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Our first publication was Polynomial-time quantum algorithm for the simulation of chemical 
dynamics Proc. Natl. Acad. Sci. 105 (2008) 18681, in which we showed that quantum computers 
could offer an exponential speed-up for the simulation of chemical dynamics. While the Born-
Oppenheimer approximation can be used, it surprisingly makes the computation more difficult 
for reactions with more than a few atoms. A detailed resource estimate showed that about 100 
qubits would be needed to solve problems inaccessible to classical computers. 

Real-space quantum simulation techniques require a grid-based preparation of initial states. The 
PNAS paper proposed a method for preparing chemically relevant states on a quantum computer, 
and this direction was fleshed out in Preparation of many-body states for quantum simulation J. 
Chem. Phys. 130 (2009) 194105. We provided a technique for translating a concise description 
of a quantum state---for example, a few quantum numbers---into the grid-based quantum state. 
Provided a few broadly applicable conditions are met, the procedure works for eigenstates, 
superpositions, and mixed states.  

In Quantum algorithm for molecular properties and geometry optimization J. Chem. Phys. 131 
(2009) 224102, we applied the quantum gradient estimation algorithm to chemical problems to 
show that energy derivatives could be computed with a significant speed-up. In a $d$-
dimensional system, the $n^{\mathrm{th}}$ derivative would require only $2^{n-1}$ energy 
computations, as opposed to the classical $O\left(d^{\lfloor n/2\rfloor }\right)$ cost. In 
particular, calculating gradients and Hessians with respect to nuclear coordinates could be used 
to optimize the geometry of any molecule using a constant number of energy evaluations. 

A major landmark in our research direction was the first experimental implementation of a 
quantum chemical calculation on a quantum computer, in Towards quantum chemistry on a 
quantum computer Nature Chem. 2 (2010) 106. Our collaborators at the University of 
Queensland implemented the iterative phase estimation algorithm on a two-qubit optical 
quantum computer in order to compute the potential energy surface of the hydrogen molecule in 
a minimal basis. While this implementation required a fair amount of classical pre-processing, 
the technique is scalable to larger systems. 

Further expounding on the scalable extensions, we have submitted Quantum Computation for 
Molecular Energy Simulations (preprint at arxiv:1001.3855) to the Journal of Molecular Physics. 
In this article we provide a detailed explanation of the path to scalable digital quantum 
simulation as well as the explicit gate sequence for the hydrogen molecule using five qubits. 
Estimates for other chemical systems are also given. 

The use of adiabatic quantum computers for quantum simulation was explored in Adiabatic 
quantum simulators (preprint at arxiv:1002.0368). We used an adiabatic process together with a 
method reminiscent of Ramsey spectroscopy to suitable replace the gate-model physics 
simulation algorithms. This provided a novel quantum algorithmic component needed to exploit 
several important results from the complexity of finding ground states. 

Simulating Markov processes with quantum computer is another research topic that we have 
touch upon in Simulation of Classical Thermal States on a Quantum Computer: A Transfer 
Matrix Approach (preprint at arxiv:1005.0020). Most of the algorithms to date are based on 
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adaptations of the quantum search algorithm which obtain a quadratic speedup with respect to 
the eigenvalue gap of the Markov chain. Our contribution was to explore the Transfer Matrix 
approach in the quantum setting thereby obtaining an algorithm that was gap independent and 
quadratic faster than its classical counterpart. 

We reviewed the state of the field in Simulating chemistry using quantum computers, which was 
submitted to Ann. Rev. Phys. Chem. (preprint at arxiv:1007.2648). 

We have also focused on exploring and implementing quantum computing using quantum walks. 

In Discrete single-photon quantum walks with tunable decoherence Phys. Rev. Lett. 104 (2010) 
153602, we described, in collaboration with researchers at the University of Queensland, an 
experimental, quantum-optical implementation of a discrete-time quantum walk. This was the 
first demonstration that used a truly quantum walker, and is distinguished by the ability to add 
controllable amounts of decoherence at each step. This allowed us to study the transition 
between the quantum and classical random walks as the decoherence became strong. 

Recent experiments on photosynthetic light-harvesting complexes observed long-lived excitonic 
coherences at room temperature. This observation has lead to speculations that a possible 
quantum search operation analogous to the Grover search was performed by the light-harvesting 
complex. In Environment-assisted quantum walks in energy transfer of photosynthetic 
complexes, J. Chem. Phys. 129 (2008) 174106, we found that the criteria for such a search are 
not met in a strict sense. We established however the connection of exciton transfer in 
multichromophoric networks to another quantum information concept, the continuous time 
quantum walk. To this end, we extended the unitary quantum walk to a decohered quantum walk. 

Motivated by the experiments on the Fenna-Matthews-Olson (FMO) light-harvesting complex of 
green sulfur bacteria, we developed and discussed the fundamentals of environment-assisted 
quantum transport (ENAQT) in Environment-assisted quantum transport, New J. Phys. 11 
(2009) 033003. The efficiency of quantum transport can be enhanced by the presence of a 
fluctuating environment. For example, in the case of transport through statically disordered 
structures, adding pure dephasing can enhance transport efficiency, which would otherwise be 
limited by quantum localization. For the FMO complex, we found that maximal transport 
efficiency can be obtained at dephasing rates corresponding to room temperature values. 

In Role of quantum coherence and environmental fluctuations in chromophoric energy transport, 
J. Phys. Chem. B 113 (2009) 9942, we developed a method to quantify the biological importance 
of quantum coherence by its contribution to the efficiency of the primary photosynthetic event. 
We found a contribution of around 10% for a spatially uncorrelated model of the FMO complex. 
Furthermore, we studied the robustness of the exciton transport with respect to slow protein 
conformation changes, the effect of spatial correlations, and the importance of various transfer 
pathways. 

In Quantum Stochastic Walks: A generalization of classical random walks and quantum walks, 
Phys. Rev. A 81 (2010) 022323 we explored the theoretical connections between the classical 
and quantum walks using the appropriate framework of probabilistic quantum evolution. We 
used this framework to look at quantum-to-classical transition for the walk on a line and the 
glued tree graph of depth three. Using this model we showed that mixed quantum classical 
transport can retard the walk for short times on certain graphs. 
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