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Executive Summary

• The purpose of this report is to describe the feasibility of employing evolutionary algorithms (EAs) for automatic

design of electro-optic system architectures for a wide variety of DoD applications.

• Evolutionary algorithms can be employed for design provided potential solutions (i.e., designs) can 1) be encoded

mathematically, 2) be rapidly tested analytically, computationally, or experimentally, and 3) have their performance

quantified by means of an objective function.

• Importantly, EAs can be used when different trial solutions produce abrupt or discontinuous changes in system

performance. Traditional methods like “steepest descent” fail in a discontinuous objective space.

• As an illustration, we apply an EA to the problem of automatically designing a simple optical lens using ray

tracing and Snell’s law.

• EAs offer the potential to design entire systems from scratch, with no human input other than a specification of

constraints and the desired relationship between input and output.

Introduction

Electro-optic (EO) systems play an integral role in today’s military and are used routinely in land-, sea-, and

air-based operations. Examples include night vision displays, ground station instrumentation for target detection and

acquisition, submarine periscopes, and electronic warfare (EW) systems. The impressive diversity of EO systems is

accompanied by an equally impressive number of variables to be considered in their design. According to Driggers

et al. there are “easily over 100 parameters to address before the construction of an I2R [imaging infrared] or EO

sensor” [1]. This complexity makes it impractical to consider all possible device architectures for a given application

and the designer must rely on engineering judgment and past experience to narrow the choices.

The design process is essentially a constrained optimization problem: create a system that accomplishes a desired

task given limited resources. From this perspective, the human engineer might be considered to be a sophisticated

optimization algorithm, albeit, one that is poorly understood and can’t yet be encoded computationally. If design

is simply constrained optimization, then it should be possible to program an algorithm capable of searching for the
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best solution, that is, automate the design process. The commonly-known, first-order task for optimization routines

is the problem of finding the best parameters given a fixed system architecture; what is perhaps less developed is the

idea of optimization algorithms that are capable of designing entire system architectures in addition to selecting the

preferred parameters. In short, is it possible to develop algorithms that are capable of designing human-competitive

systems?

The answer to this question appears to be “yes”. Researchers have leveraged the idea of Darwinian natural selection

to generate human-competitive designs using evolutionary algorithms. As long as potential solutions can 1) be encoded

mathematically, 2) be rapidly tested analytically, computationally, or experimentally, and 3) have their performance

quantified via an objective function, then EAs can be a valuable design tool. Some more prominent examples include

a compact antenna that was flown on a NASA mission and found to outperform previous designs [2] and patentable

circuit designs for applications ranging from digital filters to control systems [3]. These human-competitive designs

are tantalizing evidence that the design process can indeed be automated and offer the possibility of creative and

heretofore unknown solutions to many problems of interest.

Evolutionary algorithms are designed to solve high-dimensional optimization problems for which a well-defined

global maximum (or minimum) is otherwise difficult to find and for which an exhaustive search is not possible.

Difficult optimization problems include those that are characterized by multiple optima, discontinuities, constant-

valued regions of the objective space or some combination thereof. Using traditional gradient-ascent optimization

routines on objective spaces with these characteristics can yield poor results if, for example, the routine converges to

a local rather than a global optimum. EAs are designed to reduce the possibility of this occurrence and are capable

of dealing with problems like discontinuities.

We discuss how the objective space corresponding to system architectures for a given design problem is likely to

have some of these difficult characteristics and why EAs should be considered for the automated design process. We

begin with a discussion of evolutionary algorithms, then provide an example of how we have used EAs to design a

lens using ray tracing and Snell’s Law, and finally, we close with example applications that might benefit from this

approach.

Background

Optimization problems whose solution spaces are discontinuous, high-dimensional, and/or characterized by many

local optima are often encountered in engineering practice. Traditional gradient-based optimization methods have

difficulties with such spaces because gradients are undefined across discontinuities and because it is easy for such
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algorithms to converge to local optima without ever finding the global optimum. This erroneous convergence occurs

because gradient-based methods utilize local information about solution space topology to make decisions about how

the parameters should be perturbed in search of the optimal solution. Thus, they can converge to local optima

or become stuck in regions of the solution space where changes in the parameters yield no change in the objective

function. As an example, the solution space shown in Figure 1 is a difficult one for any optimization routine and

illustrates many of the features that would make a gradient-based search impractical.

FIG. 1: A complex solution space illustrating discontinuities, slowly varying or constant regions, and multiple local optima. It

is assumed that the objective function should be maximized.

In addition to becoming stuck in suboptimal portions of the solution space or prematurely converging to a local

optimum, gradient-based methods require a gradient calculation–a problem if the objective function is not explicitly

defined. In such cases, the derivative of the objective function with respect to each of the parameters must be

calculated numerically using finite differences. This requirement can be problematic for three reasons: (1) non-

smooth (and especially discontinuous) solution spaces will confound the algorithm, (2) regions of the parameter space

where the local gradient is small can trap the algorithm, and (3) high computational expense.

For example, Newton-type optimization routines make use of second-derivative information (the Hessian) in order to

avoid becoming stuck at non-optimal stationary points (e.g., saddle points) and to speed the convergence process [4].

Unfortunately, numerical calculation of second derivatives necessitates O(n2) calls to the objective function (where

n is the number of parameters) for each step of the algorithm. In addition, “extreme care must be exercised in

choosing the finite-difference interval” [4], which, coupled with the computational expense, makes such algorithms

“impractical” if analytical derivatives or special circumstances (like a sparse Hessian) are not available [4]. Instead,
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quasi-Newton-type methods are recommended as they only require first derivatives. Yet, even with smooth functions,

these methods will converge to saddle points, suffer difficulties with the choice of step size, require n or 2n function

calls for each step, and “Even with the best possible implementation...may fail to make any progress in a region where

[the magnitude of the gradient] is small but non-zero” [4]. If the objective function is non-smooth, then even small

step sizes in the derivative approximation can be “wildly inaccurate” and such methods can fail [5].

Non-smooth objective functions can be optimized using direct-search optimization techniques [5], which do not

require derivatives in order to make decisions about where to move in the solution space. They rely instead on calls to

the objective function and choose a path through the solution space based on direct comparisons between objective

function values. Although less efficient for smooth solution spaces where the gradient can successfully be determined,

they are often the only choice for non-smooth problems. Yet, such techniques can still prematurely converge to local

optima if there is no possibility of (temporarily) accepting poorer solutions. Thus, we can turn to stochastic direct

search algorithms such as simulated annealing [6] or evolutionary algorithms [7] as potential means of improving the

possibility that a global optimum will be found.

Simulated annealing moves through the solution space by perturbing a single solution and accepting moves that

improve the solution. There is, however, a non-zero probability that poorer solutions will be accepted, which allows

the algorithm to avoid becoming trapped at local optima. This probability is decreased according to a “cooling

schedule” over the course of the optimization, which allows the algorithm to eventually settle to a given optimum.

Alternatively, evolutionary algorithms distribute a population of solutions throughout the parameter space and employ

principles of Darwinian evolution to exchange information between the best individuals and improve the population

over many generations. The use of a population of potential solutions and the possibility that some solutions will

“mutate” at random allows an EA to avoid becoming stuck at local optima. We favor EAs because employing a

population of solutions reduces the possibility that a particularly poor initial solution (for simulated annealing) will

lead to a local optimum. In addition, employing a population of solutions at each generation makes EAs well-suited

for parallelization.

The fact that EAs are more likely to converge to a global optimum makes them useful even if the objective function

is smooth and continuous. Their ability to deal with non-smooth functions makes them particularly important

when designing complicated engineering systems. This is because such systems typically require computational or

experimental evaluation for each parameter setting. This lack of an analytical description matters because reliable

derivative information can be hard to extract from such optimization problems. In fact, direct search techniques
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were originally developed specifically to handle optimizations involving experiments and, concerning computational

simulation, “It is widely appreciated in the simulation-based optimization community that the results of complex

simulations...may fail to have the level of precision necessary for a reliable finite-difference approximation to the

gradient...” [5]. Environmental stochasticity or numerical noise can lead to non-smooth behavior which means that

the lack of an analytical description for the objective function can necessitate the use of direct search optimization

routines. Additionally, complex design problems are likely to have many “good” but locally optimal solutions, which

further indicates the use of global optimizers such as EAs in the design process. Figure 2 provides an example of how

a population of initial solutions might converge to the global optimum for a multi-modal objective function.

FIG. 2: Hypothetical progression of a population of solutions through a multi-modal solution space with a global optimum.

Evolutionary algorithms can also be used to optimize nonnumerical functions or functions where the derivative is

hard to define. An example of the former is given in [5] as a problem of hearing aid design. Noise reduction, phonemic

compression, and spectral enhancement were the control parameters, while the goal was to improve listening comfort

and speech intelligibility based on a human subject’s evaluation of the settings. Similar problems include the use of

EAs to breed art that is pleasing to the human eye.

As an example of a function where the derivative is hard to define, imagine a design problem where the goal is to

develop a high-pass analog filter circuit and where the objective function is defined by typical filter characteristics like

cutoff frequency and some minimum passband ripple. The derivative of this objective function with respect to changes

in circuit topology does not exist because a derivative requires perturbations of the design parameters in a specific

direction. It is not possible to define a direction nor a perturbation to the circuit when circuit topology is a parameter.

Topological changes to a circuit, like swapping the location of a resistor and a capacitor, are not continuous, ordered

operations; the elements have or have not been switched and choosing one over the other is not inherently a larger or
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smaller perturbation in some direction. This is an example of a combinatorial optimization problem where the various

circuit topologies are part of a discrete, factorially large configuration space [8]. Topological changes will lead to large

jumps in the circuit design space and, correspondingly, the objective function will be characterized by discontinuities

and local optima.

In addition, the objective function cannot be written in closed form as a function of the design parameters. We

have no choice but to test each potential circuit computationally or experimentally and we cannot obtain derivative

information with which to direct a gradient-based routine. Furthermore, we know little about the nature of the

objective function and even the possibility that it is characterized by local optima makes it advantageous to employ

evolutionary algorithms to search the configuration space.

Optical Example: Simple Lens Design Via EA

We provide a brief example to illustrate the design capabilities of an EA by designing a lens using only ray tracing

and Snell’s law. This is not an especially difficult task, and more complicated optical devices have been designed

using EAs [9], but we find it to be a useful pedagogical example. We seek to develop a lens with uniform index of

refraction that is capable of focusing a distribution of collimated light rays to a specified focus. Thus, we require some

means of parameterizing the lens surface such that we can be assured that the true solution is contained in the space

of possible solutions. A 4th-order polynomial will do for this demonstration, but other forms of parameterization

(e.g., Bezier curves, higher-order polynomials) could also be used. We choose 4th-order for the sake of simplicity. The

upper surface of the lens is defined as yU (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 and the lower surface of the lens is

simply the mirror of the upper surface, yL = −yU (Figure 3).

In addition, we need an objective function that quantifies how well a given lens solution focuses rays to the

desired focus. This requires simulating the effect of each proposed lens surface on a collection of collimated rays

and quantifying how close each ray comes to the desired focus. We begin by limiting the domain of x to the interval

[−1, 1] and choose a uniformly distributed set of values, X, from the interval. Given a vector of polynomial coefficients,

a = [a0 a1 a2 a3 a4], we carry out a ray tracing operation on each element of X by first assuming that a given ray

vertically intersects the lens surface at the point yU (xi), xi ∈ X, and refracts according to Snell’s law

n1 sin(θ1) = n2 sin(θ2), (1)

where n1 and n2 are the indices of refraction of the medium above and below some surface, respectively, and the
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FIG. 3: A two-dimensional lens in the plane where the upper surface is described by a 4th-order polynomial and the lower

surface is a mirror of the upper surface.

angles θ1 and θ2 are the corresponding angles between the ray and the normal to the lens surface before and after

refraction (Figure 4).

FIG. 4: Illustration of Snell’s law where n2 > n1. The angle θ1 is measured between the incident ray and the surface normal

and θ2 is the angle between the refracted ray and the surface normal.

A refracted ray might then intersect the second surface at yL(xL
i ), refract again according to (1) and then (possibly)

intersect the centerline (y-axis) at a point (0, yi) and, ultimately, intersect the focal line at the point (xf
i , fy), where

fy is the y-coordinate of the desired focus. We can determine how well the surface corresponding to a has directed

the rays to the focus by calculating the Euclidean distance between xf
i and fx, that is,

∑
i

(xf
i − fx)2 where fx is

the x-coordinate of the desired focus. In this study, the focal point is not offset from the centerline of the lens so

fx = 0. In essence, the goal of the optimization is to produce a lens that minimizes the spot size under the simplifying
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assumptions of ray optics.

Each ray is traced by means of Eq. (1) and simple geometry. First, the derivative of the upper surface is calculated

at the current point of interest, yU (xi), which determines the orientation of, and normal to, the surface at that point.

Using Snell’s Law, the angle of the ray relative to the surface normal and ultimately the y-axis can be determined.

Using basic trigonometry, we extract the slope, m1, of a line that passes through that point. Given the equation of

the line passing through the point yU (xi), it then becomes a matter of determining the intersection of that line with

the lower surface, yL, which requires the roots of a 4th-order polynomial. For rays that intersect the lower surface,

there will only be one real root that is within the domain of interest, [−1, 1].

FIG. 5: Illustration of some ray trace possibilities. Trace A passes through yL and intersects the centerline. Traces B and C

pass through yL but miss the centerline. Trace D fails to intersect yL within the domain of interest. Trace E passes directly

through the lens with no refraction because the derivative of the surface at that point is zero on both surfaces.

For a given ray, if an intersection occurs with the second surface, Snell’s law is applied again to determine the slope

of the line that intersects the surface yL at the point xL
i . Given this line, we find its intersection with the y-axis. If

the intersection is negative and less than the minimum of yL (trace A in Figure 5), then the ray is further traced to

determine the x-coordinate of its intersection with the focal line. If the intersection with the centerline is negative but

greater than the minimum of yL, then the ray has either been refracted away from the y-axis (trace B) or is a ray that

intersects yL a second time (not shown); either case is penalized in the objective function. If the intersection with the

centerline is positive, then the ray has been refracted away from the y-axis (trace C), there will be no intersection,
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and this fact is noted for penalty in the objective function. Finally, it is possible a given ray may never intersect the

lower surface within the region of interest or at all (trace D) and will also incur a penalty.

Other paths are possible for a given ray. For example, if yL = −yU , a ray will pass directly through the lens with

no refraction at either surface if it intersects the first surface at a point where the slope is zero (trace E). Another

possibility (not shown) is that the ray will reflect off the second surface if the angle of intersection exceeds the critical

angle, θc, determined by setting θ2 = 90o in (1) and solving for θ1. We do not allow for repeated reflections and

penalize any rays that exceed the critical angle at the second surface.

Assuming all ray trace possibilities are properly handled, it is possible to determine whether and where each ray

will cross the centerline and ultimately the focal line. A reasonable objective function of a given lens solution is

ca =
N−Ne−Nr−Nm∑

i=1

(xf
i − fx)2 + αNe + βNr + γNm (2)

where N is the cardinality of X, Ne is the number of rays that escape the lens or never intersect yL, Nm is the number

of rays that intersect yL but never intersect the centerline, Nr is the number of rays that reflect off yL, and α, β, and γ

are used, respectively, to weight the associated penalty terms. We note that the selection of these penalty terms only

aids with convergence rate and will have no effect on which parameters are eventually found to be optimal. Thus, we

seek a vector of polynomial coefficients, a, that minimizes Eq. (2). Finally, although we have selected the objective

function in Eqn. (2) as a cost to be minimized, it could easily be a fitness to be maximized if the inverse is taken.

We consider rays that fail to pass through yL to be an even less desirable condition than rays that pass through

yL but fail to reach the centerline. Reflected rays are considered to be better than rays that fail to reach yL but

worse than rays that pass through yL. Thus, we set α = 20, β = 15, and γ = 10 to reflect that opinion. Again, this

weighting simply aids with convergence and will not affect the final outcome. In fact, each weighting can be set to

zero and the algorithm will still converge to the same result but will require more iterations to do so. Given such a

weighting for the cost function, we see how the algorithm progresses through the solution space.

Figure 6 illustrates the evolution of an appropriate lens with differential evolution [10]. Initially, most of the rays

initiating from the elements of X fail to even reach yL and the next 100 generations are spent producing a lens surface

where most of the rays pass through the lens surfaces and reach the focal line. The following 100 generations lead to

a symmetric lens where all the odd polynomial terms have been forced to zero as shown in Figure 7. By generation

200 most of the rays are converging near the desired focal point. The final generations are spent forcing each ray to

converge ever closer to the focus.
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This example illustrates the capability of an EA to design a lens using only first principles. No information was

explicitly provided to guide the algorithm into choosing a quadratic surface but a quadratic surface did have to be

one of the solutions available in the space of all possible solutions. Absent the ability to produce the appropriate

surface (e.g., if the surface was constrained to be trigonometric), the algorithm would be forced to produced a best

approximation.
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FIG. 6: Fitness (1/ca) vs. generation for the lens design problem with n1 = 1 (air), n2 = 1.468 (glass), n3 = 1. The upper

surface is defined as a 4th-order polynomial and the lower surface is the negative of the upper surface. The optimization

seeks the coefficients a that best focus the rays to the desired focus. The inset plot shows the entire progression of fitness

vs. generation, while the main plot shows the first 200 generations. Each lens sub-image illustrates the best member of the

population at that generation.
11



FIG. 7: Parameters of the upper lens surface corresponding to the best solution from each generation as a function of generation.

The odd terms are forced to zero as the lens must be symmetric about the y-axis for best performance. The lower surface

parameters are the negatives of the upper surface parameters.

Prior knowledge of ray optics allows us to predict that any lens with a focus that resides on the centerline (fx = 0)

will require symmetry about the centerline for optimal performance. If we imagine no prior understanding of the

problem, the fact that repeated optimization runs force the odd polynomial terms to approach zero would provide

evidence that symmetry is required. Thus, given the requisite symmetry of the lens surfaces about the y-axis, we

abandon the odd polynomial terms and use only even terms for the optimizations that follow. Several optimization

runs composed of 50-member populations were run for 4000 generations under various constraints. Ten optimization

runs are performed for each type of optimization. Each of the runs converges to a similar solution for a given set of

constraints, the best of which are shown in Figures 8-11. We begin with the simplest optimization which is simply

an even quadratic polynomial composed of the a0 and a2 terms where symmetry about the x-axis is enforced by

b0 = −a0 and b2 = −a2, where we have introduced b to represent the polynomial coefficients for the lower surface.

We perform the optimization for the case of air-glass-air as well as for air-glass-water (n3 = 1.333). The best solutions

corresponding to the best optimization run for each case are shown in Figure 8.

The next optimization retains the restriction of an even quadratic polynomial but does not enforce symmetry

between the upper and lower surfaces. The a0 and b0 terms are, however, forced to remain linked because the focal

distance is defined relative to the center of the lens. As long as b0 = −a0, the thickness of the lens will remain centered
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FIG. 8: Best lens solutions for (A) air-glass-air and (B) air-glass-water. Symmetry enforced about x-axis, quadratic surfaces.

Fitness for (A) is 274 while that for (B) is 22.

about the origin and the focal distance remains constant for all values of a2 and b2. The results of the best of ten

optimizations for each case are shown in Figure 9.

FIG. 9: Best lens solutions for (A) air-glass-air and (B) air-glass-water. Symmetry about x-axis is not enforced but surfaces

are still even quadratic polynomials. Fitness for (A) is 608 while that for (B) is 24.

The third optimization enforces symmetry between the upper and lower surfaces but allows a quartic term; results

are given in Figure 10. We note that the maximum fitness for this optimization is the same as the maximum fitness

for the optimization that included the odd polynomial terms shown in Figure 6. The most general optimization

considered allows each surface to vary independently (save for the restriction b0 = −a0) with a quartic term included.

The best lens produced by 10 separate optimizations is shown in Figure 11. We note that the second surface of the
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asymmetric quartic lens only affects the path of the rays over a small subsection of the lens, therefore, the negative

sloping wings of the second surface have no effect on the solution.

FIG. 10: Best lens solutions for (A) air-glass-air and (B) air-glass-water. Symmetry about x-axis is enforced and a quartic

term is added to the surface polynomial. Fitness for (A) is 5.5e5 (note the equivalence with the maximum fitness in Figure 6)

while that for (B) is 2.7e4.

FIG. 11: Best lens solutions for (A) air-glass-air and (B) air-glass-water. Symmetry about x-axis is not enforced and a quartic

term is added to the surface polynomial. Fitness for (A) is 2.3e7 while that for (B) is 3.8e6.

This sequence of increasingly general optimizations demonstrates the importance of asymmetry between the two

lens surfaces and the quartic term in lens design as predicted by our ray optics model. We have not explicitly shown

the relationship between fitness and spot size (as näıvely measured by the distance between the two most widely

separated rays around the focus), but for comparison, that distance decreases by more than an order of magnitude
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for the air-glass-air case when the fitness increases from 5.5e5 to 2.3e7 (Figures 10A and 11A). We stress that these

example optimizations are meant to illustrate the utility of an EA for design in an optics application. We do not seek

to provide guidance in lens design, as the assumption of ray optics glosses over the many aberrations arising from,

among other things, phase and edge effects.

As a final point, we provide an example of the fitness space in Figure 12 (log scale). We start with the best solution

discovered from the full quartic optimization (including odd terms) whose results are shown in Figure 6 . The a2 and

a3 terms are then each systematically varied over [-1,1] with a step size of 0.01 with b2 = −a2 and b3 = −a3 enforced

while the other parameters are held fixed at the optimal values. At each parameter value the ray optics model is

run and the fitness of the lens encoded by those parameters is calculated. The peak of the fitness function should

occur at a2 = −0.268, a3 = 0 as shown. This is a good example of a parameter space that should be searched with a

direct-search optimization technique such as an evolutionary algorithm.

FIG. 12: Fitness (log scale) versus a2 and a3 with symmetry enforced. The white spots correspond to zero values. (A) is a top

view of the three-quarter view in (B).

Applications

A tendency to avoid becoming trapped in local optima and the ability to deal with non-smooth functions make EAs

excellent tools for designing complicated engineering systems; a reality which has spawned the field of evolutionary-

based design. A well-known example from this field is the compact antenna engineered by an EA for use aboard a

NASA satellite [2]. The device was found to outperform current human-engineered designs and is a good example

of the power of natural selection for finding solutions to constrained problems. Similarly, Koza has used Genetic
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Programming (GP) to create analog electronic circuits that outperform modern human-engineered designs. Overall, at

least 36 human-competitive results ranging from sorting programs to control circuits have been produced with GP [3].

The design of circuits proceeds by including electrical components such as voltage sources, current sources, resistors,

capacitors, transistors, and so forth as elements in a connected graph that describes a circuit. The topology of the

circuit along with its components can be manipulated by the EA and each generated circuit is tested computationally

and its performance compared to a desired standard. Using this framework, the algorithm is capable of starting from

a “primordial soup” of components and ending with circuits such as PID controllers, cubing circuits, and various filter

types (e.g., high- or low-pass) [11; 12]. Optimizing the elements of a preconceived circuit is useful enough, building

the circuit topology from scratch with no human input beyond specification of the desired behavior is an entirely

different capability with profound implications.

If electronic circuits can be evolved in this manner, there is every reason to believe that electro-optic systems could

be similarly designed. As long as each topology can be simulated numerically or experimentally, we believe that an

EA can combine, for example, RF amplifiers, splitters, filters, and phase shifters with optical couplers, sources, Mach-

Zehnder modulators (MZMs), and Erbium-doped fiber amplifiers (EDFAs) into useful RF/EO systems. In general,

an EA could be tasked with designing systems that improve, for example, gain, bandwidth, noise figure, or linearity

under constraints such as size, weight, power, and environmental susceptibility.

We are proposing more than simple optimization of the parameters that govern a fixed system architecture. We

would like to allow an EA to design the system with no a priori constraints on device topology. System performance is

acutely architecture-dependent, and the optimal architecture is unknown a priori. For example, consider a low-noise

downconverting link. Figure 13 shows two separate architectures for the downcoverting link as described in [13; 14].

Components for this system include a laser, EDFAs, photodiodes, couplers, and MZMs. The goal is to arrange those

components to produce a system that downconverts with minimized noise figure and maximized DC photocurrent

under constraints on input optical power and modulation efficiency. We propose to allow an EA to search for

architectures that yield results that are competitive with these human-engineered systems.

Potential impact areas include: RF/EO devices, systems, and photonic links, arbitrary waveform generation, array

architecture for imaging, and adaptable receivers. More specifically, an EA could be used in the design of nonlinear

components and operations for filtering and channelization, high-isolation Tx/Rx, RF waveforms for maximizing

linearity, optical pulse shape for lowest attenuation and dispersion in media, and passive microwave imaging to name

a few. Modern advances in materials and fabrication techniques allow for a wide variety of devices and architectures
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FIG. 13: Two examples of different architectures for a low-noise downconverting link. System A is taken from [13] while system

B is from [14].

and the creative capability of an EA in this domain could lead to improved DoD technologies.

The primary challenge will be the development of a technique that allows efficient encoding of topology and

components such that an EA can efficiently search the application design space. Koza has illustrated this capability

using GP to operate on functions that encode the functionality and interconnectivity of electronic circuit components.

The technique is designed to couple into a specific program that simulates the operation of the circuits once they have

been designed. An NRL implementation could leverage such capabilities with proper modification to suit RF/EO

architectures. Existing EAs such as Gene Expression Programming [15] allow the symbolic manipulation of systems

of equations and could be modified to accommodate the demands of architecture design.

Summary

In the design of RF/EO and EO/IR architectures it is conceivable that the evolutionary algorithm could

produce heretofore unknown human-competitive architectures provided the solution space is not overly constrained.

Evolutionary algorithms can optimize objective functions that are characterized by multiple local optima, are non-

smooth, are discontinuous, or have derivatives that are hard to define. Thus, EAs are naturally suited as optimizers

for problems where the output of the system must be determined through experiment or simulation and numerical or

experimental noise presents difficulties for finite-difference derivative calculations. As a result, EAs have been used

to design applications ranging from antennas to electronic circuits and many EA-generated designs have been shown

to outperform human-engineered devices. With these examples in mind, we have provided a simple example of how
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an EA can be used to design a lens and we propose the use of EAs for the design of a variety of RF/EO and EO/IR

systems.
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