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A.1.  Scientific Objectives. 

Our overall objective is to discover and harness the previously unknown molecular mechanisms 
that govern the remarkable capabilities for intraspecies communication in squid as a model for 
new materials and modalities for optoelectronic communication.  The immediate research goal 
embodied in this proposal is to identify the biomolecular mechanisms responsible for neuronally 
activated changes in reflectin protein conformation, association, modification and/or cofactor 
binding leading to rapidly controllable changes in color or reflectance. Candidate drivers of these 
adaptive changes in reflectance that we will investigate include electromotive ion fluxes, pH 
change and exposures to metal ions and biological signal- and energy-transduction molecules. 
 
Our long-term goal, toward which this proposal represents the first step, is to discover the 
underlying molecular basis for the remarkably rapid adaptive changes in reflectance exhibited by 
this system, and to then (in collaborative research with materials scientists and engineers that is 
beyond the scope of this present proposal) design and synthesize materials that translate this 
mechanism into practical engineering, chemistry and physics. (Such translation of biomolecular 
mechanisms underlying the synthesis and performance of biomolecular materials has been the 
theme and motivation for my research for the past 12 years, first with the abalone shell, and then 
with the mechanism of biosilica synthesis, translating these to new routes for semiconductor 
synthesis; cf. examples below.)  If, for example, we were able to confirm the hypotheses that 
reversible metal binding, modification or reversible swelling of specific proteins (as just three 
hypotheses) might be involved in the reversible changes in reflectance, this would guide our 
efforts to develop a material that could do something similar in response to changes in applied 
electrical potential. 
 
A.2.  Results with Highest Importance and Relevance to Army Needs.   

Cephalopods (such as octopi and squid) exhibit a remarkable ability to rapidly change their 
appearance for communication or camouflage.  Neural modulation of the skin alters the 
pigmented chromatophore patterns and their complementary iridescence, which emanates from 
lamellar Bragg-like thin-film reflectors in cells called iridophores.  Changeable iridescence is 
achieved via a muscarinic cholinergic system in which the neurotransmitter acetylcholine (ACh) 
and calcium ion induce changes in the "reflectin" protein-based reflecting platelets of the 
iridophores.  In the first year of this project we have cloned and sequenced the cDNAs coding for 
two reflectin proteins from a squid that exhibits dynamically adaptive changes in reflectance, and 
identified unique features of these proteins that are distinct from the reflectins present in a 
species that does not exhibit dynamically changeable reflectance.  We discovered that the 
reflectins are highly phosphorylated, and that this phosphorylation increases markedly in 
response to ACh stimulation, concomitant with the induced increase in reflectance. We found 
that genistein, a protein tyrosine kinase inhibitor, blocks the Ach- and calcium-induced increase 
in phosphorylation of the reflectins, and the resulting iridescence. Our results suggest that 
phosphorylation of tyrosine residues of one or more proteins participates as a signal transducer, 
acting as a molecular switch governing the ACh- and calcium-induced dynamic change in 
iridescence in the squid Loligo pealeii. Our results indicate that binding of ACh elicits activation 
of G-protein mediated production of inisotol 1,4,5-trisphosphate (IP3) by activation of 
phospholipase C (PLC).  IP3 then elevates the amount of calcium that can bind to calmodulin to 
activate protein tyrosine kinases (PTK).  These kinases ultimately phosphorylate reflectin 
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proteins, leading to changes in conformation and hierarchical assembly within the disc-like 
Bragg reflectors in the iridophores that produce the ultimate changes in reflectance. We also 
succeeded in modeling the kinetics of the rise and fall in calcium concentration that mediates the 
neuronally activitated phosphorylation of reflectin proteins and the consequent increase in 
reflectance in the skin of cephalopods.   
 
These results will help in the design of biologically inspired synthetic optoelectronic materials 
and devices for adaptive optical switching in applications important to Army operations.  A new 
partnership with Raytheon is exploring the application of these findings for practical device 
development; this collaboration already has resulted in one publication (Holt et al., 2010, op. cit.) 
and a seedling grant from ARL. 
 
A.3.  Brief Scientific Rationale.   
Iridophore cells of certain cephalopods respond to the neurotransmitter, acetylcholine (ACh), by 
changing their reflectance for signaling via an optical communication pathway, and for 
camouflaging to match their optical background (1).  In this funding period we succeeded in  
experimentally elucidating the signal transduction pathway that controls this response; cloning 
and sequencing the genes coding for the proteins that reversibly form the tunable Bragg 
reflectors responsible for the dynamically adaptive optical changes in reflectance; and 
mathematically modeling this control. We anticipate that translation of these results to synthetic 
systems will enable the design of biologically inspired, dynamically adaptive optoelectronic materials 
and devices for optical switching in applications important to Army operations.  
 
A.4.  Detailed Research Methods and Results.  
Iridescence in the skin of the squid, L. pealeii,i can be induced by the exogenous addition of the 
neurotransmitter, ACh (Fig. 1A, left).  Rapid changes in both the intensity and color of 
reflectance are observed following the addition of ACh. As reported previously for L. brevis, we 
found that the calcium ionophore A23187 also can induce iridescence in L. pealeii without the 
addition of ACh (Fig. 1, upper), suggesting that intracellular calcium plays an important role in 
the activation of adaptive iridescence in squid.  The spectral shift induced by the addition of ACh 
was observed to proceed from reddish (680 nm) to orange-yellow (650 nm) (Fig. 2A right).  This 
is a unique form of adaptive iridescence described only in squid. 
 
Because the ACh-induced increase in iridescence in a related species of squid had been shown to 
proceed by activation of a muscarinic ACh receptor and appeared to involve calcium ion as a 
signal transducing second messenger and because such pathways typically depend upon the 
activation of specific protein kinases (21), we tested the sensitivity of this induction to several 
inhibitors of protein tyrosine kinases (PTKs).  The inhibitors we tested included blockers of the 
Src and MAP kinases, and of protein kinase C (PKC), a Ser/Thr kinase known to be activated by 
both diacylglycerol (DAG) and calcium ions.  Although specific inhibitors for PKC, Src and 
MAP kinase did not affect the ACh-induced iridescence (data not shown), genistein, a broad-
range tyrosine kinase inhibitor (22), dramatically suppressed the ACh-induction of iridescence 
(Fig. 2A).  This effect of genistein exhibited a clear dose dependency (Fig. 2B).   
 
Because of this apparent dependence of the ACh-induced iridescence on protein 
phosphorylation, we sought to characterize potential targets in the iridophore layer of the skin. 
Although refractive index measurements had suggested to Denton and Land that the iridosomes 
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in squid are composed of chitin (5), subsequent evidence revealed that they are proteinaceous 
(15, 16, 18).  Our analyses of the insoluble material extracted from the iridophore-containing 
layer of skin from L. pealeii could detect no evidence for chitin; no glucosmine (the signature 
product of hydrolysis of chitin) was found after complete acid hydrolysis (data not shown).  We 
were, however, able to extract and characterize four insoluble proteins that are unique to the 
iridophore-containing layer of the skin (Fig. 3A, left).  Two of these proteins, with apparent 
molecular masses of 40 kDa and 25 kDa based on SDS-polyacrylamide gel electrophoresis 
(SDS-PAGE) mobility, cross-react with anti-reflectin antibodies that had been generated against 
E. scolopes reflectins (Fig. 3A, light).  Genes coding for these two proteins were cloned (23) and 
their deduced amino acid sequences were analyzed (Fig. 3B, revealing that they exhibited high 
similarity to the reflectin proteins of E. scolopes and Loligo forbesi (24).  Based on these 
observations, these two genes were designated as Ref-Lp1 and Ref-Lp2 (for Reflectin-Loligo 
pealeii 1 and 2, respectively).  Although seven distinct reflectin gene variants were identified 
from E. scolopes, a similar diversity of reflectins has not yet been found in L. pealeii. 
 
As is the case for the other reflectin proteins (16), Ref-Lp1 and 2 contain a series of conserved 
subdomains (SDs).  Ref-Lp1 is composed of six SDs [M/FD(X)5MD(X)5MDX3/4] and Ref-Lp2 is 
composed of four SDs (Fig. 2).  Hydropathy plots of Ref-Lp1 and 2 revealed that these two 
proteins are globally hydrophilic (data not shown), lacking any distinct hydrophobic regions, 
demonstrating that they contain none of the specific characteristics of trans-membrane proteins.  
Our analyis of these sequences using software that predicts the existence of membrane-
associated protein domains also proved negative, supporting this observation. The Ref-Lps are 
highly insoluble in aqueous systems, however, and are fractionated as insoluble proteins with the 
cellular membrane fraction.  The calculated isoelectric points (pI) for the two Ref-Lp proteins are 
>9, indicating that these proteins are likely to be positively charged under physiological 
conditions.  
 
In addition to the two reflectins, we discovered two other unique iridophore-layer-specific 
proteins, designated IN-1 and IN-2 (ImmunoNegative proteins 1 and 2), because they do not 
cross-react with the anti-reflectin antibodies.  Preliminary sequence data indicate that these are 
not members of the reflectin family (16), evidence that is consistent with the negative results 
obtained from the immunodetection studies. (Sequence analyses of IN-1 and IN-2 will be 
presented elsewhere.)  IN-1 is the most abundant iridophore-layer-specific protein that we have 
been able to extract from this tissue (Fig. 3A, left).  
 
We discovered numerous potential sites of phosphorylation by analysis of the Ref-Lp1 and Ref-
Lp2 sequences with NetPhos2.0, a program used for the prediction of potential protein 
phosphorylation sites (25).  Using this technique, we found 10 serine (Ser) and 13 tyrosine (Tyr) 
as likely sites of phosphorylation on Ref-Lp1, and 5 Ser, 11 Tyr and 1 threonine (Thr) as 
possible sites for phosphorylation on Ref-Lp2.  In contrat, our analysis of the Ref-Lp1 and Ref-
Lp2 sequences using PROSITE (26) revealed no calcium ion binding sites (such as EF-hand 
motifs) within the reflectin molecules, suggesting instead that calcium ion may act in this system 
as a second messenger (cf. Fig. 1), rather than by interacting directly with the reflectins.   
 
Because NetPhos2.0 is designed based on the entire eukaryotic kinase database, and no group-
specific database for cephalopods has yet been established, we expected that NetPhos2.0 might 
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indicate some false positives.  However, phosphorylation of both Ref-Lp1 and Ref-Lp2 was 
confirmed and quantified directly with Pro-Q Diamond, a stain specific for phosphoamino acids; 
these analyses were performed following separation of the proteins by SDS-PAGE.  Comparing 
the signal intensities between samples prepared from activated (iridescent) and non-activated 
(non-iridescent) iridophore layers, we found that both Ref-Lp1 and Ref-Lp2 showed higher 
phosphorylation levels in their activated state (Fig. 4A, left).  Since Pro-Q Diamond cannot 
differentiate between different phosphorylated amino acids, we further analyzed the proteins by 
reaction with a phosphotyrosine-specific antibody, PY20 (Fig. 4A, right).  Results from these 
studies revealed that tyrosine residues on both Ref-Lp1 and Ref-Lp2 are phosphorylated, and that 
the phosphorylation level of tyrosine residues in activated Ref-Lp2 was 1.8-fold greater than in 
the non-activated form.  Ref-Lp1 exhibited a lesser but still detectable increase in PY20 staining 
intensity.  To specifically identify the locations and identities of some of the phosphorylated 
residues, mass spectroscopic (MS) mapping was performed following trypsin digestion of Ref-
Lp1 and Ref-Lp2 using matrix-assisted laser desorption/ionization technique time-of-flight mass 
spectrometry (MALDI-TOF MS).  MS mapping revealed that Tyr14 and Tyr127 on Ref-Lp1 and 
Tyr12, Tyr214, Ser218 and Tyr223 on Ref-Lp2 were phosphorylated in the activated state (Fig. 
4B).  All of these phosphorylated residues were predicted as possible phosphorylation sites by 
NetPhos 2.0; interestingly, they all occur outside the conserved (SD) regions of the reflectins.  It 
is  possible that additional phosphoamino acids may have been missed by our analyses due to 
lability during protein isolation and purification (27, 28).  
 
Further biochemical and immunochemical analyses confirmed the high degree of 
phosphorylation of both reflectin proteins from L. pealeii, suggesting that at least some of this 
phosphorylation may be related to the dynamically tunable ACh-controlled iridescence.  Since 
more than one phosphorylated residue was identified, two-dimensional polyacrylamide gel 
electrophoresis (2-D PAGE) was performed to determine if these residues might exhibit 
differential phosphorylation before and after activation with ACh.  These analyses (Fig. 5A) 
revealed that Ref-Lp1 and Ref-Lp2 each consist of populations with several distinct 
phosphorylated states.  Immunodetection with PY20 revealed that the most acidic Ref-Lp2 
molecules, corresponding to the most phoshorylated molecules (barely detected by Pro-Q 
Diamond staining due to their limited quantity), were in significantly higher abundance in the 
activated state (Fig. 5B), while the most basic and least phosphorylated molecular species was 
the dominant form revealed by this stain.  Interestingly, IN-1 also is phosphorylated and 
dephosphorylated, but reciprocally with the ACh-dependent phosphorylation of the reflectins 
(Fig. 4A, left and 5A).  Preliminary analyses of phosphorylation on IN-1 revealed that unlike the 
reflectins, IN-1 contains very few phosphorylated tyrosine residues (22), suggesting that other 
amino acids (most likely Ser and Thr) are the primary sites of phosphorylation in this protein.  
Partial direct sequence analysis of IN-1 reveals that this protein exhibits no apparent sequence 
homology to any known proteins, suggesting that it may be unique to the squid's adaptive 
iridescence system.  Contrary to the results obtained from IN-1, IN-2, which also fails to cross-
react with anti-reflectin antibodies, appeared to be increasingly phosphorylated following 
addition of ACh (Fig. 5A).  Ref-Lp1 was difficult to detect reproducibly in 2-D PAGE, because 
this protein thus far can only be solubilized in solutions containing the detergent SDS, which is 
incompatible with IEF gel chemistry. 
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Concomitantly with its inhibition of adaptive reflectance (cf. Fig. 2), genistein also reduced the 
phosphorylation of Ref-Lp2 (Fig. 4A). Quantification of phosphorylation with Pro-Q Diamond 
and PY20 revealed that genistein treatment suppressed the ACh-activated phosphorylation of 
Ref-Lp1 and Ref-Lp2 to levels equal to or lower than in the non-ACh activated samples.  
Because protein phosphorylation is generally balanced by active dephosphorylation, it is not 
surprising that genistein inhibition of phosphorylation is seen to reduce the phosphate content 
below that of the non-activated controls.  These results demonstrate that phosphorylation of Ref-
Lps is correlated with adaptive iridescence, and that control of phosphorylation - of one or more 
proteins yet to be identified- could be involved in the switching mechanism (29). Because we 
found that ACh induces a rapid, marked reduction in the phosphorylation of IN-1 at the same 
time that Ref-Lp2 is being phosphorylated, it is possible that IN-1 may function as a phosphate 
donor, driving changes in phosphorylation of the reflectin or other proteins critical for the 
adaptive increase in reflectance. 
 
Phosphorylation is known to trigger dramatic changes in the conformations and assembly of 
many proteins (30); such changes could alter the refractive index (31), thickness and spacing (1, 
5, 15) of the iridosome that constitute the Bragg-like molecular reflectors in this system. 
Alternatively, phosphorylation may trigger changes in the Gibbs-Donnan equilibrium across the 
iridosome membranes, thereby affecting the observed ACh-induced changes in reflectance. It 
may be relevant in this context to note that Chah et al. reported that structural changes of 
proteins attached to gold nanoparticles in suspension caused changes in refractive index and 
color in that system (32).  It was also shown recently that changes in the refractive index of the 
interstitial fluid surrounding Bragg-like reflectors of butterfly wing scales dramatically changes 
their iridescent color (33).  In squid skin, ACh-induced phosphorylation may affect the assembly 
dynamics of the reflectin proteins within the iridosomes, inducing protein condensation to form 
the coherent plate-like structures consistent with those reported previously from TEM studies 
(18).  
 
The cephalopod system of rapid adaptive coloration is unique for its speed of change and its 
diversity of appearances and behavioral functions (34).  From the viewpoint of the overall 
appearance of the skin patterns, the structural coloration from iridophores is highly coordinated 
with the overlying chromatophores (35).  Neural control of the overlying chromatophores is quite 
well known (36) but neural control of the slower-changing iridophores (i.e. milliseconds in 
chromatophores, seconds in iridophores) remains poorly understood.  The source of ACh driving 
the changes in reflectance in this layer of skin also is unknown; there are ACh receptors on the 
cell membranes of the iridophore cells, yet neither neurons nor muscles can be seen in electron 
micrographs to connect to these cells (9, 15, 16).  Nevertheless, there must be extensive cellular 
communication between these skin layers to produce the coordinated array of pigmentary and 
structural coloration patterns observed.  Identification of the protein kinase controlling 
iridescence, identification of its proximate targets, and additional studies of this optically 
dynamic, muscarinic system thus can be expected to unveil further details of neuronal and 
molecular mechanisms controlling  this biophotonic system..  
 
In collaboration with Frank Doyle, we recently succeeded in developing a quantitative model 
that predicts the transient rise in intracellular calcium induced by ACh in this system. 
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These results will help in the design of biologically inspired synthetic optoelectronic materials 
and devices for adaptive optical switching in applications important to Army operations.  A new 
partnership with Raytheon is exploring the application of these findings for practical device 
development; this collaboration already has resulted in one publication (Holt et al., 2010, op. cit.) 
and a seedling grant from ARL. 
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Figures 

 
 
Fig. 1.  Stimulated iridescence and analyses of platelet components.  Iridescence of L. 
pealeii was induced by either ACh (upper) or 15µM A23187 in the presence of additional 4mM 
CaCl2 (final concentration) in filtered natural seawater (lower).  Images were recorded at 
indicated time points.  
 
 

 
Fig. 2. Effect of genistein (a tyrosine kinase inhibitor) treatment on iridescence. 
(A) Spectral changes of iridescence for 200µM genistein treated (left) and untreated (right) 
iridophores following the addition of ACh (10µM).  Each spectrum was measured at indicated 
time point.  (B) Dose dependency of genistein.  Following treatment with genistein at indicated 
concentrations, iridescence was activated with ACh (10µM).   
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Fig. 3.  Purification, cloning and sequencing of the dynamically adaptive reflectin 
proteins. (A) Total iridophore layer-associated proteins were fractionated into soluble and 
insoluble components and then subjected to SDS-PAGE (left) followed by Western blotting with 
anti-reflectin antibodies (right). Soluble (S) and insoluble (I) fractions were analyzed separately.  
The four major iridophore layer-specific protein bands are indicated by numbered arrows.  
Bands 1 and 3 correspond to Ref-Lp1 and Ref-Lp2 and bands 2 and 4 correspond to the 
immunonegative bands IN-1 and IN-2, respectively.  Bars indicate molecular weight markers of 
64, 49, 37, 26, 19 and 15kDa.  (B) Amino acid sequence alignment of Ref-Lp1 and Ref-Lp2 from 
Loligo pealeii and reflectin-1b from Euprymna scolopes.  Colored boxes indicate locations of the 
conserved SD1-6 regions.  Underlined areas represent inserted regions found only in Ref-Lp1.  
Among the reflectins of E. scolopes, reflectin-1b (ref-1b) showed highest similarity with the Ref-
Lps.  Symbols above the amino acid alignment represent residues that are either present in all 
three proteins (*), in Ref-Lp1 and Ref-Lp2 only (·), or in ref-1b and either Ref-Lp1 or Ref-Lp2 (-). 
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Fig. 4. Phosphorylation of Ref-Lp1 and Ref-Lp2 induced by the addition of ACh.  (A) 
Phosphorylation was quantified by analysis of 1-dimensional electrophoresis of proteins 
extracted from samples incubated in the absence (yellow) or presence (green) of Ach; 
genistein-treated samples also were analyzed (red).  Analyses were conducted by staining with 
Pro-Q Diamond stain for all phosphoamino acids (P-AAs) and Western blotting with PY20, an 
antibody specific for phosphotyrosine (P-Tyr).  The values for ACh-activated and genistein 
treated samples are normalized to the average values obtained from the inactive reference 
sample.  All values represent averages ± standard deviations based on analyses in triplicate.  
(B) Phosphorylated residues on Ref-Lp1 and Ref-Lp2 were identified by MALDI-TOF MS and 
their relative positions on each protein are indicated by arrows for the two Ref-Lps.   
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Fig. 5. Phosphorylation of reflectins mapped by 2-D PAGE.   Detection of phosphoproteins 
as conducted by staining with Pro-Q Diamond for all phosphoamino acids (A) and by Western 
blotting with PY20 antibody for phosphotyrosine (B); proteins were prepared from non-activated 
(top) or activated (bottom) samples.  (A) Pro-Q Diamond staining revealed the presence of 
many distinct phosphorylated states for Ref-Lp1, Ref-Lp2, IN-1 and IN-2.  In the activated state, 
Ref-Lp2 exhibited higher signal intensity (more phosphorylation), while IN-1 was 
dephosphorylated.  (B) Western blotting with PY20 showed that the most acidic species of Ref-
Lp2 exhibited higher signal intensities in the activated state.  IN-1 and IN-2 were not detected by 
PY20. Bars indicate molecular weight markers of 64, 49, 37, 26, 19, 15 and 6kDa.   
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Figure 6.  Acetylcholine activated pathway of reflectin phosphorylation leading to 
activation of reflectance.  From experimental observations summarized above, we elucidated 
the pathway of signal transduction culminating in the phosphorylation of reflectin and 
consequent activation of reflectance (A).  A mathematical model of calcium elevation was 
created by Prof. Doyle and his students that is consistent with this pathway (B). 

A

B



13 

 
 

 

0 50 100 150
50

60

70

80

90

100

110

120

130

140

Time (sec)

C
yt

os
ol

ic
 C

al
ci

um
 (

nM
)

Minimalist Calcium Model

 
 
 
Figure 7  Comparison of Model to Experiment. Rise of calcium in response to acetylcholine in 
experiment (A) and preliminary mathematical model developed in collaboration with Prof. Frank 
Doyle (B). 
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