Dual Use Material Developers Panel

BGen Michael Brogan, CG MARCORSYSCOM
Mr. Michael Asada, DPEO GCS
18 March 2010

UNCLASSIFIED: Dist. A - Approved for public release
Dual Use Material Developers Panel

1. REPORT DATE
17 MAR 2010

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Dual Use Material Developers Panel

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
BGen Michael Brogan; Michael Asada

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

8. PERFORMING ORGANIZATION REPORT NUMBER
#20609RC

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
TACOM/TARDEC

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
#20609RC

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at NDIA Ground Robotics Capabilities Conference & Exhibition, March 16-18, 2010, Miami FL, USA, The original document contains color images.

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
6

19a. NAME OF RESPONSIBLE PERSON
-
Evolution of Ground Robotics in War

2004
162 systems
- No single vendor could produce 162
- 5 vendors, multiple configurations
- Joint effort, EOD focused

2005
1800 systems
- Robot’s proven ability to save lives
- Expansion beyond EOD mission (Countermine, Security)
- MOAs w/ AMC and REF

2006
4000 systems
- Engineers and Infantry
- Route clearance, Explosive detection & Weaponization development

2007
5000 systems
- Special Forces robot applications assessed
- Route clearance, Explosive detection & Weaponization on battlefield

2008
6000 systems
- Maneuver elements
- Range extension
- CBRNE detection
- Persistent surveillance
- RC HMMWV
- More capable payloads

2009
7000 systems
- Smaller platforms
- Enhanced battery life
- Enhanced commonality
- Remote deploy
- More capable payloads

Future
- Interop
- ‘Plug and play’ capabilities
- Limited autonomy
- Weaponization
- Increased agility & dexterity

Sustainment, Modernization, Interoperability and Modularity
Robotic Modernization

Enhancing Warfighter Capabilities

2004 CAPABILITY
Dedicated OCU
Improved Communications for: standoff range, crew compatibility

2010 CAPABILITY
SUPERVISED AUTONOMY
INTEROPERABILITY
Operational Environment

Tele-op

RSTA
Endurance
Power/Energy

CBRNE Detection
EOD

Maneuver
Armee

Route Clearance/Engineering
IEC

55 lbs
90 lbs
35 LBS

Arm Strength
Dexterity
Joint Robotic Repair and Fielding JRRF

BACKGROUND
• The Joint Robotics Repair and Fielding (JRRF) activity was established in mid 2004 to provide maintenance, supply and training for all Joint Service Non Standard Equipment Robotic systems.

MISSION
• Provide in-Theater Support for Joint Service Theater Provided Equipment (TPE) Ground Robots. Serve as Single “Belly Button” “one-stop-shop” for fielding, sustainment, training, assessment and total asset accountability for all robotic systems, including Iraq and Afghanistan.

SUPPORT
• Current JRRF operations
• Embedded repair teams to remote units
• Pre-deployment support capability at Combined Training Centers
• 13 JRRF detachments world wide

Training, Sustainment, Assessment, and Accountability
RS JPO Systems

• Based primarily on ONS / JUONS requirements
• Commercial-off-the-shelf / modified-off-the-shelf
 – Commercial radios
 – Commercial components
 – Non MIL-STD
 – Obsolescence
 – Configuration control
• Procured under ‘Rapid Acquisition’
 – REF and JIEDDO lead
• Provide immediate capabilities
 – 70 to 80% solutions
Dual Use Technologies

• Obstacle detection & avoidance
 – Military: pedestrians, terrain and man-made obstacles
 – Civilian: automobile safety technologies – active cruise control

• Autonomous navigation
 – Military: resupply, dynamic path planning
 – Civilian: automobile safety technologies – active cruise control

• Increased communication range
 – Military: increased standoff
 – Civilian: command post (DHS/1st Responders), wireless networks

• Multi robot control
 – Military: one controller/many robots, manning levels
 – Civilian: warehousing

• Interoperability
 – Military: agile mission response
 – Civilian: USB ports, iPhone

• Improved battery technologies / fuel cells
 – Military: longer life, reduced soldier load
 – Civilian: fossil fuel dependence