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1. Introduction and Background 

Quantum dots (QDs) and Nanoparticles (NPs) are particles made of metal and/or semiconductor 
materials that are on the nano size, with diameters ranging from 5–100 nm. The properties of 
these nanomaterials, which depend on their size and the material they are made from, are usually 
completely different than the properties of their corresponding bulk materials. There may be 
anywhere from 1–1000 electrons in a single QD, providing numerous possibilities for their 
optical and electrical properties. 

The unique optical properties of NPs can be beneficial to their biological applications. NPs have 
broad absorption spectra, ranging from the visible region into the ultraviolet, and narrow, size-
tunable photoluminescence spectra. Both of these spectra depend on the size of the NPs. The 
most attractive optical properties in NPs from a biological aspect appear in those that are 
approximately 10 nm in diameter or smaller (1). When illuminated with ultraviolet (UV) light, 
such NPs emit extremely bright fluorescent light (2). NPs are also effective energy donors in 
Fluorescent Resonance Energy Transfer (FRET) (3), a phenomenon in which energy is 
transferred between two molecules, from a donor fluorophore to an acceptor chromophore—also 
known as the quencher—when they come in close proximity to one another. This phenomenon 
can be used to sense a particular biomolecule from the observation of decrease in fluorescence 
intensity of NP. Due to such novel optical properties, NPs are used as imaging agents, biolabels, 
and biosensors exploiting FRET (3–7, 10).  

Over the past several years, NPs have been used in various ways to sense deoxyribonucleic acid 
(DNA) (1,3,8,9). This includes the single NP FRET-based DNA nanosensor, which involves 
target DNA bound to a fluorescent probe, either Cy5 or biotin, which is then bound to another 
molecule, streptavidin, which binds to the surface of a NP. The targeted DNA is illuminated by 
FRET, which allows transfer of energy from the NP to the probe, releasing a fluorescent glow 
(3). Fluorescence-based molecular beacons have been developed (9) to detect sequence-specific 
DNA using quantum dots. The beacons, themselves, were DNA-designed to hybridize with the 
DNA sequence to be detected. NPs were used as a fluorophore, and various quenching moieties 
were tested to provide the best fluorescence quenching. The molecular beacon DNA was 
attached to the semiconductor NPs via carboxyl linkage and streptavidin linkage.  

Positively charged NP-DNA complexes have also been created as probes themselves, for the 
detection of nucleic acids (8). The complexes were prepared by electrostatic interaction between 
functionalized NPs and DNA. The NPs were amine-functionalized, creating a cationic nature that 
allowed the formation of an electrostatic complex with negatively charged DNA (8). This 
biomolecular sensing provides new insight into DNA and linker-functionalized NP interactions. 
However, the fundamentals of the interactions between NPs themselves—i.e., without any 
mediating linker—and DNA have yet to be fully understood. Given the vast optical, magnetic, 
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and electrical properties of NPs, knowledge of their interaction with DNA will create new insight 
into the world of nanobiotechnology.  

In this research, we have investigated the interactions between gold (Au) NPs and single-strand 
(ss) DNA to develop a fundamental understanding and to identify potential future applications 
for NP-DNA complexes. These applications include gene therapy, drug delivery to DNA, and an 
improved method for decoding DNA. A detailed study of NP interactions with DNA is also 
expected to provide an enhanced understanding of NP interactions with other biomolecules, such 
as ribonucleic acid (RNA), proteins, and enzymes. NP interactions with these biomolecules are 
subject to be investigated, once the NP-DNA interactions are determined. 

2. Materials and Methods 

Colloidal Au NPs were synthesized by reducing hydroaurochloric acid (HAuCl4) by trisodium 
citrate dihydrate (Na3C6H5O7.2H2O) (11) at the University of Mumbai, India, in collaboration 
with Professor Aswini Srivastava’s group. The suspended NPs were sonicated for 15 min to 
obtain a uniform distribution and cluster free nanoparticles. Fairly uniform sized Au NPs capped 
by citrate ions were obtained. About 25 µl of the suspension was spin-coated at a rate of 120 rpm 
for 6 min onto a silicon substrate and dried in a dessicator under clean environment. Figure 1 
shows the scanning electron microscopic (SEM) image of Au NPs with an average size of ~20–
25 nm.  

Figure 1. Gold nanoparticles viewed under a scanning electron microscope. 

1 mM DNA (Ba813 Target 30, 30 bp; Integrated DNA technologies) solution was prepared using 
5 ml of phosphate buffer (0.1 M, pH 6.35). One drop (~25 µl) of the solution was then spin-
coated onto an Au substrate at a rate of 120 rpm for 3 min. The surface characterization of the 
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Au substrate with DNA was performed using tapping mode atomic force microscopy (AFM). 
The ss DNA with an average height of ~2 nm is shown in figure 2.  

Figure 2. Tapping mode AFM image of ssDNA on Au subtrate. 

The Au NP and the DNA solutions were mixed at a 1:1 ratio and spin-coated on a freshly 
cleaved mica substrate, as described earlier. The dried substrate containing the NPs and DNA 
was imaged using tapping mode AFM. A series of images (figure 3) were obtained that showed 
prominent interaction between Au NPs and DNA. The average heights of Au NPs and DNA 
were ~4 nm and 2 nm, respectively.   

Figure 3. Various tapping mode AFM images of Au NPs-DNA hybrid system on mica surface (clockwise 
from top left: 5x5 μm2, 5x5 μm2, 3.5x3.5 μm2, 3x3 μm2, 2.5x2.5 μm2, 1x1 μm2, and 1x1 μm2 scan 
size).  

The spin-coated substrates for each sample were probed under an Autoprobe Atomic Force 
Microscope (AFM; Veeco, CP-II). The emission spectra of each sample at 250 nm excitation 
energy were obtained using JY Horiba Fluoromax-3 Spectrofluorometer. 

1000 x 600 nm2
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3. Results and Discussion 

3.1 Spectral Analysis 

The Au NPs showed maximum emission at a wavelength of about 461 nm (figure 4a). Similarly, 
the maximum emission of DNA was at the wavelength of 381 nm (figure 4b), which was 
comparatively at much lower intensity (~27000 counts per second) than Au NP (~250000 cps). 
The emission spectrum of the mixture of NP and DNA showed (figure 4c) very broad peak at 
low intensity (~70000 cps). When the graph was exposed between 330 and 530 nm, two distinct 
peaks of DNA (~396 nm at ~50000 cps) and Au NP (~469 nm at ~70000 cps), respectively, 
could be clearly distinguished (figure 4c (inset)). The broad and overlapping emission spectra of 
Au NP and DNA reveal that Au NPs at lower intensity have strong affinity to DNA. The possible 
reason of positive shift in the wavelengths of both Au NP and DNA for Au NP-DNA mixture is 
unknown and requires further investigation. However, the broad and overlapping emission 
spectra of Au NP and DNA reveal the strong interaction between the Au and DNA.  

Figure 4. Fluorescence emission spectra of (a) Au NP, (b) ssDNA, and (c) Au NP-DNA. The emission spectra at 
~460 nm and ~380 nm for Au NP and DNA, respectively reappear in the Au NP-DNA spectrum as a 
broader peak, shown in the inset of (c). 
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3.2 Microscopic Analysis 

The morphology and surface properties of the Au NPs (figure 1), DNA (figure 2), and the Au 
NP-DNA (figure 3) complex on different substrates reveal the uniform heights; the diameter, 
however, varied considerably. The heights of the NPs ranged between 2–6 nm with average 
height to be 4 nm (not shown here). The diameter ranged between 30 to 250 nm, with an average 
of 100 nm. This observation suggested the clustering/agglomeration of small NPs and nanorods 
into larger particles. Similarly, the height and the diameter of the ssDNA ranged between 1–3 nm 
and 25–75 nm, respectively, suggesting that there were possibility of more than one single 
stranded DNA lined parallel to each other. It is also worth noting that AFM tend to exaggerate 
the measurement in x or y direction due to the x-y movement of the scanner.   

The Au NP-DNA sample showed both Au NPs and DNA oligomer strands. AFM images (figure 
3) show that the DNA and Au NPs do, indeed, interact with one another. The DNA appears to 
link to larger Au NPs of an overall average size 150 nm. Smaller NPs appear more frequently in 
the images than Au NP-DNA linked complexes.  

4. Summary and Conclusions 

The results indicate that the citrate-capped Au NPs naturally link with ssDNA. The exact nature 
of the interaction needs to be determined, though it can be speculated that the attractive forces 
between the Au NPs and ssDNA are a type of intermolecular attractive force rather than a type of 
chemical bond. Further characterization of the Au NP-DNA complex needs to be performed to 
substantiate the previous results and determine the type of the interaction.  
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