Research Title: Unraveling the nature of chemical reactivity of complex systems

Date: May 19, 2010

Name of Principal Investigators: Kopin Liu
- e-mail address: kpliu@gate.sinica.edu.tw
- Institution: Institute of Atomic and Molecular Sciences
- Mailing Address: P.O. Box 23-166
- Phone: 886-02-2366-8259
- Fax: 886-02-2363-0578

Period of Performance: 01/02/2009 – 31/03/2010

Abstract:

Exciting a stretching mode of a bond in a reactant should increase the likelihood of the bond breaking during a chemical reaction or, at the very least, have no impact on the reaction, according to conventional wisdom. A series of crossed molecular beam studies of the Cl + CHD3/CH4/CH2D2 reactions, performed at IAMS, confirm this expectation. However, similar experiment on F + CHD3 has shown that, counter-intuitively, exciting the C-H bond effectively impedes its breakage to form HF + CD3. The rate of the other possible reaction pathway - which leads to DF and CHD2 - also slows down. This unexpected finding was published in Science 325, 303 (2009) and has since received a wide publicity in C & E News, RSC Chemistry World, and Nature Chemistry.

Introduction:

The aim of this project is to understand and ultimately to control the reactive outcome of complex systems by vibrational excitations of a reactant. Reactions of methane with F, Cl, and O(3P) are of prototypical H-atom abstraction mechanism, yet with vastly different energetics and barrier properties. Hence, their contrasting behaviors upon vibrational and translational excitations can serve as benchmark for deeper insights into polyatomic reaction dynamics. Exploiting the product pair-correlation measurement enables us to elucidate the energy flow in the transition-state region, and to shed new light onto the mode- and bond-selective chemistry.

Experiment:

The crossed-beam experiment was performed using the rotating source machine at IAMS, which is equipped with a uniquely designed ion velocity map imaging detector capable of measuring the product pair correlation. The ultrafast femtosecond laser facility is housed in a newly constructed clean room. The installation and tests of the entire laser system is nearly complete, and some preliminary diagnostic experiments have just begun.

Results and Discussion:

We wrapped up the data analysis of the reactivity of Cl + stretch-excited methane. Being a competing reaction to Cl + O2 and one of the major sinks for CH4 (a greenhouse gas), this reaction plays a vital role in atmospheric chemistry and is highly relevant to the ozone-hole problems. Our aim is to understand how different forms of reagent energy (translation and vibration) affect the reaction rate and detail dynamics. Reactions of Cl-atom with different stretching–excited methane were chosen in this study: CHD3(v1=1; the CH symmetric stretch), CH4(v2=1; the CH anti-symmetric stretch), and CH2D2(v1=1 and v6=1) with v1=1 and v6=1 indicating one-quantum excitation of the CH2-symmetric stretching and CH2-antisymmetric stretching mode of the CH2D2 reagent, respectively. Those stretching vibrations are nearly degenerate, but with distinct vibrational motions. The most important findings can be summarized as follows. (1) Compared to the respective ground-state reactions at the same initial collision energy, vibrational excitations of those modes all yield about the same enhancement factors. Yet, the observed vibrational enhancement is no more effective than an equivalent amount of translational...
1. REPORT DATE
19 MAY 2010

2. REPORT TYPE
Final

3. DATES COVERED
21-01-2009 to 20-02-2010

4. TITLE AND SUBTITLE
Unraveling the Nature of Chemical Reactivity of Complex Systems

5a. CONTRACT NUMBER
FA23860914030

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Kopin Liu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Institute of Atomic and Molecular Sciences, PO Box 23-166 Academia Sinica, Taipei, Taiwan, TW, 10617

8. PERFORMING ORGANIZATION REPORT NUMBER
N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Asian Office of Aerospace Research & Development, (AOARD), Unit 45002, APO, AP, 96338-5002

10. SPONSOR/MONITOR’S ACRONYM(S)
AOARD

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
AOARD-094030

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This is the report of a project to understand and ultimately to control the reactive outcome of complex systems by vibrational excitations of a reactant.

15. SUBJECT TERMS
Molecular Dynamics, Molecular Beam Experiments, Chemical Kinetics

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
2

19a. NAME OF RESPONSIBLE PERSON

---

Form Approved
OMB No. 0704-0188

Department of Commerce
U.S. Army Corps of Engineers

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
energy. (2) The coincidently formed HCl(v=1) fractions do not depend on the collisional energy for reactions with CHD3(v1=1) and CH2D2(v1=1), but display a fast decline as E increases for reactions with CH4(v3=1) and CH2D2(v6=1). This is the first clear experimental evidence that the reactant mode symmetry plays a vital role in governing the reaction dynamics, which will inspire theoretical studies.

A new series reaction of F-atom with methane has been performed. This is an early barrier reaction, namely the reaction barrier locates in the entrance valley of the potential energy surface. Exciting a stretching mode of a bond in a reactant should increase the likelihood of the bond breaking during a chemical reaction or, at the very least, have no impact on the reaction, according to conventional wisdom. Our findings are really astonishing, which showed that, counter-intuitively, exciting the C-H bond effectively impedes its breakage to form HF + CD3. The rate of the other possible reaction pathway - which leads to DF and CHD2 - also slows down. This unexpected finding was published in Science 325, 303 (2009) and has since received a wide publicity in C & E News, RSC Chemistry World, and Nature Chemistry.

In the other project that is aimed to understand the hydration dynamics of aqueous solution, significant progresses have also been made. This is a new project funded by a very competitive 5-year Academia Sinica Investigator Award, starting from 2008. The major parts of a state-of-the-art femtosecond laser system have been purchased, installed and tested within a newly constructed clean-room unit. We also re-installed the water-cluster beam machine, equipped with a home-built retarding-field, time-of-flight mass spectrometer. The use of retarding field enables us to decipher the complicated fragmentation patterns of photoionized water clusters over two distinct time windows, 5 nsec - 1 usec and 1 usec - 10 usec. Some interesting yet puzzling results were observed and we are in the process of sorting them out. Attempts to add salt molecules to water clusters encountered many unexpected difficulties, thus we are back to the drawing board for alternative approaches. Meanwhile, we are also trying to dope NOx to the water clusters to mimic the acid formation in the aqueous solution.

List of Publications:

SCI publications

Invited talks at Conferences (* denoting plenary lectures)

Conference organized
"Asian International Symposium", in Annual meeting of the Chemical Society of Japan, Tokyo, Japan,