =Da (2% 1 22 || 21k ) (23)

is the actual gain in local information obtained by the pth sensor on the rth target at time £, .
and

“Ap =D, (Z'f,k- 1 || z\ 1 o) (24)

is the global information gain for the vth target at time £, ;. whicli inclndes measurements coltected
by all sensors (inctuding the puth sensor). If ALY s close to “AY . then w}” | is close to unity.
; & / ko1 k=1 ko :
Under this circnmstance, the pth sensor is perceived as a mnajor contributor to updating the global
p I ] I g the g
state estimate of the vth target and thus favors to continne collecting data on the vth target. On
the other hand. if ”Aif"l is significantly smaller than “A}’_,. then the pth seusor could not have
been a major contributor to updating the global state estimate of the vth target and thns shonld

attend to other targets.

When the last local update occurred at some time t, | < {; . we choose the following
heuristic relation:

7 7 Y i =%
wh” ), = wh’ 4+ (1 —wp?)) [l — exp (—“—‘I )] ; (25)

T

where 7 is a globally specified time constant determining the rate at which the tearning index
approaches umty—thereby inducing a “forgetting™ effect—when there are no local measurement
updates (see Figure 1).
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Figure 2. Data flow diagram for the distributed sensor management arehitecture for problems with general
system dynamic and observation models.

3.3 DATA FLOW

The data flow diagram for the distributed sensor management architecture presented in this
report is shown in Figure 2. In this architecture, autonomous sensors are responsible for allocating
their own data collection resources based on (1) the information available in the global track file
(GTF) and (2) the expected relative information to be gained during the forthcoming data collection
time interval. t; ; < ¢t < tx. The local processing cycle is detailed in the box in the upper right
corner of Figure 2. While sensor management occurs strictly locally at the sensor level, track
maintenance occurs globally at the central processing node. In other words. our architecture does
not require maintenance of local track files The global track file is populated and maintained only
with reported likelihoods valid during the data collection time interval. tp_1 <t < {.

As discussed earlier, in this report we assume perfect data association; that is, we assume
there is no ambiguity as to which measurement is originated from which target. In dense target
environments, data association imposes a serious challenge and cannot be ignored. Although not
pursued any further in this report. in our sensor management architecture, data association must

12



be performed both at the local and global levels. At the global level. the measnrement likelihoods
reported from multiple sensors must be correlated with propagated global tracks prior to fusion.
At the sensor level (see top-right box in Figure 2). once measurements have been collected. they
must be associated with the propagated copies of the global tracks. For the scenario shown on
the left-hand side of Figure 2. each sensor tracks only one target at a time. For example. sensor 1
has allocated its resources to collect measurements solely on target 2. In this case. local data
association would not be necessary. However. il target 2 in Figure 2 represented a dense target
compler instead (that is. a family of closely-spaced objects as opposed to a single object). then
the multiple measurements originating lrom the complex must be associated with the propagated
copies of the global tracks that form the chister.
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4. ADDITIVE WHITE GAUSSIAN NOISE

Although somewhat specialized. the sources of system dynamic and nicasurement uncertain-
ties in many target tracking problems are often modeled to be additive. white. and Gaussian. Such
modeling has the advantage of allowing the computation of the prior and posterior conditional
probability density functions needed for the sequential Bayesian estimation of the target state to
be reduced to the computation of their first two statistical moments mean and covariance.

4.1 SEQUENTIAL BAYESIAN ESTIMATION

Under the additive white Gaussian noise agsumption. the nonlinear svstem dynamic model (1)

for the vth target reduces to
vo_ v v v e
x¢ = @f 1 (x{1) + Wiy, (26)

where

v r . v oy
Wi ~N (WL-—1~0~Qk 1)- (27)
is a white zero-mean Gaussian random vector with covariance Qi . The function N(x; p, X) =
S |
|27r2]

dom variable. x. with mean gt and covariance 3. Similarly. under the additive white Ganssian noise

exp [—-%(x - /L)TE"I(X - [l.)] denotes the probability density function of a Ganssian ran-

assumption. the nonlinear observation model (2) for the pth sensor and the vth target rednces to

dy = HETxl) £ (28)
where
Vi ~ N (v 0. REY) (29)

P i - . . 1/
is a white zero-mean Gaussian random vector with covariance Ri_ ;

Since the process noise vector, wi_,. is additive. white. and Gaussian. it follows from (26)
that the state transition probability density function for the state vector of the vth target from
time {1 to time { is given by

p (x| 2. i) =N (xieh s iy )« Qiy) - (30)

Starting with a Gaussian probability density function for the rth target's state vector. xi . valid
at time f;_;. conditioned on the sequence of measurements, z; ¢ :

Py | 2 ) =N (iR a0 Pt ) (31)

multiplying (30) and (31). employing a first-order Taylor expansion of the system dynaniic funetion.
@i_,(-), about the state estimate. x 1k—1- and integrating the result with respect to x| over
R™. it follows that the prior conditional probability density function of the state vector of the vth
target valid at time {5 can be approximated with a Gaussian function:

p(xf | 2{p1) 2N (X'I:x'k/ R n) - (32)




where RZII:—I and P’,:Ik ., denote the predicted state estimate and error covariance of the vth target.
respectively. It can be shown that they are given by [17]

Xpk—1 = Ph-1 (XZ 1|k-1) (33)
and
fn g = PR oy (‘i’Z—l)T + Qi1 (3)
where
& e (XZ -1k 1) (35
k=1 = X1 35)

is the state transition Jacobian matrix.

Similarly. since the measurement noise vector, vi”, is additive, white. and Gaussian. it follows
k L
from (28) that the likelihood function associated with the measurement vector, z}”. originating from

the vth target and collected by the puth sensor is given by
p (Zf”lx ) A"( [.ll/ A[Ll/ R[“/) (36)

where
3 = b (% 1) (37)

denotes the predicted measurement vector. Multiplying (32) and (36). employing a first order
Taylor expansion of the measurement function. hj(-), about the predicted state estimate. X}, _,.
and integrating the result with respect to xj over R", it follows that

p (e 12) = N (2 ). (38)

where
g

1L
T ~ Qv
S =Py, , (L) +Ri (39)

is the innovation covariance matrix, and

e ohy; (xk - )

ks (40)

Xy,

is the measurement Jacobian matrix evaluated at S(Zlk_l. In (39), RZU denotes the anticipated error
covariance matrix associated with the measurement originating from the vth target to be collected
by the puth sensor at time ;. We assnme that it is possible to compute the measurement error
covariance matrix associated with a given target prior to its observation.

Substituting expressions (32). (36). and (39) into (5). it can be shown that the posterior
conditional probability density function can also be approximated with a Gaussian function:

p (s |2t ) = N (s 2, P Y, (41)
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~ v v . “ .
where x'kflk and PZ,,\. are the npdated state estimate and error covariance. respectively, of the 1th
!
target obtained using the measurement collected by the pth sensor at tiume £, It can be shown
that they are given by [17]

i = ()™ [ (Pl e + (B) (80) "t "

(P/A‘,'Q ! =( s 1) ]+(H£)T (ﬁ,ﬁ) B (13)

Equations (42) and (43) can be rewritten as

and

K = Xip KL (Zi{“ ~ Hi & 1) (14)
and 7
o 7 Ji SV v
Piie = Pl — K8 (KL") . (45)
respectively, where
Ju v T T SHY l 3
Ky =P (Hk> (Sk‘ ) (16)

is the Kalman gain matrix [17]. Equations (44) and (45) are recognized. respectively. as the state
estimate and error covariance update equations of the extended Kalman hlter. The state estunate
and error covariance prediction equations of the extended Kalman [ilter. in turn, are given by
equations (33) and (34). respectively.

The data flow diagram for the distributed sensor management architecture with system dy-
namic and observation models governed by additive white Ganssian noise is shown in Figure 3.
The data flow is similar to that shown in Figure 2 for the general systeimn dynamic and observation
models with the exception that now only measurement vectors and their associated measnrement
error covariances need be reported. Compared to likelihoods. this 15 a significant reduction in the
amount of information that the sensors need to report.  As shown in Figure 3. in cases where
there may be limited commuunication bandwidth, optionally. data can be further compressed. IFor
example. given a sequence of measurements collected over the time interval . | < t < {1, for
certain scenarios, 1t may be sufficient to report the parameter vector (along with its associated
estimation error covariance) representing the fit to a polynomial of an appropriately chosen degree.
The measurement vectors and their associated error covariances (or their compressed versions) are
conflated and reported as a data bundle. denoted with s;\'_" for the pth sensor and the vth target in
Figure 3:

@ = {s B2, (17)
where
g = {zi’: il X e < l;\.} (18)

and

R = {R;‘I:’ i Ly /k}. (19)




L1 172

: : - Time
Ta rgets @ Copy Report

@ GTF Data
e Compress

Update

Learning Local ([:)aptt?onal)
, inices Processing
@ Cycle Associate
- Propagate Measurements

GTF Copy
Collect
Measurements

Find Visible Select

Targets Target

Central Processing Node

Figure 3. Data flow diagram for the distributed sensor management architecture for problems with system
dynamic and observation models governed by additive white Gaussian noise.

4.2 ENTROPY AND DIVERGENCE

We next present expressions for the entropy and divergence. Substituting (41) into (7) and
evaluating the integral analytically. it can be shown that the posterior a-entropy is given by [5]

0 1 i E—
Ho (2 2 1) = 5 108 <‘27ra1-~Pi,lkD . (50)

The expected posterior entropy needed for the dynamic target selection algorithim outlined in Sec-
tion 3 is. in turn. obtained from substituting (50) and (38) into (18) and evaluating the integral
analytically. It can be readily shown that it is given by

1
et 0 1114
log ( 2rat-=Py

i (51)

B | —

Ha (Zif"~ Z1 1) =
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which is the same as (50). Similarly, substituting (41) into (9) and evaluating the integral analyti-
cally. it can be shown that the local information gain is given by [10]

u l1-a
uv
N 1 - IPuAﬂ IP“"' 5
AT VeI v
aPi  +(1—a) Py,

4 Ly ~ T Pu 4 P[lll] . RU v
5 <XA-A Xk 1) [a Meey Tl =8) Kk (x,‘,!k Xpk 1) :

The expected local information gain needed for the target selection algorithm ontlined in Section 3 is.
in turn. obtained from substituting (52) and (38) into (20) and evaluating the integral analytically.
It can be shown that it is given by
I-a
[ e
AW = log

2(1—(}) S IGPHL ]+(17(\)Puu

(47 11} yuy
" Hv s i g
5“{(Kk ) [ PZL 1+(1_O)PL‘M'J' }\ S }
Using L'Hépital’s rule. it can be shown that as a approaches unity. equations (50} and (51) rednce

to
H, (Zf".z'{‘,,\._]) = - l()n <|27(P“" ) (54)

and

respectively; equations (52) and (53). in turn, reduee to

3 v ! . "
) +§ og(PMk ID +§‘“' ( kK 1) Ik & L, +

|
1 AHY ) v
ap = - tog (P

. H6)
] A v A l Pu ! [H/ A1 1 ( "
9 <xk|L xLlL—l) < kik- 1) < ki — Xkik 1)
and
]A“U 1 log Pm/ 1 ] PY 1 1 PV b phv
A, = —‘—2— ()g( kel ) + é 0g <’ kik l’) 'f‘é“' < K|k 1) Fare l,, +
(57)

1 pv 1. L LBy’ A

5“' [(SL ) I'IL klk 1 (I{k) 4
respectively. 1In (56) and (57). I, denotes the n x n identity matrix where n = dim(x) is the
dimension of the target state vector.

When a = 1/2. equations (50) and (51) reduce to

e
" pur
9 Pk k

1
Mo (2 2l 1) = 51‘)%(

) (38)
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and

5 2 1 T v
Hyo (2", 200_y) = B log (’51)2!1. ) ; (59)
respectively: equations (52) and (53). in turn. reduce to
o [P | [P
Ak :_10g ’1 (Pl/ +P/w> b
2 \ T klk-1 k|k (60)

v g -1
- T (Prg—1 + Py i
7 | Xele ™ Xkfr—1 — T Xilk — Xklk—1

and

1/2A£" =—lo

o
o

% le v Nz 1
’ klk-lH klk T i ;
+lt,r (Klf")T CRES T REY g (el
1 v 20 4 k 9 ki =k

D) klk—1 i klk

respectively.
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5. DETERMINISTIC MOTION

In the absence of process noise—that is. when the process noise vector, wy. . in the system
dynamic model (1) can be set equal to zero—target motion becomes deterministic. For example,
in the special case of tracking ballistic targets. target motion is prescribed by well-understood
forces that can be modeled to a high degree of accuracy (e.g.. see [18. ch. 3]). Thus. for ballistic
targets. motion can be safely assumed to be deterministic. When tracking N, targets Tollowing
deterministic trajectories. the nonlinear systen dynamic model prescribing the temporal evolution

. of the vth target from time {;_; to time ¢ becomes
X = @k (xg ). (62)
: where
oty
o) =+ [ e (63)
th-1

is a deterministic function prescribing the notse-free transition of the state vector ot the vth target
from time tx_; to time tx. The function f{'(:) in (63) models the underlying continnous-time forces
acting on the vth target; that is.

X = (<)), (61)

where x| denotes the first derivative of x{ with respect to time!

. Here. we use the subscript 1 to
distinguish continuous-time variables from discrete-time variables. which in turn we denote with the
subscript k for time tndex; thus, using this notation. xx = xq,. Applying (62) and (63) recnrsively.
it follows that the state vector. xj, of the vth target. valid at time f;. can be obtained directly

from the target state vector. x!. valicdd at a time {g prior to any data colleetion:
0 0 3

tx
> e il / £(%") db. (65)

Sy
Thus. in case of deterministic motion. target dyvuamics are completely characterized by the initial
state vector, xg. valid at time {g.

In the absence of process noise. the covariance Qp ; in equation (31). which we use to
propagate the error covariance of the vth target’s error covariance between measirenments, vanishes,
Hence. starting with the updated global state estimate, X, . and error covarianee, P{ | .
it tollows that for a set of I\I,f_' measurements expected to be collected by the pth sensor on the vth
target within the forthcoming observation period. {y | < { < {1, the covariance propagation and
update equations —eqgnations (34) and (43). respectively —can be combined and applied recursively
to vield

(Pi) = (Pronn)
k) =\ Fe_e-1) +
P -
Iz 2 S l apu ) TR ~ v
Z [Ht(u (xk 1k l)q) ({(“.Ik 1)] (R'!yu) I{l(“ (xk 1k 1) ¢ (I[,nlk l)'
(]
(66)

! Assuming that the function f has continuous first partial derivatives, it can be shown that the transition ma-
trix (35) can be obtained from solving & = F®, where F = 9f/dx (e.g.. see [19)).
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where t¢ . with tx_y < tg, < f). denotes the time of a particular measurement expected to be
collected by the pth sensor within the upcoming observation period. Thus, the anticipated M,f,‘
nmeasurements to be collected by the pth sensor on the vth target during the forthcoming observation

period, fp_; <t < tg. can potentially produce the local gain:

MY
AL -1
o pv " = b Ly o s 1
A-]Lf = Z [Hil[“ (XZ 1|k--1> @ (tfwtk-'l)] (R‘t[“> 52“ (xlk 1Ik—1> P (te, fr-1) (67)
£=1

in information relative to the inverse of the global error covariance, P} 1k—1° valid at time f5_;.
In other words. equation (66) can be rewritten as

suv oy, 2 py
i = Ty + AJ (68)
2 pv o pv =l v v L 5 . g .
where J. . = (P, andi gl e s = IR . are the Fisher information matrices as-
Kk Kk k—1lk—1 k—=1jk—1

sociated with the local and global updated error covariances valid at times #; and f;_;. respec-
tively. Thus, expression (67) provides the ezpected gain in the Fisher information matrix at time
ti. Once actual measurements have been collected, the predicted measurement error covariances,
RZZ in (67) are replaced with actual measurement error covariances, RZ’;. in order to compute

the actual Fisher information matrix; that is. at that point. AJY and I in (68) are replaced
p ke keke P

with their actual values, denoted by AJZ" and Ji“l respectively.

5.1 CRAMER -RAO LOWER BOUNDS

Since target dynamics in the absence of process noise are completely characterized by the
state. xo, valid at a particular time, fg, we only need to focus on estimating xo. The state estimate
valid at an any other time can subsequently be obtained from (62). The uncertainty in the state
estimate valid at time £y reduces as we incorporate new measurements. We can express the recursion
relation (68) in terms of xg: . )

3 (k) = I (k) + AT (%8), (69)

where Jiw and J{_| now denote the predicted local and actual global Fisher information matrices
associated with the estimates of x at times ¢ and t;_). respectively. Specifically, the local gain
; . - : : g .

in the expected Fisher information matrix, AJ, . is given by

MY 3
Al L RTINS il 1 2 YR, —3 s Y
AT Gy =3 (Ml (58) @7 (ke t0)] (Rl)  H (%) &7 (2, t0). (70)
=1

- s A py ~ o L
Again, once actual measurements have been collected and incorporated. Ji. . AJy . and R;, in (69)
u

and (70) are replaced with J;”. AJ}”, and Ri‘;’. respectively.
, ,

When the estimated state. Xg. of the vth target in (69) and (70) is replaced with the true state.
xg. the inverse of the updated Fisher information matrix provides the Cramér-Rao lower bound
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on the error covariance [14]. When computing Cramér-Rao lower bounds. the terms involving
~ fi N 0 5 &) 5 . . .
(xﬁ,,‘_ — XZ’k--~1> in the expressions for the a-divergence that were presented in Section 4 all vanish.

Subsequently. the expected valne of the a-divergence. “*AlY. becomes the same as the actual a-
. v FHY THY 1 v 3

divergence, “AL”. and therefore J; and AJj become the same as J17 and AJLY. respectively.

. v . . .
Furthermore, the error covariances. P‘Aﬂk and P, | in the expressions for the a-entropy and «-

. 3 i 1 '
divergence can be replaced with (.]‘,"_") and (JZ_ l) . respectively.

Without committing to a specifie tracking filter. we can evalnate the overall perforimance ol
the target sclection logic outlined in Section 3 using the Cramér-Rao lower bounds derived in this
section? (cf. [21]). Omnce a particular sensor selects to collect neasurements on a partienlar target.
the local Fisher information matrix is computed according to

']‘I:U = l]‘l.__l -+ (51./1/“ A.] l‘:”“ g (Tl )

where v, denotes the index of the target selected by the pth sensor. The global Fisher information
matrix is. in turn updated according to

For each local measurement cycle. the pth sensor begins the target selection process by accessing
the global track file that is broadcast to all sensors at regular time mtervals. The sensor’s local
processor then selects only those targets that are predicted to be within its field of regard during
the forthcoming observation period. ¢ < t < ;. Next. the local processor updates the learning
indices ol all visible targets according to (22) or (25) depending on whether or not a particular target
track was locally updated during the last observation period. Subsequently, the local processor
selects a target according to the rules outlined in Section 3. Once a target has been selected. the
local gain. A.]Z"“, for the selected target is reported to the central processor. The central processor.
in turn, collects similar information from all sensors and updates the ¢lobal track file according
to (72).

2For ballistic targets, it has been shown that the batel least-squares filler provides elficient state eslimates with
error covariances thal match the Cramér Rao lower bound (e.g.. see [20]).
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6. NUMERICAL RESULTS

We illustrate the performance of the bioinspired target selection algorithin outlined in Sec-
tion 3 using simulation. Twenty-one different scenarios are examined. with target numbers ranging
from 1 to 100. Our example scenarios utilize three independently operating narrowband IR cameras
on board three separate stationary platforms. each of which can track np to 100 ballistic targets.
Each camera is allowed to pan up to 360 degrees in the horizontal direction. whereas the panning
movement in the vertical divection is restricted to lie within 0 and 40 degrees. The ballistic tar-
gets originate at the same time. tg = 0. from multiple sources randomly distributed over a fixed
rectangular area and terminate at the saine location. The targets’ times of flight are chosen to
be proportional to the ground range between their points of origin and the final destination; thns,
different targets arrive at different times. The wide spatial separation of the targets together with
the sensors’ narrow fields of view guarantee that at most one target can be tracked by a sensor at
any given time—thus, eliminating the need for any local data association algorithm. However, the
problem of global data association remains. To compute the entropies and divergences needed by
the target selection algorithm outlined in Section 3. we employ the Cramér Rao lower bounds of
Section 5 as surrogates for the error covariances associated with the state estimates of the ballistic
targets valid at time tg = 0.

At regular time intervals. a central processor collects data reported by cach IR cammera— here,
in the form of AJE discussed in Section 5 and updates the global track file using equation (72).
The global track file. the contents of which are broadcast to all sensors at regular tinme intervals. is
assumed to have been already populated with the initial values of all targets” Fisher information
matrices—for example, obtained by means of a separate set of sensors operating at a previons
processing epoch—prior to the targets’ entries into the fields of regard of anv of the three IR
cameras. We do not account for any search or acquisition time: thus. once a sensor has tasked itself
to collect data on a target diflerent than the one currently bemg tracked. local target-to-target
switching is assumed to oceur instantaneously®.

We vary the complexity of the resource allocation problem by starting with a single target
and subsequently increasing the number of targets. in steps of 5. up to 100 (i.e.. 1.5, 10, 15, .. .. 95,
100 targets). Each numerical experiment is repeated 10 times, and results are averaged to evaluate
performance. The simulation parameters are listed in Table 1. The global-track-file update ocenrs
every 2 seconds: thus. each sensor. with a measnrement sampling time of | second. can potentially
produce up to two measurements per target (i.e.. 1\[{,‘ = 2). Our goal is to ensure that for as
many targets as possible the state estiimates meet a particutar level of acenracy as quantified by the
a-entropy. Targets whose a-entropies fall below a certain threshold are referred to as “servieed”™;
the threshold itself is referred to as the “quality of service.” We have chosen o = 1/2. in which
case the a-divergence becomes the Hellinger affinity (see Section 2). We defer the examination of
the impact of other values of a on system performance to a future study. Since no process noise is
included in the problem. the value of the global entropy for a particular target does not increase
once a sufficient number of measurements have been incorporated to lower it below a certain level.

“Although not pursued here, one can readily account for the time lost in acquiring a given target by excluding the
measurements that wonld otherwise have been iucluded in the suin (70).




TABLEFE [. Simulation Parameters

PARAMETER VALUE
Maximum Number of Targets 100

Number of Sensors 3

Local Sampling Tiue ls

Global Sampling Time 2s
Measurement Noise Standard Deviation 500 purad
Quality of Serviee 25 log (1116/53)
Iorgetting Tine Constant, 7 10 s

Number of Monte Carlo Trials 10

The average number of targets serviced as a function of the total number of targets in a
given scenario is shown in Figure 4. Averages are computed over 10 Monte Carlo trials. The
launch locations of the ballistic targets are randomly varied over a rectangular region from one
Monte Carlo trial to the next: however. in all trials, all targets terniinate at the same location.
The locations of the three sensor platforms also remain the same throughout the simulation. The
dashed line in Figure 4 corresponds to the ideal case when all targets meet their qualities of serviee
at all times. However. as the number of targets increases. degradation in performance would be
expected. The green curve labeled as “bio inspired” in Figure 4 is obtained by employing the target
selection algorithim outlined in Section 3. We see that the bioinspired algorithm perforins very well.
We only observe a relatively small degradation in performance when the number of targets nears

100.

For reference, we also compare the performance of the bioinspired algorithm with two other
target selection algorithms. The red eurve labeled as “uniformly random” in Figure 4 is similar to
the bioinspired algorithm, a decentralized sensor-level target selection algorithin. This algorithm
randomly selects a target from a list of targets predicted to be visible within the upeoniing ob-
servation period. The targets are assigned equal weights; thus, the random selection is uniform.
As is evident from Figure 4, for small number of targets (up to around 25 in our example), the
performanee of the uniformly random algorithm is nearly perfect-—as is indeed the case for the
other algoritluns. This result suggests that at least for a small number of targets. an algorithm
as simple as the uniformly random target selection algoritlin can be employed reliably to meet all
resotirce allocation requirements, and therefore, there may be no need to resort to a inore expensive
solution.

In addition to the decentralized. uniformly random target selection algorithm, we also compare
the performance of the bioinspired algorithm to that of a greedy, centrally proeessed sensor-to-target
assignment algorithm. The blue curve labeled as “greedy” in Figure 4 shows results obtained using
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Figure 4. Average number of targets serviced versus actual number of targets. Averages are computed over
10 Monte Carlo trials. See text for an explanation of the different curves

this algorithm. Our centrally processed algorithm assigns sensors to targets by solving a linear
assigmment problem. The centrally processed algorithmn is “greedy”™ in that at any time interval.
(1) it assigns sequentially one sensor per target. and (2) it solves the assigmment problem only lor
the forthcoming observation period without any regard to past assiguments or prediction ol future
performance. The former restriction prevents the simultaneons coverage of targets by nmltiple
sensors, whereas the target selection algorithim of Section 3. althongh not “consciously.” does allow
for simnltaneous multiple-sensor coverage. The lack of sinmltaneous multiple-sensor coverage over
a given observation period in the greedy algorithim may partially. althongh not entirely. explain the
poorer performance of the algorithm for a larger number of targets (greater than aronnd 60 targets
i our example). We wonld expect a more sophisticated centralized algorithin that fully takes takes
nto account the stochastic natnre of the scenario to perform at least as good as or better than the
bioinspired target selection algorithm. However, the main advantages of the target selection logic of
Section 3 are: (1) it is scalable. and (2) it requires less processing and conmmnication bandwidth.
Thus, in many applications. a quick cost-benefit analysis may reveal its implementation to be more
advantageous as compared to an otherwise optimal. centrally processed algorithni. A complete
comparative analysis of varions centralized and decentralized algorithins is bevond the scope of this
report and is deferred to a future study.

In Figure 4. the average number of targets serviced were computed when the three sensors’
opportunities to observe all targets had been exhausted. For a subset of scenarios considered. plots
of the average number of targets serviced as a function of thme are shown in Figire 5. In addition
to the three curves that were considered in Figure 4. we have also included a curve labeled as
“serviceable” in Figure 5. Since not all targets are within the fields ol regard of all sensors at all
times, even the existence of an optimal resource allocation algorithim conld not guarantee that the
quality of service can be met for all targets. This is a purely geometrical restriction. Nevertheless,
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Figure 5. Average number of targets serviced versus time. See text for an explanation of the different curves.

the ¢

‘serviceable” curves provide a loose upper bound on performance. As is evident in Figure 5.
it is not after around 400 s that eventually all targets enter the fields of regard of all sensors in
our example. From the temporal behavior shown in Figure 5, it is clear that the target selection
algorithm outlined in Section 3 performs better than the other two algorithms in that larger number
of targets meet their qualities of service earlier. The superior performance of the bioinspired target

selection algorithm becomes even more evident as the number of targets increases.
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7. SUMMARY AND DISCUSSION

[n this report. we presented a bioinspired algorithm for managing the resources of mmnlti-
ple sensors tracking multiple targets within the framework of a decentralized sensor management
architecture. Our target selection logic follows the principles of self-organization and stigmergy
observed in biological swarms. In our implementation. sensors are self-tasking and are not required
to communicate with each other directly. Nevertheless, sensors can inler from the global track
file. which is continuously broadcast by a central processing node, their relative contributions to
achieving certain levels of global state estimation accuracy for particular targets.

We devised local information-theoretic target selection rules for the general Bayesian formu-
lation of the target tracking probleni. We also provided specilic formulas for problems dominated
by additive white Gaussian notse. We rely on the Rényi a-entropy and o-divergence as measnres of
absolnte and relative information. respectively. We have not examined the impact of the partientar
choice of a. In our examiples. following [10]. we have chosen a = 1/2. We deler to a future study
the examination of the impact of the particular choice of o on the performance of the bioinspired
target selection algorithm.

For reference. we have compared the performance of the bioinspired target selection algorithm
with those of other suboptimal algorithms using merical examples involving ballistic targets (no
process noise). To demonstrate performance, we have used Cramér-Rao lower bounds as snrrogates
for target state estimation error covariances, Targets following deterministic trajectories—such as
ballistic targets—render a simple recursive formulation of their Crammér-Rao lower bounds. We have
shown that the bioinspired algoritlim is highly scalable and performs very well for large numbers ol
targets. Our numerieal examples were devised such that data association wonld pose no challenge
to tracking perlormance. Poor data association can in general hmpact sensor management. ln a
future study, we will examine the impact of finite process noise. poor data association. and sensor
biases on the performance of the bioinspired target selection algorithm.

The target selection rules outlined in Section 3 are by no means the only rules one could de-
vise. The rules could be extended. and the bioinspired target selection alzorithin may be optimized
for specific applications. For example. in the case of deterministic dynamics. such as the example
scenarios considered in Section 6. the predictable nature of target motion may be exploited to
improve the formulation of the learning index, wy 1. Some knowledge of other sensors’ observation
capabilities. if available, can also be exploited to improve the formulation ol the learning index.
Although in a decentralized sensor management architecture sensors are not required to comnmni-
cate with each other directly. certain information about them. such as their locations and helds ol
regard, can nevertheless be readily broadcast by the central processing node with little added cost.
We defer the examination of such extensions of the algorithm to a future study.,
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