Intralobar Bronchopulmonary Sequestration

Guarantor: Vincent B. Ho, MD
Contributors: Cpt. Arash Momeni, MC, USAF*; Maureen N. Hood, MS, RN*†; CDR William R. Carter, MC*†, USN; Vincent B. Ho, MD*†

Introduction
Intralobar bronchopulmonary sequestration is a relatively uncommon pulmonary disorder that is characterized by non-functioning lung tissue that lacks normal connection with the tracheobronchial tree and has a systemic arterial blood supply. Computed tomography and magnetic resonance imaging can provide the necessary information required for diagnosis and pre-operative planning. The following case report reviews the typical clinical presentation and imaging findings in a young adult with intralobar bronchopulmonary sequestration.

History
An otherwise healthy 18-year-old man presented for a routine physical examination, which included frontal (Figure 1A) and lateral (Figure 1B) chest radiographs. The patient denied any respiratory or cardiovascular complaints or any history of cardiopulmonary or gastrointestinal disease. The patient was afebrile and had an unremarkable physical exam. Contrast-enhanced thoracic CT (Figures 1C and 1D) was ordered for further evaluation.

Imaging Findings
Chest radiographs (Figure 1A, frontal; and Figure 1B, lateral) revealed a large 12 cm (superior-inferior) x 5 cm (right-left) x 5 cm (anterior-posterior) right lower lobe soft tissue mass. The mass had a smooth contour and was not associated with calcification or air-fluid levels. CT examination (Figure 1C) confirmed the features identified on chest radiographs and the mass was noted to have a homogeneous fluid density, with a smooth contour and clearly defined margins with adjacent lung parenchyma.

*School of Medicine (AM) and Department of Radiology and Radiological Sciences (MNH, WRC, VBH), Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814 and †Department of Radiology, National Naval Medical Center, 8901 Wisconsin Avenue, Bethesda, Maryland.

This is the full text version of the radiology corner case published in January 2006.

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Uniformed Services University of the Health Sciences or the Department of Defense.

Figure 1A and 1B. On the frontal (A), a large soft tissue mass (arrowheads) is noted in the medial right lower lung field. On the lateral view (B), the mass (arrowheads) is noted to be within the right lower lobe.
Title: Intralobar Bronchopulmonary Sequestration

Performing Organization: Uniformed Services University of the Health Sciences, Department of Radiology and Radiological Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814

Report Date: JAN 2006

Dates Covered: 00-00-2006 to 00-00-2006

Distribution/Availability Statement: Approved for public release; distribution unlimited

Security Classification: Unclassified

Limitation of Abstract: Same as Report (SAR)

Number of Pages: 4

Responsibility:

<table>
<thead>
<tr>
<th>a. Report</th>
<th>b. Abstract</th>
<th>c. This Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

Form Approved OMB No. 0704-0188

Pursuant to ANSI Std Z39-18
Contrast-enhanced CT (C, lung windows) demonstrates a well-circumscribed right lower lobe mass (*) with a lateral finger-like projection. The mass is surrounded by normal lung parenchyma. On more caudal images (D, soft tissue windows), a feeding vessel (arrow) from the aorta is identified but no anomalous pulmonary veins were noted, suggesting the diagnosis of intralobar bronchopulmonary sequestration.

Lower in the thorax, an anomalous artery was noted emanating rightward from the aorta at the thoracoabdominal junction (Figure 1D). Of note, no definite anomalous pulmonary venous drainage was identified. The presumptive diagnosis was intralobar bronchopulmonary sequestration.

Magnetic resonance angiography (MRA) was ordered to better delineate the arterial and venous anatomy for preoperative planning. On pre-contrast T1-weighted spoiled gradient echo images (Figure 1E), the right lower lobe mass was noted to be homogeneously hyperintense. The margins of the mass, moreover, were well-circumscribed with smooth and “finger-like” radiating projections, especially along its inferior margin. On T2-weighted fast spin echo (not shown) the mass was of intermediate signal intensity. Multi-phase coronal breath-hold Gadolinium (Gd)-enhanced three dimensional (3D) MRA was performed using a 0.2 mmol/kg dose of Gd-chelate contrast agent administered intravenously at a rate of 2mL/sec and followed by a 20 mL saline flush injected at the same rate. On Gd-enhanced 3D MRA (Figure 1F and 1G), a solitary anomalous artery was identified arising from the lateral aspect of the juxta-diaphragmatic abdominal aorta and traversing superolaterally, through the medial aspect of the right hemidiaphragm, into the right lower lobe. Normal venous drainage of the mass into the inferior pulmonary vein was also identified. There was no evidence of a separate anomalous draining vein to the inferior vena cava, azygous or hemiazygous vein. The parenchymal mass itself was not noted to enhance following contrast administration. The features of a systemic arterial supply and normal pulmonary venous drainage were consistent with intralobar sequestration.

Based on concerns for potential recurrent pulmonary infections, a right lower lobe resection was performed. At thoracotomy, the large anomalous artery originating from the lateral wall of the abdominal aorta was identified and ligated. The inferior pulmonary vein was also identified and transected. A right lower lobectomy was performed successfully without complication. Pathologic examination of the resected right lower lobe confirmed the presence of a large mucous plug and the diagnosis of intralobar sequestration, which was also noted histologically to be associated with elements of acute and chronic inflammation with fibrosis.
Bronchopulmonary Sequestration

Figure 1F and 1G. Coronal (F) and oblique (G) volume rendered reconstructions of a Gd-enhanced 3D MRA demonstrate a large feeding artery (arrow) arising from the thoracoabdominal aorta and normal pulmonary venous drainage of the mass via the inferior pulmonary vein (G, arrowhead).

Discussion

Bronchopulmonary sequestration is a pulmonary anomaly of non-functioning bronchopulmonary tissue that lacks a normal bronchial connection and is characterized by a systemic arterial blood supply.\(^1\)\(^{-}\)\(^6\) Bronchopulmonary sequestrations are categorized as intralobar and extralobar. Approximately 75% of bronchopulmonary sequestrations are intralobar.\(^7\) Intralobar sequestrations typically have normal pulmonary venous return and share the visceral pleura of their parent lobe. Extralobar sequestration, on the other hand, is contained within its own distinct visceral pleura and associated with aberrant systemic pulmonary venous drainage. The distinctive features for the two varieties of sequestration are summarized in Table 1.\(^4\)\(^{-}\)\(^8\)\(^,\)\(^11\) Rarely, both have been reported to co-exist.\(^7\)\(^,\)\(^12\)

Intralobar sequestrations are almost always located in the lower lobes (98%), and slightly more commonly (60%) on the left side.\(^8\) Upper lobe or bilateral involvement is rare. Patients with an intralobar sequestration typically present before the age of 20 years with histories of recurrent pulmonary infections.\(^6\)\(^,\)\(^8\) Occasionally, as in our case, patients may be asymptomatic. Most intralobar sequestrations are acquired lesions and their association with congenital anomalies is uncommon.\(^8\)\(^,\)\(^9\)

Table 1. Pulmonary Sequestration\(^4\)\(^,\)\(^10\)\(^,\)\(^18\)\(^,\)\(^20\)\(^,\)\(^21\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Intralobar</th>
<th>Extralobar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleura Investment</td>
<td>Shares visceral pleura of parent lobe</td>
<td>Separate visceral pleura</td>
</tr>
<tr>
<td>Location</td>
<td>Posterior basal segments (Approx. 60% on left)</td>
<td>Above, below or within diaphragm (Approx. 90% on left)</td>
</tr>
<tr>
<td>Gender Incidence</td>
<td>Equal</td>
<td>Greater in males (4:1)</td>
</tr>
<tr>
<td>Arterial Supply</td>
<td>Systemic</td>
<td>Systemic</td>
</tr>
<tr>
<td>Venous Drainage</td>
<td>Pulmonary venous</td>
<td>Systemic venous (IVC, azygos, hemi-azygos, portal vein)</td>
</tr>
<tr>
<td>Foregut Communication</td>
<td>Very rare</td>
<td>More common</td>
</tr>
<tr>
<td>Associated Anomalies</td>
<td>Uncommon</td>
<td>Common</td>
</tr>
<tr>
<td>Presentation</td>
<td>Usually found in early adulthood and is associated with a history of hemoptysis, pulmonary infection, chronic cough, chest pain, or asthma. Asymptomatic mass is less common (15%)](https://doi.org/10.1093/milmed/usw064)</td>
<td>Approximately 60% found during first 6 months of life due to respiratory or feeding problems. Often found in conjunction with another anomaly. Only about 10% are asymptomatic.</td>
</tr>
<tr>
<td>Pathogenesis Theory</td>
<td>Controversial. Thought to be usually acquired.</td>
<td>Congenital</td>
</tr>
<tr>
<td>Histological Features</td>
<td>Extensive fibrosis and chronic inflammation, may have cysts</td>
<td>Normal lung parenchyma with dilated structures</td>
</tr>
<tr>
<td>Radiographic Features</td>
<td>Homogeneous consolidation with irregular margins or uniformly dense mass with smooth or lobulated contours.</td>
<td>Single well defined, homogeneous, triangular shaped opacity in the lower thorax. Mass may present else where in the thoracic cavity.</td>
</tr>
</tbody>
</table>

Extralobar sequestration is thought to be primarily a congenital anomaly and is thus often associated with other anomalies such as diaphragmatic hernia, complex congenital heart disease, adenomatoid malformation type II, and gastrointestinal tract anomalies, which probably accounts for its presentation during infancy or early childhood.\(^9\)\(^,\)\(^11\)\(^,\)\(^13\) Contained within its own pleura, extralobar sequestration has also been called accessory lung.\(^11\)\(^,\)\(^13\)

The typical radiographic appearance of a bronchopulmonary sequestration is that of a soft-tissue or cystic mass in the lower lung in association with a systemic arterial feeder.\(^4\)\(^,\)\(^6\)\(^,\)\(^9\)\(^,\)\(^10\)\(^,\)\(^14\)\(^,\)\(^15\) As in our case, the mass is well circumscribed and has a homogeneous appearance on CT and
MRI. Furthermore, the blind bronchi within the sequestered lung may become distended with trapped mucous secreted by bronchial glands. This can result in mucous plugs and mucocele formation, as seen in our patient (Figure 1E). On occasion, air may enter a sequestration via the pores of Kohn or through small parenchymal or bronchial leaks as a complication of an infection. An important key to the diagnosis of bronchopulmonary sequestration as in our case was the finding of an anomalous systemic arterial supply (Figures 1D, 1F and 1G). In most instances (90%), the systemic arterial supply is from thoracic aorta (69%) or abdominal aorta (21%).

Aside from the differences in their clinical presentation (i.e. age, sex, symptoms), bronchopulmonary sequestrations can be distinguished by their location, venous return and associated features. Table 1 details some of the more common differences. In our case, the age of the patient, lack of associated congenital lesions as well as the radiological findings of a normal pulmonary venous drainage and a more central pulmonary location (not abutting the hemidiaphragm) strongly favored the diagnosis of intralobar sequestration.

The radiologic differential diagnosis of pulmonary sequestration is extensive, but the main considerations include bronchial atresia, cystic adenomatoid malformation, lobar emphysema, intrapulmonary bronchogenic cyst, bronchiectasis, pneumonia, abscess, arteriovenous fistula or malformation, and systemic arterial supply to nonsequestered lung. Identifying anomalous systemic arterial supply to the pulmonary abnormality helps limit the differential diagnosis, as does attention to the parenchymal abnormalities.

Classically, the diagnosis of pulmonary sequestration hinges on the identification of an anomalous arterial feeding vessel from the aorta. Although CT and CTA continue to be the primary means for diagnosing bronchopulmonary sequestrations, the use of MR and Gd-enhanced MRA can serve as a suitable alternative, especially in patients in which the use of iodinated contrast agents is contraindicated such as those with known allergy to iodinated contrast agents. As shown in our patient, the use of Gd-enhanced 3D MRA can obviate the need for conventional angiography.

References