A Modal Investigation of Elastic Anisotropy in Shallow Water Environments: a study of anisotropy beyond VTI

Darin J. Soukup
Department of Earth and Space Sciences
University of Washington
63 Johnson Hall Box 351310
Seattle, WA 98195

Robert I. Odom
Applied Physics Laboratory
University of Washington
1013 NE 40th Street
Seattle, WA 98105

Jeffrey Park
Department of Geology and Geophysics
POB 208109
Yale University
New Haven, CT 06520-8109

October 1, 2010
To be submitted to Journal of the Acoustical Society of America

Approved for public release; distribution is unlimited
Abstract

This paper presents theoretical and numerical results for the modal characteristics of the seismo-acoustic wavefield in generally anisotropic range-independent media. General anisotropy affects the form of the elastic stiffness tensor, which directly affects the polarization of the local modes, the frequency and angular dispersion curves, and also introduces the effects of nearly degenerate modes. Horizontally polarized shear motion plays an important role in seismo-acoustic wave propagation in shallow water environments, and will be important for proper analysis of sediment attenuation. The transverse particle motion cannot be ignored when anisotropy is present for low frequency modes having significant bottom interaction. The seismo-acoustic wavefield has polarizations in all three coordinate directions even in the absence of any scattering or heterogeneity. Even in 1-D media an explosion source excites particle motion in all three directions. The magnitude of anisotropy as well as the direction of the symmetry axis can be of equal importance. Even weak anisotropy may have a significant impact on seismo-acoustic wave propagation, depending on the propagation direction in relation to the symmetry axis orientation of the anisotropy. Unlike isotropic and VTI media where acoustic signals are composed of P-SV modes alone (in the absence of any scattering), tilted TI media allow both quasi-P-SV and quasi-SH modes to carry seismo-acoustic energy. The discrete modes for an anisotropic medium are best described as generalized P-SV-SH modes with polarizations in all three Cartesian coordinate directions. The superposition of these generalized P-SV-SH modes describe the seismo-acoustic signal and reveal the importance of using an elastic treatment of the seafloor bottom/subbottom for low frequency shallow water seismo-acoustic wave propagation.
1 Introduction

Because of the way that marine sediments are formed, high gradients in shear velocity as well as velocity anisotropy is a common, nearly ubiquitous, trait of marine sediments (Ewing et al., 1992). Possible sources of elastic anisotropy in marine sediments are reported to be the alignment of cracks and/or pores in the sediment structure, preferred orientation of mineral grains, and lamination as a result of compositional layering (Carlson et al., 1982). Marine sediment anisotropy seems to have been mentioned in the literature as long as ago as 1932 (McCollum and Snell, 1932). Even if sediments are deposited in a relatively homogeneous manner, Bohlke and Bennett (1980) point out that the structure of the sediments evolves towards anisotropy with time. Hamilton (1978) reports results from the Deep Sea Drilling Project (DSDP) “... that in almost all cases there was a distinct (compressional) velocity anisotropic relationship ...” between vertical and horizontal acoustic propagation speeds. Bachman (1983) found a compressional wave anisotropy of around 10%. Some sediments even exhibited a small density anisotropy as well. While the DSDP measurements were collected in the deep ocean Berge et al. (1991) measured shear wave anisotropy in shallow-water sediments about 10 km east of the New Jersey coast as high as 12%-15%. Badiey and Yamamoto (1985) discussed anisotropy in porous sediments. Badiey and Yamamoto (1985) assumed the sediments were transversely isotropic (TI). Such a medium is described by five elastic constants rather than the usual two, but horizontally polarized waves (SH) are still not coupled to the vertically polarized (SV) and compressional waves (P). The symmetry axis for a TI medium is vertical, normal to the seafloor. Bachman (1983) studies the case for a non-vertical symmetry axis, and points out that assuming sediment isotropy when it is not justified can cause errors in layer thickness computations, elastic property gradient determinations and predictions of long range sound propagation.

[Figure 1 about here.]

[Figure 2 about here.]

Marine sediments often have transversely isotropic elastic symmetry (TI) with the fast velocity directions in the plane parallel to the bedding plane and the slow velocity direction along the normal of the bedding plane as shown in figure 1. The slow velocity direction is parallel to an infinite fold symmetry axis \(\hat{s} \), also shown in figure 1. This type of elastic anisotropy found in marine sediments is likely predominantly due to compositional layering (Carlson et. al., 1982).

The majority of investigations of sediment anisotropy have concentrated on TI elastically symmetric media with a vertical symmetry axis (VTI), where \(\hat{s} = \hat{z} \) as in figure 1, or with a horizontal symmetry axis (HTI), where \(\hat{s} = \cos \varphi \hat{x} + \sin \varphi \hat{y} \). Figure 1 and Figure 2 show the fixed coordinate frame of reference. An example of a VTI medium is the horizontally layering of fine isotropic sediments, and an HTI medium can be produced by the introduction of vertical parallel cracks in isotropic sediments. Although VTI and HTI are completely adequate for many
applications, there are many instances where a more general orientation of the symmetry axis \(\hat{s} \) is needed. Simply having VTI or HTI layered sediments with non-horizontal bedding planes provides an example of a TI medium with a non-vertical and non-horizontal tilted symmetry axis. Anisotropic variations other than azimuthal may also be considered, where the anisotropic symmetry axis \(\hat{s} \) is allowed to tilt in both azimuth and elevation. Martin et. al. (1997), Thomson et. al. (1997), and Zhu and Dorman (2000) provide results complementary to the work presented in this paper.

Badiey and Yamamoto (1985) examined the effect of a porous VTI medium on acoustic signal attenuation. While we do not discuss poro-acoustic or poro-elastic effects, we also employ a modal approach to the seismo-acoustic field modeling similar to Badiey and Yamamoto (1985). An acoustic signal may be composed of acoustic modes (confined to the water column), hybrid acoustic-crustal modes also known as seismo-acoustic modes, and oceanic crustal modes. An acoustic mode carries its energy in the water column and has very little interaction with the bottom/subbottom. A crustal mode propagates its energy in the sediment and basement layers. A hybrid acoustic-crustal mode has significant energy in both the water column and the underlying sediment and basement layers. Neglecting any seafloor bottom/subbottom elastic properties may be a reasonable approach for problems involving high frequencies where the depth of the water column is much greater than the wavelength of the acoustic signal of interest. For these problems the acoustic signal may be entirely contained within the water column and may not interact with the seafloor. However, for low frequencies and shallow water environments the bottom interaction of the acoustic signal may become significant, and affect the propagation of the acoustic signal, perhaps along the entire propagation path. Therefore, the characteristics of the acoustic signal are influenced by interactions with the seafloor and seabed. Energy from the acoustic wavefield can be scattered, radiated into the bottom, or damped by attenuation, resulting in a signal that is more accurately described as seismo-acoustic. The seismo-acoustic signal then is composed of both acoustic modes and hybrid acoustic-crustal modes. In this work the focus remains predominantly on acoustic and seismo-acoustic modes (hybrid acoustic-crustal modes) with energy within the fluid layer and bottom sediments. Odom et. al. (1996) investigate the effects of VTI elastic symmetry on local modes and on the coupling of local modes, focusing on sediment modes. Their model has been modified to facilitate the study of acoustic and seismo-acoustic modes in a generally anisotropic medium. The work of Odom et. al. (1996) is extended by including a more generalized description of anisotropy found in marine sediments.

This paper focuses on modes of a 1-D range independent layered shallow-water acoustic waveguide is complementary to the 1D work of Levin and Park (1997) and Okaya and McEvilly (2003), and is somewhat tutorial in nature. The ultimate goal is to provide the background for the incorporation of range dependent structure in a coupled local mode treatment, where the influence of both anisotropy and range dependence is presented. This follow-on work is complementary to the range-dependent elastic PE work, e.g. Collis et al. (2009), Jerzak et al.
Section 2 discusses anisotropy and wave propagation for a 1-D homogeneous anisotropic plane-layered structure. A brief description of the modal formalism of Maupin(1988) as applied to the 1-D anisotropic structure is contained in section 3.1. An introduction to TI elastic symmetry and nomenclature is found in section 2.1 and section 2.2 demonstrates the usefulness of the Bond transformation in obtaining a generalized elastic stiffness tensor. Numerical calculations are discussed in section 3 for the 1-D homogeneous anisotropic plane layered structure. The anisotropic model/profile is described in section 3.2 and slowness curves are considered in section 3.3. Section 3.4 covers angular and frequency dispersion curves while section 3.5 provides the resulting generalized eigenfunctions. The summary, conclusions and discussion of results are contained in section 4.

A variety of useful relations, such as theory, and concepts concerning anisotropy have been collected and presented in the appendices. Appendix A expands on the elastic stiffness tensor and matrix notation, while Appendix B provides further insight on the differential operator \(A \) from the equations of motion. Appendix C defines some possible forms of anisotropy parameterization. Appendix D elaborates on the specifics of the Bond transform for a TI medium. The notation used along with definitions of variables or parameters can be found in the List of Symbols. Symmetry planes and wave polarizations are considered in Appendix F for TI elastic symmetry.

2 Anisotropy Background

This section provides a somewhat tutorial presentation of elastic anisotropy. The medium is assumed to comprise homogeneous, but elastically anisotropic 1-D layers. The elastic properties of the sediment layers are allowed to vary with propagation direction. Specifically, energy propagating along different directions within the sediment layers will result in the wave propagating at different velocities. These anisotropic sediments are assumed to have TI elastic symmetry with an arbitrarily oriented symmetry axis \(\hat{s} \). The effect of anisotropy on propagating modes, including changes in phase and group velocities, and eigenfunction polarizations is investigated.

2.1 Transversely Isotropic Elastic Symmetry

Nomenclature for anisotropy has not been standardized in the literature. This poses a problem that Crampin (1989) and Winterstein(1990) recognized over a decade ago. Because the term \textit{transverse isotropy} has been used with multiple meanings in the literature, we attempt to mitigate this confusion by explicitly stating the nomenclature used in this work.

For the purposes of this article, a general anisotropic medium is defined by an elastic stiffness tensor belonging to the transversely isotropic elastic symmetry system. The nomenclature of Winterstein (1990) is used, where TI refers to a medium with transversely isotropic elastic
symmetry having an infinite-fold symmetry axis. A medium retains its TI elastic symmetry regardless of the orientation of the symmetry axis or any physical rotation of the media. A TI medium with a vertical, horizontal, or arbitrarily tilted symmetry axis is labeled VTI, HTI, and TTI respectively.

The term “transverse” in transverse isotropy refers to any direction which is perpendicular to the geometric symmetry axis of the medium. As noted by Winterstein (1990), TI has occasionally been used to refer to a VTI medium. In addition, hexagonal symmetry has often been used interchangeably with the TI symmetry in the wave propagation communities. The hexagonal symmetry class is a subset of the TI symmetry system. Both TI and hexagonally symmetric media have the same strain-energy functions, and the elastic equation of motion will be exactly the same for both media. Elastically, a hexagonally symmetric and TI symmetric medium look exactly the same, but compositionally or structurally they are quite different. It is likely that real marine sediments would belong to the transverse isotropy symmetry class, and according to Winterstein (1990), sediments are unlikely to be structurally hexagonally symmetric. Elastically, TI and hexagonal symmetries have the exact same degree of symmetry, since both require five elastic constants. However, structurally TI has a higher degree of symmetry and is closer in symmetry to isotropy than the hexagonal symmetry. This is a result of TI having an infinite-fold symmetry axis, the hexagonal symmetry only has a six-fold symmetry.

TI is an elastic symmetry system distinguished by a unique form of the elastic stiffness tensor. The elastic stiffness tensor has five independent constants that define the individual coefficients. Each coefficient is a linear combination of these five independent constants, and these five independent constants can be parameterized into several forms. They may be expressed as velocities, elastic moduli, or even a combination of ratios of velocities and elastic moduli (see Appendix D). In comparison, an isotropic material is parameterized by only two elastic moduli. Although the elastic symmetry has been limited to transverse isotropy for this work, the theory and some portions of our code can incorporate more general anisotropy (up to 21 independent elastic moduli). The elastic stiffness matrix \(^aC \) for a VTI medium is:

\[
^aC = \begin{bmatrix}
A & H & F & 0 & 0 & 0 \\
H & A & F & 0 & 0 & 0 \\
F & F & C & 0 & 0 & 0 \\
0 & 0 & 0 & L & 0 & 0 \\
0 & 0 & 0 & 0 & L & 0 \\
0 & 0 & 0 & 0 & 0 & N \\
\end{bmatrix}
\]

where \(H = A - 2N \) (1)

The \(A, C, F, L, N \) and \(H = A - 2N \) represent the VTI elastic moduli in Love (1944) notation. The \(6 \times 6 \) abbreviated subscript matrix \(^aC \) contains all of the information of the elastic stiffness tensor, \(C_{ijkl} \) (see Appendix A).

The form of the elastic stiffness matrix is equivalent to that of an orthorhombic symmet-
ric medium. They share the same pattern of zero and non-zero elements. The TI medium has a higher degree of symmetry than the orthorhombic medium, which has nine independent constants. The VTI medium in equation 1 may be thought of having the form of a quasi-orthorhombic medium. Such similarities with other symmetry systems are helpful when the elastic stiffness matrix \(^{a}C_{IJ}\) is rotated to more general orientations.

The elastic moduli \(A, C, F, L, N\) from the above VTI medium in equation (1) can be related to velocities for compressional and shear plane-waves in the medium. The following describe the wave velocities for horizontally transmitted plane waves within the xy-plane.

\[
\alpha_H \equiv \sqrt{\frac{A}{\rho}} \quad \text{compressional waves} \tag{2}
\]
\[
\beta_H \equiv \sqrt{\frac{N}{\rho}} \quad \text{horizontally polarized shear waves} \tag{3}
\]
\[
\beta_V \equiv \sqrt{\frac{L}{\rho}} \quad \text{vertically polarized shear waves} \tag{4}
\]

A vertically transmitted plane wave parallel to the z-axis have the velocities

\[
\alpha_V \equiv \sqrt{\frac{C}{\rho}} \quad \text{compressional waves} \tag{5}
\]
\[
\beta_V \equiv \sqrt{\frac{L}{\rho}} \quad \text{shear waves} \tag{6}
\]

The elastic constant \(F\) is not typically defined in terms of a plane wave velocity. Muyzert and Snieder (2000) relate the elastic parameter \(F\) to a velocity of a wave propagating in a vertical plane between a source and receiver, and assign a velocity \(\gamma\) to the elastic parameter. Muyzert and Snieder (2000) indicate that Anderson (1961) relates this velocity \(\gamma\) to a wave with an incidence angle of \(45^\circ\) with the vertical axis.

\[
\gamma \equiv \sqrt{\frac{F}{\rho}} \quad \text{velocity within the vertical xz-plane} \tag{7}
\]

where \(\gamma^2 = \alpha^2 - 2\beta^2\) in an isotropic medium.

The \(\alpha\) and \(\beta\) represent the compressional and shear velocities, respectively, and the subscripts \(H\) and \(V\) denote the horizontal and vertical displacement directions. When \(A = C = \lambda + 2\mu\), \(L = N = \mu\), and \(F = \lambda\), the medium is isotropic and rotationally independent.
2.2 Bond Transformation

Using the Bond transform for tilting a structure’s symmetry axis has been suggested by Crampin (1981) and Winterstein (1990) and actually implemented for acoustic body waves by Auld (1990) and recently by Zhu and Dorman (2000) and Okaya and McEvilly (2003). The Bond transformation is applied in the study of the seismo-acoustic modes to obtain a general rotation of the elastic stiffness matrix with TI symmetry.

A formalism similar to Crampin (1981) is used whereby the propagation direction is assumed to always coincide with a fixed coordinate direction, the x-axis. The elastic stiffness tensor is rotated in order to consider anisotropy with various symmetry axis orientations. This is equivalent to keeping the elastic stiffness tensor fixed and varying the direction of propagation. The first method is preferred because the theory does not need to be modified for each directional change, only the elements of the elastic stiffness tensor need to be changed. A physical reasonableness to the modeling should be retained. Arbitrarily perturbing various elements of C_{IJ} can lead to a non-physical elastic stiffness matrix. By starting with a real physical model, the reasonableness of the model is maintained regardless of any rotation of the medium. Odom et. al. (1996) provides a good summary of the conditions which constrain the elastic moduli of a TI elastically symmetric medium. Another advantage of the Bond Transformation is working with a 6×6 matrix with only 36 individual elements rather than a fourth order tensor with 81 individual elements. Complex tensor transformations are replaced with simple matrix multiplication to transform the elastic stiffness matrix to any arbitrary orientation.

Rotating the elastic stiffness matrix aC_{IJ} essentially changes the form of the elastic stiffness tensor, how the matrix or tensor is populated changes. This directly affects the solution of the equation of motion as the elements of aC_{IJ} change. The elastic stiffness matrix is a function of the spherical coordinate angles θ and φ when $aC_{IJ} = aC_{IJ}(\theta, \varphi)$

For an isotropic medium, the direction of propagation does not matter. All planes are symmetry planes and all directions are symmetry axis directions. The elements of the elastic stiffness tensor do not change with any rotation of the medium. For an anisotropic medium, the velocity of plane waves vary with propagation direction through the medium. The elements of the elastic stiffness tensor change with any rotation of the medium. For a TI elastic medium, five independent elastic moduli along with two polar coordinates relating the symmetry axis and the propagation direction are needed to adequately describe the velocity of plane wave through the medium. The elements of C_{ijkl}, being functions of the polar angles θ and φ, are linear combinations of the five independent constants.

While the elastic stiffness matrix may be rotated, the physical boundaries, discontinuities and the boundary conditions of the 1-D structure remain fixed. The procedure for implementing the Bond transformation is to rotate the elastic stiffness matrix with respect to a fixed set of coordinate axes. In general three angles ψ, θ, φ are needed to transform the elastic stiffness matrix aC_{ij} to any arbitrary orientation. The rotations are taken first about the z-axis, next
about the y-axis, and finally about the z-axis again. ψ is an angle in the xy-plane and corresponds to the first rotation about the z-axis. The angle θ is defined in the xz-plane and corresponds to the second rotation about the y-axis. The final angle ϕ is also defined in the xy-plane which corresponds to the third rotation about the vertical axis. When the initial medium is VTI, only rotations through the angles θ and ϕ need to be considered. In figure 1 the Bond transformation is visually demonstrated. The elastic stiffness matrix representing the elastic constants within the layer can be rotated to any arbitrary orientation, as shown by the blocks on the right of the figure.

The spherical coordinates of the symmetry axis directions, $\hat{s} = s(\theta, \varphi)$ can be projected onto a unit sphere. When tilting the symmetry axis, the symmetry axis traces lines of constant elevation on the unit sphere as φ is varied and remains θ fixed. Similarly, keeping φ fixed at some value and varying the value of θ traces lines of constant azimuth. The lines of constant elevation represent changes in azimuthal anisotropy, and the lines of constant azimuth representation changes in elevational anisotropy. These are shown as red arcs in figure 4.

Applying the Bond Transformation to the unrotated elastic moduli within $^aC''$:

$$^aC' = [M^y][^aC''][M^y]^T \quad \text{Bond transformation about y-axis} \quad (8)$$

$$^aC = [M^z][^aC'][M^z]^T \quad \text{Bond transformation about z-axis} \quad (9)$$

M^y and M^z are transformation matrices (e.g. Auld, 1990) about the y-axis and z-axis respectively, and are defined for an elastic stiffness tensor with TI symmetry in Appendix E.

Substituting equation (8) into equation (9) and using the matrix multiplication property $[M^zM^y]^T = [M^y]^T[M^z]^T$ to obtain:

$$^aC = [R][^aC''][R]^T \quad \text{where } R = M^zM^y \quad (10)$$

The individual elements of the elastic-stiffness tensor can be found by the following relation for a medium with TI elastic symmetry.

$$^aC_{I,J} = A(R_{I1}R_{J1} + R_{I2}R_{J2}) + H(R_{I1}R_{J2} + R_{I2}R_{J1}) + F(R_{I1}R_{J3} + R_{I2}R_{J3} + R_{I3}R_{J1} + R_{I3}R_{J2}) + CR_{I3}R_{J3} + L(R_{I4}R_{J4} + R_{I5}R_{J5}) + NR_{I6}R_{J6} \quad (11)$$

The elements of $^aC_{I,J}$ or C_{ijkl} depend on the orientation of the symmetry axis through the elements of R. A rotation of the symmetry axis changes the value of any given element in $C_{I,J}$, where the specific elements of $C_{I,J}$ remain linear combinations of A, C, F, L, N as demonstrated by equation(11). The tractable, analytic form for the rotated elastic stiffness matrix found in equation (11) is due to the large number of elements with zero-values for a VTI medium.

The sensitivity of the $^aC_{I,J}$ elements rotation can be determined by taking the derivative of
equation (11) with respect to θ and φ. The derivative with respect to a generic angle Δ is:

$$\frac{\partial (a^{C})}{\partial \Delta} = \frac{\partial (a^{C_{1j}})}{\partial \Delta}$$

where $\Delta = \theta$ or φ \hspace{1cm} (12)

The angular sensitivity of a TI symmetric medium with an arbitrarily tilted symmetry axis may be expressed as:

$$\frac{\partial (a^{C_{1j}})}{\partial \Delta} = A \left(\frac{\partial R_{11}}{\partial \Delta} R_{j1} + R_{11} \frac{\partial R_{j1}}{\partial \Delta} + \frac{\partial R_{12}}{\partial \Delta} R_{j2} + R_{12} \frac{\partial R_{j2}}{\partial \Delta} \right) + H \left(\frac{\partial R_{11}}{\partial \Delta} R_{j2} + R_{11} \frac{\partial R_{j2}}{\partial \Delta} + \frac{\partial R_{12}}{\partial \Delta} R_{j1} + R_{12} \frac{\partial R_{j1}}{\partial \Delta} \right) + F \left(\frac{\partial R_{11}}{\partial \Delta} R_{j3} + R_{11} \frac{\partial R_{j3}}{\partial \Delta} + \frac{\partial R_{12}}{\partial \Delta} R_{j3} + R_{12} \frac{\partial R_{j3}}{\partial \Delta} \right) \frac{\partial R_{13}}{\partial \Delta} R_{j1} + R_{13} \frac{\partial R_{j1}}{\partial \Delta} + \frac{\partial R_{13}}{\partial \Delta} R_{j2} + R_{13} \frac{\partial R_{j2}}{\partial \Delta} \right) + C \left(\frac{\partial R_{13}}{\partial \Delta} R_{j3} + R_{13} \frac{\partial R_{j3}}{\partial \Delta} \right) + L \left(\frac{\partial R_{14}}{\partial \Delta} R_{j4} + R_{14} \frac{\partial R_{j4}}{\partial \Delta} + \frac{\partial R_{15}}{\partial \Delta} R_{j5} + R_{15} \frac{\partial R_{j5}}{\partial \Delta} \right) + N \left(\frac{\partial R_{16}}{\partial \Delta} R_{j6} + R_{16} \frac{\partial R_{j6}}{\partial \Delta} \right) \hspace{1cm} (13)$$

Each element of the $a^{C_{1j}}$ matrix may be evaluated through equation (11) and equation (13). Figure 3 plots the $a^{C_{11}}$ element and its angular sensitivity as function of θ and φ.

Auld (1990) provides a more complete treatment of the Bond transformation and additional details are included in Appendix D. Appendix F contains a useful and instructional tutorial on symmetry planes and wave polarizations for a TI medium. The appearance of a lower degree of symmetry when the TI symmetry axis rotated has been determined independently, but similarly to Okaya and McEvilly (2003). Whereas they determined that rotations about the y-axis result in a monoclinic form of the elastic stiffness matrix, the rotations in Appendix F show that rotations where the symmetry axis remains in any of the coordinate planes results in a monoclinic form of the elastic stiffness matrix.

3 1-D Plane-Layered Anisotropic Structure Calculations

A phase velocity ordering is used for all of the modes when considering the eigenfunctions and dispersion curves. The modes are ordered from smallest phase velocity to the largest phase velocity, where the lowest order mode has the lowest phase velocity and the highest ordered mode has the highest phase velocity. Note that the phase velocity ordering scheme is independent of
polarizations of the particular modes, therefore the phase velocity ordering is still used when the P-SV and SH modes propagate independently. This is slightly different than Odom et al. (1996), and Park and Odom (1998) where only the P-SV modes were included in the phase velocity ordering of the modes, and the SH modes were not included. The mode finding code ANIPROP developed by Park (1996) calculates the eigenvalues and eigenfunctions. The ANIPROP code (Park, 1996) has been modified to include fluid layers and used to generate eigenvalues and eigenfunctions for each given model. The fluid/solid reflection and transmission coefficients were determined using the method of Mallick and Frazer (1991), when adding the fluid layers to ANIPROP. The effect on the eigenfunctions of altering the medium symmetry axis away from the vertical is studied along with the corresponding phase and group velocities. The inclination of the symmetry axis along lines of constant azimuth and constant elevation is shown in figure 4.

[Figure 4 about here.]

The model, described in the next section is characterized by propagating seismo-acoustic modes which have phase velocities in the range of 1500m/s and 2000m/s for frequencies between 10.0Hz and 100.0Hz. The corresponding wavelengths at 50.0Hz would be $\lambda = 30m$ and $\lambda = 40m$ respectively.

[Table 1 about here.]

3.1 Modal Formalism for Plane Layered Anisotropic Structure

A modal representation of the Green’s function for the 1-D seismo-acoustic wave propagation problem is employed. The wavefield is represented as a superposition of modes. The modes are defined as the eigenfunctions (displacement and tractions) of a 1-D homogeneous anisotropic structure. The homogeneous plane-layered medium is infinite in the xy-plane, and the modes are the eigenfunctions appropriate for the entire domain and path of propagation. The initial mode excitation may be determined by an appropriate source term.

A modal representation of the wavefield provides a convenient and natural way of observing how sources and material parameters affect the wavefield. However, some limitations exist. The computation time for calculating the modes and therefore the wavefield becomes larger as the number of layers and or frequency of the model increases. This can be inconvenient for very detailed analyses.

[Figure 5 about here.]

The modal formalism based on Maupin’s (1988) theory is presented for a 1-D plane layered seismo-acoustic environment with general anisotropy as shown in figure 5. This modal approach
to the equations of motion has the advantage of allowing the physics of propagation to be
examined on a mode by mode basis and is formally exact. Maupin also includes an analysis
of the 2-D coupled mode problem for fluid-elastic media. The modal theory arises out of the
equations of motion and is a convenient first order theory. Additional and complimentary work
with coupled-modes are given by Odom (1986), Odom et al. (1996), and Park and Odom (1998,
1999). The theory for the 1-D plane layered wave propagation problem contains two critical
steps: i) expressing the equation of motion as a first order differential equation and ii) solving the
wave-equation with a superposition of global modes. For this section the application of the modes
is limited to perfectly elastic (non-attenuating), deterministic anisotropic structures. In addition,
only the discrete modes are considered, while the continuum modes and their contribution are
neglected. While attenuation is also ignored in our examples, the theory remains valid for
attenuating media. Weak attenuation could easily be included as a perturbation.

As previously shown in figure 1 and 2, a Cartesian coordinate system is assumed with
wave propagation progressing in the horizontal direction parallel to the x-axis. The y-axis, the
transverse direction, is the geometric symmetry axis for the 1-D medium along which material
properties remain constant. This direction corresponds to the motion of a pure horizontally
polarized shear wave. The z-axis is the vertical direction, positive downwards, and corresponds
to the direction of motion of a pure vertically polarized shear wave.

The Einstein summation convention is assumed unless otherwise noted. The theory devel-
opment uses both Woodhouse (1974) and abbreviated subscript notation (e.g. Auld, 1990), also
known as Voigt notation (e.g. Nye, 1957), for representing the fourth order elastic stiffness
tensor, C_{ijkl}. The Woodhouse notation is used primarily to represent a general anisotropic
medium in the modal theory, and the abbreviated subscript notation is convenient for rotating
the elastic stiffness matrix through the Bond transformation. In order to avoid some confu-
sion, a superscript notation has been introduced. The superscripts w and a imply Woodhouse
and abbreviated subscript notations, respectively (i.e. wC or aC). The indices of the fourth
order elastic stiffness tensor are $ijkl$ rather than the conventional $ijkl$ in order to facilitate
the mapping between tensor notation and the matrix notation of Woodhouse (1974). In addi-
tion, lower case indices vary over ranges of $i, k, l, j = 1, 2, 3$ while upper case indices vary over
ranges of $I, J = 1, 2, 3, 4, 5, 6$. A more detailed account of elastic stiffness tensor and matrix
representations are located in Appendix A.

$$C = C_{ijkl} \quad \text{fourth order elastic stiffness tensor}$$

$$aC = aC_{IJ} \quad 6 \times 6 \text{ abbreviated subscript elastic stiffness matrix}$$

$$wC = (wC_{ij})_{kl} \quad 9 \times 9 \text{ Woodhouse elastic stiffness matrix}$$

The 3-component displacement field vector $w = (w_1, w_2, w_3)$ is assumed to be in harmonic
form and involves a double Fourier transform over y and t of the displacement field $w(x, y, z, t)$:
\[w(x, z, k_y, \omega) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} w(x, y, z, t) \exp(-ik_y y + i\omega t) dy dt \] (14)

Note that the physics convention of the Fourier Transform has been used, the same as Aki and Richards (1980). The double Fourier transform has a mixed sign convention consistent for wave propagation problems. The rightward propagating wavefields in this work have a phase factor of the form:

\[\exp(ik_x x - i\omega t) \] (15)

Throughout this work, all references to the displacement, traction, and stress-displacement vectors incorporate the double Fourier transform. The 3-component tractions are expressed as:

\[t_i = w^{\epsilon} C_{ij} \frac{\partial w}{\partial x_j} \] (16)

where the elastic stiffness matrix, \(w^{\epsilon} C_{ij} \), is in Woodhouse (1974) notation. Each traction vector relates to stress elements in the form \(t_i = (\tau_{i1}, \tau_{i2}, \tau_{i3}) \) for \(i = 1, 2, 3 \).

The equations of motion have the same general form for both fluid and solid media. The equations of motion are found in Appendix E in equation (67). For solid media a 6-component displacement-stress vector \(u = (w, t)^T \) is introduced, where \(t = t_1 \). For fluids, a 2-component displacement-stress vector is defined as \(u = (w, t)^T \) where \(w = w_1 \) and \(t = \tau_{ii} \) (no summation). The equation of motion for the 1-D plane-layered structure shown in figure 5 can now be expressed as:

\[\frac{\partial u}{\partial x} = Au - F \] (17)

with the boundary conditions:

\[[\tau_{ii}]_m = [w_3]_m = 0 \]
\[[t_3]_n = [w]_n = 0, \] (18)

where the \(m^{th} \) subscript is for fluid-fluid and fluid-solid interfaces, and the \(n^{th} \) subscript is for solid-solid interfaces. A free-slip boundary condition is imposed on the horizontal displacements at the fluid-solid interfaces. The solid-solid interfaces are assumed to be welded contacts where the displacement vector \(w \) and the traction vector \(t_3 \) are continuous across the interfaces. For fluid-fluid interfaces and fluid-solid interfaces the normal displacements, \(w_3 \), and the vertical stress, \(\tau_{33} \), are assumed to be continuous across the interfaces. The square brackets with a subscript (e.g. \([\text{quantity}]_{n,m}\)) in equation (18) and the following equations represent the evaluation of a quantity across the interface \(m \) or \(n \). The quantity may be continuous or discontinuous.
and the evaluation is taken from the bottom of the interface to the top of the interface. For example, a discontinuity in the elastic stiffness matrix across the \(n \)th interface is expressed as:

\[
[aC_{ij}]_n = aC_{ij} \bigg|_{n^+} - aC_{ij} \bigg|_{n^-}
\] (19)

The differential operator \(A \), described in Maupin (1988), from equation (17) and the boundary conditions from equation (18) contain the physics of the 1-D problem for the plane layered homogeneous anisotropic structure. Implicit in the \(A \) operator is the elastic stiffness matrix \(wC \) which represents a TI elastically symmetric medium with an arbitrary symmetry axis. The orientation of the symmetry axis is defined by the two angles \(\theta \) and \(\varphi \) as in figure 2 and figure 4. To obtain a general rotation of the elastic stiffness matrix with TI symmetry, the Bond transformation is utilized. The elements of the \(A \) operator may be real or complex. Attenuation may be included as complex values when the medium becomes visco-elastic. Although attenuation effects are currently neglected, the complex form of the elements of the \(A \) operator are retained. The general form of the operator \(A \) in equation (80) of Appendix E will not be complex if there is no attenuation and no dependence on the y-coordinate. The form used by Maupin (1988) remains complex because of the explicit inclusion of the derivative with respect to the y-coordinate. The form of \(A \) can be found in Appendix B for a fluid medium, a general solid anisotropic medium, as well as for specific tilted TI orientations where meaningful analytical results can be obtained. \(F \) from equation (17) is an applied external source \(F^s \).

\[
F = F^s = \begin{pmatrix} 0 \\ f^s \end{pmatrix}
\] (20)

A modal representation of the wavefield is employed, which is formally exact. The modes are independent solutions for the equations of motion and are functions only of depth. The initial wavefield, \(u \) is expressed as a superposition of global modes \(u^r = (w^r, r^r)^T \) weighted by source excitation amplitude coefficients \(c^0_r \). The horizontal wave number is \(k^r(\xi) \) and \(x_s \) denotes the source position.

\[
u = (w, t)^T = \sum_r c^0_r \exp \left(i \int_{x_s}^z k^r(\xi) \, d\xi \right) \, u^r(z),
\] (21)

which reduces to

\[
u = (w, t)^T = \sum_r c^0_r \exp (ik^r(x - x_s)) \, u^r(z),
\] (22)

for a 1-D medium. The modal description of the wavefield in equation (21) is for the discrete modes only. The continuum modes have been neglected. The seismo-acoustic signal prop-
agating within the 1-D plane-layered waveguide will experience geometrical spreading as the signal propagates along the x-direction. The modes of the homogeneous plane-layered medium are also energy normalized.

\[
\left(\frac{2}{\pi k^r (x - x_s)}\right)^{\frac{1}{2}} \quad \text{geometrical spreading term} \tag{23}
\]

\[
\left(\frac{1}{8v_c^r U_r^r I_r^r}\right)^{\frac{1}{2}} \quad \text{energy normalization term} \tag{24}
\]

where \(v_c^r, U_r^r, \text{and} I_r^r\) are the phase velocity, group velocity, and energy integral of the mode \(r\) respectively as defined by Aki and Richards (1980).

No assumptions have been made about the nature of the symmetry of the elastic layers in the modal theory. The theory describes propagation where the elastic regions have general triclinic anisotropy - a medium described by 21 independent elastic moduli. One consequence of restricting wave propagation to the x-direction is the reduction in the number of elastic elements from the elastic stiffness tensor \(C_{ijkl}\) needed to describe the medium. For the 3-D propagation problem, all 21 elements of the elastic stiffness tensor would be needed and included in the differential operator \(\mathbf{A}\). For the 2-D propagation problem with propagation along the x-direction in a medium with triclinic symmetry, the total number of elastic elements needed from \(C_{ijkl}\) is 15. These fifteen elements of the elastic stiffness matrix remain linear combinations of the original 21 independent elastic moduli when \(aC_{IJ}\) has been rotated.

\[
aC = \begin{bmatrix}
C_{11} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{31} & C_{33} & C_{34} & C_{35} & C_{36} \\
C_{41} & C_{43} & C_{44} & C_{45} & C_{46} \\
C_{51} & C_{53} & C_{54} & C_{55} & C_{56} \\
C_{61} & C_{63} & C_{64} & C_{65} & C_{66}
\end{bmatrix} \tag{25}
\]

The second row and the second column of the elastic stiffness matrix in abbreviated subscript notation are not used in the 2-D wave propagation theory within the xz-plane. Using the symmetry relationships for the elastic stiffness tensor, the 15 elements of the abbreviated elastic stiffness matrix needed are:

\[
aC_{11}, aC_{13}, aC_{14}, aC_{15}, aC_{16}, aC_{33}, aC_{34}, aC_{35}, aC_{36}, aC_{44}, aC_{45}, aC_{46}, aC_{55}, aC_{56}, aC_{66} \tag{26}
\]

The propagating seismo-acoustic signal will only be sensitive to these 15 elements of the elastic stiffness matrix, regardless of whether the elastic stiffness matrix is rotated or not. Es-
sentially, the 2-D description excludes any sensitivity to the elements in the 2nd row and 2nd column of the elastic stiffness matrix. Zhu and Dorman (2000) also report a dependence of 15 elements for the elastic stiffness tensor for a general TI medium.

Every term in the differential operator \(\mathbf{A} \) which contains elastic moduli also contains the elements of \(w_{C_{11}} \). It is reasonable to expect that the equations of motion and therefore the modes are sensitive to the changes in these elastic elements.

\[
\begin{align*}
\frac{\partial}{\partial C_{11}}, \frac{\partial}{\partial C_{15}}, \frac{\partial}{\partial C_{16}}, \frac{\partial}{\partial C_{55}}, \frac{\partial}{\partial C_{56}}, \frac{\partial}{\partial C_{66}}
\end{align*}
\] (27)

3.2 Anisotropic Model

Nine parameters are necessary to describe each elastic layer. The necessary parameters include the thickness of the layer, the density, the five elastic moduli, and the two polar angles for the symmetry axis. The elastic moduli \(A, C, F, L, N \) describe the intrinsic elastic symmetry of the layer, the polar angles describe the orientation of the symmetry, and the thickness describes the boundaries of the layer.

It is assumed that all anisotropic layers have the same symmetry axis orientation. The elastic properties are constant within each layer, where each layer may have its own ranges of anisotropy, except the last layer which is defined as a uniform isotropic halfspace.

A sediment model that is representative of a typical marine sediment profile has been chosen. A typical sediment structure with TI anisotropy has its symmetry axis normal to the bedding planes. The density for typical sediments range from 1.90 − 2.49 g/cm\(^3\), while compressional speeds vary from 1.87 − 4.87 km/s and the degree of velocity variation due to anisotropy varies from 1-13% (Carlson et al., 1984). The degree of anisotropy typically increases with depth, where sediments with bedding exhibit a higher degree of anisotropy than unbedded sediments. The global modes are determined for a 1-D plane layered medium with the velocity/density profile shown in figure 6.

[Figure 6 about here.]

The model is a variation of the Berge et al. (1991) profile, and similar to the model used by Odom et al. (1996) and Park and Odom (1998). The velocity and density profile is based upon a data set from Berge et al. (1991) acquired \textit{in situ} about 10 km east of the New Jersey coast. A thicker water water and an oceanic crustal component has been added. The model consists of an isovelocity fluid layer, five thin anisotropic sediment layers and seven thin isotropic layers, a higher velocity subbottom layer, and a uniform isotropic halfspace as a basement layer. The model has a water layer thickness of 100m. The low shear speed sediments have a total thickness of 27.5m and overlay higher speed sediments 372.5m thick. The degree of anisotropy varies from 11\% to 15\% for the shear velocities. The compressional speeds of all the layers are isotropic.
Figure 6 shows the velocity/density profile, while table 2 provides the parameter values for the model structure.

Table 2 indicates that the elastic symmetry is actually a reduced version of the TI elastic symmetry. In all of the layers $A = C$, leaving only four independent elastic moduli. This effectively places all of the anisotropy in the difference between the shear moduli N and L. The anisotropy is purely shear in nature, where the compressional velocity is isotropic and the shear velocity is transversely isotropic. Berge et al.’s (1991) experiment was insensitive to compressional wave anisotropy. For the purposes of the modeling, the symmetry axis is rotated for all the anisotropic layers by using the Bond transformation as discussed previously.

3.3 Slowness Curves

Slowness curves reveal the nature of anisotropy in the direction of propagation. The slowness curves show the inverse of the velocities of three mutually orthogonal plane-waves propagating in an anisotropic medium: quasi-P, quasi-SV, and quasi-SH. Velocities and therefore slownesses of the medium are determined numerically solving the Christoffel equation 28 (e.g. Auld 1990).

\[
(k^2 \gamma_{ij} - \rho \omega^2 \delta_{ij}) v_j = 0 \\
|k^2 \gamma_{ij} - \rho \omega^2 \delta_{ij}| = 0
\] \hspace{1cm} (28)

Solving the characteristic equation could be attempted analytically, which involves a cubic polynomial. Although there exists an analytical solution to the general cubic equation (first published by the Italian mathematician Girolamo Cardano in 1545, English translation published by M.I.T. Press, 1968), it is not very insightful for the general elastic stiffness tensor. The characteristic equation to be solved is:

\[
- \left(\frac{\rho \omega^2}{k^2} \right)^3 + (\gamma_{11} + \gamma_{22} + \gamma_{33}) \left(\frac{\rho \omega^2}{k^2} \right)^2 + (\gamma_{23}\gamma_{32} + \gamma_{12}\gamma_{21}) \\
+ \gamma_{13}\gamma_{31} - \gamma_{11}\gamma_{22} - \gamma_{11}\gamma_{33} - \gamma_{22}\gamma_{33} \left(\frac{\rho \omega^2}{k^2} \right) \\
+ \gamma_{11}\gamma_{22}\gamma_{33} - \gamma_{11}\gamma_{23}\gamma_{32} - \gamma_{12}\gamma_{21}\gamma_{33} + \gamma_{13}\gamma_{21}\gamma_{32} \\
+ \gamma_{12}\gamma_{23}\gamma_{31} - \gamma_{13}\gamma_{22}\gamma_{31} = 0
\] \hspace{1cm} (29)

Slowness curves are considered where the symmetry axis remains along a fixed direction and the propagation direction is allowed to vary. The slowness curves for the first anisotropic sediment layer, as described by line 2 of table 2 are shown in Figure 7. The slowness curves show plane-wave propagation in the xy, xz, and yz-planes.
Figure 7 shows the slowness curves for the xy, xz, and yz propagating planes for symmetry axes aligned with the \(\hat{z}, \hat{x}, \) and \(\hat{y} \) axes respectively. The quasi-P plane waves are entirely isotropic in nature, being rotationally invariant, and all anisotropy is only in the shear velocities. For a modal description of a seismo-acoustic wavefield in a waveguide, the P and SV polarizations are always coupled together as P-SV modes. Therefore, any variation in the SV plane-wave velocity will affect the P-SV propagating modes, even without any variation in the P plane-wave velocities.

Figure 8 shows the slowness curves for the xz propagation plane for 36 symmetry axes orientations within the first quadrant. The intervals of \(\theta \) and \(\varphi \) are 0°, 20°, 40°, 50°, 70°, and 90°. The horizontal axis of the figure is the \(\varphi \) axis, where rows represent changes in the azimuthal angle \(\varphi \). The vertical axis of the figure is the \(\theta \) axis, where columns represent changes in the elevational angle \(\theta \). Note that all of the slowness curves in the fifth row are degenerate along the z-axis. These are slowness curves for propagation in the xz-plane at \(\theta = 70^\circ \) and \(\varphi = 0^\circ, 20^\circ, 40^\circ, 50^\circ, 70^\circ, 90^\circ \). The two shear velocities remain degenerate for propagation along the z-axis for all variations of \(\varphi \). When the shear velocities are degenerate along the z-axis, the modes separate into two subfamilies of P-SV and SH modes that propagate independently. This is the same mechanism for a VTI medium, where the degenerate shear velocities along the vertical direction allow the SH and P-SV modes to propagate independently.

The line singularities for a TI medium are dependent upon the the specific values of the elastic moduli \(A, C, F, L, N \). Every unique TI model may have a line singularity at a different value of elevation \(\theta \). The TI medium used in this article has a line singularity at approximately 70° elevation. When \(\theta = 70^\circ \), the line singularity nearly intersects the z-axis. The shear plane-wave velocities may become degenerate, but the polarization of the two shear waves still remain orthogonal.

There are instances where the plane waves (body waves) become degenerate. This only occurs for the shear waves. The degeneracies of the shear plane waves occur at singularities in the phase velocity sheet. For a VTI medium, line singularities occur at \(\theta \) approximately 70° and 110°, and kiss (point) singularities occur at \(\theta = 0^\circ \) and \(\theta = 180^\circ \). A kiss singularity occurs where two phase-velocity sheets touch tangentially at isolated points. A line singularity occurs where two phase-velocity sheets intersect. The phase-velocity sheets intersect in the plane perpendicular to the symmetry axis \(\hat{s} \). A kiss singularity always occurs in a medium with transverse isotropic elastic symmetry. The kiss singularity occurs where the phase-velocity sheet intersects the symmetry axis \(\hat{s} \). The slowness surfaces for VTI media have singularities. The P-wave slowness sheet doesn’t have any singularities, and is a perfect sphere. The two shear wave slowness sheets have two kiss singularities and two line singularities (Crampin; 1981,1984,1989,1991). Crampin
(1989,1991) contain 3-D schematics that graphically distinguish between the different types of singularities.

3.4 Angular and Frequency Dispersion Curves

A dispersion curve shows how the velocities of a set of modes change with the variation of a particular independent variable. The phase or group velocities of the modes trace out branches as the independent parameter is varied. The dispersion curves are functions of \(\omega \), \(\theta \), and \(\varphi \) which are defined as the frequency, angle of symmetry axis \(\hat{s} \) tilt in the vertical plane \(\theta \), and angle of symmetry axis \(\hat{s} \) tilt in the horizontal plane \(\varphi \).

[Figure 9 about here.]

Fixing the symmetry axis orientation by keeping \(\theta \) and \(\varphi \) constant while varying \(\omega \) results in a standard frequency dispersion curve. For a 1-D model, the frequency dispersion curve in figure 9 shows how the number of acoustic modes and the phase velocity of the model varies with frequency. The frequency dispersion curve produces vertical branches in phase or group velocity. The frequency dispersion curve for the general TI medium looks very much like the frequency dispersion curves for isotropic or VTI media. In both frequency dispersion curves of figure 9, notice the “solotone” effect, where the spacing of the eigenvalues cluster to form apparent ”solotone” branches, the dark bands in the figures. The modes that contribute to the “solotone” branches are the modes sensitive only to the isotropic portion of the model, and are therefore labeled as “invariant acoustic modes”. The “solotone” effect is due to discontinuities in the density and elastic moduli of the model, and is a direct result of the inclusion of an elastic bottom structure for the sediments and basement layers. This effect has been documented by Lapwood(1975), Kennett et. al.(1983), and Alenitsyn(1998). The “solotone” branches are not a result of any anisotropy in the model, however the invariant modes that contribute to the “solotone” branches play an important role in angular dispersion curves. (By angular dispersion we mean the change in mode eigenvalue (phase velocity) as the symmetry axis of an anisotropic layer is rotated away from the vertical and out of the \(xy \)-plane.) This solotone effect is frequency dependent. The number of modes in the 1500m/s-2000m/s range increases with frequency, and the number of acoustic/invariant modes increases as the frequency increases. Another feature worth noting in the frequency dispersion curves occurs for the eigenvalues at higher frequencies. Figure 9(b) reveals modes that are closely spaced together and experience a braiding effect, where the two eigenvalues appear to become intertwined, even though they do not cross. This effect is not seen for the VTI case in figure 9(a) where the quasi-P-SV and quasi-SH modes propagate independently.

Fixing the value of \(\omega \) and \(\theta \) while varying \(\varphi \) creates an azimuthal angular dispersion curve. Keeping \(\omega \) and \(\varphi \) constant while varying \(\theta \) creates an elevation angle dispersion curve. The phase
and group velocities of the modes are first computed for a beginning symmetry axis orientation \(s(\theta, \varphi) \). The symmetry axis \(s \) in the angular dispersion curves is then allowed to follow lines of constant elevation or constant azimuth on a unit sphere as described in figure 4.

[Figure 10 about here.]

The VTI and TTI models appear similar, when observing the frequency dispersion curves in figure 9. The differences between the models become much more evident in the angular dispersion curves. An angular dispersion curve with variations in \(\theta \) or \(\varphi \) produce horizontal branches of phase or group velocities. Figure 10 displays azimuthal angular dispersion curves on the top (figures 10(a) and 10(b)) and elevational angular dispersion curves on the bottom (figures 10(c) and 10(d)). The left most figures (figures 10(a) and 10(c)) are the phase velocity angular dispersion curves and the figures on the right (figures 10(b) and 10(d)) are the group velocity angular dispersion curves. Note that a rectangular grid is used rather than a polar grid for the angular dispersion curves. The velocities are displayed on the vertical axis, and the angle variations are on the horizontal axis. The complexity of the modal structure upon the inclusion of anisotropy is readily apparent. The dispersion branches show many instances where the branches approach one another. The phase velocities appear to attract and repel one another as the tilt angle varies for the 1-D model. It is evident that the the greatest changes in phase and group velocities occur for the elevation angle dispersion curves (changes in \(\theta \)).

The eigenvalues do not remain evenly spaced. Near an elevation angle of \(\theta = 0^\circ \) the variations are small and the curvature of the dispersion branches is small. For azimuthal variations in \(\varphi \) there is much less converging and diverging of the dispersion branches and the spacing of the eigenvalues remains more constant. This is particularly apparent around \(\varphi = 70^\circ \) and \(\theta = 70^\circ \) (Figure 10(a) and Figure 10(c)). The horizontal branches occurring at 1511m/s, 1550m/s, 1625m/s, and 1904m/s at 50.0Hz, highlighted in red in figure 10(c), are the dispersion branches for the invariant acoustic modes at 50.0Hz. The phase velocities for the invariant acoustic modes for other frequencies are found in table 3.

The phase velocity of these modes scarcely changes for any variations of the symmetry axis direction, in either the azimuthal or elevational dispersion curves. These modes are the same invariant acoustic modes that participate in the “solotone” effect in the frequency dispersion curves. The frequency “solotone” effect precisely predicts the invariant modes that sample the isotropic part of the model which are not sensitive to any tilt of the symmetry axis. Because of the constancy of these modes, they allow for an “angular solotone” effect to occur when another mode branch sensitive to tilt angle approaches. These modes that are affected by the tilt of the symmetry axis are labeled “sensitive modes”. The phase branches do not actually intersect, but as the sensitive mode approaches the invariant mode, their characteristics switch. In fact Arnold (1978) has a nice proof showing that it is not possible for dispersion curves to cross when only one parameter, e.g. an angle, is varied. The invariant mode branch takes on the character
of the sensitive mode branch, and the sensitive mode branch takes the character of the invariant mode branch. When the P-SV and SH modes coalesce into a single family of quasi-P-SV and quasi-SH modes or P-SV-SH modes, then any neighboring phase velocity branch may approach the invariant acoustic mode branches and switch characteristics.

[Table 3 about here.]

An example of this can be seen in figure 17 of the eigenfunction section 3.5, which will be discussed in further detail later. Two sensitive mode branches can also approach one another. The branches do not actually cross, but they effectively take on the characteristics of the other mode. It appears that when two mode branches that are sensitive to the tilt of the symmetry axis, that they are modes of different wave types. A quasi-P-SV mode approaches a quasi-SH mode or vice versa. When the P-SV and SH modes propagate independently, then only the P-SV modes will approach the invariant acoustic modes and switch characteristics.

The angular dispersion curves are sampled discretely, so the near crossing of the branches may lack strong curvature in narrow angular ranges. A degeneracy in the mode eigenvalues (phase velocities) occurs when $c_r = c_q$ or $k_r = k_q$. The two modes combine into a single composite mode which is mutually orthogonal to all of the other modes in the basis set. The result is still a set of mutually orthogonal modes, but the number of modes is reduced as the two modes combine into a single mode. As two modes become nearly degenerate, the phase and group velocities and mode shapes move toward a single phase and group velocity and mode shape. When the eigenvalues become nearly degenerate, then the branches either pinch close together, or indicate an apparent crossing. An actual crossing of the dispersion branches does not need to occur in order for the mode order sequence to change. The phase velocity branches appear to cross, but they never actually cross because of the numerical method imposed by the ANIPROP code, and as stated above the mode branches cannot cross when only varying one parameter such as an angle. Park(1996) applies an approximate plane wave solution when the reflectivity matrix is nearly defective. The reflection matrix is formally defective when two eigenvalues are repeated, and only one eigenfunction is shared for the duplicated eigenvalues. The treatment of the defective matrix is necessary for numerical stability in ANIPROP, as two eigenvalues become degenerate or nearly degenerate. In the the actual shallow water environment, the modes likely never cross because heterogeneity and roughness would destroy the degeneracy. Polarization of the modes, whether predominantly P-SV or SH, cannot be inferred directly by a visual inspection of the curves, apart from the invariant acoustic modes.

Similar findings to Martin et al. (1997) and Thomson (1997) have been observed, where the group velocity branches cross, but they do not necessarily correspond to crossings of plane-waves in the slowness diagrams. Their phase and group velocity dispersion curves show many of the same features as the angular dispersion curves. Martin et al. (1997) report the crossing of the phase velocities in azimuthal angular dispersion curves. Several observations include
the pinching together of the phase velocity branches, apparent crossings of the phase velocity branches, as well as changes in the mode order sequence. Mode ordering can change for variations in θ or φ. The change in the sequence of the modes occurs for both types of angular dispersion curves, azimuthal and elevation. The branches approach very closely without actually touching.

The angular dispersion branches of the modes are symmetrical over a 180° range, with the mirror symmetry plane occurring at 90°. This is true for changes in θ or φ. For propagation in the xz-plane, the P-SV angular dispersion branches are symmetrical over a 90° range and the mirror symmetry occurring at 45°. The SH angular dispersion branches are not symmetrical over the range of $0^\circ - 90^\circ$ in the xz-plane.

The group velocity angular dispersion curves are helpful in revealing how quickly the velocity of the energy of a mode changes with the rotation of the symmetry axis. The invariant acoustic modes have particularly stable group velocities with respect to changes in θ or φ. The group velocity of the invariant acoustic modes only tends to change when near degeneracies occur and the mode characteristics are being switched with another mode. Other modes reveal group velocity changes as the symmetry axis sweeps across constant lines of azimuth or elevation. The group velocities are particularly sensitive to changes in the characteristics of the modes due to apparent branch crossings in the phase velocities. The group velocities change rapidly when another mode approaches. These changes occur over an angular range that correspond to the near crossings of the phase velocity branches.

The higher group velocities belong to the invariant acoustic modes. These are similar to the “banded” modes discussed in Thomson(1997). When the sensitive modes transition into an invariant mode, the group velocities of both modes converge, and then cross. The sensitive mode’s group velocity then assumes the invariant’s place, and the invariant mode becomes a sensitive mode with a lower group velocity.

It is usually easier to interpret the azimuthal angular dispersion curves than the elevation angular dispersion curves as in figure 10. However, additional insight into the mode branch sensitivity to the tilt of the symmetry axis \hat{s} may be gained when the velocity data for an entire set of elevation angular dispersion curves is stacked.

[Figure 11 about here.]

Figure 11 shows the stacked elevation angular dispersion curves for several frequencies. The number of modes and character of the curves is frequency dependent. The width of the envelopes tells us the sensitivity of the modes to changes in azimuth at a particular angle θ. At 50.0Hz when θ is near 0° the envelope is narrow and the phase branches are only slightly dispersed. This is true of the branches near 70° as well. The envelope has the largest width in the θ range from $5^\circ - 30^\circ$, $45^\circ - 65^\circ$, and $75^\circ - 90^\circ$ for Figure 11(e) at 50.0Hz.
3.5 Generalized Modes for Anisotropic Media

The focus of this section is on the effect anisotropy has on the modes - eigenfunctions. The concept of generalized modes of Crampin (1981) is used to describe modes with particle motion in all three coordinate directions. Only the modes which contribute primarily to an acoustic or seismo-acoustic signal are considered. These are the discrete modes within the phase velocity range of 1500m/s - 2000m/s. From the angular dispersion curves it has been demonstrated that changes in the orientation of the symmetry axis can have a dramatic impact on the eigenvalues of the propagating modes. How these variations in the modal eigenvalues affect the characteristics of the eigenfunctions are now considered.

The most distinctive feature of acoustic wave propagation in anisotropic media is 3-D polarization of the particle motion. The polarization of the modes depends on the angle between the propagation direction and the symmetry axis direction of the anisotropic media. The properties of the elastic stiffness matrix determine the degree with which the modes share particle motion polarizations. Crampin (1981) notes that the two independent wave types, P-SV and SH, characteristic of an isotropic medium coalesce into a single family of generalized modes with three dimensional elliptical motion for general anisotropy. The once-pure P-SV modes acquire SH motion and the once pure SH modes acquire P-SV motion. This results in quasi-P-SV and quasi-SH modes or generalized P-SV-SH modes, which possess polarizations into all three coordinate directions.

The eigenfunctions are generally complex in value. Anytime the single generalized family of modes for anisotropic media separate into two independent family of modes, the components of the eigenfunctions become purely real or purely imaginary. When a medium exhibits more generalized anisotropy, the eigenfunctions may have both real and imaginary components in the three polarization directions. The imaginary components represent a phase delay in the time domain, and are not indicative of attenuation. The magnitude of the complex component in fact supplies a method for estimating the magnitude of the anisotropy.

As discussed in Appendix (F), the form of the elastic stiffness tensor affects the eigenvalues of the modal basis in the seismo-acoustic waveguide. Special symmetry axis orientations exist where P-SV and SH motions propagate independently in TI symmetric media. In an isotropic medium, the pure P-SV and pure SH modes do not share the same particle motion polarizations. The medium is completely rotationally symmetric. For a TI elastically symmetric medium, the P-SV particle motions and the SH particle motions propagate independently when the symmetry axis \(\hat{s} \) lies within the sagittal plane or along one of the three coordinate axes, as summarized by table 4. The sagittal plane is defined as the vertical plane containing the propagation direction. Since the propagation direction is assumed to be parallel to the x-axis, the sagittal plane is parallel to the xz-plane.

[Table 4 about here.]
A visual inspection of the eigenfunctions at 50.0Hz in figure 12 reveals the P-SV modes have polarizations only in the xz-plane, and the SH modes have polarization in the y-direction. The pure SH modes are all rather similar to one another, with no particle motion in the fluid, and the largest amplitudes in the thin anisotropic sediments. The shape of P-SV and SH eigenfunctions are similar to the propagating modes for an equivalent isotropic medium. Schoenberg and Costa (1991) found that SH waves in a stratified monoclinic medium can be modeled using an equivalent stratified isotropic medium for propagation in the plane of symmetry. In instances where the P-SV and SH modes propagate independently, it may not be entirely necessary to implement anisotropic modeling. When the P-SV and SH particle motions propagate independently in a range independent plane layered homogeneous medium (i.e. the absence of scattering), only the P-SV modes are necessary to represent the seismo-acoustic wavefield.

[Figure 12 about here.]

The SH modes (e.g. 12(b)) are purely sediment and crustal modes when they propagate independently. That is, they are pure SH with no quasi-P or quasi-SV character.

As shown in figure 13 the mode shape of mode 9 does not vary dramatically when the symmetry axis \(\hat{s} \) is aligned with any of the three coordinate axes. This is typical of any of the modes when the symmetry axis \(\hat{s} \) is aligned parallel to one of the coordinate axes.

[Figure 13 about here.]

The P-SV and SH motions are also separable when \(\theta = 70^\circ \). These symmetry axis orientations correspond to one of the line singularities in the TI elastically symmetric medium. The eigenfunctions are complex, but otherwise very similar to those in figure 12.

[Figure 14 about here.]

As seen in figures 12 and 14, there is no SH motion in the fluid layers as expected. Even in the generalized eigenfunctions, motion is suppressed in the y-direction because the fluid layer can not support a shear stress. However, y-displacements in the generalized eigenfunctions do become evident in the bottom/subbottom layers for a tilted symmetry axis.

For more general tilt of the symmetry axis away from the sagittal plane or coordinate axes, the \(aC_{IJ} \) has the form of a quasi-triclinic elastic stiffness matrix. For these general geometries, the modes of the waveguide belong to the generalized eigenfunctions. They have polarization in all three coordinate directions, as seen in figure 14. The modes can be classified as predominantly quasi-P-SV or predominantly quasi-SH for most symmetry axis orientations. Energy begins to appear in the SH component of the quasi-P-SV modes as shown in figure 14(a). A similar effect for the quasi-SH eigenfunctions is shown in figure 14(b). As the symmetry axis is tilted away from the vertical the quasi-SH eigenfunctions gain particle directions in the x and z-directions.
However, some symmetry axis orientations exist where it is impossible to label a mode as predominantly quasi-P-SV or predominantly quasi-SH. These modes can be more accurately described as composite P-SV-SH modes. As seen in figure 14(c) the amplitudes in the vertical, y and x directions are similar magnitudes for the P-SV-SH modes. The quasi-P-SV, quasi-SH, and P-SV-SH modes possess both P-SV and SH particle motion characteristics. This is a direct result of treating the sediments and bottom/subbottom as elastic.

The quasi-P-SV, quasi-SH, and P-SV-SH modes for when the symmetry axis $\hat{s}(\theta, \varphi) = \hat{s}(80^\circ, 20^\circ)$ are shown in figure 19. The x, y, and z components of displacement are in figures 19(a), 19(b), and 19(c) respectively. Notice that the amplitudes of the modes are about the same magnitude in the three coordinate directions. The x- and z-components resemble hybrid acoustic-sediment particle motions, and the y-components resemble the displacements of sediment modes.

Some of the modes have the majority of their energy concentrated in the water column and the elastically isotropic portions of the model. They have relatively little particle motion in the anisotropic sediment regions of the model. These invariant modes are predominantly quasi-P-SV acoustic modes with very little particle motion in the y-direction. Because these eigenfunctions are dominated by the isotropic features of the model, they are only slightly affected by any tilt of the symmetry axis within the anisotropic sediments. They closely resemble the P-SV acoustic modes for isotropy and symmetry axis orientations where P-SV and SH mode propagate independently. An example of an invariant acoustic mode is shown in figure 15. These are the same modes that participate in the frequency and angular solotone effects observed in the dispersion curves. The acoustic modes are more sensitive to the anisotropy at lower frequencies. As the frequency increases, the acoustic modes’ phase and group velocities become more invariant, indicating they become less sensitive to the anisotropy. These acoustic modes then become the invariant acoustic modes seen in the dispersion curves that participate in the solotone effect. An example of the frequency dependence of an acoustic mode is shown in figure 16. The figure shows the second acoustic mode for when $\hat{s} = \hat{z}$. The x-component and z-component particle motions are shown in figures 16(a) 16(b) respectively.

In order to satisfy the boundary conditions between a fluid and anisotropic solid for the equations of motion, the particle motion in the y-direction must be included. The modes in figure 14 clearly show that as the symmetry axis \hat{s} tilts away from the vertical, the P-SV particle motion is no longer independent of the SH motion. Quasi-SH, quasi-P-SV and P-SV-SH modes are required for an accurate representation of the seismo-acoustic wavefield.
For the dispersion curve in figure 10 near-degeneracies occurred for P-SV modes, even when the SH modes propagate independently. These degeneracies are due entirely to the solotone effect, where the phase and group velocities of the invariant acoustic modes are only weakly affected by perturbations due to changes in the anisotropy symmetry axis.

Near-degeneracies seen in figure 10 affect the characteristics of the modes. Even though the dispersion curves do not cross, the characteristics of the modes switch. This is seen in the dispersion branches when a sensitive mode becomes an invariant mode. Figure 17 shows how the characteristics of the modes changes as the angle θ varies. Figures 17(a), 17(b), and 17(c) show the displacements for the x, y, and z-directions respectively. The mode begins as a predominantly quasi-SH mode and transforms into a predominantly quasi-P-SV as the angle θ varies. The characteristics of the quasi-SH mode are taken on by the quasi-P-SV mode and the characteristics of quasi-P-SV mode are taken on by mode the quasi-SH mode. The identity of the mode in figure 17 is exchanged as it closely approaches the quasi-P-SV mode. As the modes approach near degeneracy, the eigenfunctions of both modes transition towards composite modes with characteristics of both modes. There can exist two P-SV-SH modes that closely resemble each other as the modes become nearly degenerate.

The mode order sequence does not remain fixed for increases in frequency or changes in symmetry axis orientations. The sense of mode ordering is somewhat lost when the two sets of mode polarizations coalesce into a single set of generalized P-SV-SH modes. The sequence of the mode ordering is not completely clear as the symmetry axis is tilted. The switching of modes is a complex function of the phase and group velocity relationships with the phase velocities approaching one another and where the group velocities actually cross. For TI elastic symmetry, the mode ordering of the eigenfunctions does not necessarily stay fixed as the symmetry angle is tilted. The mode ordering changes when two modes approach one another. The mode order sequence tends to remain the same for the eigenfunctions at lower frequencies. The eigenvalues are spaced further apart and near-degeneracies do not occur. As the frequency increases, the eigenvalues become more closely spaced, as is evident in the the dispersion figures 9 and 10. Near degeneracies have a higher occurrence as the frequency increases, and the modes switch characteristics more often. Although it may be insightful to keep track of individual modes and their characteristics as they transition from quasi-P-SV to quasi-SH or vice versa, it really is not necessary. The modal formalism of section 3.1 does not require all of the modes to be individually identified as P-SV, SH quasi P-SV, quasi SH or P-SV-SH. All that is needed is to be sure and include all of the modes important to the seismo-acoustics waves composition.
The modes of the shallow water waveguide may be directly excited by any number of source types. When the PSV and SH modes propagate independently, then the polarization of the acoustic modes are more source dependent represented by figure 18. An explosive source will excite only PSV motion (x and z-displacements). The displacements for the x, y, and z-directions excited by an explosive source are shown in figures 18(a), 18(b), and 18(c) respectively. Moment tensor sources can also be of interest for some acoustic wave propagation problems, such as T-wave excitation (Park et. al., 2001). A pure double couple in the xy-plane will only excite SH motion as displayed in figures 18(d), 18(e), and 18(f). The excitation of the P-SV and SH modes can be compared to the excitation of quasi-P-SV, quasi-SH, and P-SV-SH modes. Using an explosive source, energy becomes evident in the x, y, and z-displacement directions in figures 19(a), 19(a), and 19(a) respectively. The significance is that the wavefield will contain y-displacements in the absence of any heterogeneity or scattering. Using a double-couple source contained in the horizontal plane, excitation of x, y, and z-displacements again becomes evident as shown in figures 19(d), 19(e), and 19(f) modes. Here, a shear source is able to excite modes which contribute to a seismo-acoustic wavefield. Because of the 3-D polarization of the modes, they may be excited by a wide range of sources.

The generalized mode structure is significant for the shallow water environment. With the bottom interacting modes, acoustic energy can leave the water column. It can then be attenuated by the low shear velocity sediments, and redistributed to other predominantly sediment modes. In addition, energy from other sources or signals, such as noise, from the sediment and bottom layers can enter the water column through these bottom interacting modes. With the anisotropic bottom interacting modes, there exists a greater opportunity for the energy to become redistributed and leave or enter the water column. This is due to the three component nature of the eigenfunctions, the displacement and the tractions. Therefore, in the presence of anisotropy, attenuation of bottom interacting modes would be underestimated if isotropy is assumed.

4 Summary and Conclusions

The form of the elastic stiffness matrix, and its symmetry in relation to the propagation direction affects the wave propagation in the seismo-acoustic waveguide. The form of the elastic stiffness tensor determines whether the local modes coalesce into a set of quasi-P-SV, quasi-SH, and generalized P-SV-SH modes or into P-SV and SH modes which propagate independently. This distinction greatly affects the polarization of the propagating signal. Since it usually cannot be pre-arranged to record a seismo-acoustic signal in a specific symmetry plane, tilted anisotropy cannot be completely ignored. Horizontal shear motion is often ignored or neglected in the modeling of acoustic signals. The majority of attention has been placed on the P-SV motion. However, any description of seismo-acoustic signal propagation which ignores SH motion in these
environments would be incomplete. All three coordinate particle motion polarizations must be included into the seismo-acoustic wavefield.

Conversion of acoustic energy into horizontally polarized shear motion can be expected at fluid/solid boundaries anisotropy exists in the solid layer. As a result, one consequence of the presence of anisotropy is that the seismo-acoustic signals can have a significant portion of their energy in horizontally polarized shear motion (SH and quasi-SH) even in the absence of any range-dependence. This is in contrast to an isotropic or VTI elastic medium, where all acoustic energy propagates independently of any horizontally polarized shear motion. In the absence of any scattering, all particle motion for an acoustic signal would be restricted to the sagittal plane. For general anisotropy the compressional motion (quasi-P), vertically polarized shear motion (quasi-SV) and horizontally polarized shear motion (quasi-SH) no longer propagate independently. Horizontally polarized shear motion experiences more attenuation than compressional motion, where intrinsic SH attenuation is approximately 2-3 times larger than compressional wave attenuation, or even larger in low shear speed sediments. Because shear motions experience higher attenuation than compressional motion, this could be an important loss mechanism for acoustic signals with significant seafloor interaction. The SH motion could have a profound effect on the propagation of the acoustic signal. The signal may experience more energy loss than an equivalent signal propagating in an isotropic model or only fluid layers. Hughes (1990) observed high propagation loss in thin sediment layers over hard bottoms. Some of this type of loss may result from acoustic energy being converted to quasi-SH modes.

An investigation has been carried out on how the anisotropic elastic stiffness tensor affects eigenfunctions, phase and group velocity dispersion curves as a function of frequency or symmetry axis orientation (angular dispersion curve), and energy transfer between modes. The magnitude of anisotropy as well as the direction of the symmetry axis have been observed to be of equal importance. Any rotation of the symmetry axis away from vertical (e.g. non-horizontal bedding planes) will cause energy to be transferred between the modes.
REFERENCES

A Elastic Stiffness Tensor and Matrix Notation

The fourth order elastic stiffness tensor C_{iklj} has symmetries that allow the 21 independent elements to be expressed in more compact matrix notations. The elastic stiffness tensor obeys the following symmetry:

$$C_{iklj} = C_{kild} = C_{ikjl} = C_{ljik}.$$

which reduces the 81 components of C_{iklj} to at most 21 independent components.

The indices of the fourth order elastic stiffness tensor are $iklj$ rather than the conventional $ijkl$ in order to facilitate the mapping between tensor notation and the matrix notation of Woodhouse (1974). Woodhouse’s notation (1974) and abbreviated subscript notation (e.g. Auld, 1990) describe the exact same elastic parameters from the elastic stiffness tensor C_{iklj}. However, the Woodhouse matrix and the abbreviated subscript matrix are not equivalent.

\[\mathbf{C} = C_{iklj} \quad \text{fourth order elastic stiffness tensor} \]
\[^a \mathbf{C} = ^a C_{IJ} \quad 6 \times 6 \text{ abbreviated subscript elastic stiffness matrix} \]
\[^w \mathbf{C} = (^w C_{ij})_{kl} \quad 9 \times 9 \text{ Woodhouse elastic stiffness matrix} \]
\[^w C_{ij} \quad 3 \times 3 \text{ Woodhouse submatrix} \]

Lower case suffixes such as $iklj$ have values that range from $i, k, l, j = 1, 2, 3$. Upper case suffixes such as IJ have values that range from $I, J = 1, 2, 3, 4, 5, 6$. The individual elements of the elastic stiffness tensor can be put into a matrix format by using an abbreviated subscript notation, also known as Voigt notation (Nye, 1957) or matrix notation. Table A.1 below describes how to transfer between traditional fourth order tensor notation and the abbreviated subscript notation for the individual elements of C_{iklj} and C_{IJ}.

[Table 5 about here.]

The four suffixes $iklj$ are replaced with two suffixes IJ. Considering the Woodhouse elastic stiffness matrix first, which is composed of nine submatrices:

\[^w \mathbf{C} = (^w C_{ij})_{kl} = \begin{bmatrix} (^w C_{11})_{kl} & (^w C_{12})_{kl} & (^w C_{13})_{kl} \\ (^w C_{21})_{kl} & (^w C_{22})_{kl} & (^w C_{23})_{kl} \\ (^w C_{31})_{kl} & (^w C_{32})_{kl} & (^w C_{33})_{kl} \end{bmatrix} \]

The 9×9 Woodhouse matrix is a symmetric matrix, and there are only six unique submatrices, where:

\[^w C_{ij} = ^w C_{ji} \]
The elements of the Woodhouse submatrices wC_{ij} expressed in traditional fourth order subscript notation, composing the 9×9 Woodhouse matrix:

\[
\begin{bmatrix}
C_{1111} & C_{1121} & C_{1131} & C_{1112} & C_{1122} & C_{1132} & C_{1113} & C_{1123} & C_{1133} \\
C_{1211} & C_{1221} & C_{1231} & C_{1212} & C_{1222} & C_{1232} & C_{1213} & C_{1223} & C_{1233} \\
C_{1311} & C_{1321} & C_{1331} & C_{1312} & C_{1322} & C_{1332} & C_{1313} & C_{1323} & C_{1333} \\
C_{2111} & C_{2121} & C_{2131} & C_{2112} & C_{2122} & C_{2132} & C_{2113} & C_{2123} & C_{2133} \\
C_{2211} & C_{2221} & C_{2231} & C_{2212} & C_{2222} & C_{2232} & C_{2213} & C_{2223} & C_{2233} \\
C_{2311} & C_{2321} & C_{2331} & C_{2312} & C_{2322} & C_{2332} & C_{2313} & C_{2323} & C_{2333} \\
C_{3111} & C_{3121} & C_{3131} & C_{3112} & C_{3122} & C_{3132} & C_{3113} & C_{3123} & C_{3133} \\
C_{3211} & C_{3221} & C_{3231} & C_{3212} & C_{3222} & C_{3232} & C_{3213} & C_{3223} & C_{3233} \\
C_{3311} & C_{3321} & C_{3331} & C_{3312} & C_{3322} & C_{3332} & C_{3313} & C_{3323} & C_{3333}
\end{bmatrix}
\]

\[
\begin{bmatrix}
C_{11} & C_{16} & C_{15} & C_{16} & C_{21} & C_{14} & C_{15} & C_{14} & C_{13} \\
C_{61} & C_{66} & C_{65} & C_{66} & C_{62} & C_{64} & C_{65} & C_{64} & C_{63} \\
C_{51} & C_{56} & C_{55} & C_{56} & C_{52} & C_{54} & C_{55} & C_{54} & C_{53} \\
C_{61} & C_{66} & C_{65} & C_{66} & C_{62} & C_{64} & C_{65} & C_{64} & C_{63} \\
C_{21} & C_{26} & C_{25} & C_{26} & C_{22} & C_{24} & C_{25} & C_{24} & C_{23} \\
C_{41} & C_{46} & C_{45} & C_{46} & C_{42} & C_{44} & C_{45} & C_{44} & C_{43} \\
C_{51} & C_{56} & C_{55} & C_{56} & C_{52} & C_{54} & C_{55} & C_{54} & C_{53} \\
C_{41} & C_{46} & C_{45} & C_{46} & C_{42} & C_{44} & C_{45} & C_{44} & C_{43} \\
C_{31} & C_{36} & C_{35} & C_{36} & C_{32} & C_{34} & C_{35} & C_{34} & C_{33}
\end{bmatrix}
\]

The above forms of the wC are valid for any triclinic anisotropic medium with 21 independent constants, as well as for any medium with a higher degree of symmetry, such as TI. Substituting the Love notation (1944) elastic constants into the Woodhouse matrix for a TI elastically symmetric medium.
For \(\hat{s}(\theta, \varphi) = \hat{s}(0^\circ, 0^\circ) = \hat{z} \)

\[
\begin{bmatrix}
A & 0 & 0 & 0 & H & 0 & 0 & 0 & F \\
0 & N & 0 & N & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & L & 0 & 0 & 0 & L & 0 & 0 \\
0 & 0 & N & 0 & N & 0 & 0 & 0 & 0 \\
H & 0 & 0 & 0 & A & 0 & 0 & 0 & F \\
0 & 0 & 0 & 0 & L & 0 & 0 & 0 & 0 \\
0 & 0 & L & 0 & 0 & 0 & L & 0 & 0 \\
0 & 0 & 0 & 0 & L & 0 & 0 & 0 & 0 \\
F & 0 & 0 & 0 & F & 0 & 0 & 0 & C
\end{bmatrix}
\]

\(wC = \) \hspace{1cm} (34)

For \(\hat{s}(\theta, \varphi) = \hat{s}(90^\circ, 0^\circ) = \hat{x} \)

\[
\begin{bmatrix}
C & 0 & 0 & 0 & F & 0 & 0 & 0 & F \\
0 & L & 0 & L & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & L & 0 & 0 & 0 & L & 0 & 0 \\
0 & L & 0 & L & 0 & 0 & 0 & 0 & 0 \\
F & 0 & 0 & 0 & A & 0 & 0 & 0 & H \\
0 & 0 & 0 & 0 & N & 0 & N & 0 & 0 \\
0 & 0 & L & 0 & 0 & 0 & L & 0 & 0 \\
0 & 0 & 0 & 0 & N & 0 & N & 0 & 0 \\
F & 0 & 0 & 0 & H & 0 & 0 & 0 & A
\end{bmatrix}
\]

\(wC = \) \hspace{1cm} (35)

For \(\hat{s}(\theta, \varphi) = \hat{s}(90^\circ, 90^\circ) = \hat{y} \)

\[
\begin{bmatrix}
A & 0 & 0 & 0 & F & 0 & 0 & 0 & H \\
0 & L & 0 & L & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & N & 0 & 0 & 0 & N & 0 & 0 \\
0 & L & 0 & L & 0 & 0 & 0 & 0 & 0 \\
F & 0 & 0 & 0 & C & 0 & 0 & 0 & F \\
0 & 0 & 0 & 0 & L & 0 & L & 0 & 0 \\
0 & 0 & N & 0 & 0 & 0 & N & 0 & 0 \\
0 & 0 & 0 & 0 & L & 0 & L & 0 & 0 \\
H & 0 & 0 & 0 & F & 0 & 0 & 0 & A
\end{bmatrix}
\]

\(wC = \) \hspace{1cm} (36)

The 6 × 6 abbreviated subscript matrix is also a symmetric matrix, with the possibility of 21 unique and independent elements where:

\[a_{C_{ij}} = a_{C_{ji}}. \]

(37)
Any additional symmetry would reduce the number of independent elements. The elements of the abbreviated subscript elastic stiffness matrix expressed in traditional fourth order tensor notation for a general triclinic medium.

\[
a^C = \begin{bmatrix}
C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1113} & C_{1112} \\
C_{2211} & C_{2222} & C_{2233} & C_{2223} & C_{2213} & C_{2212} \\
C_{3311} & C_{3322} & C_{3333} & C_{3323} & C_{3313} & C_{3312} \\
C_{2311} & C_{2322} & C_{2333} & C_{2323} & C_{2313} & C_{2312} \\
C_{1311} & C_{1322} & C_{1333} & C_{1323} & C_{1313} & C_{1312} \\
C_{1211} & C_{1222} & C_{1233} & C_{1223} & C_{1213} & C_{1212}
\end{bmatrix}
\] (38)

The abbreviated subscript elastic stiffness matrix with the elements expressed in abbreviated subscript notation.

\[
a^C = \begin{bmatrix}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\
C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\
C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\
C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66}
\end{bmatrix}
\] (39)

Consider a TI elastically symmetric medium as used in the main text of the paper. The elastic moduli are expressed in Love notation (1944).

For \(\hat{s}(\theta, \varphi) = \hat{s}(0^\circ, 0^\circ) = \hat{z} \)

\[
a^C = \begin{bmatrix}
A & H & F & 0 & 0 & 0 \\
H & A & F & 0 & 0 & 0 \\
F & F & C & 0 & 0 & 0 \\
0 & 0 & 0 & L & 0 & 0 \\
0 & 0 & 0 & 0 & L & 0 \\
0 & 0 & 0 & 0 & 0 & N
\end{bmatrix}
\] where \(H = A - 2N \) (40)

For \(\hat{s}(\theta, \varphi) = \hat{s}(90^\circ, 0^\circ) = \hat{x} \)

\[
a^C = \begin{bmatrix}
C & F & F & 0 & 0 & 0 \\
F & A & H & 0 & 0 & 0 \\
F & H & A & 0 & 0 & 0 \\
0 & 0 & 0 & N & 0 & 0 \\
0 & 0 & 0 & 0 & L & 0 \\
0 & 0 & 0 & 0 & 0 & L
\end{bmatrix}
\] where \(H = A - 2N \) (41)
For \(\hat{s}(\theta, \varphi) = \hat{s}(90^\circ, 90^\circ) = \hat{y} \)

\[
\begin{bmatrix}
A & F & H & 0 & 0 & 0 \\
F & C & F & 0 & 0 & 0 \\
H & F & A & 0 & 0 & 0 \\
0 & 0 & 0 & L & 0 & 0 \\
0 & 0 & 0 & 0 & N & 0 \\
0 & 0 & 0 & 0 & 0 & L \\
\end{bmatrix}
\]

where \(H = A - 2N \) \(\quad (42) \)

The individual elements for a TI medium with an arbitrary symmetry axis \(\hat{s}(\theta, \phi) \) can be determined by equation (11) from the main text. The elements of \(aC \) will be linear combinations of the elastic moduli \(A, C, F, L, N \).
B Differential Operator A

The differential operator A from the equation of motion (17) in the main text and in equation (79) below is described in greater detail.

$$\frac{\partial u}{\partial x} = Au - F$$ \hspace{1cm} (43)

where u is the stress-displacement vector, A is a differential operator which contains the combinations of the elastic stress matrix wC_{ij} and its derivatives, and F is an external force.

The operator lacks any horizontal derivatives and the only derivatives are vertical derivatives of the elastic moduli, horizontal slowness, and eigenfunctions. For a fluid medium or a solid anisotropic structure, the differential operator A may be expressed in terms of sub-operators:

$$A = \begin{pmatrix} A^{11} & A^{12} \\ A^{21} & A^{22} \end{pmatrix}$$ \hspace{1cm} (44)

For a solid triclinic anisotropic medium, the sub-operators are:

$$A^{11} = \left(-\left(wC^{-1}\right)_{11} \left(\frac{\partial}{\partial z} \right) + \left(wC^{-1}\right)_{12} ip \right) ,$$

$$A^{12} = \left(wC^{-1}\right)_{11} ,$$

$$A^{21} = \left(-\rho \omega^2 - \frac{\partial}{\partial z} \left(wQ_{33} \frac{\partial}{\partial z} \right) + ip w Q_{23} \frac{\partial}{\partial z} + \frac{\partial}{\partial z} \left(w Q_{32} ip \right) + p^2 \left(w Q_{22} \right) \right) ,$$

$$A^{22} = \left(-\frac{\partial}{\partial z} \left(wC_{31} \right) \left(\frac{\partial}{\partial z} \right) + ip \left(wC_{21} \right) \left(\frac{\partial}{\partial z} \right) \right) ,$$ \hspace{1cm} (45)

where the wQ_{ij} matrix is defined as:

$$wQ_{ij} = wC_{ij} - \left(wC_{i1} \right) \left(wC_{11}^{-1} \right) \left(wC_{1j} \right)$$ \hspace{1cm} (46)

This general form is valid for any triclinic anisotropic structure. The differential operator A for a TI elastically symmetric medium can be obtained by substituting the elastic stiffness submatrices from Appendix A into equations (45),(45),81), and (81). The differential operator A is then expressed analytically for the case when the symmetry axis \hat{s} is aligned with the Cartesian coordinate axes.
For $\hat{s}(\theta, \varphi) = \hat{s}(0^\circ, 0^\circ) = \hat{z}$:

\[
A^{11} = \begin{pmatrix}
0 & ik_y \frac{A - 2N}{A} & -F \frac{\partial}{\partial z} \\
0 & 0 & 0 \\
-\frac{\partial}{\partial z} & 0 & 0
\end{pmatrix},
\]

\[
A^{12} = \begin{pmatrix}
\frac{1}{A} & 0 & 0 \\
0 & \frac{1}{N} & 0 \\
0 & 0 & \frac{1}{L}
\end{pmatrix},
\]

\[
A^{21} = \begin{pmatrix}
-\rho \omega^2 & 0 & 0 \\
0 & -\rho \omega^2 - \frac{\partial}{\partial z} (L \frac{\partial}{\partial z}) + k_y^2 \left(\frac{4N(N-A)}{A}\right) & ik_y \frac{2NF}{A} \frac{\partial}{\partial z} + ik_y L \\
0 & ik_y L \frac{\partial}{\partial z} + \frac{\partial}{\partial z} (ik_y \frac{2NF}{A}) & -\rho \omega^2 - \frac{\partial}{\partial z} \left(\frac{AC-F^2}{C} \frac{\partial}{\partial z}\right) + k_y^2 L
\end{pmatrix},
\]

\[
A^{22} = \begin{pmatrix}
0 & ik_y \frac{A - 2N}{A} & -\frac{\partial}{\partial z} \\
0 & 0 & 0 \\
-\frac{\partial}{\partial z} & 0 & 0
\end{pmatrix},
\]

This is the same result found by Park and Odom (1997).

For $\hat{s}(\theta, \varphi) = \hat{s}(90^\circ, 0^\circ) = \hat{x}$:

\[
A^{11} = \begin{pmatrix}
0 & ik_y \frac{F}{C} & -F \frac{\partial}{\partial z} \\
0 & 0 & 0 \\
-\frac{\partial}{\partial z} & 0 & 0
\end{pmatrix},
\]

\[
A^{12} = \begin{pmatrix}
\frac{1}{C} & 0 & 0 \\
0 & \frac{1}{L} & 0 \\
0 & 0 & \frac{1}{L}
\end{pmatrix},
\]

\[
A^{21} = \begin{pmatrix}
-\rho \omega^2 & 0 & 0 \\
0 & -\rho \omega^2 - \frac{\partial}{\partial z} (N \frac{\partial}{\partial z}) + k_y^2 \left(\frac{AC-F^2}{C}\right) & ik_y \frac{AC-2CN-F^2}{C} \frac{\partial}{\partial z} + ik_y N \\
0 & ik_y N \frac{\partial}{\partial z} + \frac{\partial}{\partial z} (ik_y \frac{AC-2CN-F^2}{C}) & -\rho \omega^2 - \frac{\partial}{\partial z} \left(\frac{AC-F^2}{C} \frac{\partial}{\partial z}\right) + k_y^2 N
\end{pmatrix},
\]

\[
A^{22} = \begin{pmatrix}
0 & ik_y \frac{F}{C} & -\frac{\partial}{\partial z} \\
0 & 0 & 0 \\
-\frac{\partial}{\partial z} & 0 & 0
\end{pmatrix},
\]

(47, 48)
For $\hat{s}(\theta, \varphi) = \hat{s}(90^\circ, 90^\circ) = \hat{y}$:

\[
A_{11} = \begin{pmatrix}
0 & ik_y \frac{F}{A} & -\frac{A-2N}{A} \frac{\partial}{\partial z} \\
\frac{A}{k_y} & 0 & 0 \\
-\frac{\partial}{\partial z} & 0 & 0
\end{pmatrix},
\]

\[
A_{12} = \begin{pmatrix}
\frac{1}{A} & 0 & 0 \\
0 & \frac{1}{L} & 0 \\
0 & 0 & \frac{1}{N}
\end{pmatrix},
\]

\[
A_{21} = \begin{pmatrix}
-\rho \omega^2 & 0 & 0 \\
0 & -\rho \omega^2 - \frac{\partial}{\partial z} \left(L \frac{\partial}{\partial z} \right) + k_y^2 \frac{A^2-F^2}{A} & ik_y \frac{2NF}{A} \frac{\partial}{\partial z} + \frac{\partial}{\partial z} (ik_y L) \\
0 & ik_y L \frac{\partial}{\partial z} + \frac{\partial}{\partial z} (ik_y \frac{2NF}{A}) & -\rho \omega^2 - \frac{\partial}{\partial z} \left(\frac{4N(N-A)}{A} \frac{\partial}{\partial z} \right) + k_y^2 L
\end{pmatrix},
\]

\[
A_{22} = \begin{pmatrix}
0 & ik_y \frac{F}{A} & -\frac{F}{A} \frac{\partial}{\partial z} \\
\frac{A}{k_y} & 0 & 0 \\
-\frac{\partial}{\partial z} & 0 & 0
\end{pmatrix},
\]

Additional symmetry, where the TI elastic symmetry reduces to isotropic symmetry may be considered. When $A = C$, $L = N$, $H = F$, and $F = A - 2L$, then all planes within medium are symmetry planes, and therefore all directions are equivalent:

\[
A_{11} = \begin{pmatrix}
0 & ik_y \frac{F}{A} & -\frac{F}{A} \frac{\partial}{\partial z} \\
\frac{A}{k_y} & 0 & 0 \\
-\frac{\partial}{\partial z} & 0 & 0
\end{pmatrix},
\]

\[
A_{12} = \begin{pmatrix}
\frac{1}{A} & 0 & 0 \\
0 & \frac{1}{L} & 0 \\
0 & 0 & \frac{1}{L}
\end{pmatrix},
\]

\[
A_{21} = \begin{pmatrix}
-\rho \omega^2 & 0 & 0 \\
0 & -\rho \omega^2 - \frac{\partial}{\partial z} \left(L \frac{\partial}{\partial z} \right) + k_y^2 \frac{A^2-F^2}{A} & ik_y \frac{AF-F^2}{A} \frac{\partial}{\partial z} + \frac{\partial}{\partial z} (ik_y L) \\
0 & ik_y L \frac{\partial}{\partial z} + \frac{\partial}{\partial z} (ik_y \frac{AF-F^2}{A}) & -\rho \omega^2 - \frac{\partial}{\partial z} \left(\frac{F^2-A^2}{A} \frac{\partial}{\partial z} \right) + k_y^2 L
\end{pmatrix},
\]

\[
A_{22} = \begin{pmatrix}
0 & ik_y \frac{F}{A} & -\frac{F}{A} \frac{\partial}{\partial z} \\
\frac{A}{k_y} & 0 & 0 \\
-\frac{\partial}{\partial z} & 0 & 0
\end{pmatrix},
\]

where $A = \lambda + 2\mu$, $L = \mu$, and $F = \lambda$.

This is the same result as reported by Park and Odom (1997) and Maupin (1988).

Consider the case where $\mu = 0$ and the isotropic medium becomes an isotropic fluid. As stated by Maupin (1988), the wC_{11} matrix becomes singular for a fluid layer. A simple solution is to define the wC_{11} matrix and its inverse wC_{11}^{-1} within a fluid as Kennett (1983) does in his
monograph:

\[
(\omega C_{11})_{\text{fluid}} = \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad (\omega C^{-1}_{11})_{\text{fluid}} = \begin{pmatrix} \frac{1}{A} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\] (51)

Therefore, a form of the differential operator and equation of motion for any fluid layers may be formulated.

\[
A^{11} = \begin{pmatrix} 0 & ik_y & -\frac{\partial}{\partial z} \\ ik_y & 0 & 0 \\ -\frac{\partial}{\partial z} & 0 & 0 \end{pmatrix},
\]

\[
A^{12} = \begin{pmatrix} \frac{1}{A} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},
\]

\[
A^{21} = \begin{pmatrix} -\rho \omega^2 & 0 & 0 \\ 0 & -\rho \omega^2 & 0 \\ 0 & 0 & -\rho \omega^2 \end{pmatrix},
\]

\[
A^{22} = \begin{pmatrix} 0 & ik_y & -\frac{\partial}{\partial z} \\ ik_y & 0 & 0 \\ -\frac{\partial}{\partial z} & 0 & 0 \end{pmatrix},
\] (52)

After some algebra, the system of equations can be reduced to a two component displacement-stress vector form.

\[
A_{\text{fluid}} = \begin{pmatrix} 0 & -\frac{ik_y^2}{\rho \omega^2} + \frac{\partial}{\partial z} \frac{1}{\rho \omega^2} \frac{\partial}{\partial z} + \frac{1}{A} \\ -\rho \omega^2 \end{pmatrix},
\] (53)

where \(u, w_2, w_3,\) and \(t\) are defined as:

\[
u = (w_1, t)^T
\]

\[
w_2 = \frac{ik_y}{\rho \omega^2} t
\]

\[
w_3 = -\frac{1}{\rho \omega^2} \frac{\partial t}{\partial z}
\]

\[
t = t_{ii}
\] (57)

This is Maupin's (1988) result for a fluid layer. The fluid/solid coupling terms used in the main text are the same as those reported in Maupin (1988). Tromp (1994) also has described fluid/solid coupling terms using a slightly different modal notation.
C VTI Parameterization

The elastic stiffness constants in the elastic stiffness tensor, \(C_{ijkl} \), can be parameterized in a number of ways. Each parameterization results in the same elastic stiffness tensor. Love notation (1944), Backus notation (1965) and Takeuchi and Saito notation (1972) are each considered. The theory of Odom et. al. (1996) and Park et. al. (1997) use the Love parameterization where the five independent constants for a VTI medium are expressed as the elastic moduli \(A, C, F, L, N \). Both relied on the Disper80 code which uses Takeuchi and Saito notation (1972) where the five independent constants are expressed as velocities \(\alpha_H \) and \(\beta_V \) along with ratios of the elastic moduli \(\chi, \phi, \eta \) which are based on Love’s notation. Park (1996) uses Backus notation (1965) where the five independent parameters of a VTI medium are the elastic moduli \(\bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{E} \). The relationship between the three parameterizations is outlined below.

C.1 Love Parameterization

The ACFLN parameterization for a VTI medium can be described in terms of \(\xi, \phi, \eta, \alpha_H, \beta_V \) and \(\bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{E} \).

[Table 6 about here.]

C.2 Takeuchi and Saito Notation (Anderson Notation)

The anisotropy described by Takeuchi and Saito (1972) is represented by five parameters, a horizontal compressional velocity, a vertical shear velocity, a ratio of horizontal and vertical compressional velocities, a ratio of horizontal and vertical shear velocities, and a fifth anisotropic parameter. The previous results can be substituted into the expressions given by Takeuchi and Saitio.

The Takeuchi and Saito notation can be described in terms of ACFLN, and \(\bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{E} \).

[Table 7 about here.]

Notice that parameter \(\phi \) is not to be confused with the angle \(\varphi \) in the xy-plane describing the orientation of the symmetry axis \(\hat{s} \) of the TI medium.

C.3 Modified Backus Parameterization

The angular dependence of the compressional and shear velocities are treated in a similar manner to the formulas of Backus(1965), Crampin(1977), Shearer and Orcutt (1986), and Park(1996).

\[
\rho \alpha^2(\xi) = \bar{A} + \bar{B} \cos 2\xi + \bar{C} \cos 4\xi
\]
\[
\rho \beta^2(\xi) = \bar{D} + \bar{E} \cos 2\xi
\]

(58)
The previous works related the five parameters $\bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{E}$ to the individual elastic stiffness tensor elements for a HTI, with a symmetry axis in the x-direction. These expressions are similar, except they describe the C_{iklj} elastic stiffness tensor for a VTI medium.

[Table 8 about here.]

Additional parameterizations of VTI media include the Thomsen parameterization (1986) and the alternate parameterization of Romanowicz and Snieder (1988) and Muyzert and Snieder (2000).
D Bond Transformation of TI Symmetric Structures

Any arbitrary tilt of a TI symmetric medium can be obtained by rotating through the two angles θ and φ. The Bond transformation matrices described by Auld(1990) are found below.

\[
M = \begin{bmatrix}
 a_{xx}^2 & a_{xy}^2 & a_{xz}^2 & 2a_{xy}a_{xz} & 2a_{xz}a_{xx} & 2a_{xx}a_{xy} \\
 a_{yx}^2 & a_{yy}^2 & a_{yz}^2 & 2a_{yy}a_{yz} & 2a_{yz}a_{yx} & 2a_{yx}a_{yy} \\
 a_{zx}^2 & a_{zy}^2 & a_{zz}^2 & 2a_{zy}a_{zz} & 2a_{zz}a_{zx} & 2a_{zx}a_{zy} \\
 a_{yz}a_{xx} & a_{yy}a_{zy} & a_{yz}a_{zz} & a_{yy}a_{zz} + a_{yz}a_{zy} & a_{yz}a_{xx} + a_{yx}a_{xz} & a_{yy}a_{xx} + a_{yx}a_{zy} \\
 a_{zz}a_{xx} & a_{zy}a_{xy} & a_{zz}a_{xz} & a_{zz}a_{xy} + a_{zz}a_{yx} & a_{xx}a_{xx} + a_{xx}a_{zz} & a_{xx}a_{yy} + a_{xx}a_{zy} \\
 a_{xx}a_{yx} & a_{xy}a_{yy} & a_{xz}a_{yz} & a_{xy}a_{yz} + a_{xx}a_{yy} & a_{xx}a_{yx} + a_{xx}a_{yz} & a_{xx}a_{yy} + a_{xx}a_{yz}
\end{bmatrix}
\]

(59)

The Bond transformation matrix M is composed of the elements form the general transform matrix a.

\[
a = \begin{bmatrix}
 a_{xx} & a_{xy} & a_{xz} \\
 a_{yx} & a_{yy} & a_{yz} \\
 a_{zx} & a_{zy} & a_{zz}
\end{bmatrix}
\]

The general transformation matrices for rotation about the y and z axes are a^y and a^z respectively.

\[
a^y = \begin{bmatrix}
 \cos \theta & 0 & -\sin \theta \\
 0 & 1 & 0 \\
 \sin \theta & 0 & \cos \theta
\end{bmatrix}
\]

\[
a^z = \begin{bmatrix}
 \cos \varphi & \sin \varphi & 0 \\
 -\sin \varphi & \cos \varphi & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]

The corresponding Bond transformation matrices about the y and z axes are then M^y and M^z respectively.

\[
M^y = \begin{bmatrix}
 \cos^2 \theta & 0 & \sin^2 \theta & 0 & -\sin 2\theta & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 \sin^2 \theta & 0 & \cos^2 \theta & 0 & \sin 2\theta & 0 \\
 0 & 0 & 0 & \cos \theta & 0 & \sin \theta \\
 \frac{1}{2} \sin 2\theta & 0 & -\frac{1}{2} \sin 2\theta & 0 & \cos 2\theta & 0 \\
 0 & 0 & 0 & -\sin \theta & 0 & \cos \theta
\end{bmatrix}
\]

(60)
Applying the Bond transformation to the elastic stiffness matrix $^a\mathbf{C}$ to obtain a general rotation.

$$^a\mathbf{C}'' = [\mathbf{R}][^a\mathbf{C}][\mathbf{R}]^T \quad \text{where} \quad \mathbf{R} = \mathbf{M}^s\mathbf{M}^q$$

The individual elements of the elastic-stiffness tensor for a TI elastically symmetric medium can be found by the following relation.

$$^a\mathbf{C}''_{ij} = A(R_{i1}R_{j1} + R_{i2}R_{j2}) + H(R_{i1}R_{j2} + R_{i2}R_{j1}) + F(R_{i3}R_{j2} + R_{i4}R_{j3} + R_{i5}R_{j4} + R_{i6}R_{j5}) + CR_{i3}R_{j3} + L(R_{i4}B_{j4} + R_{i5}B_{j5}) + NR_{i6}B_{j6}$$

The \mathbf{R} transformation matrix for a general rotation of a VTI medium to any arbitrary orientation is:

$$
\begin{bmatrix}
\cos^2\theta \cos^2\varphi & \sin^2\varphi & \sin^2\theta \cos^2\varphi \\
\cos^2\theta \sin^2\varphi & \cos^2\varphi & \sin^2\theta \sin^2\varphi \\
\sin^2\theta & 0 & \cos^2\theta \\
-\frac{1}{2} \sin 2\theta \sin \varphi & 0 & \frac{1}{2} \sin 2\theta \sin \varphi \\
\frac{1}{2} \cos \theta \sin 2\varphi & 0 & -\frac{1}{2} \sin 2\theta \cos \varphi \\
-\frac{1}{2} \cos^2\theta \sin 2\varphi & \frac{1}{2} \sin 2\varphi & -\frac{1}{2} \sin^2\theta \sin 2\varphi \\
-\sin \theta \sin 2\varphi & -\sin 2\theta \cos^2 \varphi & \cos \theta \sin 2\varphi \\
\sin \theta \sin 2\varphi & -\sin 2\theta \sin^2 \varphi & -\cos \theta \sin 2\varphi \\
0 & \sin 2\theta & 0 \\
\cos \theta \cos \varphi & -\cos 2\theta \sin \varphi & \sin \theta \cos \varphi \\
\cos \theta \sin \varphi & \cos 2\theta \cos \varphi & \sin \theta \sin \varphi \\
-\sin \theta 2 \cos \varphi & \frac{1}{2} \sin 2\theta \sin 2\varphi & \cos \theta \cos 2\varphi
\end{bmatrix}
$$

Once the rotated elastic moduli are determined for some symmetry axis $\hat{s}(\theta, \varphi)$, they can be inserted into the elements of the differential operator \mathbf{A} and the coupling matrix \mathbf{B}_{qr}. The elements of $^a\mathbf{C}_{ij}$ need to be converted from abbreviated subscript notation into Woodhouse notation as done in Appendix A. It should be noted that the Bond Transformations that include
rotations about both the y and z axes are best done numerically. Analytical results are not always insightful for most arbitrary symmetry axis orientations of \(s(\theta, \varphi) \).

The sensitivity of the elastic stiffness matrix to changes in \(\theta \) and \(\varphi \) may also be considered.

\[
\frac{\partial (a\mathbf{C})}{\partial \Delta} = \frac{\partial \mathbf{R}}{\partial \Delta} a\mathbf{C}^T + a\mathbf{C} \frac{\partial ^T \mathbf{R}}{\partial \Delta} \quad \text{where} \quad \mathbf{R} = \mathbf{M}^x \mathbf{M}^y
\]

(64)

The individual elements of the derivative of the elastic stiffness matrix with respect to the generic angle \(\Delta \) is:

\[
\frac{\partial (a\mathbf{C}_{i,j})}{\partial \Delta} = A \left(\frac{\partial R_{i1}}{\partial \Delta} R_{j1} + R_{i1} \frac{\partial R_{j1}}{\partial \Delta} + \frac{\partial R_{i2}}{\partial \Delta} R_{j2} + R_{i2} \frac{\partial R_{j2}}{\partial \Delta} \right) + H \left(\frac{\partial R_{i1}}{\partial \Delta} R_{j2} + R_{i1} \frac{\partial R_{j2}}{\partial \Delta} + \frac{\partial R_{i2}}{\partial \Delta} R_{j1} + R_{i2} \frac{\partial R_{j1}}{\partial \Delta} \right)
+ F \left(\frac{\partial R_{i1}}{\partial \Delta} R_{j3} + R_{i1} \frac{\partial R_{j3}}{\partial \Delta} + \frac{\partial R_{i2}}{\partial \Delta} R_{j3} + R_{i2} \frac{\partial R_{j3}}{\partial \Delta} \right) + C \left(\frac{\partial R_{i3}}{\partial \Delta} R_{j1} + R_{i3} \frac{\partial R_{j1}}{\partial \Delta} + \frac{\partial R_{i3}}{\partial \Delta} R_{j2} + R_{i3} \frac{\partial R_{j2}}{\partial \Delta} \right)
+ L \left(\frac{\partial R_{i4}}{\partial \Delta} R_{j4} + R_{i4} \frac{\partial R_{j4}}{\partial \Delta} + \frac{\partial R_{i5}}{\partial \Delta} R_{j5} + R_{i5} \frac{\partial R_{j5}}{\partial \Delta} \right) + N \left(\frac{\partial R_{i6}}{\partial \Delta} R_{j6} + R_{i6} \frac{\partial R_{j6}}{\partial \Delta} \right)
\]

\[
\frac{\partial \mathbf{R}}{\partial \theta} = \begin{bmatrix}
-\sin 2\theta \cos^2 \varphi & 0 & \sin 2\theta \cos^2 \varphi \\
-\sin 2\theta \sin^2 \varphi & 0 & \sin 2\theta \sin^2 \varphi \\
-\sin \theta \cos \varphi & 0 & -\sin^2 \theta \\
\sin \theta \sin \varphi & 0 & \cos 2\theta \sin \varphi \\
-\frac{1}{2} \sin \theta \sin 2\varphi & 0 & -\cos \theta \cos \varphi \\
-\frac{1}{2} \sin 2\theta \sin 2\varphi & 0 & \frac{1}{2} \sin 2\theta \sin 2\varphi
\end{bmatrix}
\]

(65)
$$\frac{\partial \mathbf{R}}{\partial \varphi} = \begin{bmatrix}
- \cos^2 \theta \sin 2\varphi & \sin 2\varphi & - \sin^2 \theta \sin 2\varphi \\
\cos^2 \theta \sin 2\varphi & - \sin 2\varphi & \sin^2 \theta \sin 2\varphi \\
0 & 0 & 0 \\
- \frac{1}{2} \sin 2\theta \cos \varphi & 0 & \frac{1}{2} \sin 2\theta \cos \varphi \\
\cos \theta \cos 2\varphi & 0 & \frac{1}{2} \sin 2\theta \sin \varphi \\
- \cos^2 \theta \cos 2\varphi & \cos 2\varphi & - \sin^2 \theta \cos 2\varphi
\end{bmatrix}
$$

\begin{equation}
\begin{bmatrix}
-2 \sin \theta \cos 2\varphi & \sin 2\theta \sin 2\varphi & 2 \cos \theta \cos 2\varphi \\
2 \sin \theta \cos 2\varphi & - \sin 2\theta \sin 2\varphi & -2 \cos \theta \cos 2\varphi \\
0 & 0 & 0 \\
- \cos \theta \sin \varphi & - \cos 2\theta \cos \varphi & - \sin \theta \sin \varphi \\
\cos \theta \cos \varphi & - \cos 2\theta \sin \varphi & \sin \theta \cos \varphi \\
2 \sin \theta 2 \sin \varphi & \sin 2\theta \cos 2\varphi & -2 \cos \theta \sin 2\varphi
\end{bmatrix}
\end{equation} (66)
E Equations of Motion and First Order Equations

Consider the equations of motion for elastic waves in anisotropic structures as described equation (3) of Maupin (1988).

\[-\rho \omega^2 w = \frac{\partial t_1}{\partial x} + \frac{\partial t_2}{\partial y} + \frac{\partial t_3}{\partial z} + F\]

\[t_i = w C_{ij} \frac{\partial w}{\partial x_j} \quad (67)\]

The characteristic equation can be expanded out for each individual traction vector.

\[t_1 = w C_{11} \frac{\partial w}{\partial x} + w C_{12} \frac{\partial w}{\partial y} + w C_{13} \frac{\partial w}{\partial z} \quad (68)\]

\[t_2 = w C_{21} \frac{\partial w}{\partial x} + w C_{22} \frac{\partial w}{\partial y} + w C_{23} \frac{\partial w}{\partial z} \quad (69)\]

\[t_3 = w C_{31} \frac{\partial w}{\partial x} + w C_{32} \frac{\partial w}{\partial y} + w C_{33} \frac{\partial w}{\partial z} \quad (70)\]

Now consider the the derivative with respect to \(x\) of \(w\) and \(t_1\). The derivatives are chosen to be expressed only in terms of material properties and the vectors \(w\) and \(t_1\):

\[\frac{\partial w}{\partial x} = w C_{11}^{-1} t_1 - w C_{11}^{-1} w C_{12} \frac{\partial w}{\partial y} + w C_{11}^{-1} w C_{13} \frac{\partial w}{\partial z} \quad (71)\]

\[\frac{\partial t_1}{\partial x} = -\rho \omega^2 w \frac{\partial}{\partial y} \left(X_{22} \frac{\partial w}{\partial y} \right) - \frac{\partial}{\partial x} \left[X_{23} \frac{\partial w}{\partial z} \right] - \frac{\partial}{\partial y} \left[w C_{21} w C_{11}^{-1} t_1 \right] - \frac{\partial}{\partial z} \left[X_{32} \frac{\partial w}{\partial y} \right] \quad (72)\]

Now consider \(w\) and \(t_2\) and their derivative with respect to \(y\). The derivatives are chosen to be expressed only in terms of material properties and the vectors \(w\) and \(t_2\):

\[\frac{\partial w}{\partial y} = w C_{22}^{-1} t_2 - w C_{22}^{-1} w C_{21} \frac{\partial w}{\partial x} + w C_{22}^{-1} w C_{23} \frac{\partial w}{\partial z} \quad (73)\]

\[\frac{\partial t_2}{\partial y} = -\rho \omega^2 w \frac{\partial}{\partial x} \left[Y_{11} \frac{\partial w}{\partial x} \right] - \frac{\partial}{\partial x} \left[Y_{13} \frac{\partial w}{\partial z} \right] - \frac{\partial}{\partial x} \left[w C_{12} w C_{22}^{-1} t_2 \right] - \frac{\partial}{\partial z} \left[Y_{31} \frac{\partial w}{\partial x} \right] \quad (74)\]

Similarly the derivatives of \(w\) and \(t_2\) with respect to \(z\) may be considered. The derivatives...
are chosen to be expressed only in terms of material properties and the vectors \(\mathbf{w} \) and \(\mathbf{t}_3 \):

\[
\frac{\partial \mathbf{w}}{\partial z} = w C_{33}^{-1} \mathbf{t}_3 - w C_{33}^{-1} w C_{31} \frac{\partial \mathbf{w}}{\partial x} + w C_{33}^{-1} w C_{32} \frac{\partial \mathbf{w}}{\partial y} \tag{75}
\]

\[
\frac{\partial \mathbf{t}_3}{\partial z} = -\rho \omega^2 \mathbf{w} - \frac{\partial}{\partial x} \left(Z_{11} \frac{\partial \mathbf{w}}{\partial x} \right) - \frac{\partial}{\partial y} \left(Z_{12} \frac{\partial \mathbf{w}}{\partial y} \right) - \frac{\partial}{\partial x} (w C_{13} w C_{33}^{-1} \mathbf{t}_3)
- \frac{\partial}{\partial y} (w C_{23} w C_{33}^{-1} \mathbf{t}_3) - \mathbf{F} \tag{76}
\]

These three sets of equations can be reformulated into a single set of generalized equations of motion.

\[
\frac{\partial \mathbf{w}}{\partial x_m} = w C_{mm}^{-1} \mathbf{t}_m - w C_{mm}^{-1} w C_{mi} \frac{\partial \mathbf{w}}{\partial x_i} + w C_{mm}^{-1} w C_{mj} \frac{\partial \mathbf{w}}{\partial x_j} \tag{77}
\]

\[
\frac{\partial \mathbf{t}_m}{\partial x_m} = -\rho \omega^2 \mathbf{w} - \frac{\partial}{\partial x_i} \left((w C_{ii} - w C_{im} w C_{mm}^{-1} w C_{mi}) \frac{\partial \mathbf{w}}{\partial x_i} \right)
- \frac{\partial}{\partial x_i} (w C_{im} w C_{mm}^{-1} \mathbf{t}_m)
- \frac{\partial}{\partial x_j} \left((w C_{ij} - w C_{im} w C_{mm}^{-1} w C_{mj}) \frac{\partial \mathbf{w}}{\partial x_j} \right)
- \frac{\partial}{\partial x_j} \left((w C_{jj} - w C_{im} w C_{mm}^{-1} w C_{mj}) \frac{\partial \mathbf{w}}{\partial x_j} \right)
- \frac{\partial}{\partial x_j} (w C_{jm} w C_{mm}^{-1} \mathbf{t}_m) - \mathbf{F} \tag{78}
\]

where \(m = 1, 2, 3 \) and \(x_m = x, y, z \).

An eigenvalue problem may be formulated from the generalized equations of motion, which results in a generalized first order coupled equation.

\[
\frac{\partial \mathbf{u}^m}{\partial x_m} = \mathbf{A}^m \mathbf{u}^m - \mathbf{F} \quad \text{where } \mathbf{u}^m = (\mathbf{w}, \mathbf{t}_m)^T \tag{79}
\]

\[
\mathbf{A} = \begin{pmatrix}
A_{11}^m & A_{12}^m \\
A_{21}^m & A_{22}^m
\end{pmatrix} \tag{80}
\]

For a solid triclinic anisotropic medium, the sub-operators for the generalized first order coupled
equation are:

\[
A_{11}^m = \left(-\left(wC_{mm}^{-1}\right)^{wC_{ii}} \frac{\partial}{\partial x_i} + \left(wC_{mm}^{-1}\right)^{wC_{jj}} \frac{\partial}{\partial x_j} \right),
\]

\[
A_{12}^m = \left(wC_{mm}^{-1} \right),
\]

\[
A_{21}^m = \left(-\rho \omega^2 w - \frac{\partial}{\partial x_i} \left(\left(wC_{ii} - wC_{im} wC_{mm}^{-1} wC_{mi} \right) \frac{\partial}{\partial x_i} \right) \right.
\]

\[\left. - \frac{\partial}{\partial x_j} \left(\left(wC_{ij} - wC_{im} wC_{mm}^{-1} wC_{mj} \right) \frac{\partial}{\partial x_j} \right) - \frac{\partial}{\partial x_i} \left(\left(wC_{ji} - wC_{jm} wC_{mm}^{-1} wC_{mi} \right) \frac{\partial}{\partial x_j} \right) - \frac{\partial}{\partial x_j} \left(\left(wC_{jj} - wC_{jm} wC_{mm}^{-1} wC_{mj} \right) \frac{\partial}{\partial x_i} \right) \right),
\]

\[
A_{22}^m = \left(-\frac{\partial}{\partial x_i} \left(wC_{im} \right)^{wC_{mm}^{-1}} \right) - \frac{\partial}{\partial x_j} \left(wC_{jm} \right)^{wC_{mm}^{-1}},
\]

(81)
F Symmetry Planes and Wave Polarizations

The polarization of the modes composing the seismo-acoustic wavefield depend on the propagation direction through the anisotropic medium. The polarization of any mode will change if the propagation direction changes or the elastic stiffness matrix is rotated. Pure P-SV and SH polarization directions exist in a TI elastically symmetric medium for specific propagation directions. The polarization of the modes is determined by the proximity of the propagation direction to the symmetry axis direction.

The form of the elastic stiffness matrix indicates the amount of symmetry and the location of symmetry planes for an anisotropic medium. These symmetry planes, help predict when transverse particle motion may propagate independently of the P-SV particle motion, or when quasi-SH particle motions propagate independently of quasi-P-SV particle motions.

Auld(1990) discusses pure plane-wave mode propagation directions in relation to symmetry planes and symmetry axes. The modes of a shallow water waveguide follow these same principles with a little modification. P, SV, and SH plane waves propagate independently for pure mode directions of propagation. For the modes of a shallow water wave guide, the P and SV particle motions are always coupled, but the SH particle motions may propagate independently for some geometries of the symmetry axis and propagation directions. If the SH motions coupled with either SV or P particle motions, then the modes will have polarizations in all three coordinate directions.

Whenever the propagation is within a symmetry plane, the single generalized mode family splits into two independent mode families, and the SH modes will propagate independently of the P-SV modes. The propagation, in a sense, will behave as quasi-isotropic. This is true regardless of whether the anisotropy is strong or weak. A VTI medium can be thought as a quasi-isotropic or quasi-orthorhombic medium. The wave propagation is similar to an isotropic medium, but the modes have slightly different shapes.

Consider rotating the elastic stiffness matrix, so that the symmetry axis \(\hat{s} \) first aligned with the three coordinate axes. When \(\hat{s} = \hat{x}, \hat{y}, \) or \(\hat{z} \) then the form of the elastic stiffness matrix remains in the form of a quasi-orthorhombic, with 12 non-zero matrix elements and the remainder having zero values:

\[
\begin{pmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{21} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{pmatrix}
\]

where \(\hat{s} = \hat{x}, \hat{y}, \) or \(\hat{z} \)
For a VTI medium, all elements of the elastic stiffness matrix aC_{IJ} are unaltered by rotations about the z-axis.

An orthorhombic medium has the xy, xz, and yz-planes as symmetry planes, and the quasi-orthorhombic elastic stiffness matrix will have these symmetry planes as well. Applying the symmetry principles from table 9 for \hat{s} along any of the coordinate axes, the SH modes will propagate independently of the P-SV modes. The mode set is separated into two families of modes, the SH modes and the P-SV modes, when the \hat{s} is aligned with any of the three coordinate axes.

Now consider tilting the symmetry axis \hat{s} so that it remains in the xz-plane. The elastic stiffness matrix aC_{IJ} takes on the form of a monoclinic medium where the single symmetry plane is orthogonal to the y-axis and parallel to the xz-plane.

$$aC_{IJ} = \begin{bmatrix}
C_{11} & C_{12} & C_{13} & 0 & C_{15} & 0 \\
C_{21} & C_{22} & C_{23} & 0 & C_{25} & 0 \\
C_{31} & C_{32} & C_{33} & 0 & C_{35} & 0 \\
0 & 0 & 0 & C_{44} & 0 & C_{46} \\
C_{51} & C_{52} & C_{53} & 0 & C_{55} & 0 \\
0 & 0 & 0 & C_{64} & 0 & C_{66}
\end{bmatrix}$$

where $\hat{s}(\theta, \varphi) = \hat{s}(all, 0^\circ)$ (83)

A monoclinic medium has a single plane of symmetry. Consider the form of the elastic stiffness matrix when the symmetry is parallel with the xz, yz, and xy-planes respectively. The tilted TI medium with the symmetry axis along one of the coordinate planes has the form of a monoclinic material, but with a higher degree of symmetry. A true monoclinic material has 13 independent parameters. The tilted TI medium only has five independent elastic moduli, even though the elastic stiffness matrix is populated the same as a monoclinic medium. The elastic stiffness tensor can be thought of exhibiting a quasi-monoclinic form, with higher symmetry due to a reduction in the number of independent elastic moduli.

For the symmetry axis in the xz-plane, the C_{22} element is insensitive to any variation in θ when $\varphi = 0^\circ$. This is of little consequence, since the C_{22} element is not included in the equation of motion for 2-D propagation along the x-direction. The horizontally polarized shear modes will propagate independently of the P-SV modes for all orientations of the symmetry axis that lie in the xz-plane. The modes are split into two families of propagating modes: P-SV modes with polarizations in the xz-plane and SH modes with polarizations in the transverse coordinate direction.

Now consider tilting the symmetry axis so that it remains in the yz-plane. The elastic stiffness matrix again takes on the form of a quasi-monoclinic medium where the single symmetry plane
is orthogonal to the x-axis and parallel to the yz-plane.

\[a_{C_{IJ}} = \begin{bmatrix}
 C_{11} & C_{12} & C_{13} & C_{14} & 0 & 0 \\
 C_{21} & C_{22} & C_{23} & C_{24} & 0 & 0 \\
 C_{31} & C_{32} & C_{33} & C_{34} & 0 & 0 \\
 C_{41} & C_{42} & C_{43} & C_{44} & 0 & 0 \\
 0 & 0 & 0 & 0 & C_{55} & C_{56} \\
 0 & 0 & 0 & 0 & C_{65} & C_{66}
\end{bmatrix} \]

where \(\hat{s}(\theta, \varphi) = \hat{s}(\text{all}, 90^\circ) \) (84)

The \(C_{11} \) element of the stiffness tensor is insensitive to any variations of \(\theta \) when \(\varphi = 90^\circ \).

The symmetry plane and symmetry axis principles indicate that no pure horizontally polarized modes should be expected when the elastic stiffness matrix is in this form, unless the symmetry axis \(\hat{s} \) is vertical or horizontal in the yz-plane. The principles indicate that the quasi-shear modes will have polarizations parallel to the symmetry axis, having both transverse and vertical components. The modes will likely consist of a single family of generalized P-SV-SH modes with polarizations in all three coordinate directions. The quasi-monoclinic elastic stiffness matrix has a higher degree of symmetry than a true monoclinic medium.

Next consider tilting the symmetry axis \(\hat{s} \) so that it remains in the xy-plane. The elastic stiffness matrix again takes on the form of a quasi-monoclinic medium with the single symmetry plane orthogonal to the z-axis and parallel to the xy-plane.

\[a_{C_{IJ}} = \begin{bmatrix}
 C_{11} & C_{12} & C_{13} & 0 & 0 & C_{16} \\
 C_{21} & C_{22} & C_{23} & 0 & 0 & C_{26} \\
 C_{31} & C_{32} & C_{33} & 0 & 0 & C_{36} \\
 0 & 0 & 0 & C_{44} & C_{45} & 0 \\
 0 & 0 & 0 & C_{54} & C_{55} & 0 \\
 C_{61} & C_{62} & C_{63} & 0 & 0 & C_{66}
\end{bmatrix} \]

where \(\hat{s}(\theta, \varphi) = \hat{s}(90^\circ, \text{all}) \) (85)

The \(C_{33} \) element of the elastic stiffness matrix is insensitive to any variations of \(\varphi \) for \(\theta = 90^\circ \).

Now consider tilting the symmetry axis to a general orientation that excludes the coordinate axes directions and the xy, xz, and yz coordinate planes. The general form of the rotated \(a_{C_{IJ}} \) elastic stiffness matrix is quasi-triclinic in nature with a higher degree of symmetry than a true triclinic elastic stiffness matrix. Similar to the monoclinic comparison, a true triclinic material has 21 independent elastic moduli. The rotated elastic stiffness matrix in equation (86) still only has 5 independent elastic moduli. Each element remains a linear combination of the five elastic moduli. So the rotated elastic stiffness matrix can be thought of being quasi-triclinic, with a
higher degree of symmetry due to the reduction in the number of independent elastic moduli.

\[aC_{IJ} = \begin{bmatrix}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\
C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\
C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\
C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66}
\end{bmatrix} \]

where \(s(\theta, \varphi) \) (86)

Except when the symmetry axis \(s \) is aligned with the x-axis or y-axis, the mode set consists of quasi-P-SV, quasi-SH, or generalized P-SV-SH modes.

The form of the elastic stiffness tensor may change as a TI medium rotates from a general orientation to more specific orientations. The elastic stiffness tensor of a TTI medium would be described as quasi-triclinic, the elastic stiffness tensor for a symmetry axis within any of the coordinate planes would be described as quasi-monoclinic, and the elastic stiffness tensor when the symmetry axis is aligned with any of the three coordinate axes would be quasi-orthorhombic.

Figure 20 shows the form the elastic stiffness matrix takes for orientations of the symmetry axis \(s(\theta, \varphi) \) in the first quadrant. The vertical axis is the angle \(\varphi \) in 10° increments and the horizontal axis is the angle \(\theta \) in 10° increments. Each matrix represents the form of the elastic stiffness matrix \(aC_{IJ} \) for a specific symmetry axis \(s \) orientation. The first row shows the form of \(aC_{IJ} \) for \(\varphi = 0^\circ \) and \(\theta = 0^\circ - 90^\circ \). This represents the symmetry axis within the sagittal plane and the elastic stiffness matrix has the form of a quasi-monoclinic medium. The first column shows the elastic stiffness matrix for \(s = \hat{z} \), with the form of a quasi-orthorhombic medium or VTI. The corner matrices of figure 20 in the tenth column also have the quasi-orthorhombic form and correspond to HTI media with the symmetry axis \(s \) aligned parallel to the \(\hat{x} \) and \(\hat{y} \) axes. The tenth column shows the form of \(aC_{IJ} \) for \(\theta = 90^\circ \) and \(\varphi = 0^\circ - 90^\circ \). This represents the symmetry axis within the xy-plane and the matrices have the form of a quasi-monoclinic medium. This also is a HTI medium where \(s(\theta, \varphi) = \cos \varphi \hat{x} + \sin \varphi \hat{y} \). The tenth row shows the form of the elastic stiffness matrices for \(\phi = 90^\circ \) and \(\varphi = 0^\circ - 90^\circ \). The matrices for \(s \) in the yz-plane also have a quasi-monoclinic form. All other orientations of the symmetry axis for \(aC_{IJ} \) produce the form of a quasi-triclinic medium. Okaya and McEvilly (2003) noticed similar results for rotations of hexagonal symmetry about the x, y, and z axes, and mentioned the appearance of monoclinic symmetry for rotations about the y-axis. Shoenberge and Costa (1991) also state that hexagonal anisotropy behaves as monoclinic when the symmetry axis is within the sagittal plane.
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VTI Compositionally Layered Shallow Water Structure and Bond Transformation</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>Local Cartesian Coordinate System</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Rotation Sensitivity of Elastic Elements</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Azimuthal and Elevational Anisotropy</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>1-D Plane-Layered Structure</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>Density and Velocity Profile</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>Slowness Curves</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>Slowness Curves for TTI</td>
<td>61</td>
</tr>
<tr>
<td>9</td>
<td>Frequency Dispersion Curves</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>Angular Dispersion Curves</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>Stacked Dispersion Curves</td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>Pure P-SV and SH Modes</td>
<td>65</td>
</tr>
<tr>
<td>13</td>
<td>Mode 9 when \hat{s} is parallel to the three coordinate axes</td>
<td>66</td>
</tr>
<tr>
<td>14</td>
<td>Quasi-P-SV, Quasi-SH, and P-SV-SH Modes</td>
<td>67</td>
</tr>
<tr>
<td>15</td>
<td>Invariant Acoustic Mode</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>Acoustic Mode for 5Hz - 100Hz</td>
<td>69</td>
</tr>
<tr>
<td>17</td>
<td>Switching of Mode Characteristics</td>
<td>70</td>
</tr>
<tr>
<td>18</td>
<td>Source Excitation of P-SV and SH Modes</td>
<td>71</td>
</tr>
<tr>
<td>19</td>
<td>Source Excitation of quasi-P-SV, quasi-SH, and P-SV-SH Modes</td>
<td>72</td>
</tr>
<tr>
<td>20</td>
<td>Elastic Stiffness Matrix for TTI</td>
<td>73</td>
</tr>
</tbody>
</table>
VTI Compositionally Layered Structure

Figure 1: A representative elastically symmetric transversely isotropic structure (TI) due to compositional layering with a vertical symmetry axis \hat{s}. The fast velocity directions \mathbf{V}_{fast} are normal to the symmetry axis direction and parallel to the bedding plane, the xy-plane for this instance. The slow velocity direction \mathbf{V}_{slow} is parallel to the vertical symmetry axis. A TI structure with a vertical symmetry axis is often referred to as vertical transverse isotropy (VTI) or as azimuthally isotropic. The geometrical orientation of the anisotropy in a plane layered homogeneous anisotropic model, depends on the orientation of the symmetry axis \hat{s}. The white block of material from the plane layered structure on the right is expanded on the left to show the importance of symmetry axis direction on velocity properties of the medium. A structure can be transversely isotropic with a vertical, tilted (neither vertical nor horizontal), or horizontal symmetry axis and be classified as VTI, TTI, or HTI respectively. For a VTI orientation, the fast velocity direction is in the horizontal plane. A TTI orientation results in the fast velocity direction being contained to an oblique plane and the HTI orientation restricts the fast velocity directions to a vertical plane normal to the symmetry axis \hat{s}. Note that the slow velocity direction (\mathbf{V}_{slow}) always corresponds with the symmetry axis direction \hat{s}.

54
Fixed Cartesian Coordinate System

Figure 2: The Cartesian coordinate system is defined with the x-direction corresponding with the direction of propagation, the z-direction is positive downwards, and the y-direction is free of any lateral variations. The symmetry axis \hat{s} is defined in reference to the fixed Cartesian coordinate system by the Spherical coordinate angles θ and ϕ. The angle between the z-axis and the symmetry axis \hat{s} is described by θ. The angle between the projection of the symmetry axis \hat{s} onto the horizontal plane and the x-direction is described by φ.
Figure 3: The C_{11} element of the elastic stiffness matrix a^{C}_{IJ} is shown in Figure 3(a) for various angles of θ and φ. This is a numerical plot of equation 11. Figures 3(b) and 3(c) plot the sensitivity of the C_{11} element to the angles φ and θ respectively.
Figure 4: Any tilt of the symmetry axis with respect to the fixed coordinate system results in an azimuthal, elevational, or a combination of azimuthal and elevational change in anisotropy. The red line in the horizontal plane represents changes of azimuth φ of the symmetry axis and the red line in the vertical plane represents changes in elevation θ of the symmetry axis.
Figure 5: A 1-D plane layered homogeneous anisotropic structure representation of shallow water environments. The model contains fluid layers over thin anisotropic and/or isotropic sediments, additional sediment and/or basement layers, and is terminated by an isotropic halfspace. There is no lateral variations in the structure, and thee elastic parameters only vary with depth. The anisotropy is restricted to elastically symmetric transverse isotropy, but the symmetry axis \hat{s} may have any arbitrary orientation.
Figure 6: The velocity and density profile of the starting VTI medium. The red, blue, and dotted black lines represent the shear velocity, compressional velocity, and density respectively with depth. The profile on the right is an enlargement of the thin sediment region to show the shear wave velocity splitting within the anisotropic layers. The solid red line represents the vertical shear speed β_V and the dotted red line represents the horizontal shear speed β_H. Note that the velocity profile lacks any compressional anisotropy.
Figure 7: The slowness curves for the xy, xz, and yz-planes for a VTI anisotropic sediment layer, where $\hat{s} = \hat{z}$. The inner circle is the compressional slowness, indicating the absence of any anisotropy in the compressional velocity. The outer paths represent the vertical and horizontal shear slownesses. In Figure (a) there is complete shear velocity splitting. Both Figures (b) and (c) reveal shear velocity singularities at $\theta = 0^\circ, 180^\circ$ and $\theta \approx 70^\circ, 110^\circ$.
Figure 8: Slowness curves for orientations of the symmetry axis \hat{s} within the first quadrant. Each slowness figure indicates a change in azimuth or elevation of symmetry axis of 10°. The horizontal row represents variations of θ and the vertical column represents variations of φ. The slowness curves are shown for the xz-plane for an anisotropic marine sediment layer.
Figure 9: Frequency dispersion curves for modal phase velocities between 1500\(m/s\) and 2000\(m/s\), for the VTI \(\hat{s}(\theta, \varphi) = \hat{s}(0^\circ, 0^\circ)\) and a TTI \(\hat{s}(\theta, \varphi) = \hat{s}(60^\circ, 80^\circ)\). The dispersion curves for the VTI symmetry in (a) and TTI symmetry (b) are very similar. Both figures clearly show the “solotone” effect, the dark bands in both figures (a) and (b). The modal phase velocities trace out vertical paths that are nearly parallel in figure (a). The even parallel nature is disrupted when the phase velocities approach the value of an “invariant” mode. The modal phase velocities in figure (b) also trace out vertical paths, but a braiding effect can be seen to occur between adjacent phase velocity traces. The dark bands that represent the phase velocities of the “invariant” modes are frequency dependent, but they vary more slowly than for the non-invariant modes.
Figure 10: Angular dispersion curves for both phase and group velocities. Figure (a) and (b) show the angular dispersion curves for the phase and group velocities respectively for \(\hat{s}(\theta, \phi) = \hat{s}(10^\circ, 0^\circ - 90^\circ) \). Figure c) and (d) represent the angular dispersion curves for the phase and group velocities respectively for \(\hat{s}(\theta, \phi) = \hat{s}(0^\circ - 90^\circ, 10^\circ) \). In general, changes in elevation (\(\theta \)) have a larger affect on the phase and group velocities than changes in azimuth (\(\phi \)).
Figure 11: The stacked angular dispersion curves show the dependence and sensitivity of the dispersion branches on variations of the angles θ and φ for a range of frequencies. The thickness of an envelope indicates the sensitivity of a particular mode to changes in azimuth (φ). Note the convergence of the phase velocities at 0° and approximately 70°. This is where the shear velocities become degenerate.
Figure 12: This is an example of P-SV and SH modes for \(s(\theta, \varphi) = s(80^\circ, 0^\circ) \). This is an instance where the elastic stiffness matrix is quasi-monoclinic and the pure P-SV and SH modes have completely separate polarizations. The P-SV mode has particle motion in the sagittal plane and the SH mode has particle motion in the y-coordinate-direction of the horizontal plane.
Figure 13: The P-SV mode remains polarized in the sagittal plane when the symmetry axis $\hat{s} = \hat{x}, \hat{y}, \hat{z}$. The mode shapes are similar when the symmetry axis is aligned parallel to any of the three coordinate axis directions.
Figure 14: The quasi-P-SV mode in figure (a) has gained some particle motion in the y-direction, but still has particle motion predominantly in the sagittal plane. The quasi-SH mode in figure (b) has gained particle motion in the sagittal plane, but the mode remains predominantly polarized along the y-direction. The P-SV-SH mode in figure (c) has polarizations in all three coordinate directions and attributes of both P-SV and SH modes.
Figure 15: An example of an “invariant acoustic mode” at 50.0Hz for $\hat{s}(\theta, \varphi) = \hat{s}(80^\circ, 30^\circ)$. The mode only gains a very small portion of particle motion in the y-direction.
Figure 16: The characteristics of an acoustic mode changes with frequency. Figure (a) shows the x-component of displacement and figure (b) shows the z-component of displacement. The acoustic mode shown has a single zero crossing in the z-component particle displacement within the fluid layer at higher frequencies.
Figure 17: The x, y, and z particle displacements of a mode switches characteristics with another mode due to a near degeneracy. The near degeneracy occurs when the symmetry axis \hat{s} is varied in θ. In this case the quasi-SH mode becomes a quasi-P-SV mode as $\theta = 0^\circ - 90^\circ$.
Figure 18: The figures (a), (b), and (c) show the x, y, and z displacement components for an explosive source respectively. The figures (d), (e), and (f) show the x, y, and z displacement component for a double couple source respectively. An explosive source only excites modes with particle motion in the sagittal plane. A double couple in the horizontal plane only excites modes with particle motion in the y-direction. These modes reflect a geometrical orientation of the symmetry axis \hat{s} when the P-SV and SH particle motions propagate independently. The modes of this quasi-monoclinic medium are similar to modes of an isotropic or VTI medium.
Figure 19: Both explosive and double couple sources are effective at exciting modes with 3-D particle motion. This is purely a result of the introduction of anisotropy into the sediments, which results in the coupling of the x, y, and z particle displacements. Note that the double couple source is more effective at exciting the lower order modes, than the explosive source. The figures show the displacement of all the modal eigenfunctions with phase velocities between the of 1500m/s and 2000m/s. The x, y and z-components of displacement are shown in figures (a) & (d), (b) & (e), and (c) & (f) respectively. P-SV-SH modes are clearly evident with energy in all three coordinate directions.
Figure 20: Each matrix in the figure represents the form of the elastic stiffness matrix \(^aC_{IJ} \) for specific orientations of the symmetry axis \(\hat{s} \). The matrices graphically reveal how the elastic stiffness matrix \(^aC_{IJ} \) is populated as the symmetry axis is rotated. Each matrix in a horizontal row represents a 10° increments in \(\varphi \) for a fixed value of \(\theta \). Likewise, each matrix in a vertical column represents a 10° increment of \(\theta \) for a fixed value of \(\varphi \). The first row represents rotations about the y-axis, the last row represents rotations about the x-axis, and the last column represents rotations about the z-axis when \(\hat{s} \) is within the xy-plane. All of the matrices on the outside edges of the figure represent the elastic stiffness matrix being rotated about a coordinate axis and have a quasi-monoclinic form. More general rotations of the symmetry axis \(\hat{s} \) results in a quasi-triclinic form of \(^aC_{IJ} \).
List of Tables

1. Mode Wavelength Ranges .. 75
2. Velocity/Density Profile .. 76
3. Invariant Acoustic Modes .. 77
4. P-SV and SH Particle Motion Independence 78
5. Abbreviated Subscript Notation .. 79
6. Love Notation ... 80
7. Takeuchi and Saito Notation ... 81
8. Backus Notation .. 82
9. Propagation Principles ... 83
Table 1: Mode Wavelength Ranges

<table>
<thead>
<tr>
<th>Phase Velocity</th>
<th>10.0Hz</th>
<th>20.0Hz</th>
<th>30.0Hz</th>
<th>40.0Hz</th>
<th>50.0Hz</th>
<th>75.0Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500.0m/s</td>
<td>150.00m</td>
<td>75.00m</td>
<td>50.00m</td>
<td>37.50m</td>
<td>30.0m</td>
<td>40.00m</td>
</tr>
<tr>
<td>2000.0m/s</td>
<td>200.00m</td>
<td>100.00m</td>
<td>66.67m</td>
<td>50.00m</td>
<td>40.00m</td>
<td>26.67m</td>
</tr>
</tbody>
</table>
Table 2: Velocity/Density Profile

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>$A = aC_{11}$</th>
<th>$C = aC_{33}$</th>
<th>$F = aC_{13}$</th>
<th>$L = aC_{44}$</th>
<th>$N = aC_{66}$</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
<td>2.250</td>
<td>2.2</td>
<td>2.2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1000</td>
</tr>
<tr>
<td>2.50</td>
<td>5.544</td>
<td>5.544</td>
<td>5.376</td>
<td>0.0526</td>
<td>0.0669</td>
<td>2100</td>
</tr>
<tr>
<td>2.50</td>
<td>5.544</td>
<td>5.544</td>
<td>5.376</td>
<td>0.0526</td>
<td>0.0683</td>
<td>2100</td>
</tr>
<tr>
<td>2.50</td>
<td>5.544</td>
<td>5.544</td>
<td>5.376</td>
<td>0.0526</td>
<td>0.0700</td>
<td>2100</td>
</tr>
<tr>
<td>2.50</td>
<td>5.544</td>
<td>5.544</td>
<td>5.376</td>
<td>0.0526</td>
<td>0.0714</td>
<td>2100</td>
</tr>
<tr>
<td>2.50</td>
<td>5.586</td>
<td>5.586</td>
<td>5.376</td>
<td>0.0792</td>
<td>0.0864</td>
<td>2100</td>
</tr>
<tr>
<td>2.50</td>
<td>5.649</td>
<td>5.649</td>
<td>5.383</td>
<td>0.1330</td>
<td>0.1330</td>
<td>2100</td>
</tr>
<tr>
<td>2.50</td>
<td>5.754</td>
<td>5.754</td>
<td>5.438</td>
<td>0.1580</td>
<td>0.1580</td>
<td>2100</td>
</tr>
<tr>
<td>2.50</td>
<td>5.859</td>
<td>5.859</td>
<td>5.495</td>
<td>0.1820</td>
<td>0.1820</td>
<td>2100</td>
</tr>
<tr>
<td>2.50</td>
<td>5.964</td>
<td>5.964</td>
<td>5.550</td>
<td>0.2070</td>
<td>0.2070</td>
<td>2100</td>
</tr>
<tr>
<td>2.50</td>
<td>6.069</td>
<td>6.069</td>
<td>5.607</td>
<td>0.2310</td>
<td>0.2310</td>
<td>2100</td>
</tr>
<tr>
<td>372.50</td>
<td>8.400</td>
<td>8.400</td>
<td>2.798</td>
<td>2.8010</td>
<td>2.8010</td>
<td>2100</td>
</tr>
<tr>
<td>1000.00</td>
<td>70.634</td>
<td>70.634</td>
<td>23.528</td>
<td>23.5530</td>
<td>23.5530</td>
<td>2335</td>
</tr>
</tbody>
</table>
Table 3: Invariant Acoustic Modes

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Mode 1</th>
<th>Mode 2</th>
<th>Mode 3</th>
<th>Mode 4</th>
<th>Mode 5</th>
<th>Mode 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0Hz</td>
<td>1560m/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.0Hz</td>
<td>1528m/s</td>
<td>1637m/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.0Hz</td>
<td>1517m/s</td>
<td>1577m/s</td>
<td>1920m/s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.0Hz</td>
<td>1511m/s</td>
<td>1550m/s</td>
<td>1626m/s</td>
<td>1905m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.0Hz</td>
<td>1506m/s</td>
<td>1524m/s</td>
<td>1556m/s</td>
<td>1606m/s</td>
<td>1679m/s</td>
<td>1757m/s</td>
</tr>
</tbody>
</table>
Table 4: P-SV and SH Particle Motion Independence

<table>
<thead>
<tr>
<th>Coordinate Axes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{s}(\theta, \varphi) = \hat{s}(90^\circ, 0^\circ) = \hat{x}$</td>
</tr>
<tr>
<td>$\hat{s}(\theta, \varphi) = \hat{s}(90^\circ, 90^\circ) = \hat{y}$</td>
</tr>
<tr>
<td>$\hat{s}(\theta, \varphi) = \hat{s}(0^\circ, 0^\circ) = \hat{z}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sagittal Plane:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{s}(\theta, \varphi) = \hat{s}(all^\circ, 0^\circ)$</td>
</tr>
</tbody>
</table>
Table 5: Abbreviated Subscript Notation

<table>
<thead>
<tr>
<th>ik or lj</th>
<th>I or J</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>23,32</td>
<td>4</td>
</tr>
<tr>
<td>13,31</td>
<td>5</td>
</tr>
<tr>
<td>12,21</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 6: Love Notation

<table>
<thead>
<tr>
<th>Love Notation</th>
<th>Backus Notation</th>
<th>Takeuchi and Saito Notation</th>
<th>Isotropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A =$</td>
<td>$A - B + C$</td>
<td>$\rho \alpha_H^2$</td>
<td>$\lambda + 2\mu$</td>
</tr>
<tr>
<td>$C =$</td>
<td>$A + B + C$</td>
<td>$\rho \alpha_H^2 \phi$</td>
<td>$\lambda + 2\mu$</td>
</tr>
<tr>
<td>$F =$</td>
<td>$A - 3C - 2(\bar{D} + \bar{E})$</td>
<td>$\rho \eta(\alpha_H^2 - 2\beta_V^2)$</td>
<td>λ</td>
</tr>
<tr>
<td>$L =$</td>
<td>$\bar{D} + \bar{E}$</td>
<td>$\rho \beta_V$</td>
<td>μ</td>
</tr>
<tr>
<td>$N =$</td>
<td>$\bar{D} - \bar{E}$</td>
<td>$\rho \beta_V^2 \xi$</td>
<td>μ</td>
</tr>
<tr>
<td>Takeuchi and Saito Notation</td>
<td>Love Notation</td>
<td>Backus Notation</td>
<td>Isotropy</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>α_H =</td>
<td>$\sqrt{\frac{A}{\rho}}$</td>
<td>$\sqrt{\frac{A-B+C}{\rho}}$</td>
<td>$\sqrt{\frac{\lambda+2\mu}{\rho}}$</td>
</tr>
<tr>
<td>β_V =</td>
<td>$\sqrt{\frac{L}{\rho}}$</td>
<td>$\sqrt{\frac{D+E}{\rho}}$</td>
<td>$\sqrt{\frac{\mu}{\rho}}$</td>
</tr>
<tr>
<td>$\xi =$</td>
<td>$\sqrt{\frac{N}{\rho}}$</td>
<td>$\frac{D-E}{\rho}$</td>
<td>1</td>
</tr>
<tr>
<td>$\phi =$</td>
<td>$\frac{C}{A}$</td>
<td>$\frac{A+B+C}{2D+E}$</td>
<td>1</td>
</tr>
<tr>
<td>$\eta =$</td>
<td>$\frac{F}{A-2L}$</td>
<td>$\frac{A-B+C-D-E}{A-3C-2(D+E)}$</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 8: Backus Notation

<table>
<thead>
<tr>
<th>Backus Notation</th>
<th>Love Notation</th>
<th>Takeuchi and Saito Notation</th>
<th>Isotropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{A}</td>
<td>$\frac{3(A+C)+2(F+2L)}{4(C-A)}$</td>
<td>$\frac{4\alpha H}{8}(\phi-1)$</td>
<td>$\lambda + 2\mu$</td>
</tr>
<tr>
<td>\bar{B}</td>
<td>$\frac{A-C-2(F+2L)}{2}$</td>
<td>$\frac{4\alpha_H^2}{8}(1+\eta)$</td>
<td>0</td>
</tr>
<tr>
<td>\bar{C}</td>
<td>$\frac{L+N}{2}$</td>
<td>$\frac{\alpha_H^2}{8}(1+\phi-2\eta)-4\beta_v^2(1-\eta)$</td>
<td>0</td>
</tr>
<tr>
<td>\bar{D}</td>
<td>$\frac{L-N}{2}$</td>
<td>$\frac{\rho\beta_v^2}{2}\left(\frac{1+\xi}{2}\right)$</td>
<td>μ</td>
</tr>
<tr>
<td>\bar{E}</td>
<td>$\frac{L-N}{2}$</td>
<td>$\frac{\rho\beta_v^2}{2}\left(\frac{1-\xi}{2}\right)$</td>
<td>0</td>
</tr>
<tr>
<td>Symmetry Plane Principles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propagation direction within symmetry plane:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shear motion polarized normal to symmetry plane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propagation direction normal to TI symmetry axis \hat{s}:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shear motion polarized parallel to TI symmetry axis \hat{s}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propagation direction parallel to TI symmetry axis \hat{s}:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Modal Investigation of Elastic Anisotropy in Shallow Water Environments: a study of anisotropy beyond VTI

Soukup, Darin J., Earth and Space Sciences Dept, Univ. of Washington;

Odom, Robert I., Applied Physics Laboratory, Univ. of Washington;

Park, Jeffrey, Geology and Geophysics, Yale University

This paper presents theoretical and numerical results for the modal characteristics of the seismo-acoustic wavefield in generally anisotropic range-independent media. General anisotropy affects the form of the elastic stiffness tensor, which directly affects the polarization of the local modes, the frequency and angular dispersion curves, and also introduces the effects of nearly degenerate modes. Horizontally polarized shear motion plays an important role in seismo-acoustic wave propagation in shallow water environments, and will be important for proper analysis of sediment attenuation. The transverse particle motion cannot be ignored when anisotropy is present for low frequency modes having significant bottom interaction. Even in 1-D media an explosion source excites particle motion in all three directions.

Shallow water, sediment anisotropy, seismo-acoustic propagation.