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Summary

We report here on the work performed during the first year (october 2009 -
october 2010) of the contract FA 8655-10-C-4002 on Multiscale problems in
materials science: a mathematical approach to the role of uncertainty.

The bottom line of our work is to develop affordable numerical methods in
the context of stochastic homogenization. Many partial differential equations
of materials science indeed involve highly oscillatory coefficients and small
length-scales. Homogenization theory is concerned with the derivation of av-
eraged equations from the original oscillatory equations, and their treatment
by adequate numerical approaches. Stationary ergodic random problems
(and the associated stochastic homogenization theory) are one instance for
modelling uncertainty in continuous media. The theoretical aspects of these
problems are now well-understood, at least for a large variety of situations.
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On the other hand, the numerical aspects have received less attention from
the mathematics community. Standard methods available in the literature
often lead to very, and sometimes prohibitively, costly computations.

In this report, we first review an approach popular in particular in the
computational mechanics community, which is to try and obtain bounds on
the homogenized matrix, rather than computing it. Only computations of
moderate difficulty are then required. However, we will show that, not un-
expectedly, this method has strong limitations.

We will next introduce a class of materials of significant practical rele-
vance, that of random materials where the amount of randomness is small.
They can be considered as stochastic perturbations of deterministic materials,
in a sense made precise below. We will adapt to such a case the well-known
Multiscale Finite Element Method (MsFEM), and design a method which is
much more affordable than, and as accurate as, the original method.

The works described below have been performed by Claude Le Bris (PI),
Frédéric Legoll (Co-PI), and Florian Thomines (first year Ph.D. student).

1 Introduction

Many partial differential equations of materials science involve highly oscilla-
tory coefficients and small length-scales. Homogenization theory is concerned
with the derivation of averaged equations from the original oscillatory equa-
tions, and their treatment by adequate numerical approaches. Stationary
ergodic random problems are one of the most famous instances of mathe-
matical uncertainty of continuous media. However, the elaborate tools and
techniques of (i) mathematical probability, stochastic analysis, and (ii) nu-
merical analysis and large-scale computing have not yet permitted practical
computations. These are most often accomplished otherwise by the engineer-
ing community, using more traditional approaches. Despite definite achieve-
ments by leading experts, numerical analysis of stochastic, and more gener-
ally speaking non periodic, homogenization problems remains in its infancy.

The purpose of this report is to present the recent progress we have made
during last year on this topic, with the aim to make numerical random ho-
mogenization more practical. Because we cannot embrace all difficulties at
once, the case under consideration here is a simple, linear, scalar second or-
der elliptic partial differential equation in divergence form, for which a sound
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theoretical groundwork exists. We focus here on different practical compu-
tational approaches.

This report begins, in Section 2, with a brief introduction to stochastic
homogenization. There is of course no novelty in such an introduction, the
only purpose of which is the consistency of this report and the convenience of
the reader not familiar with the theory. We will recall there why stochastic
homogenization often leads to extremely expensive computations.

In Section 3, we describe a classical approach from the applied commu-
nities, which is to try and obtain bounds on the homogenized matrix, rather
than computing it. The computational gain is evident. We will report on
some numerical experiments. Such experiments are likely to not be new. But
they at least show, quantitatively and qualitatively, the strong limitations of
such an approach.

As pointed out above, random homogenization for general stochastic ma-
terials is very costly. Yet, it turns out that it is possible to identify classes of
materials of significant practical relevance, where stochastic homogenization
theory and practice can be reduced to more affordable, less computationally
demanding problems. These materials are neither periodic (because such an
oversimplifying assumption is rarely met in practice), nor fully stochastic.
They can be considered as an intermediate case, that of stochastic perturba-
tions of deterministic (possibly periodic) materials. The case when the tensor
describing the properties of the material is the sum of a periodic term and
a small random term is an instance of such an approach. In Section 4, we
show that we can adapt to that particular setting the well-known Multiscale
Finite Element Method (MsFEM), which is designed to directly address the
highly oscillating elliptic problem, rather than studying the limit problem
when the typical small lengthscale goes to 0. This method has been initially
proposed for deterministic problems [24, 21, 22, 14], and has been recently
adapted to the stochastic setting [18]. It then leads to extremely intensive
computations. We show in the sequel that, if the problem is only weakly
stochastic, then it is possible to design a method as accurate as the original
MsFEM, with a much smaller computational cost. As we explain below, this
method is accurate provided the stochastic perturbation is indeed small.

We collect in Section 5 some conclusions about the work performed so
far, and future directions for the next two years of contract.
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2 Basics of stochastic homogenization

[Detailed presentation can be read in [1].]

Stochastic homogenization is best understood in the light of the easiest
context of homogenization: periodic homogenization. This is the reason why
we begin with Section 2.1 laying some groundwork in the periodic context,
before turning to stochastic homogenization per se in Section 2.2.

We refer to, e.g., the monographs [15, 19, 25] for more details on homoge-
nization theory, and to the review article [1] that we wrote, addressing some
computational challenges in numerical stochastic homogenization. A super
elementary introduction is contained in [13].

In this section, we present classical results of the literature. The reader
familiar with stochastic homogenization can proceed directly to our contri-
butions, detailed in Sections 3 and 4.

2.1 Periodic homogenization

For consistency, we recall here some basic ingredients of elliptic homogeniza-
tion theory in the periodic setting. We consider, in a regular bounded domain
D in R

d, the problem






−div
[

Aper

(x

ε

)

∇uε
]

= f in D,

uε = 0 on ∂D,
(1)

where the matrix Aper is symmetric definite positive and Z
d-periodic. We

manipulate for simplicity symmetric matrices, but the discussion carries over
to non symmetric matrices up to slight modifications.

The microscopic problem associated to (1), called the corrector problem
in the terminology of homogenization theory, reads, for p fixed in R

d,
{

−div (Aper(y) (p + ∇wp)) = 0 in R
d,

wp is Z
d-periodic.

(2)

It has a unique solution up to the addition of a constant. Then, the homog-
enized coefficients read

[A⋆]ij =

∫

Q

(ei + ∇wei
(y))T Aper(y)ejdy, (3)
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where Q is the unit cube, and where wei
denotes the solution to (2) for p = ei,

with ei the canonical vectors of R
d. The main result of periodic homogeniza-

tion theory is that, as ε goes to zero, the solution uε to (1) converges to u⋆

solution to
{

−div [A⋆∇u⋆] = f in D,

u⋆ = 0 on ∂D.
(4)

Several other convergences on various products involving Aper

(x

ε

)

and uε

also hold. All this is well documented.

The practical interest of the approach is evident. No small scale ε is
present in the homogenized problem (4). At the price of only computing d
periodic problems (2) (as many problems as dimensions in the ambient space)
the solution to problem (1) can be efficiently approached for ε small. A
direct attack of problem (1) would require taking a meshsize smaller than ε.
The difficulty has been circumvented. Of course, many improvements and
alternatives exist in the literature.

2.2 Stochastic homogenization

The mathematical setting of stochastic homogenization is more involved than
that of the periodic case.

We put ourselves in the usual probability theoretic setting for stationary
ergodic homogenization, with the exception that our notion of stationarity
is discrete. It intuitively means the following. Pick two points x and y 6=
x at the microscale in the material and assume y = x + k with k ∈ Z

d.
The particular local environment seen from x (that is, the microstructure
present at x) is generically different from what is seen from y (that is, the
microstructure present at y). However, the average local environment in x
is assumed to be identical to that in y (considering the various realizations
of the random material). In mathematical terms, the law of microstructures
is the same. This is stationarity. On the other hand, ergodicity means that
considering all the points in the material amounts to fixing a point x in this
material and considering all the possible microstructures present there.

2.2.1 Main result

With the same setting as that described for periodic homogenization, we
may now briefly describe the main result of stochastic homogenization. The
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solution uε to the boundary value problem






−div
(

A
(x

ε
, ω

)

∇uε
)

= f in D,

uε = 0 on ∂D,
(5)

converges, when ε → 0, to the solution u⋆ of (4) where the homogenized
matrix is now

[A⋆]ij = E

(
∫

Q

(ei + ∇wei
(y, ·))T A (y, ·) ej dy

)

. (6)

The corrector problem now reads










−div [A (y, ω) (p + ∇wp(y, ω))] = 0 on R
d,

∇wp is stationary, E

(
∫

Q

∇wp(y, ·) dy

)

= 0.
(7)

A striking difference between the stochastic setting and the periodic setting
can be observed comparing (2) and (7). In the periodic setting, the corrector
problem is posed on a bounded domain, namely the periodic cell Q. In sharp
contrast, the corrector problem (7) of the random setting is posed on the
whole space R

d, and cannot be reduced to a problem posed on a bounded

domain. The reason is, condition E

(
∫

Q

∇wp(y, ·) dy

)

= 0 in (7) is a global

condition. It indeed equivalently reads, because of the ergodic theorem,

lim
R−→+∞

1

|BR|

∫

BR

∇wp(y, ·) dy = 0 for any sequence of balls BR of radii R.

The fact that the random corrector problem is posed on the entire space
has far reaching consequences for numerical practice. Actually, this is proba-
bly the main source of all the practical difficulties of stochastic homogeniza-
tion.

2.2.2 The direct numerical approach

Practical approximations of the homogenized problem in random homoge-
nization are not easily obtained, owing to the fact that the corrector prob-
lem (7) is set on the entire space. In practice, truncations have to be con-
sidered, and the actual homogenized coefficients are only obtained in the
asymptotic regime.
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Let us now be more explicit. In practice, the matrix A⋆ is approximated
by the matrix

[A⋆
N ]ij (ω) =

1

|QN |

∫

QN

(

ei + ∇wN
ei

(y, ω)
)T

A(y, ω)
(

ej + ∇wN
ej

(y, ω)
)

dy, (8)

which is in turn obtained by solving the corrector problem on a truncated
domain, say the cube QN = (−N, N)d ⊂ R

d:

{

−div
(

A(·, ω)
(

p + ∇wN
p (·, ω)

))

= 0 on R
d,

wN
p (·, ω) is QN -periodic.

(9)

Although A⋆ itself is a deterministic object, its practical approximation A⋆
N

is random. It is only in the limit of infinitely large domains QN that the
deterministic value is attained (the convergence limN→∞ A⋆

N (ω) = A⋆ has
been shown in [16, Theorem 1]).

At fixed N , the approximate homogenized matrix A⋆
N is random: a set of

M independent realizations of the random coefficient A are therefore consid-
ered. The corresponding truncated problems (9) are solved, and an empirical
mean of the truncated coefficients (8) is inferred. This empirical mean only
agrees with the theoretical mean value of the truncated coefficient within a
margin of error which is given by the central limit theorem (in terms of M).
For a sufficiently large truncation size N , this truncated value is admittedly
the exact value of the coefficient. The overall computation described above
is thus very expensive, because each realization requires a new solution to
the problem (9) of presumably large a size since N is taken large.

3 Bounds for homogenization

[Work expanded in [1].]

Given the above computational workload, practitioners, especially scien-
tists from the applied communities (computational mechanics, . . . ), some-
times choose to avoid computing actual homogenized equations and concen-
trate on bounds on the homogenized matrices A⋆. In [1], we have carefully
studied this approach, which has some (strong, as will be seen below) limi-
tations.
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We consider here the specific case of composite materials consisting of
only two phases. We denote by A and B the associated matrix coefficients,
modelling the properties of the phases. We also fix the average volume frac-
tion θ of the phase A. For simplicity, we assume here that θ is uniform over
the whole material. The problem is to find all possible homogenized materi-
als, that is, mathematically, matrices A⋆, that can be attained homogenizing
such phases A and B with the volume fraction θ.

In this specific case, some bounds on the homogenized coefficients may
be established. Here, we present one example of such bounds (actually the
most famous one). The case we consider is a scalar equation of the type (1)
with a matrix coefficient Aε(x) that needs not be periodic, nor stationary
ergodic, and that reads

Aε(x) = χε(x)A + (1 − χε(x))B

where χε(x) is the caracteristic function of phase A. Obtaining estimates
on A⋆ without being in position to explicitly compute A⋆ at a reasonable
computational price is the whole interest of the approach by “bounds”.

3.1 The Hashin-Shtrikman bounds

Based on the density of the matrices obtained by periodic homogenization
in the set of matrices obtained by arbitrary homogenization, it is possible
to derive the following Hashin-Shtrikman bounds on A⋆. In the sequel, we
assume B ≥ A.

Under the above assumptions, any homogenized matrix A⋆ satisfies the
upper bound

A⋆p · p ≤ Bp · p + θ min
η∈Rd

[

2p · η + (B − A)−1η · η + (1 − θ)h(η)
]

(10)

for any p ∈ R
d, where h(η) is defined by

h(η) = min
k∈Zd,k 6=0

|η · k|2
Bk · k .

Similarly, any homogenized matrix A⋆ satisfies the lower bound

A⋆p · p ≥ Ap · p + (1 − θ) max
η∈Rd

[

2p · η − (B − A)−1η · η − θg(η)
]

, (11)
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where g(η) is defined by

g(η) = max
k∈Zd,k 6=0

|η · k|2
Ak · k .

Furthermore, the upper bound can always be attained: for any p ∈ R
d, there

exists a function χ, Z
d-periodic and that generally depends on p, such that

for the matrix A⋆
p obtained by periodic homogenization of

A(
x

ε
) = χ(

x

ε
)A + (1 − χ(

x

ε
))B,

the inequality (10) becomes an equality (see e.g. [30]). Likewise, the lower
bound (11) can always be attained. We have summarized in [1, Section 2.3.2]
a proof of the Hashin Shtrikman bounds.

Remark 1 Besides the Hashin-Shtrikman bounds, many other estimates have
been proposed, such as the dilute approximation, the self-consistent method [31]
and the Mori Tanaka methods [28]. They are all based on the fact that the
problem of a single inclusion in an infinite material (Eshelby problem) is ana-
lytically solvable [23]. Similarly to the Hashin-Shtrikman bounds, the spatial
distribution of the phases is not taken into account in these other bounds.
The accuracy of these estimates and bounds strongly depends on the contrast
between A and B and the volume fraction θ as shown on Figure 1 below.

3.2 Numerical illustration

We consider a two-phase composite with A and B. We denote by a the
scalar conductivity of A (respectively b the conductivity of B) with a < b.
We denote by d the dimension, and by θ the volume fraction of A.

We consider the case of the random checkerboard, for which the exact
homogenized matrix is known: A⋆ = a⋆ Id =

√
ab Id. In this simple case,

the different bounds and estimates have an analytical form: the homogenized
coefficient a⋆ is bounded from below by the harmonic mean (often called the
Reuss bound) and from above by the arithmetic mean (often called the Voigt
bound):

1

θ/a + (1 − θ)/b
≤ a⋆ ≤ θa + (1 − θ)b.

9



These bounds are also called Wiener Bounds or Paul bounds. In this case,
the Hashin-Shtrikman bounds detailed above read (see e.g. [25, page 188]):

a

(

1 +
d(1 − θ)(b − a)

da + θ(b − a)

)

≤ a⋆ ≤ b

(

1 − dθ(b − a)

db + (1 − θ)(a − b)

)

,

and the Self-Consistent model leads to an estimate λeff of the effective con-
ductivity a⋆ defined implicitly (see [26]) by

θ
a − λeff

a + 2λeff

+ (1 − θ)
b − λeff

b + 2λeff

= 0.

On Figure 1 we plot these bounds and estimates for different values of the
contrast, defined by b/a, for a = 1. Note that in this case, by construction,
the volume fraction for any a and b is θ = 1/2. In Tab. 1, we collect the
values of all these bounds and estimates, for the particular case a = 1 and
b = 10.

Figure 1: Different bounds for the checkerboard test case.

A⋆ Harmonic HS- SC Model HS+ Arithmetic
3.16 1.81 2.38 4.00 4.19 5.50

Table 1: Values of bounds and estimate for a contrast of b/a = 10.

We verify that, for the critical volume fraction θ = 0.5, even for a contrast
which is not extremely large (a = 1 and b = 10), the range of homogenized
matrix atteignable, given by the Hashin-Shtrikman bounds, is wide. In such
a case, the spatial distribution of phases, which is not taken into account on
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the bounds, is certainly important. Note also that a typical case for real-
world composites is more challenging than the case above, since the contrast
is usually larger (of the order 100 rather than 10) and the volume fraction is
similar.

Our numerical example therefore shows that, in many cases, the Hashin
Shtrikman bounds cannot provide accurate estimates of the homogenized ma-
trix. For a contrast of 10, the error between the bounds and A⋆ is larger than
25 %. For a contrast of 100, the upper bound is three times as large as the
actual homogenized value, which is itself three times as large as the lower
bound. There is therefore a need for developing efficient numerical methods
that provide more accurate results.

4 A weakly-stochastic MsFEM approach

[Work expanded in [3].]

In this section, we show how the Multiscale Finite Element Method (Ms-
FEM) can be adapted to the stochastic setting. We refer to [20] for a review
on the MsFEM approach. Let us recall here that this method is designed
to directly address the original problem (namely (5) in the case of interest
here), keeping ε at its fixed value, rather than studying the limit problem
when ε → 0 (as we do in Section 2, going from (5) to (4)). Another interest
of this method is that it does not require any explicit formula for the homog-
enized tensor (such as (2)-(3), or (6)-(7)), which are not always available.
More details and comprehensive numerical tests are published in [3]. See
also [4].

4.1 MsFEM approaches

For consistency and to set our notation, we briefly review the classical, de-
terministic setting for MsFEM approaches. We next turn to the stochastic
setting. We consider problem (1), which we reproduce here for convenience,

{

−div(Aε(x)∇uε(x)) = f(x) in D,
uε = 0 on ∂D,

(12)

where Aε is a symmetric matrix satisfying the standard coercivity and bound-
edness conditions. Note that the approach is not restricted to the periodic
setting, so we do not assume that Aε(x) = A(x/ε) for a periodic matrix A.
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As recalled above, we wish here to keep ε fixed at a (small) given value.
The MsFEM approach consists in performing a variational approximation of
(12) where the basis functions are defined numerically and encode the fast
oscillations present in (12). In the sequel we will argue on the variational
formulation of (12):

Find uε ∈ H1
0 (D) such that, ∀v ∈ H1

0 (D), Aε(u
ε, v) = b(v), (13)

where

Aε(u, v) =
∑

i,j

∫

D

Aε
ij(x)

∂u

∂xi

∂v

∂xj

dx and b(v) =

∫

D

f v dx.

We introduce a classical P1 discretization of the domain D, with L nodes,
and denote φ0

i , i = 1, . . . , L, the basis functions.

Definition of the MsFEM basis functions Several definitions of the
basis functions have been proposed in the literature (see e.g. [24, 21, 22, 14]).
They give rise to different methods. In the following, we present one of these
methods. We consider the problem

{

−div(Aε(x)∇φε,K
i ) = 0 in K

φε,K
i = φ0

i |K on ∂K.
(14)

Note the similarity between (14) and the corrector problem (2). Note also
that the problems (14), indexed by K, are all independent from one another.
They can hence be solved in parallel, using a discretization adapted to the
small scale ε.

Macro scale problem We now introduce the finite dimensional space

Wh := span {φε
i , i = 1, . . . , L} ,

where φε
i is such that φε

i |K = φε,K
i for all K, and proceed with a standard

Galerkin approximation of (13) using Wh:

Find uε
h ∈ Wh such that, ∀v ∈ Wh, Aε(u

ε
h, v) = b(v). (15)

The dimension of Wh is equal to L: the formulation (15) hence requires
solving a linear system with only a limited number of degrees of freedom.
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Numerical illustration In order to illustrate the MsFEM approach, we
solve (12) in a one dimensional setting with

Aε(x) = 5 + 50 sin2
(πx

ε

)

,

on the domain D = (0, 1), with ε = 0.025 and f = 1000. We subdivide the
interval (0, 1) in L = 10 elements. On Figure 2, we plot the MsFEM basis
functions in a reference element and the MsFEM solution uε

h.
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Figure 2: Left: Multiscale basis functions φε,K in the reference element.
Right: MsFEM solution uε

h in the domain (0, 1).

Natural adaptation to the stochastic setting When applied to the
stochastic problem

{

−div(Aε(x, ω)∇uε(x, ω)) = f(x) in D,
uε = 0 on ∂D,

(16)

where the practical issue is to build an estimate of the mean E(uε(x, ·)) using
a Monte-Carlo simulation method, the natural adaptation of the MsFEM
method is the following: for each random realization m, first construct a
MsFEM basis and next solve the macroscale problem. This approach requires
a significantly large number of computations, since, for each realization, a
new basis of oscillating functions is built, and a problem at the macroscale
is solved. Such an approach has been described and analyzed in e.g. [18].

4.2 A weakly stochastic setting

As seen above, considering general random materials lead to extremely ex-
pensive computations. The question arises to know whether this general ran-
dom context is really relevant, and whether adequate modifications can lead
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to substantial improvements. Our line of thought here is based on the fol-
lowing two-fold observation: classical random homogenization is costly but
perhaps, in a number of situations, not necessary. Many materials, albeit
not deterministic, are not totally random. Some of them can be considered
as a perturbation of a deterministic material. The homogenized behaviour
should expectedly be close to that of the underlying deterministic material
(and thus tractable from the practical viewpoint), up to an error depending
on the amount of randomness present.

Model We introduce and study here a specific model for a randomly per-
turbed deterministic material (we refer to [12] for a quick overview of this
setting, and some of the associated numerical techniques, and to [1] for a
more comprehensive review of our contributions along these ideas). We are
interested in the following elliptic problem

{

−div
(

Aε
η(x, ω)∇uε

η

)

= f(x) in D ⊂ R
d,

uε
η = 0 on ∂D,

(17)

that is (16) with

Aε(x, ω) ≡ Aε
η(x, ω) = Aε

0(x) + ηAε
1(x, ω), (18)

where η ∈ R is a small parameter, Aε
0 is a deterministic matrix uniformly

elliptic and bounded, and Aε
1(x, ω) is a bounded matrix. The matrix Aε

η is
hence a perturbation of the deterministic matrix Aε

0.

Remark 2 The above setting is of course one possible setting where the the-
ory may be developed. Other forms of random perturbations of deterministic
(possibly periodic) problems could also be addressed. See e.g. [5, 6, 7, 8] and
the review article [1].

In the case (18), a MsFEM method alternative to the one presented in
Section 4.1 can be proposed. The idea is to compute the MsFEM basis
functions only once, with the deterministic part of the matrix Aε

η and next
to perform Monte-Carlo realizations only for the macro scale problems. We
refer to [3] for all the details.

As above, we hence first solve (14), with Aε ≡ Aε
0, and build the finite

dimensional space

Wh := span {φε
i , i = 1, . . . , L} .

14



We next proceed with a standard Galerkin approximation of (17) using Wh:
for each m ∈ {1, . . . , M}, we consider a realization Aε,m

η (·, ω) and compute
um(·, ω) ∈ Wh such that

∀v ∈ Wh,
∑

i,j

∫

D

(Aε,m
η )ij(x, ω)

∂um

∂xi

(x, ω)
∂v

∂xj

(x)dx =

∫

D

f(x)v(x)dx. (19)

Since the MsFEM basis functions are only computed once, a large computa-
tional gain is expected, and this is indeed the case.

Numerical studies We now estimate the performance of the approach. To
this aim, we compare the solution of the above approach with the solution of
the direct approach (of Section 4.1) and, for reference, the solution to (17)
obtained using a finite element method with a mesh size adapted to the small
scale ε. Our estimators are built as follows:

e(u1, u2) = E

( ||u1 − u2||N
||u2||N

)

, (20)

where N is the norm used, u1 and u2 are the solutions obtained with any two
different methods. The expectation is in turn computed using a Monte-Carlo
method. Considering M realizations {Xm(ω)}1≤m≤M of a random variable

(here X(ω) =
||u1(·, ω)− u2(·, ω)||N

||u2(·, ω)||N
), we compute the empirical mean µM

and the empirical standard deviation σM as

µM(X) =
1

M

M
∑

m=1

Xm(ω),

σ2
M(X) =

1

M − 1

M
∑

m=1

(Xm(ω) − µM(X))2 .

As a classical consequence of the Central Limit Theorem, it is commonly
admitted that E(X) satisfies

|E(X) − µM(X)| ≤ 1.96
σM (X)√

M
.

We consider the following numerical example. Let (Xk,l)(k,l)∈Z2 denote a
sequence of independent, identically distributed scalar random variables uni-
formly distributed over the interval [0, 1]. We define the random conductivity
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matrix as

Aε
η(x, y, ω) =

∑

(k,l)∈Z2

1(k,k+1](
x

ε
)1(l,l+1](

y

ε
)

(

2 + P sin(2πx/ε)

2 + P sin(2πy/ε)

+
2 + sin(2πy/ε)

2 + P sin(2πx/ε)

)

(1 + ηXk,l(ω)) Id2,

with the parameters P = 1.8 and ε = 0.025. Then we compute uref solu-
tion to (17) on the domain D = (0, 1)2, with f ≡ 1. Let uM and uS be
its approximation by the general MsFEM approach (of Section 4.1) and the
weakly-stochastic MsFEM approach described above, respectively. The nu-
merical parameters for the computation are determined using an empirical
study of convergence. We used for the reference solution a fine mesh of size
hf = ε/40. The MsFEM basis functions are computed in each element K
using a mesh of size hM = ε/80. The coarse mesh size is H = 1/30. We
consider M = 30 realizations.

We report in Tables 2 and 3 the estimator (20), along with its confidence
interval, for the norms H1(D) and L2(D), respectively.

η e(uM , uref) e(uS, uref) e(uS, uM)
1 8.12 ± 0.19 17.37 ± 0.78 15.51 ± 0.87

0.1 7.17 ± 0.02 7.62 ± 0.07 2.56 ± 0.10
0.01 7.15 ± 0.002 7.28 ± 0.007 1.39 ± 0.002

Table 2: H1(D) error (in %).

η e(uM , uref) e(uS, uref) e(uS, uM)
1 0.56 ± 0.08 1.69 ± 0.49 1.47 ± 0.50

0.1 0.54 ± 0.01 0.57 ± 0.06 0.20 ± 0.07
0.01 0.53 ± 0.001 0.62 ± 0.005 0.11 ± 0.003

Table 3: L2(D) error (in %).

We observe that, when η is small (here, η ≤ 0.1), the alternative approach
provides a function uS that is an approximation of uref as accurate as uM .
Recall that, since the MsFEM basis has only been computed once, the cost
for obtaining an empirical approximation of E(uS) is much smaller than that
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for obtaining the corresponding empirical estimator of E(uM). This demon-
strates the efficiency of the approach. As expected, when η is not small
(say η ≈ 1), the accuracy of the solution uS computed with the alternative
approach proposed here decreases.

Elements of proof In [3], we have analyzed the method introduced here
in the one-dimensional setting (see also [4]). For the sake of analysis, we

assume that the highly oscillating coefficient reads aε
η(x, ω) = aη

(x

ε
, ω

)

,

where aη satisfies the standard assumption of stochastic homogenization (see
Section 2.2). The problem (17) now reads







− d

dx

(

aη

(x

ε
, ω

) d

dx
uε

η(x, ω)

)

= f(x) in (0, 1),

uε
η(0, ω) = uε

η(1, ω) = 0.
(21)

We assume that the randomness is small, in the sense (see (18)) that

aη(x, ω) = aper(x) + η a1(x, ω), (22)

where aper is a deterministic, periodic function and η is a small deterministic
parameter.

In [3], we have bounded from above the difference between u⋆
η, the so-

lution to the homogenized equation (4), and the weakly-stochastic MsFEM
solution, in the following sense. For a given realization of the random co-
efficient aη(x, ω), let u(·, ω) be the weakly-stochastic MsFEM solution, that
solves (19). By construction, this solution is a linear combination of the
highly oscillating basis functions:

u(x, ω) =

L
∑

i=1

Ui(ω)φε
i(x).

Let vw−MsFEM(x, ω) be the associated representation in terms of standard P1
basis functions:

vw−MsFEM(x, ω) =
L

∑

i=1

Ui(ω)φ0
i (x).

We have the following estimate:

‖u⋆
η − vw−MsFEM(·, ω)‖H1(0,1) ≤ C

(

h +
ε

h
+ ησε

h(ω) + η2C(η)
)

(23)
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where C is a deterministic constant, independent of h, ε and η, and C(η) is a
deterministic function, bounded when η → 0. In the above bound, σε

h(ω) is
a random number, independent of η, that depends on ε, h and the random
term a1(x, ω) in (22).

Let us comment on (23). Assume that η = 0, i.e. the problem (21) is a
periodic problem. Then our method is identical to the standard deterministic
MsFEM method, and we recover from (23) the classical bound known in that
case, namely

‖u⋆
η − vMsFEM‖H1(0,1) ≤ C

(

h +
ε

h

)

.

Assume now that a1 is deterministic. Then our method is not exactly the
MsFEM method, since we do not take into account a1 to build the highly
oscillating basis functions. In that case, σε

h(ω) turns out to vanish, and we
infer from (23) that

‖u⋆
η − vw−MsFEM‖H1(0,1) ≤ C

(

h +
ε

h
+ η2C(η)

)

.

We hence observe that, provided the term neglected to build the basis func-
tions is small (namely η ≪ 1), we obtain a similar accuracy as with the
standard MsFEM method.

A similar conclusion holds in the general case (22). Note also that the
bound (23) is valid for any realization ω of the randomness. It is therefore
a more precise result than a bound on the expectation of the error, where
all random realizations are averaged. For instance, the bound (23) allows to
understand what is the probability distribution of the error.

5 Conclusions and plan for the following years

In this report, we have first reviewed an approach to obtain bounds (here, the
Hashin-Shtrikman bounds) on the homogenized matrix. This approach only
involves computations of moderate difficulty. However, we have outlined the
strong limitations of such a strategy. In some cases, the difference between
the lower and upper bounds is indeed very large. The obtained estimations
are then inaccurate. This motivates the development of efficient numerical
methods that provide more accurate results.

To this aim, we have focused on weakly stochastic materials, for which we
successfully adapted the well-known Multiscale Finite Element Method (Ms-
FEM). We have proposed a method with a much smaller computational cost
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than the original MsFEM in the stochastic setting. Provided the stochastic
perturbation is indeed small, the method we propose is as accurate as the
original one.

We summarize now the directions of research we wish to pursue during
the following years.

A variant of classical random homogenization In the short term, our
aim is to study a particular setting for stochastic homogenization, which is
not the classical setting described in Section 2.2 (where the random coefficient
A in (5) is stationary). The setting we wish to study is the case when the
random coefficient is the composition of a standard deterministic and periodic
function Aper with a stochastic diffeomorphism:

Aε(x, ω) = Aper

[

Φ−1
(x

ε
, ω

)]

(24)

where, for any random realization ω, the application x 7→ Φ(x, ω) is a diffeo-
morphism. Formally, such a setting models a microstructure that is periodic,
in a given reference configuration. The latter is only known up to a certain
randomness. Materials we have in mind are ideally periodic materials, where
some random deformation has been introduced, for instance during the manu-
facturing process. Othewise stated, these are periodic materials seen through
random glasses! This setting has been initially introduced in [9], where the
homogenized problem is identified.

An interesting question in that context is that of numerical discretization.
In the classical context, a standard procedure is to solve the corrector problem
on a truncated domain (see (8) and (9)). The convergence of the procedure
is given by [16, Theorem 1]. We currently work on a similar analysis in the
context of (24) (see [2]).

A more theoretical question is to precisely understand the behaviour of
uε(x, ω) − u⋆(x) when ε goes to 0, where uε is the solution of the highly
oscillating problem and u⋆ the solution of the homogenized problem. In
the classical setting, and in the one-dimensional case, the convergence of
ε−1/2(uε(x, ω) − u⋆(x)) to a Gaussian process has been shown in [17]. This
question, in the context of (24), is addressed in [2].

The setting (24) is in general not a weakly stochastic setting, as the
amount of randomness present in Φ may be large. Yet, in the case when the
diffeomorphism Φ is close to the identity, namely

Φ(x, ω) = x + ηΨ(x, ω) + O(η2) (25)
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for a small deterministic parameter η, the amount of randomness turns out
to be small. This case is thus another instance of randomly perturbed deter-
ministic materials (recall Section 4.2, where we introduced another weakly
stochastic setting, and Remark 2, where we pointed out other weakly stochas-
tic settings). The case (24)-(25) has been studied in [10, 11].

A Fast Fourier Transform approach In the course of our investigations,
we have identified the following tracks of research, which are closely related
to the research directions of the contract.

First, in the periodic homogenization setting recalled in Section 2.1, a
method based on Fast Fourier Transform has been proposed in [29, 27]. The
idea is as follows. Let A0 be a constant symmetric positive matrix. The
corrector problem (2) is equivalent to

{

−div (A0 (p + ∇wp)) = div ((Aper(y) − A0) (p + ∇wp)) in R
d,

wp is Z
d-periodic.

The idea of [29, 27] is to solve this problem iteratively. Knowing the iterate
wk

p at iteration k, the next iterate wk+1
p is defined as the unique solution to

{

−div
(

A0

(

p + ∇wk+1
p

))

= div
(

(Aper(y) − A0)
(

p + ∇wk
p

))

in R
d,

wk+1
p is Z

d-periodic.

As A0 is a tensor independent of y (in contrast to Aper(y)), the above problem
can be solved very efficiently using a Fourier transform. Hence, rather than
solving (2), we are left with solving many times a simpler problem.

Our aim is to compare this iterative method with the standard method,
in term of efficiency. The choice of A0 is most probably of paramount impor-
tance, since the convergence rate (and also the fact that the iterations in k
converge or not) depends on it. We have already run some preliminary tests
with this method, but definite conclusions are yet to be obtained.

Second, in the context of stochastic homogenization, approaches using
some decomposition of the random matrix A(x, ω) in (5) would be worthwhile
to investigate.
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