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[1] We present a case study of the non‐linear interaction
between the quasi‐two day wave (Q2DW) and the migrating
diurnal tide based on global synoptic meridional wind fields
for January 2006 and January 2008 from a high‐altitude data
assimilation/forecast system. We find large quasi‐two day
wave amplitudes, small diurnal tide amplitudes, and phase
locking of the Q2DW with the diurnal cycle during January
2006. In January 2008 the amplitudes of the Q2DW were
much smaller, with no evidence of phase locking, while
the tidal amplitudes were larger than in the 2006 case.
Space‐time spectral analysis reveals an enhancement in a
diurnal zonal wavenumber 6 feature in the January 2006 case,
which can be attributed to a non‐linear interaction between
the Q2DW and migrating diurnal tide. The relatively strong
summer easterly jet in the extratropical upper mesosphere
during early January 2006 appears to have created condi-
tions favoring this interaction. Citation: McCormack, J. P.,
S. D. Eckermann, K. W. Hoppel, and R. A. Vincent (2010),
Amplification of the quasi‐two day wave through nonlinear inter-
action with the migrating diurnal tide, Geophys. Res. Lett., 37,
L16810, doi:10.1029/2010GL043906.

1. Introduction

[2] The quasi‐two day wave (Q2DW) is a westward‐
propagating Rossby normal mode of zonal wavenumber
3 [Salby, 1981] that appears recurrently in the mesosphere
and can dominate local dynamics. It has been extensively
documented in observations from both the ground [e.g.,
Muller and Nelson, 1978; Harris and Vincent, 1993; Lima
et al., 2004] and from satellites [e.g., Rodgers and Prata,
1981; Garcia et al., 2005; Limpasuvan and Wu, 2009]. In
the extratropics, the Q2DW is found mainly 2–4 weeks after
summer solstice, with the Southern Hemisphere Q2DW in
January typically having much larger amplitude than its
Northern Hemisphere counterpart in July. This study
focuses on the behavior of the Q2DW in the Southern
Hemisphere summer mesosphere.
[3] The temporal variability of the Q2DW is related to

baroclinic or barotropic instability [Plumb, 1983; Lieberman,
1999], which tends to occur along the equatorward flank of
the summertime mesospheric easterly jet. Consequently, the
amplitude of the extratropical Q2DW can vary substantially

throughout the course of a season, and from one year to the
next, depending on the vertical shear characteristics of the
background zonal winds. To illustrate this point, the black
curves in Figure 1 show time series of meridional winds at
88 km obtained from ground‐based radar measurements over
Adelaide, Australia for January 2006 and January 2008, when
the Q2DW typically peaks in amplitude [Harris, 1994]. As
Figure 1 shows, the amplitude of the Q2DWwas much larger
in January 2006 than in January 2008.
[4] A characteristic feature of the Q2DW in the Southern

Hemisphere summer mesosphere is that it often amplifies
rapidly in early January when its period is close to 48 hours,
with maximum northward winds occurring shortly after
local noon [Harris, 1994]. More recently, the study of the
MF radar winds at 88 km over Adelaide by Hecht et al.
[2010] shows that this rapid amplification of the Q2DW
occurs more generally when its period is at or slightly less
than 48 hours. Figure 1a shows that from January 7–11
2006, when the Q2DW amplitude rapidly increases, the
peak northward MF radar wind value occurs near local noon
every two days (as indicated by the vertical lines in Figure 1).
Soon thereafter, the wind peak tends to occur progressively
earlier. This behavior is consistent with the study of Hecht
et al. [2010], who report Q2DW periods of 42–44 hours
over this same period. Ground‐based observations often
show that the rapid growth of the Q2DW with a period near
48 hours occurs simultaneously with a decrease in the
amplitude of the diurnal tide [see, e.g., Harris, 1994; Lima
et al., 2004; Pancheva, 2006].
[5] A model proposed by Walterscheid and Vincent

[1996] can account for the observed sudden amplification
and phase locking of the Q2DW as well as its anticorrelation
with the diurnal tide. The model explains these features via a
two‐step process initiated by interaction of the Q2DW with
the migrating diurnal and semi‐diurnal tides, ultimately
producing a diurnal zonal wavenumber 6 feature. Some
confirmation of this process was documented in the mod-
eling study of Palo et al. [1999].
[6] Observational evidence of the interaction proposed by

Walterscheid and Vincent [1996] is difficult to obtain, since
single‐location ground‐based measurements of mesospheric
winds (e.g., Figure 1) are unlikely to discriminate among
waves of similar periods but different zonal wavenumbers,
such as the diurnal wavenumber 6 feature and the diurnal
tide. In addition, reconstructions of asynoptic measurements
from a single satellite instrument, which have been used in
the past to analyze the Q2DW, cannot unambiguously
resolve wave motions with periods of ∼1 day or less.
[7] This study examines Q2DW‐tide interactions using

global synoptic meteorological analyses produced every
6 hours from the surface to ∼90 km altitude by assimilating
satellite observations with an advanced‐level physics high‐
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altitude (ALPHA) version of the Navy Operational Global
Atmospheric Prediction System (NOGAPS). Space‐time
spectral analysis of NOGAPS‐ALPHA winds can discrim-
inate among the diurnal wavenumber 1, the phase‐locked
wavenumber 3 2‐day wave, and the diurnal wavenumber
6 feature proposed by Walterscheid and Vincent [1996]. We
find that this diurnal wavenumber 6 feature appears in early
January 2006 when the Q2DW exhibits rapid amplification,
but it does not appear in January 2008, when the Q2DW
amplitudes were much weaker than in the 2006 case.

2. Data and Analysis

[8] NOGAPS‐ALPHA data assimilation couples the
three‐dimensional variational (3DVAR) algorithm of Daley
and Barker [2001] with the NOGAPS‐ALPHA spectral
forecast model [see Hoppel et al., 2008, and references
therein]. It assimilates standard low‐level meteorological
observations along with stratospheric and mesospheric
temperatures from both the Aura Microwave Limb Sounder
(MLS) and from the Sounding of the Atmosphere using
Broadband Emission Radiometry (SABER) instrument on
the Thermosphere Ionosphere Mesosphere Energetics and
Dynamics (TIMED) satellite. The forecast model employs a
triangular truncation at wavenumber 79 (T79) with 68 model
levels (T79L68) extending to 0.0005 hPa. The intrinsic grid
point resolution of these analysis fields is ∼2° horizontally
and ∼2 km vertically in the stratosphere and mesosphere.
This configuration has been used to generate 6‐hourly
global 1° × 1° NOGAPS‐ALPHA analyses on reference
pressure levels from July 2007 to September 2009, and from

January to February 2006. For further details, see Eckermann
et al. [2009] and McCormack et al. [2009].
[9] To assess the usefulness of analyzed winds for Q2DW

research, Figure 1 compares analyzed meridional winds at
0.0036 hPa (pressure height ∼88 km) over Adelaide (35°S,
138°E) during January 2006 and 2008 with corresponding
meridional winds at 88 km measured by the Adelaide MF
radar using spaced‐antenna drifts, a technique used to con-
tinuously observe and study mesospheric Q2DW dynamics
at this location for over 40 years [Harris, 1994]. Figure 1
reveals good overall agreement in the amplitude and phase
of the analyzed Q2DW meridional winds. In particular, the
analyzed winds capture the rapid amplification of the
Q2DW in early January 2006 and the much weaker Q2DW
in January 2008.
[10] We perform two‐dimensional space‐time spectral

analysis of NOGAPS‐ALPHA meridional winds as in the
work by McCormack et al. [2009]. Despite preliminary
evidence that the analyzed mesospheric semidiurnal winds
are reliable [Eckermann et al., 2009; Stevens et al., 2010],
the 6‐hourly sampling rate (Nyquist frequency of 2 cpd)
raises the possibility that semi‐diurnal tidal features in the
spectral results could be subject to aliasing from shorter time
scales. Consequently, we limit our focus on the role of the
diurnal tide in the present study.

3. Results

[11] Space‐time power spectra of NOGAPS‐ALPHA
meridional winds during January 2006 averaged between
30°–50°S latitude at the 0.0036 hPa level (not shown) reveal
a dominant spectral peak related to the Q2DW near 0.5 cpd
westward at zonal wavenumber 3, hereafter referred to as
[0.5,3]. Additional peaks associated with the migrating
diurnal tide (or [1,1]) and diurnal wavenumber 6 (or [1,6])
were also found. No significant peaks were found to be
associated with eastward traveling waves for this level and
latitude band.
[12] Based on this result, we applied the inverse Fourier

transform with a band‐pass filter to the NOGAPS‐ALPHA
meridional wind fields for both January 2006 and January
2008 cases in order to examine the differences in the global
structure of these waves. Specifically, we isolated wind
fluctuations associated with the [0.5,3], [1,1], and [1,6]
features by selecting pass bands at zonal wavenumber 3 and
0.4–0.6 cpd, zonal wavenumber 1 and 0.95–1.05 cpd, and
zonal wavenumber 6 at 0.99–1.16 cpd, respectively. Values
of the root‐mean‐square (RMS) zonal wave amplitudes
were computed from the resulting time series at each anal-
ysis time (i.e., every 6 hours).
[13] Figure 2 plots the monthly average values of the

RMS amplitudes for each of these three features for January
2006 and 2008. Overall, the spatial structure of the Q2DW,
diurnal tide, and diurnal wavenumber 6 features derived
from the NOGAPS‐ALPHA meridional wind analyses agree
well with model simulations [e.g., Palo et al., 1999].
[14] A comparison of the mean RMS amplitudes of the

Q2DW between 2006 and 2008 (Figures 2a and 2b) shows
much larger amplitudes in 2006, consistent with the ground‐
based observations in Figure 1. The RMS amplitudes of the
diurnal tide (Figures 2c and 2d), on the other hand, are
larger during 2008 than in 2006. The [1,6] amplitudes
(Figures 2e and 2f) are larger in 2006 than in 2008, similar

Figure 1. Time series of meridional winds over Adelaide,
Australia (35°S, 138°E) during (a) January 2006 and
(b) January 2008. Black curve represents ground‐based
MF radar observations at 88 km. Gray curve represents
NOGAPS‐ALPHA meteorological analyses at the 0.0036 hPa
level (∼88 km in log‐pressure altitude). Vertical lines are
drawn every two days at local noon.
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to the behavior of the Q2DW. The prominent diurnal
wavenumber 6 feature in the January 2006 case (Figure 2e)
suggests that the non‐linear parametric Q2DW‐tidal inter-
action proposed by Walterscheid and Vincent [1996] can
explain the rapid growth of the Q2DW during this time.
[15] Additional support for this mechanism can be seen

from the time behavior of the [0.5,3], [1,1], and [1,6]
components throughout the month of January obtained from
the band‐pass filtered winds. Figure 3 plots time series of
the RMS amplitudes for each of these three components at
0.0036 hPa and 35°S for the January 2006 and January 2008
cases. In the January 2006 case (Figure 3a), we find a strong
positive correlation between the time behavior of the [0.5,3]
and [1,6] mode amplitudes from 5–15 January, when the
rapid amplification of the Q2DW was observed over Ade-
laide (Figure 1a). In the January 2008 case (Figure 3b), there
is no apparent coupling between the [0.5,3] and [1,6]
components.
[16] As noted in the introduction, the behavior of the

Q2DW can be highly sensitive to the background zonal
wind distribution. The primary feature of the zonal winds in
the extratropical Southern Hemisphere summer mesosphere
is the easterly jet located near 45°S. Regions of baroclinic
instability along the equatorward flank of this jet are the
primary source regions for the Q2DW in January 2006
[McCormack et al., 2009]. Examining the differences in the

easterly zonal wind jet between the January 2006 and 2008
cases may help explain why the non‐linear interaction
between the Q2DW and the diurnal tide led to the rapid
growth of the Q2DW in 2006. Figure 4 plots time series of
NOGAPS‐ALPHA zonal mean zonal winds at 45°S and
0.01 hPa during January 2006 and 2008. We find that the
easterly jet was stronger in 2006 than in 2008 throughout
most of the month. In particular, from days 9–14 the zonal
mean easterly wind speed was near 60 m s−1 in 2006.
[17] The study by Walterscheid and Vincent [1996] found

that nonlinear excitation of the [1,6] component is, in gen-
eral, rather limited until the speed of the background easterly
flow reaches or exceeds 58 m s−1. This suggests that the
comparatively strong easterly jet in the extratropical summer
mesosphere during January 2006 produced conditions
favoring excitation of the [1,6] mode component, which
subsequently led to the reduced period and rapid amplifi-
cation of the Q2DW. We are currently extending the
NOGAPS‐ALPHA meteorological analyses to include the
years 2005–2009 in order to better understand the relation-
ship between interannual variability in the background zonal
winds and the behavior of the Q2DW.

4. Summary and Discussion

[18] Space‐time spectral analysis of NOGAPS‐ALPHA
meridional winds reveals evidence for the non‐linear inter-

Figure 2. Height‐latitude variations in the monthly mean amplitudes of the quasi‐two day wave [0.5,3], migrating diurnal
tide [1,1], and westward [1,6] obtained from NOGAPS‐ALPHA meridional winds for January 2006 (left column) and
January 2008 (right column). Contour intervals are every (a, b) 10 m s−1, (c, d) 4 m s−1, and (e, f) 1 m s−1.
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action between the Q2DW and the diurnal tide via a
diurnal zonal wavenumber 6 feature, which can explain
the rapid amplification of the Q2DW in January 2006,
when the summer easterly jet was particularly strong. The
presence of this interaction in the January 2006 case, but
not in the January 2008 case (when the summer easterly
jet was comparatively weaker), may help to explain why
not all modeling studies of the Q2DW can reproduce this
interaction.
[19] It should be noted that the [1,6] feature is not the only

indicator of the proposed non‐linear interaction. Other sec-
ondary waves such as the [1.5,4] (i.e., 16‐hour period) or the
[2.5,5] (9.6 hour period) components are also possible from
non‐linear interaction of the Q2DW and tides, which can
then produce the [1,6] mode through subsequent interac-
tions. The [1.5,4] and [2.5,5] waves are not found in our
space‐time analysis because the ±3 hour 3DVAR analysis
window in NOGAPS‐ALPHA does not offer the necessary
temporal resolution.
[20] Finally, a recent study by Limpasuvan and Wu

[2009] also examined the behavior of the Q2DW during
January 2006 using satellite‐based line‐of‐sight meso-
spheric winds from MLS. They reported an anomalous
westward two‐day zonal wavenumber 2 feature at 91–92 km
that appeared in early January, coincident with the rapid
growth of the westward wavenumber 3 feature usually
associated with the Q2DW. Our spectral analysis finds no
such wavenumber 2 feature at any Southern extratropical
latitudes during January 2006, up to 90 km. Future direct

comparisons of the NOGAPS‐ALPHA analyzed winds with
such line‐of‐sight wind estimates may clarify the reasons for
this discrepancy.
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