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1. Introduction 

This report presents factors identified that influence the thermal stability and sinterability of 
nanocrystalline tungsten.  In addition to conventional methods of determining the stability of 
ultrafine and nanocrystalline grain structures, these tungsten materials were analyzed using a 
novel in-situ dilatometry technique, which identifies the thermal stability and densification 
behavior concurrently.  This was accomplished by identifying the activation energy for 
densification and developing master sintering curves. 

Nanocrystalline materials have long held the promise of demonstrating improved performance 
over their microcrystalline counterparts.  While recent years have seen much advancement in 
producing bulk nanocrystalline materials through various novel processing techniques (1–3), the 
commercial application of these materials requires a significant reduction in processing costs to 
be viable in all but a few niche markets.  In particular, bottom-up powder processing and 
consolidation techniques have shown promise for developing a cost-effective method for 
creating bulk nanocrystalline materials.  While significant research has been performed in 
consolidating nanocrystalline powders (4–6), there remains some difficulty in achieving full 
density while retaining the nanostructure of the milled powders.  Unstable nanostructures have 
significantly higher atomic mobility than their coarse-grained counterparts.  This increased 
mobility tends to reduce the temperature required to sinter to a desired density; however, this 
mobility also causes rapid grain growth to occur during the densification. 

Nanocrystalline materials have a very large volume fraction of grain boundary area, making 
these materials inherently unstable as a result of incomplete bonding at the interface between 
grains.  Within the past decade, there has been significant research to improve the thermal 
stability of nanostructures by limiting the propensity of grain growth through kinetic inhibitors 
(7, 8) or thermodynamic stabilizers (9–11).  The most commonly used method for improving 
stability is a kinetic method termed Zener pinning, where the mobility of the grain boundaries is 
impeded by the addition of small insoluble particles that sit preferentially at the grain boundary 
interface and must be dragged along the path of the growing grain.  While the methods and 
mechanisms for increasing thermal stability have been described in some detail (12), proper 
analysis of this stability requires a thorough inspection of the rate dependence for grain growth.  
This is often achieved through Kissinger analysis of calorimetry curves (13) or by analysis of the 
grain size at different stages in the sintering process using x-ray diffraction (14, 15) or electron 
microscopy (16) of specimens annealed to different temperatures.  These techniques tend to be 
very time consuming and most researchers are content to describe the thermal stability of a 
material by referring to the grain size after sintering (17–19). 
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While thermal stability is critical for retaining the nanostructure of the as-prepared powders, the 
densification behavior is equally important to the final properties of a sintered material.  In many 
cases, increasing the thermal stability of a material can drastically reduce the ability to achieve 
full density by inhibiting the diffusion required for densification.  Although densification factors 
are very important for identifying sintering guidelines and achieving a quality final product, it is 
often presented independently from the thermal stability of grains. 

2. Experimental Procedure 

Three tungsten powders labeled High Stability (HS), Moderate Stability (MS), and Low Stability 
(LS) were prepared by milling tungsten powder in a high energy mill.  Milling parameters were 
selected so that essentially pure tungsten powders were prepared with various levels of grain 
pinning impurities leading to varying degrees of thermal stability in each sample.  Powder 
samples were analyzed in a Panalytical X’Pert PRO Materials Research Diffractometer (MRD) 
to determine particle size and lattice strain.  Direct current plasma emission spectroscopy was 
used to identify the concentration of trace grain pinning elements in each sample.    

Milled tungsten samples were compacted using a cold isostatic press and sintered in a 99.999% 
hydrogen atmosphere using a Thermal Technologies furnace or a Netzsch 402E Dilatometer.  
Each sample was reduced for 3 h at 700 °C in order to remove surface oxidation that can inhibit 
densification while increasing the propensity for grain growth (20). Dilatometry data were 
collected at three constant heating rates:  3, 10, and 25 °C/min.  The data from these 
measurements were used to determine the apparent activation energy for sintering and develop 
master sintering curves.  The final density of the sintered samples was tested using the 
Archimedes method.  Grain size was analyzed using x-ray diffraction (XRD), scanning electron 
microscopy (SEM), and transmission electron microscopy (TEM).   

2.1 Master Sintering Curve Calculations 

Classical sintering theory distinguishes three different stages in the sintering process based upon 
the dominant sintering mechanism and diffusion processes that are occurring in the sample (21).  
Stage one begins at low temperatures where surface diffusion connects particles and creates 
regions of necking with minimal increases in density.  Stage two shows the greatest increase in 
density and has grain boundary diffusion and possibly volume diffusion as the predominant mass 
transport mechanisms.  The removal of small pores and coarsening of grains are characteristic of 
the third stage of sintering where volume diffusion tends to dominate.  

Many sintering theories have been developed to describe the densification behavior of a material 
based on the diffusion mechanisms that lead to densification in the sample.  A combined stage 
sintering model developed by Su and Johnson (22) shows the linear shrinkage rate as a function 
of the microstructural and diffusion properties of a material: 
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surface tension (γ), grain size (G), and the coefficients for volume and grain boundary diffusion 
(Dv and Db, respectively) at each of the three stages of the sintering process, where Ω is the 
atomic volume; k is Boltzmann’s constant; T is the absolute temperature; Гv and Гb are constants 
for scaling the microstructure of volume and grain boundary diffusion, respectively; and δ is the 
grain boundary thickness.  The surface diffusion term is generally neglected because it does not 
generally contribute to the densification process, though it can be responsible for significant 
coarsening in the specimen.  Equation 1 can be further modified to represent the instantaneous 
density by substituting the following relation, which is valid for isotropic shrinkage during 
densification:  
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where ρ is the instantaneous density of the specimen.  If there is only one dominant diffusion 
mechanism contributing to the densification process, the diffusion terms can be simplified and 
expanded as shown in equation 3: 
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where R is the universal gas constant, Q is the apparent activation energy, and n is 3 or 4 
depending on whether the process is volume or grain boundary diffusion controlled. Combining 
equations 1 and 2 and substituting the result from equation 3 leads to 
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In equation 4, the terms that describe microstructural evolution of the material as a function of 
density can be separated from the diffusion terms, which are dependent on the time and 
temperature profile of the processing as shown by equation 5: 
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The integration of equation 5 requires the microstructural characteristics of the specimen be 
independent of the time-temperature profile of the system and solely a function of the total 
density of the specimen.  While this assumption is not adequate for complex sintering processes 
(23), it is justifiable for certain constant heating rate experiments and has been proven accurate 
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for both metal (24, 25) and ceramic (22, 26, 27) systems in general.  Equation 5 can be 
rearranged to separate the functions for density and time/temperature dependence; the results are 
shown as equations 6 and 7, respectively. 
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In equation 7, Θ(t, T) can be described as the total amount of thermal work that is put into the 
system, while Ф(ρ) describes the resulting density, grain size, and microstructural characteristics 
of the system.  The foundation of the master sintering curve is shown in the relationship between 
these parameters as described by equation 8: 

 ),()( Tt  . (8) 

For any given energy input described by Θ(t, T), there will be a resulting density, grain size, and 
microstructural parameter as described by Ф(ρ). 

2.2 Determining the Apparent Activation Energy for Densification 

The activation energy of the system can be estimated from constant heating rate experiments if Г 
and G are independent of the heating rate.  Furthermore, if there is only one dominant diffusion 
mechanism active during the measured portion of the sintering cycle, the activation energy will 
be close to the tabulated value for the activation energy of diffusion. Conversely, the changes in 
the grain size or microstructural properties that result from different heating rates will become 
apparent in the activation energy term.  Г and G are never entirely independent of thermal 
processing conditions and the activation energy measured in these experiments is referred to as 
the “apparent activation energy for densification” to mark this distinction.  In certain systems, 
specifically unstable nanocrystalline powders, the grain size and microstructural terms clearly 
change when sintering; however, thermally stable nanostructures are inherently less dependent 
on temperature and these terms can be considered to remain constant. 

The apparent activation energy for densification can be determined from dilatometry curves by 

using an Arrhenius plot for constant heating rate of 






 TT
dt
d **ln   VS 

T
1 , where T is the 

heating rate, T is the absolute temperature, and 
dt
d  is the instantaneous densification rate.  The 

slope of the fitted lines at each density is equal to the activation energy divided by the negative 
of the universal gas constant as shown in figure 1. 
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Figure 1.  Arrhenius plot for determining the apparent activation energy of densification.  

The activation energy was measured using this method so that the variation in activation energy 
could be measured as a function of density in order to identify the mechanisms operating at 
different stages of the sintering process.  Other methods commonly use a least squares fit of the 
master sintering curve to describe the average activation energy.  While the activation energy 
does vary as a function of density, the parameter remains fairly consistent during the 
intermediate sintering stage, where the densification rate is greatest.   

3. Results and Discussion 

Upon sintering, the grain size increases significantly to achieve a lower energy microstructure.  
The grain size versus temperature plot shown in figure 2 reveals a gradual increase in grain size 
for the low stability powder throughout the temperature range from 800 to 1400 °C.  The 
moderate and low stability tungsten show reduced grain growth between 1000 and 1200 °C.  
This is likely a result of Zener pinning from the dispersoid phase, which causes a reduction in 
grain boundary mobility.  The high stability tungsten actually shows a decrease in grain size, 
which could result from coagulation of the dispersoid phase within the pure tungsten grains.   
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Figure 2.  Grain size measurements acquired by x-ray diffraction for each of the thermally stabilized  
nano-tungsten powders. 

Figure 3 shows the microstructures of the three different tungsten powders.  While each sample 
shows a similar density, the grain size of each material indicates that the thermal stability 
changes significantly based on milling conditions. 
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Figure 3.  Electron micrographs, grain sizes, and densities of three tungsten samples processed under different 
milling conditions.  

Figure 4 shows the density and densification rate of tungsten as a function of temperature for the 
HS tungsten sample.  These in-situ density measurements were acquired by measuring the linear 
displacement as a function of temperature at three different heating rates.  Similar curves were 
acquired for the MS and LS samples, though the plots are not shown in this report.  Density was 
calculated assuming isotropic shrinkage, a fair assumption for isostatically pressed compacts. 
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Figure 4.  Densification behavior of milled nanostructured tungsten powders. 
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The density of the tungsten is shown to be a function of both the temperature and the heating 
rate.  The densification rate plot indicates that this is a thermally activated process where the 
peak shifts with increasing ramp rate.  Furthermore, the densification plot shows local maxima at 
875–900 °C, indicating a shift in densification mechanisms based upon heating to high 
temperatures.   

The activation energy plotted as a function of density for the HS, MS, and LS samples shows a 
significant difference in the recorded activation energy corresponding to the degree of thermal 
stability.  The result is shown in figure 5.  
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Figure 5.  Apparent activation energy for densification of milled tungsten powders exhibiting different 
degrees of microstructural stability.  Note that the differences in initial density are a result of 
different green packing densities resulting from dissimilar milling conditions. 

The activation energy for the highly stable tungsten powder does not fluctuate significantly from 
the measured activation energy for grain boundary diffusion.  The apparent activation energy for 
densification increases drastically for samples exhibiting moderate to low stability.  This increase 
cannot be described by a different mass transport mechanism operating on the sample as the 
activation energies are much higher than the standard values listed in table 1.  While the 
implications of the activation energy thermal stability relationship are not immediately apparent 
from standard chemical kinetics theory, it is important to realize that this number represents the 
apparent activation energy for densification and not the true activation energy for mass transport 
to occur.  An increase in the apparent activation beyond that for grain boundary diffusion 
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indicates that a significant portion of the energy is being used to change the structure of the 
material without contributing to the densification process.  Therefore, the deviation from the 
activation energy for grain boundary diffusion could be correlated to the efficiency of the 
sintering process for providing a maximum density with minimal energy losses to 
microstructural changes such as grain growth.  While this technique is a very powerful 
characterization tool, the scope is limited to the temperatures where densification rates are high 
and can be misleading if a significant amount of coarsening occurs during the final stages of 
sintering. 

Table 1.  Measured activation energies for self diffusion based on three 
mass-transport mechanisms in pure tungsten (20, 28). 

Diffusion Type 
Activation Energy 

(kJ/mol) 

Surface diffusion 251–287 
Grain boundary diffusion 377–460 
Volume diffusion 502–586 

 
The average activation energies described by figure 5 show a strong correlation to the grain size 
measured by electron microscopy.  In many cases, the composition can play a vital role in the 
sintering behavior of materials.  The addition of small dispersiods can inhibit the grain growth of 
a material by effectively reducing the mobility of particle boundaries. It is duly noted that the 
apparent activation energy for densification is dependent on the concentration of dispersiods in 
the sample.  The relations between composition, activation energy, and the resulting grain size of 
a sintered sample are shown in figure 6.    
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Figure 6.  Plot of the measured apparent activation energy as a function of grain pinner concentration  
and grain size.  
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The plots in figure 6 demonstrate that the final grain size that results from sintering is dependent 
on the quantity of grain pinner present in the sample.  The measured activation energy is 
significantly higher than that for grain boundary diffusion for the milled nanocrystalline tungsten 
with the smallest amount of grain pinner.  This deviation describes the instability of the system 
that results from nanocrystalline grains and high lattice strains.  Without any barriers to grain 
boundary mobility, the energy of the system is relaxed by significant grain growth that occurs 
independently from the densification process. It is only after the addition of the grain pinning 
material that the apparent activation energy decreases to the values expected for grain boundary 
diffusion.  These barriers allow the coarsening to occur only in conjunction with densification.  
This allows for the production of an ideally dense and ultrafine-grained structure.  The master 
sintering curves for the HS, MS, and LS samples are shown in figure 7.  
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Similar densities were achieved for samples undergoing the same temperature program in a 
standard hydrogen furnace.  This is a result of the plateau that occurs during the final stages of 
sintering, where densification is minimal even for a significant amount of thermal energy input.  

4. Summary and Conclusions 

The thermal stability and densification behavior of a material are critical to producing bulk 
materials that retain the nanocrystalline properties of the starting powders.  Though these 
parameters are critical to the quality of the final sintered product, they are difficult to measure 
and are often optimized solely through iterative trial and error experimentation.  The use of 
dilatometry and a combined stage sintering model can help to identify the influence of key 
processing parameters on the stability and densification behavior of materials.  Furthermore, this 
analysis can identify the optimum thermal stability for minimizing grain growth without 
inhibiting the diffusion mechanisms that are required for densification.  While the master 
sintering curve is excellent in predicting the sintering curves for a given set of sintering 
conditions, even minor changes to the powder processing and compaction can have significant 
influence on the densification parameters and can invalidate the general master sintering curve.  
Future development of this combined stage sintering model should work to define the influence 
of initial conditions on the entire sintering process.  The resulting model would be an outstanding 
tool for understanding and predicting the sintering behavior of particulate systems.   
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List of Symbols, Abbreviations, and Acronyms 

HS high stability 

LS low stability 

MRD Materials Research Diffractometer 

MS moderate stability 

SEM scanning electron microscopy 

TEM transmission electron microscopy 

XRD x-ray diffraction 
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