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1. Foreword - none
2. ToC - none needed

3. List of Appendices -
A. pdf of review published: Science {323}, 598 (2009)
B. pdf of paper submitted: Phys. Rev. A (submitted)
C. pdf of paper accepted: Optics Commun. (in press, 2009)

4. Statement of problem studied -

The behavior of quantum entanglement under various types of environmental noise was
studied. Both the nature of its evolution in time and the nature of its survival were
examined. Attention was confined to pure non-local entanglement, appropriate to
quantum memory registers, for which preservation of entanglement is important.

5. Summary of most important results - three results stand out:

A. The state of knowledge was substantially advanced by recognizing the
unexpected behavior of quantum decoherence when attacking entangled qubits. This can
be finished non-analytically, i.e., in a finite time, in contrast to its smooth exponential
behavior when attacking local coherences (T1 and T2 types). This was reviewed by
invitation in Science (see App. A).

B. We also extend an important lead reported earlier (provided by Jaynes-
Cummings closed-system modelling) to open systems, with which we reported success in
tracking the movement of quantum entanglement (see App. B).

C. We also showed that the most common model of non-Markov noise could be
studied fully analytically. This will lead to improvement in methods for dealing with the
effect on quantum entanglement of real-life noise sources.

6. Bibliography - see Appendices

7. Appendices -
App. A, Science {323}, 598 (2009);

App. B, Phys. Rev. A (submitted);

App. C, Optics Commun. (in press, 2009).
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Sudden Death of Entanglement

Ting Yu™ and J. H. Eberly®*

A new development in the dynamical behavior of elementary quantum systems is the surprising
discovery that correlation between two quantum units of information called qubits can be degraded
by environmental noise in a way not seen previously in studies of dissipation. This new route for
dissipation attacks quantum entanglement, the essential resource for quantum information as well
as the central feature in the Einstein-Podolsky-Rosen so-called paradox and in discussions of

the fate of Schrédinger’s cat. The effect has been labeled ESD, which stands for early-stage
disentanglement or, more frequently, entanglement sudden death. We review recent

progress in studies focused on this phenomenon.

uantum entanglement is a special type of
correlation that can be shared only among
quantum systems. It has been the focus
of foundational discussions of quantum
mechanics since the time of Schrodinger (who
gave it its name) and the famous EPR paper of
Einstein, Podolsky, and Rosen (/, 2). The degree
of correlation available with entanglement is pre-
dicted to be stronger as well as qualitatively dif-
ferent compared with that of any other known
type of correlation. Entanglement may also be
highly nonlocal—e.g., shared among pairs of
atoms, photons, electrons, etc., even though they
may be remotely located and not interacting with
each other. These features have recently promoted
the study of entanglement as a resource that we
believe will eventually find use in new approaches
to both computation and communication, for ex-
ample, by improving previous limits on speed
and security, in some cases dramatically (3, 4).

Quantum and classical correlations alike al-
ways decay as a result of noisy backgrounds and
decorrelating agents that reside in ambient envi-
ronments (3), so the degradation of entanglement
shared by two or more parties is unavoidable
(6-9). The background agents with which we are
concerned have extremely short (effectively zero)
internal correlation times themselves, and their
action leads to the familiar law mandating that
after each successive half-life of decay, there is
still half of the prior quantity remaining, so that a
diminishing fraction always remains.

However, a theoretical treatment of two-atom
spontaneous emission (/0) shows that quantum
entanglement does not always obey the half-life
law. Earlier studies of two-party entanglement in
different model forms also pointed to this fact
(11-15). The term now used, entanglement sud-
den death (ESD, also called early-stage disentan-
glement), refers to the fact that even a very weakly
dissipative environment can degrade the specif-
ically quantum portion of the correlation to zero
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stitute of Technology, Hoboken, NJ 07030-5991, USA. *Roch-
ester Theory Center and Department of Physics and Astronomy,
University of Rochester, Rochester, NY 14627-0171, USA.

*E-mail: ting.yu@stevens.edu (T.Y.), eberly@pas.rochester.edu
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in a finite time (Fig. 1), rather than by successive
halves. We will use the term “decoherence” to
refer to the loss of quantum correlation, i.e., loss
of entanglement.

This finite-time dissipation is a new form of
decay (16), predicted to attack only quantum en-
tanglement, and not previously encountered in the
dissipation of other physical correlations. It has
been found in numerous theoretical examinations
to occur in a wide variety of entanglements in-
volving pairs of atomic, photonic, and spin qubits,
continuous Gaussian states, and subsets of mul-
tiple qubits and spin chains (/7). ESD has already
been detected in the laboratory in two different
contexts (/8, 19), confirming its experimental re-
ality and supporting its universal relevance (20).
However, there is still no deep understanding of
sudden death dynamics, and so far there is no
generic preventive measure.

How Does Entanglement Decay?

An example of an ESD event is provided by
the weakly dissipative process of spontaneous
emission, if the dissipation is “shared” by two
atoms (Fig. 1). To describe this we need a suit-
able notation.

The pair of states for each atom,
sometimes labeled (+) and (—) or (1)
and (0), are quantum analogs of
“bits” of classical information, and
hence such atoms (or any quantum
systems with just two states) are
called quantum bits or “qubits.” Unlike
classical bits, the states of the atoms
have the quantum ability to exist in
both states at the same time. This is
the kind of superposition used by
Schrodinger when he introduced his
famous cat, neither dead nor alive
but both, in which case the state of
his cat is conveniently coded by the
bracket (+ < —), to indicate equal
simultaneous presence of the oppo-
site + and — conditions.

Degree of entanglement

and either waking (W) or sleeping (S). Entangle-
ment of idealized cats could be denoted with a
bracket such as [(Ws) < (Sw)], where we have
chosen large and small letters to distinguish a big
cat from a little cat. The bracket would signal via
the term (Ws) that the big cat is awake and the
little cat is sleeping, but the other term (Sw)
signals that the opposite is also true, that the big
cat is sleeping and the little cat is awake.

One can see the essence of entanglement here:
If we learn that the big cat is awake, the (Sw) term
must be discarded as incompatible with what we
learned previously, and so the two-cat state re-
duces to (Ws). We immediately conclude that the
little cat is sleeping. Thus, knowledge of the state
of one of the cats conveys information about the
other (21). The brackets are symbols of infor-
mation about the cats’ states, and do not belong to
one cat or the other. The brackets belong to the
reader, who can make predictions based on the
information the brackets convey. The same is true
of all quantum mechanical wave functions.

Entanglement can be more complicated, even
for idealized cats. In such cases, a two-party joint
state must be represented not by a bracket as
above, but by a matrix, called a density matrix
and denoted p in quantum mechanics [see (22)
and Eq. S3]. When exposed to environmental
noise, the density matrix p will change in time,
becoming degraded, and the accompanying change
in entanglement can be tracked with a quantum
mechanical variable called concurrence (23), which
is written for qubits such as the atoms 4 and B in
Fig. 1 as

C(p) = max[0,0(¢)] (1)

where Q(¢) is an auxilliary variable defined in
terms of entanglement of formation, as given ex-
plicitly in Eq. S4. C = 0 means no entanglement
and is achieved whenever Q(f) < 0, while for

Q
Atom A Atocr)n B
Cavity a Cavity b

Asymptotic
decay

Sudden
death

This bracket notation can be ex-
tended to show entanglement. Sup-
pose we have two opposing conditions
for two cats, one large and one small,

Fig. 1. Curves show ESD as one of two routes for relaxation of
the entanglement, via concurrence C(p), of qubits A and B that
are located in separate overdamped cavities.
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Fig. 2. Atom-atom entanglement is plotted as a function of time for
k values in the range 0 to 1. [Adapted from (20)] For all values of x
less than 3, the half-life rule is obeyed, but for « between 13 and 1,
it is not. For those values, the curves show ESD, i.e., becoming zero
in a finite time and remaining zero thereafter. The two curves
marked with arrows are similar to the curves in Fig. 1. Time is

represented by p = 1 — exp (=I).

maximally entangled states C = 1, and C is
limited to the range 1 > C > 0.

In the case of spontaneous emission there is
no environment at all, except for the vacuum. The
vacuum can still have a noisy degrading effect
through its quantum fluctuations, which cannot
be avoided, so both atoms in Fig. 1 must eventually
lose their excitation and come to their ground states
with the rate I'. Then their state is simply (—), a
completely disentangled situation because learning
that the state of one atom is (—) does not change
our information about the other, also (—). Thus,
disentanglement is the eventual fate of the pair.

The question is, how quickly do they meet
their fate? For the initial density matrix shown in
Eq. S5, the answer is supplied by the surface
graphed in Fig. 2, which shows possible path-
ways for entanglement dissipation as a function
of time. The « axis shows that the time evolution
of entanglement depends on the value of the pa-
rameter that encodes the initial probability for the
two atoms to be in the doubly excited state (++).
The two extreme concurrence curves for x = 1
and k = 0 are the ones already shown in Fig. 1.

The sudden death behavior shown in the right
highlighted curve of Fig. 2 is a new feature for
physical dissipation (6, 20) and is induced by
classical as well as quantum noises (24). It is
counterintuitive, based on all previous single-atom
experience, because spontaneous emission is a
process that obeys the half-life rule rigorously for
individual atoms. But it turns out that the two-
qubit correlation does not follow the one-qubit
pattern. That is, the sudden death does not come
from a shorter half-life; the entangled joint cor-
relation does not even have the half-life property.

As reported in (/8), the first experimental
confirmation of ESD was made with an all-optical
approach focusing on photonic polarization. It was
achieved by the tomographic reconstruction of
p(?), and from it the Q(¢) variable, and thus the

concurrence C(p). In the exper-
iment, both amplitude and phase
noises that can degrade entangle-
ment were realized by combin-
ing beam splitters and mirrors.

Can Sudden Death Be Avoided
or Delayed?

The issue of how to avoid ESD-
type decorrelation in a realistic
physical system is incompletely
resolved at this time. A number
P of methods are known to pro-
vide protection against previous-
ly known types of decorrelation
(3). Some methods have clas-
sical analogs in information the-
ory. One engages appropriately
designed redundancy and is known
as quantum error correction. An-
other relies on using a symmetry
that can isolate entanglement
from noise, effectively providing
a decoherence-free subspace to
manage qubit evolution.

Error correction is most useful when the dis-
turbing noise is below some threshold (25). In
practice error correction can be complicated, be-
cause a noisy channel is a dynamical process and
its physical features are often not fully under-
stood or predictable. An example is atmospheric
turbulence during open-air communication. An-
other issue is the cost associated with providing
redundancy. Additionally, it has been reported that
some quantum error correction algorithms could
actually promote rather than mitigate ESD (26).
Symmetries that avoid decoherence by providing
isolation from noise during evolution (27) have
also been examined as a way to postpone or avoid
ESD, but knowledge of the noise to be combatted
appears unlikely to be available because qubits
remote from each other would rarely share either
symmetry properties or noise descriptions.

Other methods considered use dynamic ma-
nipulation such as mode modulation (28) or the
quantum Zeno effect (29), which can be regarded
as extensions of the so-called bang-bang method
(30). Another proposal is to use feedback control
(31) to prevent ESD and other decoherence
effects in the presence of hostile noise. None of
these methods is perfect, but they can be more
effective if designed for specific noise avoidance.

0.2
0.4
0.6

Does the Number of Noises Matter?

Nonlocal entanglement raises the issue of ESD
triggered by different noise processes and can refer
to more than one noise source acting together on
colocated entangled qubits, or to independent noise
sources acting separately on remotely located mem-
bers of a qubit pair. The rate of dissipation in the
presence of several noise sources is normally the
sum of the individual dissipation rates. More ex-
plicitly, if decay rates I'; and I'; come from the
action of two distinct weak noises, then when the
two noises are applied together to a physical sys-

REVIEW I

tem, the resulting relaxation rate is simply given
by the sum of the separate rates: I'; + I',.

However, such a long-standing result does
not hold for entanglement decay. This was dis-
covered (/6) by examining entanglement evo-
lution of a set of X-form mixed-state matrices
(Eq. S3) with d =0, where d is the probability that
both qubits are in their ground states. Straight-
forward calculations for the entire class are shown
by the diagrams in Fig. 3, illustrating two qubits
exposed together to amplitude noise as well as
phase noise. The top two time-dependent curves
show that the application of either noise separately
allows long-running entanglement decay of the
half-life type (no ESD). By contrast, the bottom
curve reaches zero in a finite time. That is, the com-
bined effect of the two noises causes ESD. The
caption explains the colored squares. This illustrates
the “supervulnerability” of paired-qubit entangle-
ment when attacked by different independent
noises. This result is universal in the sense that it
continues to hold (/6) even if the two noises
attack one of the qubits but not the other, and also
if each of the two qubits is remotely attacked by
just one of the noises.

Is There an “Anti-ESD” or Rebirth Effect?

Special circumstances are needed to see “anti-
ESD,” the creation or rebirth of entanglement

Mixed

Phase

Amplitude

. FESD ESD

Iz]

0.6F
05}
04f Amplitude
03F

02

Concurrence

0.1F

0.0L
0.0

0.4 0.6
Time

0.2

Fig. 3. The top two time-dependent curves show
exponential (smooth half-life type) decay of concur-
rence for a qubit pair exposed to phase noise and
to amplitude noise, respectively. The bottom curve
shows nonsmooth decay, i.e., ESD occurs for the
qubit pair when both noises are acting together.
The color-coded squares apply to any two-party X
matrix (Eq. S3) having d = 0. They present the
predicted results for the entire accessible physical
domain, which means throughout 1 > a > 0 and
1> Izl > 0. The blue zones labeled EXP designate
domains where smooth exponential (half-life type)
evolution occurs, and the orange zones show where
ESD occurs. The left and middle squares apply when
amplitude and phase noises are applied separately,
and have smooth decay regions, while the orange
square at right shows that sudden death is universal
in the entire region for any X matrix (Eq. S3).
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from disentangled states. By imposing the right
interactions almost anything can be made to
happen, but we are concerned with evolution of
joint information in a pure sense and focus on
two-party entanglement that evolves without
mutual interaction or communication.

The same two-atom situation shown in Fig. 1
can be made relevant to anti-ESD. In solving for
the surface of solutions plotted in Fig. 2, the
cavities were taken as fully overdamped, so that
any photon emitted by either atom was irreversibly
absorbed by the walls, but they could also be
treated as undamped mirror-like cavities, such as
used in the Jaynes-Cummings (JC) model for light-
atom interactions (32). This situation produces a
periodic sequence of perfect rebirths of atom 4B
entanglement (33, 34). An early mathematical
model of two-qubit evolution (/7) can be inter-
preted as treating an underdamped cavity and also
shows rebirths.

The panels in the top row of Fig. 4 show
rebirth scenarios. They occur for states that are
initially of the cat type, such that both atoms are
excited and both are un-excited at the same time.
The cat-type bracket for them is

P, = [(++)cos a & (—)sina]  (2)

where different values of sine and cosine produce
the different curves in the figure (35).

Starting from the photon vacuum state in each
cavity, the JC-type evolution will permit only zero
or one photon to reside in each cavity at any later
time, so each of the two modes is a two-state
system (a qubit), and counting the two atoms there
are now four qubits on hand. This provides six
concurrences that can be computed: CAB, C”b,
Cc C C1 and CP, where the capital letters
identify atoms and the small letters identify the
photons in cavity modes a or b. Concurrence is
defined only for pairs of qubits, not quartets of
them, so the label C**# implies that the a and b
degrees of freedom are not available to observa-
tion and have been ignored (technically, have been
traced out), and for photon concurrence C® the
atomic A and B properties are traced out, and so on.

This idealized model provides a convenient
framework to analyze entanglement in a simpli-
fied but still multi-qubit framework. As shown in
the top half of Fig. 4, ESD takes place for atom
concurrence (in the left panel, almost all C*% curves
reach zero and remain zero for finite times). How-
ever, in the right panel, the photon concurrence
C“? behaves in a manner opposite to that of C*,
showing anti-ESD. That is, initially C @ is zero,
but it immediately begins to grow. The photons
jointly experience entanglement “sudden birth,”
but this is followed by ESD a half cycle later. All of
this occurs via pure “informatics,” i.e., without en-
ergy exchange or other interaction between the sites.

The reason for the rebirths is obvious—the
photons emitted cannot really get lost among the
few joint states available. If a larger number of
cavity modes would be provided, a longer time
would be needed for a rebirth to be complete, and

as a limiting case, the cavities producing the curves
in Fig. 2 have an infinite number of modes, so the
lost quantum correlation cannot be reborn in any
finite time. If there are enough states available in
one mode, as is the case for coherent-state mode
preparation, then ESD and true long-time reviv-
als are also predicted (36).

What Are the Future Prospects?

Quantum memory banks. Clearly, ESD can be
largely ignored, to a first approximation, when
desirable quantum operations can be manipulated
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issues also include the use of external fields to
manipulate qubit states (37) as in gate operations,
to create transient decoherence-free subspaces, as
mentioned already. A qualitatively different route
to combat decoherence specifically of the ESD
type is illustrated in Fig. 2. Two evolution tracks
are highlighted to show that for qubits prepared
with the same value of initial entanglement, their
concurrences may evolve very differently. In that
illustration, the right track is subject to ESD, while
the left one is not. Decoherence per se is not
avoided, because the non-ESD track shows steady
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Fig. 4. Entanglement birth, death, and rebirth. [Adapted from (35)] In the bottom pair of panels the rise
and fall of AB entanglement is exactly compensated by the fall and rise of ab entanglement. This is not the
case in the top pair of panels, but a more subtle form of compensation still occurs, as reported in (35). It
involves not concurrence but the auxiliary variable Q(f) defined in Egs. 1 and S4.

at sufficiently high speed. The key goal of mem-
ory is opposite to that of speed, i.e., to preserve
quantum state features semi-indefinitely. Quan-
tum memory networks will be sensitive to the
consequences if ESD occurs. ESD will probably
have to be taken into account if practical versions
of quantum memories are built to operate in
mixed-state configurations.

Disentanglement control. Over a given noisy
channel, it appears that some entangled states
may be more robust against the influence of noise
than others. To control decoherence optimally, it
will be useful to learn how to identify the robust
states separately from the fragile ones. Control

dissipation, but it always remains finite. Other
examples of this are known, and in some cases a
purely local operation (i.e., a manipulation of only
one of the two entangled qubits) can be under-
taken to change the state matrix p without chang-
ing its degree of entanglement, but in a way that
switches the evolution trajectory from ESD to
non-ESD (38), effectively putting it on a half-life
track as in the figure. Similar studies (39) have
examined the effect of local operations at inter-
mediate stages of evolution. Use of this method
requires detailed knowledge of the state matrix p,
which may not be practical, particularly at times
late in the evolution.
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Entanglement invariants. Entanglement flow
in small reservoirs has led to the recent dis-
covery of entanglement “invariants” (35) by in-
spection of the curves in the bottom row of
Fig. 4, which repeats the top row except that a
slightly different cat state is used for the atoms
initially:

¥, = [(+-)cos a © (—+)sin o]

3)

In the bottom left panel of Fig. 4, it appears
that each 4B atomic concurrence curve is com-
pensated at all times by the corresponding ab
photonic concurrence curve in the right panel,
one going up as the other falls.

In fact, exact compensation can be confirmed
analytically (35), but one notes that the same be-
havior does not appear in the top-row curves in
Fig. 4, where there is no perfect compensation of
ab for AB. For example, it is easy to see that the
AB and ab red curves can be zero at the same
time. A natural question is, where does the miss-
ing information go in that case? Because the
two-site JC model is unitary, preservation of all
four-qubit information is guaranteed, so it should
be located “somewhere.” Careful examination
shows that concurrence is not conserved, but
rather O(7) is conserved, spread among all six dif-
ferent types in that case (35).

This identification of four-particle memory
flow channels is unusual and clearly deserves
future examination (40, 41). One can say about
these invariants that they emerge only from a
kind of analytic continuation of the bipartite con-
currence function C(f) to un-physically negative
values, which is permitted via O(f). The entan-
glement flow issue (42) is also related to, and
appears to expand considerably, the theory asso-
ciated with entanglement swapping, which is under
active exploration, and has been realized with
particle pairs from independent sources (43).

Non-Markovian noises. Dissipative entangle-
ment evolution is critically dependent on the types
of the noises acting on the system. Markov envi-
ronments are those for which a noise signal has
no self-correlation over any time interval, and
under Markov conditions noise typically results
in a quantum irreversible process. Non-Markovian
noise arising from a structured environment or
from strong coupling appears to be more fun-
damental (44, 45). Recent studies have suggested
that correlated noises may cause new difficulties
in using quantum error correction codes (46) and
dynamic decoupling (47). Although some progress
has been made, extending the current research on
ESD into physically relevant non-Markovian sit-
uations remains a challenge. High-Q cavity QED
and quantum dot systems are two possible exper-
imental venues.

Qutrits and beyond. Many-qubit entanglement
and entanglement of quantum systems that are not
qubits (i.e., those having more than two states) is
largely an open question, and one that is embar-
rassing in a sense, because the question has been
open since quantum mechanics was invented in
the 1920s. There is still no known finite algo-

rithm for answering the simple-seeming question
of whether a given mixed state is entangled or
not, if it refers to more than two systems, and it is
answerable for two mixed-state systems only in
the case of pairs of qubits (as we have been dis-
cussing) and the case of one qubit and one qutrit
(a three-state system such as spin-1). Investiga-
tion into ESD of qubit-qutrit systems has begun
(48, 49), but generalizations to many-qubit sys-
tems are daunting tasks due to both technical and
conceptual difficulties (7-9).

Topological approach. N-party entanglement
dynamics will presumably become simpler to pre-
dict if a computable entanglement measure for a
mixed state of more than two qubits can be dis-
covered. However, an alternative approach is to
avoid dynamics through topological analysis (50).
One now knows (51, 52) that ESD is necessary
(i.e., must occur) in arbitrary N-party systems of
noninteracting qubits if they are exposed to ther-
mal noise at any finite 7> 0 temperature. The
steady state of any noninteracting N-qubit system
has a neighborhood in which every state is sepa-
rable. In this case, any prearranged subsystem
entanglement will inevitably be destroyed in a
finite time. This is a universal result showing how
entanglement evolves in the absence of external
noise control.

Clearly, the holy grail for research on entan-
glement dynamics is to find an efficient real-time
technique for tracking and controlling the entan-
glement evolution of a generic many-qubit system.
Another important open question is to determine
a generic method for direct experimental registra-
tion of entanglement, for which there is no current
answer. We believe that many surprising results
are awaiting discovery.
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Evolution of Long-Time Non-Interacting Quantum Entanglement

Muhammed Yona¢ and J.H. Eberly
Rochester Theory Center, and Department of Physics and Astronomy,
University of Rochester, New York 14627, USA

We report calculations of the long-time evolution of quantum entanglement. We employ a simple
model that permits partially analytic examination of entanglement transfer among a combination of
discrete-state and continuous-state non-localized degrees of freedom of a four-part quantum system.
Among the results are the development of a novel approximation scheme, the re-appearance of
entanglement after lengthy intervals of zero entanglement, and formulas for relatively slow loss of

entanglement and duration of revival intervals.

PACS numbers: 42.50.Ex, 42.50.Pq, 03.65.Ud, 42.50.Ct.

I. INTRODUCTION

Almost 75 years after its description by Schrodinger [1]
there 1s still no general understanding of entanglement
within quantum theory in the sense that measures of it
are still being developed. Only two-particle entanglement
is well quantified, and even in that case the number of
states that can be taken into account is extremely small
unless the joint state is pure. The behavior of few-state
entangled quantum systems takes a wide variety of forms
in different environments, and it is well known that some
of them are being studied to achieve advances in com-
puting and communications. Whether such goals are of
interest or not, the controlled manipulation of entangle-
ment with external agents is one approach to an ultimate
form of quantum control, and it remains a fascinating
challenge.

We will examine aspects of what we can call pure stor-
age of quantum information, a context that might have
relevance in computing and communication. More gen-
erally this means that we are interested in evolution of
two-party entanglement of simple examples of quantum
systems such as two-level atoms and coherent states of
radiation, but in this case under the conditions of mutual
isolation and non-interaction between the joint informa-
tion storing systems. The term qubit serves as a use-
ful general term for two-level quantum systems whether
in atoms, molecules, impurity sites in crystals, quantum
dots, SQUIDs, photon polarizations or of course spins, so
we will adopt it for a discussion of long-time two-qubit
evolution under the no-interaction stipulation.

Earlier discussions usually allowed or relied on mutual
interactions to produce entanglement dynamics or con-
trol it. Kim, et al., showed [2] that an incoherent thermal
field can create entanglement between two such qubits.
Entanglement transfer between two qubits and two sep-
arate fields was examined by Zhou and Wang [3]. In
their treatment the quantum field was weak rather than
strong. The evolution of entanglement in a qubit-field
system, where the qubit and the field start from mixed
states was examined by Rendell and Rajagopal [4]. They
aimed to calculate the entanglement embedded in the full
system, and because of the lack of an entanglement mea-

sure for 2 x oo systems they calculated a lower bound for
the concurrence instead. The controlled manipulation of
entanglement with external agents is a common goal of
most of these studies.

We first review entanglement dynamics in an ideal-
ized situation in order to establish notation for control
parameters, time scales, etc. Thus, each site of our net-
work contains a qubit in the physical form of a two-level
atom (ion qubit, spin qubit and photonic qubit analogs
are easily imagined). We restrict attention to the dynam-
ics of entanglement between two of the sites, say A and
B. We suppose that there is quantum memory present
in the qubits that is of interest, i.e., that the two atoms
have been entangled in some way before being inserted
into their respective cavities. Field modes a and b are
available at the A-B sites that can be used for interact-
ing with the atoms (i.e., for “controlling” them and their
entanglement externally). This scenario is suggested in
Fig. 1.

Atom B

Entanglement

Atom A + Cavity a Atom B + Cavity b

FIG. 1: A diagram illustrating our system. The atoms A and
B are placed in their respective cavities a and b after being
entangled. Only A-a and B-b interactions take place there-
after, causing non-interacting A-B entanglement to change in
time.



II. HAMILTONIAN EQUATIONS

The Jaynes-Cummings [5] interaction governs evolu-

tion in our system. The Hamiltonian (with & = 1) is
given by:
_ Yo _a t_A A t
Hioy = 9 o8 -I-g(a o’ —|—0’_l_a)—|—wa a

—1—%05 +g(bTo? +0'fb)—|—wab, (1)

where wq 1s the transition frequency between the two lev-
els of the atoms, g is the constant of coupling between the
atoms and the fields and w is the angular frequency of the

single-mode field. The usual Pauli matrices o¥, Uf’B

and P describe the atoms, while af, @ and bf, b are
the raising and lowering operators for the fields.

Note that the Hamiltonian does not support any in-
teraction between atom A and atom B or between mode
a and mode b. Physical realization of our scenario does
not appear out of the question, as the Jaynes-Cummings
model has been realized in the laboratory in several well-
known ways [6-9].

To illustrate the approach to be followed when the
fields are taken as coherent states, we start with a sim-
pler example, in which the field modes are initially in
their vacuum states: [04) ® |05), and the two atoms are
in a superposition of Bell states. For the vacuum case
the coupling terms in our Hamiltonian indicate that for
creation of a photon in a cavity the atom in that cav-
ity must decay to a lower state. Since the cavities each
contain only one atom, there can be no more than one
photon in each at any time. This means that the cavities
are also two-state quantum systems, i.e., qubits.

The eigenstates of the JC Hamiltonian are well known.
We will write for either Aa or Bb

HyclvE) = XE|w). (2)

FIG. 2: Sketch indicating non-interacting qubits in a quantum
storage network. Quantum memory in the form of two-qubit
entanglement between any two relatively remote sites, indi-
cated here by a dashed line, can be altered by fields local to
the sites.

We will denote the excited and ground atomic states by
le) and |g), and denote the cavity modes’ photon states
by the photon number n. Then the JC eigenvalues are
given by:

1
/\f:nw—i—i(Ai\/A?—i—G,%), (3)
where A = wg — w is the detuning and

is the n-photon Rabi frequency.
The JC eigenstates have the following form as super-
positions of the bare atom and cavity states:

[vo) = lg;0) (5)
[d) = enle;n— 1)+ snlgin) (n>0) (6)
[Un) = =snlesn—1) +enlgsn) (n>0).  (7)

In these equations we have introduced some convenient
abbreviations:

cn = cos(by/2) and s, =sin(0,/2), (8)
where the rotation angle 8, can be identified with the
Bloch sphere polar angle and is defined in the usual way:

A Gn

cosl, = ————— and smmb, = ——.
NocEae: Al

In this preliminary example we will need the true
ground state [¢g) = |g;0) and the two dressed states for
n = 1. These three states are closed under the JC Hamil-
tonian for each site. In other words, we use only n = 1
in the equations above, so the subscript n can mostly be
ignored and we will frequently drop it (A, = A, ¢, = ¢,
ete.).

)

III. MEASURE OF PAIRWISE
ENTANGLEMENT

The JC dressed states are atom-photon locally-
entangled states themselves, and this entanglement has
interesting consequences if the cavities are fairly highly
excited, as Gea-Banacloche [10] and Phoenix and Knight
[11] originally pointed out. Here we are interested in non-
local atom-atom entanglement between the two spatially
separated sites on a qubit lattice, as suggested in Fig. 2.

In the general context of entanglement we note that
there is no accepted and practically workable criterion for
determining separability of arbitrary four-particle states.
Our purposes will be satisfied by working with the two-
qubit atomic states obtained from the time-evolving four-
qubit state. All familiar measures agree about separabil-
ity in the two-qubit domain of entanglement. That is,
entropy of formation, Schmidt number, tangle, negativ-
ity, and concurrence are numerically somewhat different,
but in the two-qubit domains of their applicability they



are in full agreement when they signal complete separa-
bility, i.e., the lack of entanglement.

We adopt Wootters’ concurrence [12] as our measure
in this discussion, mainly for its convenient normaliza-
tion: 1 > € > 0, where €' = 0 indicates separability
(zero entanglement) and C' = 1 means maximal pure
state entanglement, as in a Bell state; and simplicity of
calculation:

Cp) = max{0, VA1 = VA2 = Vs = VM), (10)

where the quantities A; are the eigenvalues in decreasing
order of the auxilliary matrix

(= ploy @ay)p™(oy @ ay), (11)

where p* denotes the complex conjugation of p in the
standard basis and oy is the Pauli matrix expressed in
the standard basis.

One finds that in reduction to two-qubit form, by trac-
ing over the two field-mode qubits, the resulting two-
qubit mixed state always has the X form [13], where only
the diagonal and anti-diagonal elements are not zero:

a 0 0 w
0 b 2z 0

P=10 z=co |’ (12)
w* 0 0 d

where a + b+ ¢+ d = 1. The concurrence of this mixed
state is easily found to be

C = 2max{0, |z| - Vad, |w]|—Vbc} = 2max{0,Q}, (13)

so it is clear that @, which is the larger of |z| — Vad
and |w| —V/be, will be an important quantity. For exam-
ple, Q(t) obeys certain conservation relations (whereas
C' does not) in some special cases because it can be neg-
ative. Furthermore, one can see [14] that while @ < 0
implies a separable state (C' = 0), the slightly stronger
condition @ < 0 implies both ¢' = 0 and also that the
state 1s mixed rather than pure, information not available
from C.

In the two-site situation under consideration there are,
in principle, six different concurrences that can provide
information about the bipartite entanglements that may
arise. With an obvious notation we can denote these as
CcAB b cAe oBb cAb OBa Except for C4% and
CB% they measure remote (non-local) entanglements.

IV. PARTIALLY ENTANGLED BELL STATES

Aspects of the entanglement dynamics of qubits in
the vacuum two-cavity case have been reported already
[15-17]. TFor background we summarize results when
the initial states are superpositions of the Bell states:
|®)) ~ |ea,eB) £ |94, 98), which we write:

|Pag) =cosalea,ep) +sinalga, gp). (14)

It is easy to see that o = 47 /4 reproduces the two pure
Bell states.
The initial state for the atoms plus cavities is therefore:
|®(0)) = |®an) @[04, 05) (15)
= (cosalea,ep) +sinalga, gp)) ® |04, 0p).

In terms of the dressed eigenstates given above (5), we
can rewrite:

lea,0a) = clvi) = slyy)
l94,1a) = sl¢f) +clvy) and
|gAa0a> = |1/)0> (16)

Thus the initial atom-atom entangled state has the form

cosarlea,0q) @ |ep, Op) + sinar|ga, 04) @ |gB, O)
= cosale|yVa — s[v7)a) @ (e|v)p — s|vT V)
+sina|y’)a @ ) 5. (17)

Evolution in time is easily followed through the evolu-
tion of the dressed states:

[0 (1)) = e [t (0)). (18)

Note that since the combination of coefficients in |®(0))
uniquely associates ¢ with |¢/T), and s with ¢/ ), the time
evolution can be transferred to the ¢ and s symbols. We
will henceforth consider them carrying the time-evolution
exponents. We will use the notation ¢y = ¢(0) and sg =
s(0) to refer to their values at ¢ = 0 (no relation to the
n = 0 subscripts in Eq. (8)), so that,

c=c(t) = coe_“‘th,

s=s(t) = see” N F (19)

where AT and A~ are obtained by inserting n = 1 into
Eq. (3). Then we can write (temporarily again indicating
explicit time dependences for the ¢’s and s’s):

[@(1)) = cosa(e(t)[vF)a — s(t)67)a)

o (elvtn —sOvT)s)
+ sinaly®)a @ [¢°) 5, (20)
where [¢%) will continue to refer to the JC states at ¢ = 0.
Now we revert to the bare basis states in preparation
for the tracing needed to calculate @Q4# and C45:
[@(1)) = cosa(e(t)(colea, 00) + solga, 1))

— s(t)(—solea, 04 + colga, 1a>)) ® (c(t)(c0|eB,ob>

+ solgn, 1)) = s(t)(=sole, 0y + colgn, 1))

+ sinalga,0a) ® |gB, Op)

= cosa((cco + sso)lea, 0q) + (cso — sco)|ga, 1a>)
& ((eeo + s50)lem, 00) + (e50 — 5eo)lgn, 1))

+ sina|ga,04) @ |98, 0p). (21)



To get the two-qubit mixed state needed for calculation
of QP the projections that are needed are:

(04, 05| (2)) = cosoz(cco—|—550)2|ea,63>+sina|gA,gB>
(14,00|®(t)) = cosa(esg — seg)(ceo + $So)lga, en)
(04, 1p|®(t)) = cosalecg + sso)(cso — sco)lea, 9B)
(14, 16]|®@(2)) = 0. (22)

These show that the AB mixed state has the X form
mentioned in the previous Section:

a
0

pAB =1 0 (23)
w

[ =]
o0 oo
Qoo 8

*

for which the concurrence has the stated form
C4B = 9 max{0, |w| — Vbe}. (24)
and we easily find the following

|w| = |sinacosal(cs + sp 4 2c2s3 cos dt),
b=c = cos®alecy + sso|? |eso — seol?
= cos? afcg + sp + 2cis? cos dt)

X c2s3(2 — 2cosdt), (25)

where § = \/AZ + 442,

For simplicity we will evaluate this in the resonance
case, 0, = w/2, where ¢y = 5o = 1/\/5 and A = 0. Then
we find

1
lw| — Vbe = 1 cos? a[2 + 2 cos(gt)][| tan | — sin?(gt)],

(26)
from which the expression for concurrence 1s found to be:
CAP = 9max{0, @47}, (27)

where Q4P = cos? arcos?(gt)[| tan | — sin?(gt)].

Fig. 3 shows that for a # 7/4 the C4® curves have the
“sudden death” feature [18]. That is, the entanglement
non-smoothly becomes zero and stays zero for a finite
interval of time. It 1s also clear that the AB and ab en-
tanglements are opposites in the sense that one increases
as the other decreases (except in the regions where both
are zero). This has been analyzed in terms of information
transport, and time-invariant relations have been identi-
fied [15] that connect all six @Q(¢) values. Because the
evolution in the ideal situation treated here is lossless,
and only finitely many states are involved, the periodic
nature of the curves is not surprising. However, the sit-
uation is more realistic when infinitely many final states
are involved (quantum open system case). Results are
available in cases involving simple harmonic oscillators
that interact with reservoirs [19, 20]. In the remaining
sections we will employ the techniques presented here to
extend the vacuum results into the open-system domain
by allowing the atoms to interact with (be controlled by)
more realistic fields, namely fields described by quantum
coherent states.

FIG. 3: Time dependences of AB and ab concurrences for
three values of the superposition angle «. Note that almost
all curves have some time interval over which C=0, i.e., during
which the underlying state must be separable. From ref. [15].

V. OPEN-SYSTEM TWO-QUBIT THEORY

Realistic quantum control almost necessarily implies
engagement of continuous variables and the interaction
of qubits or other systems having a finite number of states
with one or more “large” systems with continuous quan-
tum states. Novel bipartite aspects of open-system joint
qubit states have been noted recently [21]. We can use
the JC formalism described above to enter this domain
by introducing coherent state fields at the AB network
sites. The Jaynes-Cummings interaction remains rele-
vant, and we again focus on pure storage memory nets,
with sites entangled but not interacting, as in Fig. 2.

We retain almost all of the simplifying approximations
made earlier, and add one more by taking the two fields,
now modeled as coherent state fields, to have the same
average photon number n. However, one important sim-
plification that we relied on previously must now be dis-
carded. The coherent-state fields have many occupied
photon-number states, so the cavities will not be qubits.
We assume initial atom entanglement in the form of a
pure Bell State:

(W5 (0)) = (leg) + lge))/ V2, (28)

and write the field state as the coherent state product

[Wap(0)) = |a) @ [e). (29)
As a result our initial state for the whole system is,
W0t (0)) = [Wap(0)) @ |a) @ |a). (30)

The coherent states are given by the familiar Fock state
expansion

oc|2/2an

[e%) [e%) 6_|
0) =3 Ay = X2 ) (3)

Because a coherent state provides an infinite num-
ber of Fock states, the photonic density matrix be-
comes infinite-dimensional, and the joint AB dynamics



extremely complicated. Fully numerical analysis is pos-
sible, but the insights from analytic results are highly
desirable. We have found a key step permitting ana-
lytic progress. This is an apparently drastic simplifica-
tion of the continuous state spaces of the two field modes.
We assume that it is satisfactory to replace |a) by |n).
This Ansatz is at least weakly supported by the knowl-
edge that photon number in a coherent state is Poisson-
distributed and relatively tightly centered around n when
n > 1. Thus we represent the initial field state by the
single product Fock state |n) ® |n). Note that during the
JC interaction the photon number in either field mode a
or b can then be n or n4+1 or n—1. Thus the field modes
are no longer convenient qubits as they were in Sec. V.

Under the Ansatz mentioned, by tracing the field mode
states, we find that the reduced density matrix for the
qubits becomes:

a x T T a 0 00
bz 0 b 20

p= l‘Z*Cl‘_)OZ*CO’ (32)
r z z d 0 0 0d

where we have used the standard two-qubit basis
[ee, eg, ge, gg]. The elements indicated by a are zero
because of the equal-n simplification. Thus, under the
assumptions mentioned, p is again of X-type [13]).

For this X-type p, concurrence turns into:
C(p) =2 max[ 0, |z| — Vad]. (33)

The coherent fields induce time-dependent change of the
elements a and d, and their growth and any decline of z
will cause entanglement to decrease.

In order to calculate the time evolution of this state
under the JC Hamiltonian we need to calculate the time
evolution of the the states of the individual sites, i.e.,
le) ® |n) and |g) @ |n) for all n. The time evolution of
these states for site A (and similarly for site B) is given

by,

einAt|e;n> = cos(gtvn + 1)|e;n)
— dsin(gtvn+ 1)]g;n+ 1) (34)
et gin) = cos(gty/n)|g;n)

— isin(gtv/n)|e;n — 1), (35)

Using these results, the time evolution of the initial
state of the system is found to be,

[Weoe () = 7800 (0)) (36)
% S Andn (Kn),  (7)

n=0m=0

where

Kmn = —iCpy1Smle,esn,m— 1)+ Cpy1Smle, g;n,m)
— Spt1Salg, e;n+1,m) — i 41Calg, gsn+ 1,m)
— 1Sy Cpyile,e;n—1,m+ 1)
— SpSmyile,g;n—1,m+1)
+ CpChmyilg,esn,m+1)
— iCpSmt1lg, gim,m+ 1), (38)
where C), = cos(gt\/n) and S,, = sin(gt+/n). The density

matrix for the system is then given by

prot = [Wror (1)) ([ Wror (1) (39)

and the reduced density matrix for the atoms, pap, is
given by,

PAB = Tr(n,m)ptot~ (40)

Having used the Fock state shortcut to obtain (32),
we avoid using it further now and calculate the elements
z, a, d of pap for the coherent state. The z term is given
by the doubly infinite summation,

2 = %{ 3 A2 42,0 Crg1 O G

- AnAn—lAmAm+1 Sncn+1CmSm+1
+ AnAn—2AmAm+2 Sn Sn—15m+1 Sm+2

— Ap A A A 180 Coi Syt O - (41)

Similarly the series summations for @ and d are:
1 242 2 @2
¢ = 5{ZAnAanHSm
n,m

+ AnAn+1AmAm—1Sn+1Cn+ISmCm
+ ARAL S G
+ AnAn—lAmAm+1SnCnSm+lcm+1} (42)

and
d = —1{ E A2 A% 52 2
9 e n‘*m~n+1-m

+ AnAn+1AmAm—1Sn+1Cn+ISmCm
+ AZAZ2CES?

m-n~m+1

+ AnAn—lAmAm+1SnCnSm+lcm+1}~ (43)

The infinite extent of these summations of course reflects
the fact that we are dealing with a quantum open system,
by having coupled the qubits to an infinite state space.

The sums above cannot be completed, but excellent
analytic approximations can be found for coherent states
that are even only moderately strong, i.e., & > 10. We
will use the familiar Stirling formula for n!,

n! =+V2mnn"e™", (44)



and Euler’s formula to approximate the terms in the sum-
mations above by integrals. We begin by approximating
the terms like A, Ap41A4Am Am—1 with A2 Arzn, which in-
troduces an error of order 1/n near the Poisson peaks
n &~ m = n. Then we get for z

(X o)

2(2A3A;Sncn+1cmsm+1)

(ZAiSnSn+1)2}. (45)

In the same way, Eq.(42) and Eq.(43) become,

0= ((Z Anc,%) (ZA,%S,%) ¥ (ZAZSnCn)z, (46)

1

= (3o a.c2) (Yo Aazsz) + (ZAZS €)' (@)

Note that Eq. (46) and Eq. (47) imply that a = d
whenever our large n approximation is valid. Now we
rewrite C,Chy1 as,

CpnCpi1 = %{ cos[gt(v/n +vVn +1)]
+oeosfr(Vat T valh, o (48)

and use the peaked nature of A, to focus on those terms
near to n to introduce the approximation

Vi+l=yn+ —= \/— (49)
which compresses C,C 41 to
CoChyy = ;{cos(Qgt\/_)—l-cos(Q\/_)} (50)
Similarly,
S Spyr = %[cos (%) ~ cos(2g1+/m)|
e = Yt —in(25)
Spp1Ch = ;{sm(Qgt\/_)—i-sm(Q\/_)} (51)

With these results we can simplify z further:
1 2 . 2
z = 1 KZAZ cos(Qf;ﬁ)) + (ZAZ sm(%))
+ ( Z A2 cos(2gt\/ﬁ)) ’

—(ZA,ZL sin(?gt\/ﬁ))z}. (52)

Now, using the identities,

o2 1+ cos(2gt\/n)
n 2
2 = 1- cos(2gt\/_) (53)

[\]

we can rewrite a and d as,

% [1 - (Z A2 cos(2gt\/ﬁ)) ’
+(30 A2 sin(2gtv/m)) 2} . (54)

a =2 d

1l

Then Egs. (52) and (54) lead to:
z—Vad = %{(ZH:AZ cos(Qf;ﬁ))2
+(ZH:ATZL sin(%))2
—1—2(214721 cos(2gt\/ﬁ))2

2
—Q(ZAZ sin(Qgtﬁ)) - 1] (55)
n
We can calculate the sums involved here by rewriting
them as integrals, treating the integer n as continuous,
again relying on the large value of n. The first two inte-
grals we need to calculate are,

e [
11:/0 Aicos(Qf/ﬁ)dn, and (56)

12:/0 A2 sin(%)dn. (57)

We will combine these integrals, I1 + ¢[; = I15 in order
to work with the exponential of igt/Q\/ﬁ. This, together
with Stirling’s approximation on A2, and the abbrevia-
tion 7 = g¢t, leads to

00 5 aZn en /2\/_

1 E/ e @ —e'TI dn, 58

' 0 V2mn n" (58)

The saddle point method is appropriate to calculate

this integral, and some details are reserved for the Ap-
pendix. The expression for I; + i1, is found to be,

2
T iT/2a
T3a1) ¢ (59)

Then helpful cancellations can be identified, and we
obtain an approximate expression for |z| — vad:

1 2.2 =2
|z| — Vad 1{6_9 t5/16n —1}

+ % {Zn: A2 cos(2gt\/ﬁ)} ’

115 = exp (—

1

_ % {Z A2 sin(?gt\/ﬁ)} 2~ (60)



The summations in (60) involving cos(2gt/n) and
sin(2gt\/n) can be combined into a single exponent con-
taining the argument 2igt+/n, which is similar to that in
(58), but the resulting saddle point analysis is more com-
plicated because now /n is in the numerator. Details are
relegated to the Appendix, with the working result:

2

=== 3{ew (- 1553)

-1+ =72 cos(4ar)}

1
+ 2 sl (-
k=1,2...

x cos[da(r — 271']{70[)]} . (61)

2(r — 27Tkoz)2)
1+ 72k2

In writing this last equation we have used the fact that
around 7 = 27k« only the term with the corresponding
k gives a significant contribution to the sums. The con-
tribution to 7 = 2wka from any other k' is proportional

— Ana?(k — K)/[L+ 7 (K)?)

exponentially with the distance from k.

to exp( , so 1t decays

VI. OVERVIEW AND IMPLICATIONS

We have demonstrated the utility of a novel short-cut
approach to determine the open-system evolution of en-
tanglement under coherent-state interaction with two re-
mote qubits. The X-state simplification and Fock-state
Ansatz we introduced work together in a surprisingly ac-
curate way. Some details of the calculations themselves
have been included for inspection, and we can summa-
rize them by greatly over-simplifying the multiple stages
involved as follows. The evaluation of concurrence for
n > 1 here is generically the same as that presented
for zero detuning qubit inversion in the original discus-
sion of quantum revivals [23], so one should be prepared
to find revival behavior here, and strong revivals of en-
tanglement are apparent in Fig. 4 below. They show
both the predictions of the analytic expressions given
above, and also the results of a numeric check on the
Fock state Ansatz adopted to initiate the analytic calcu-
lations. That is, Fig. 4 shows our analytical results for
the function 2(|z|—V/ad) in comparison with the complete
numerical evaluation of concurrence without making the
X-type approximation. The agreement is not perfect,
but the discrepancies are illuminating.

In particular, the results for entanglement contain de-
tails not present in well-known results for inversion, and
these details appear to work favorably for application to
quantum memory management, as to both storage and
recovery. This is not difficult to see, as we now indicate.

There 1s an important scale issue to note in these fig-
ures. Both curves in Fig. 4 show long periods of ESD
interrupted by intervals of coherent response, i.e., recov-
ery of entanglement. While it is not perfect recovery it is

Analytical
1 -
205
D
0 20 40 60 80
gt/n
Numerical
1
Sos '
O 1
Ol A Vo . i
0 20 40 60 80
gt/n

FIG. 4: The analytical and numerical results for concurrence
of two qubits exposed to two quantum-coherent driving fields
with o = 10. The evident revivals are predicted reasonably
well by the approximate formula (61). Analytical results are
for the X-type p while the numerical ones are for the original

p.

surprisingly robust. The envelope of the revivals decays

relatively slowly, as given by the formula
1 1 —exp(—7%/16a%)
wk 2 '

(62)

where k 1s the revival number.

Returns of concurrence to zero (ESD events) within the
analytic revivals are not present in the numeric revivals.
The extent of this is seen by inspecting a revival envelope
in detail, as is done in Fig. 5. Close to the revival regions
the analytical results show rapid oscillations with period
7 = m/(29y/n) which is half the corresponding period
in the inversion case. The analytic formula retains the
entanglement death and rebirth episodes that occur on
the rapid Rabi-period scale, as were shown in Fig. 3
and have been discussed in the literature repeatedly for
few-photon excitation. By contrast, the numeric results
show a smoothed version without rapidly recurring ESD
events. Even the zero revival, i.e., the period that is
referred to as the Cummings collapse in the inversion
literature, shows no ESD events within it.

One can conclude that, in principle at least, several
aspects of quantum memory management can be fur-
ther developed for remote qubit entanglement using the
interactions employed here. For example, we see that
quantum joint memory can be “hidden” without easy de-
tectability. In the ESD intervals the stored entanglement
is not evident either locally or globally. Moreover, these
long intervals have two important management charac-
teristics - they have closely predictable durations, and
they don’t substantially deplete the degree of the stored
entanglement.

Finally, we can comment on the quasi-periodic mod-
ulations evident in the numeric details in Fig. 5. For
contrast, we show in Fig. 6 below the numeric revival
details for two other values of coherent state photon num-
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FIG. 5: Details of the first revival shown in the preceding
figure. The deep modulations in the analytic envelope are not
present in the numerical envelope, which retains entanglement
robustly through the revival event.
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FIG. 6: Similar to Fig. 5 above, except that here o = 5 and
6, rather than 10.

ber: 7 = 25 and 36. In those graphs modulations also
appear, but with different main periods, their frequency
increasing linearly as « increases, viz., n main modula-
tion periods for &« = n over a unit interval in g¢ /7. These
modulations would be further smoothed in realistic ap-
plications where differences would have to be expected
between the n values at the two sites being managed,
thus promoting rather than degrading the desirable fea-
tures mentioned.
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VIII. APPENDIX

Here, we sketch the saddle point analysis of the re-
maining sums in Eqn. (60). They can be combined, and
converted to an integral:

I3 = /000 exp [a? f(n)]dn, (63)

where
fn) =
~ nln(n) +n+ 2irv/i) — 1. (64)

1
(Qn Ina — 3 In(27n)

In the saddle point method, an integral of type

fab eMI@) de where M is a large number and f(z) is a
twice-differentiable function, is approximated by,

2
Mf(z Mf(zo) 65
/ e )

where xy is the global maximum of f(x). In our appli-
cation Eq. (63) can be written in this form if we choose
M = o? and f(n) as given above. For the saddle point
maximum of f(n) we need to find the point ny where

f'(ng) = 0:

1 1 _
f(no) = y(21na—%—m(no)ﬂmo 1/2) = 0. (66)

Assuming that |ng| is large, we can replace In(ng) =
In(a?) + irnal/z, and then letting no = pei® gives
Inp+i6 = In(a?) + irp~t/2e710/2 (67)

where equating the real and imaginary parts of both sides
gives,

)+ rp 2 sin(f/2)

Zcos(0/2). (68)

In(p) = In(a?
f = Tp_l/

For 7 = 2nka, where k is an integer, the equations
above become,

p=a? and 0= (-1)"2rk. (69)
Now, let 7 = 70 + A7 and 6 = 0y + Af, where 1y = 27k«
and 6y = 27k. Assuming that both A7 and A# are small,
we can write

sin(0/2) = (—l)k% and  cos(0/2) = (=1)*. (70)
Then Eq. (68) turns into,
p = 14 (=) rkA0]
- TkAf s AT
0 = 0y — 5 +(=1) o (71)



In order to arrive at the second line we have used,

kﬂ'k’A@)’ (72)

—1/2 —1(1— -1
p a (=1)"—;
in the second line of Eq. (68) and we have ignored the
terms with ATA#6.
Now, the last two terms in the second line of Eq. (71)
are just A#, so,

kA0 AT
— —1)F=— = Ad.
S (73)
Thus, we have,
(=
Al = (L + 777 AT, (74)

Using this in Eq. (71), we obtain

1
a(l 4+ w2k?)
)k;
a(l 4+ 72k?)

p = Q1+ 7k AT]

9 = 90 + (—1 AT. (75)

% in Eq. (89), we find

Now, by inserting ng = pe’

—pe? In(p/a®) = In(p'/?) —
pe'? (1 — i) + 2irpt/2e™/?

— o® —In(vV2n). (76)

a’f(ng) =

The real part of this equation is given by,
Re{a’f(no)} = —pcosfln(p/a?) —In(p"/?) + pfsin @
+pcos b — 2rpt/?sin(6/2)

—a? — In(v27). (77)

Using 6 = fy + A6 and retaining only the terms upto the
second order in A#,

Re{azf(no)} o~

—p[1- B0 (£)
—In(p*?) + pAb(6 + AO) 4+ p|1 —
—(=1)Frpt2A0 — o — In(V27). (78)

Writing Af in terms of A1 and ignoring the terms after
second order,

y N 1 1+ 272k? y
Refa f(no)}:_1+7r2k2(2+27r2k2)( )
—In(p*?) = In(p*/?) — In(a/?) = In(v27).  (79)

The imaginary part of a?f(ng) is,

Im{a®f(ng)} = —sin len(p/az) —6/2

—pf cosO + psin b + 27p"/ Zcos(0/2). (80)

Again, using 8 = 8y + Af and 7 = 7y + A, writing Af in
terms of A1 and ignoring the terms after second order,

Im{a®f(ng)} = (—1)k{2ﬂka2 + {20[

1
_2a(1—|—ﬂ'2k2)}AT
wk 3 1
— —|(AT)%. 1
+1 + w22 {2(1 + 72k?) az}( 7) (81)

For k = 0 the (A7)? part of this equation vanishes. For
k =1,2,... this part can be ignored as well. Thus we are
left with,

Im{a”f(no)} = (-
We also need to calculate /27 /a?|f"(ng)|. By using

Eq. (66), we find

DF(2rka® 4+ 2aA7).  (82)

7m0} = 25 (g — - ””53/2), (83)

Qng ng 2

which has two forms: for 7 = 0,

L
a?|f"(no)|

and for 7 = 2rka (k=1,2,.

\/ a2|f” ng) r (85)

Then the integral in Eq. (63) is given by,

>~ \/2ra, (84)

2
a?|f"(no)|

T34 =2 e f(no), (86)
In order to find the value of this integral we should add

the contributions from all £ = 0,1,2,.... As a result, the
integral is,

Isq = 77 /2 2iaT
/1 (r— 271'ka)
+ Z 1_|_ 7T2]{72
k=12,
X cos[?a(r — 2mka)]. (87)

Now, inserting the values of all four integrals into Eq.

(55)’

2z —Vad = %{exp (— 1224) 14 cos(dar)
2 1 2(r — 2rka)?
! ;kzg...z{exp(_ 14+ w2k? )
X cos[da(T — 271']{70[)]}}. (88)

Writing this last equation we have used the fact that
around 7 = 27k« only the term with the corresponding



k gives a significant contribution to the squares of the
sums in Eq. (55). The contribution to 7 = 2wk« from
any other &’ is proportional to exp(—4r?a?(k —k')?/[1+
72(k")?]), so it decays exponentially with the distance
from the peaks identified with integer k. Thus, while
taking the squares in Eq. (55) we can ignore the cross-
terms.

Now, we turn to the integral given in Eq. (58). We
will continue to use the saddle point method. This time
we need to find the maximum of the function:

f(n) = %(inn(a) - %111(271’77,)

[0

—nln(n) +n+ —=) — 1, (89)

2\/_
For this, we need to find the point ng where f'(ng) = 0:

1 T -3/2

f'{n0) =~ Infa®) = 5o —In(ng) = Tn3*’%) =0, (90
Again assuming that |ng| >> 1,
In(no) 2 In(a?) — %ng?’/z (91)
Letting
no = pe’?, (92)
then,

In(p) 416 = In(a?) — ;lp_?’/z[cos(:;—g)—isin(:;—g)], (93)

and by matching the real and imaginary parts of both
sides, we find two coupled transcendental equations:

6
In(p) = In(a?) — p_3/2 sm(3 ),
4 2
6
6 = 4p_3/2 cos(%). (94)
We are going to retain only the terms up to second order
in 7p3/2,

T 302

9:—@ and p:a(l—l—T) (95)

With this restriction, and after inserting n = pe'’ into

Eq. (89), we find

a?f(no) = —In(a?) —In(a) — In(v27)
3 ., 0 307
——9—5—1— (1—7—29)
+—p_1/26_29/2—0[2. (96)

2

10
Writing p in terms of 8 and retaining only the terms up

to 02,

a?f(no) = —In(a?) —In(a) —ln(\/ﬁ)
W

4 2 4o
T 6  7r6?
o “(2__5_16@)’. (97)
so that by inserting —7/4a” for 8, we obtain

a?f(no) = —In(a?) —In(a) — In(v27)
72 372
320t  16af
T T 73
“(% T 8ad 256a7) (98)

In order to find the final form of Eq.
calculate | f"(ng)| as well.

(65) we need to

et Y

- 210

Qng ng

Retaining the terms up to a~? in the parentheses, we

have |f"(ng)| = =¢. Then we use Eq. (98) and Eq. (65)
and insert o? for M, to get

2
a?|f"(no)|

el (no) o~

72 372 )
320t 16ab

T 727’

20 8a3 1)00

For 7 ~ o we can retain the first terms in the parenthe-

ses and ignore the rest since a? >> 1. Thus, we finally

find

2
T )6i7/2a.

90 (101)

115 = exp (—
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We extend recent theoretical studies of entanglement dynamics in the presence of environmental
noise, following the long-time interest of Krzysztof Wodkiewicz in the effects of stochastic models of
noise on quantum optical coherences. We investigate the quantum entanglement dynamics of two
spins in the presence of classical Ornstein-Uhlenbeck noise, obtaining exact solutions for evolution

dynamics.
several limiting cases.

We consider how entanglement can be affected by non-Markovian noise, and discuss
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I. INTRODUCTION

A quantum system of interest may be large or small,
but its background, called an environment, is almost
always complex, and is often represented by a bath of
bosons or fermions, or by classical random fields. In all
these cases, system dynamics is described by a quantum
master equation that governs the evolution of the reduced
density matrix of the system. In the current decade, de-
coherence dynamics of entangled quantum systems un-
der the influence of environmental noises has been ex-
tensively discussed in different contexts involving atoms,
ions, photons, quantum dots, and Josephson junctions,
to name several. This is all related to new regimes of
information processing, such as quantum cryptography
and quantum computation [1]. An important category of
such research has treated the fascinating domain where
entanglement of qubits evolves even though the qubits do
not interact, even indirectly. An example is sketched in
Fig. 1 and we restrict our attention here to this category.

In experimental environments an entangled system
may be exposed to vacuum noise, phase noise, thermal
noise, and various classical noises, as well as mixed com-
binations of noises. A number of idealized models have
provided new insights by allowing entanglement evolu-
tion to be followed by solving the appropriate quantum
master equation (see Zyczkowski, et al. [2], Daffer, et al.
[3], as well as [4-9]). Most research on entanglement dy-
namics has been focused on ambient noises from environ-
ments that obey the Markov (no memory) assumption.
Recently, there is growing interest in the non-Markovian
entanglement dynamics for both discrete and continuous
quantum systems (see [10-15] and the overview in [9]).

*Email address: ting.yu@stevens.edu
tEmail address: eberly@pas.rochester.edu

In truth every environment is non-Markovian. Non-
Markovian noise was a repeated theme in the research of
Krzysztof Wodkiewicz [16-27], and we present our find-
ings as a contribution to his scientific memory.

As far as we know there are no fully systematic in-
vestigations of non-Markovian noises or of their effect
on the coherence dynamics of non-interacting spin sys-
tems. In particular, a perturbative theory leading to the
Markov approximation is still lacking. The purpose of
this paper is to present a study of such problems in the
simplest form. We will consider classical non-Markovian
noises, modelling them as so-called Ornstein-Uhlenbeck
processes; and derive the consequences for entanglement
dynamics. This can be considered an extension of our
earlier note on entanglement sudden death (ESD) under
classical Markov noises [28].

II. THE KUBO-ANDERSON MODEL
EXTENDED TO TWO QUBITS

We consider an entangled pair of spins both of which
are subject to frequency fluctuations that are random
[29]. We adopt a model for these fluctuations that
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FIG. 1: Sketch of remote qubits in a quantum memory net,
where the dashed lines indicate entanglement, but not inter-
action.



treats them as caused by noisy environments described by
Ornstein-Uhlenbeck processes. This well-known Gaus-
sian noise model is non-Markovian in the general case but
has a well-defined Markov limit. To focus exclusively on
the effects on the entanglement of the spins as it arises
from the noise, we assume the spins to be affected sepa-
rately by separate environments, and not to interact with
each other in any way, especially not through the noises.
Thus the spins could be, for example, remote compo-
nents of a quantum memory net (as in Fig. 1) under
steady attack by weak local noise. This compromises the
preservation of their entanglement.

The Hamiltonian of the two-spin system can then be
formally written as (we set i = 1):

Qul(t Qp(t
Hior(t) = al )0'24 + 5 )O-ZB (1)
2 2
where Q4 (1) and Qp(t) are the independent fluctuations
of the spin transition frequencies (level spacings). They
have the mean value properties

M[Qi(1)] = 0, (2)
MIQ:(t)2%(s)] = alt—2s)
I .

= pre_ﬂt_sl, i=AB, (3)

where M[] stands for the statistical mean over the noises
Q4(t) and Qp(t). Note that v is the noise bandwidth,
and y~! = 7. defines the environment’s finite correlation
time of the noise. For simplicity, we will take the noise
properties to be the same for A and B (e.g., Ty =T'p =

'), although independent. In the limit v — oo, Ornstein-
Uhlenbeck noise reduces to the well-known Markov case:

at,s) =To(t — s). (4)

For the total system described by the Hamiltonian (1),
the stochastic Schrodinger equation is given by

.d
(D) = Heon((0). (5)

The explicit solution for the stochastic Schrodinger equa-
tion can be readily obtained in terms of a stochastic uni-
tary operator:

[¥(8)) = U(t,Q24,28)[¢(0)), (6)
where the stochastic propagator U (¢,Q4,p) is given by
U(t, Qu, QB) — e—ifot ds(QA(s)crf+QB(s)cri3). (7)

The reduced density matrix for spins A and B is then
obtained from the statistical mean

p(t) = M%) )] (8)

The master equation for the reduced density matrix for
the two-spin system in a non-Markovian regime can be

readily derived from the stochastic Schrodinger equation

[30]:

dp _ G(t) A _A B__B
dt - 4 (2p_ G, p0, — 0, po, )a (9)

where

G(t) :/0 at — s)ds = g(l—e_w), (10)

The memory information of the environmental noises is
encoded in the time-dependent coefficient G(t) where
7. = 1/~ characterizes the environmental memory time.
In the Markov limit 7. = 0 (y = o0), when G(t) = T'/2,
equation (9) reduces to the well-known Markov master
equation in the presence of dephasing noises.

III. EXACT SOLUTIONS FOR QUANTUM
EVOLUTION

Solutions of master equations for the noisy evolution of
two-spin density matrices in terms of the Kraus operator-
sum-representation have been given before (see, for ex-
ample, [28, 31, 32]). In many cases of physical interest,
the Kraus representation allows a transparent analysis of
entanglement decoherence without invoking the explicit
forms of the initial conditions. In what follows, we will
use the fact that for any two-spin initial state p (pure or
mixed), the evolution of the reduced density matrix can
be written compactly as

p(t) =D Ku()p(0)KL (1), (11)

where the Kraus operators K, satisfy Zu K;ﬂ K, =1for
all .

In order to derive the desired Kraus operators for the
reduced density matrix we begin by noting that the so-
lution for just spin A can be written:

[¥(8)) = U(Q2a,8)[4(0)) (12)
where
U(Qa,t) = exp[—iF(t)o,] (13)

with the stochastic process F(t) = fot dsQ24(s). Then
our first task is to express the stochastic density operator
pst = |0(t)){(¢(t)] in the Kraus-like operator representa-
tion form:

pst(t) = exp [=iF (t)o:] p(0) exp [iF ()o:] (14)
where p(0) = |¥(0)){(¢(0)| is the initial state of the sys-

tem, which is assumed to be independent of the noise.
The desired Kraus operators for the spin are obtained by
taking a statistical mean over the noise 4 (¢) for qubit
A and are given by

E1:<p‘40(t) ?),E2:<q‘40(t) 8) (15)



where the time-dependent Kraus matrix elements are

() = \J1—p(0), and (16)
pa(t) = exp[—f(t)], with (17)
f@) = i G(s)ds

_ g[H%(wt—m, (18)

and similar expressions for pp(t) and ¢p(t). The two-
qubit case given here can be easily applied to N noninter-
acting qubits, an extension we reserve for later attention.

Since our two spins are evolving independently, we
have the following four Kraus operators in terms of the
tensor products of £y and Fs:

m=(0)e(Y)
oo (B 0)e(T) e
w=(50)e(TY) e
me= (% 0)e (o) 22)

IV. NON-MARKOVIAN ENTANGLEMENT
DYNAMICS

A. X matrix and concurrence

We now consider entanglement dynamics of two half-
integral spins (qubits) with an initial density matrix with
the common X-form [31]:

pi1 0 0 pua
AB 0 p22 paz O
= . 23
P 0 p32 paa O (23)
pa1 0 0 paa

Such X states occur in many contexts and include pure
Bell states as well as Werner mixed states.

For two qubits, entanglement can be evaluated un-
ambiguously via the concurrence function [33], which

may be calculated explicitly from the density matrix
pAB. For qubits A and B we have: C48 = C(p28) =
max{0, Q(t)}. Here Q(¢) is defined as

Q=V M —=Vh =V - VA, (24)

where the quantities A; are the (generally time-
dependent) eigenvalues in decreasing order of the follow-
ing (nonlinear in p) matrix:

C=plog @ol)p (o) @a)), (25)

where p* denotes the complex conjugation of p in the
standard basis |+, +), |+, =), |-, +), |—, —), and oy, is the
usual Pauli matrix expressed in the same basis.

From the general solution (19-22), one can easily show
for the initial state (23) that one finds

Q(t) = 2max (|pss(t)] — /11 (0)paa(0),

Ipra(t)] = V2 (0)2(0)) (26)

B. Solutions for non-Markovian disentanglement

The Ornstein-Uhlenbeck phase-noise solutions for the
density matrix elements of a general initial state are given

by

prat) = pr2(0)e= ), (27)
pia(t) = pia(0)e= ', (28)
paa(t) = paa(0)e= '), (29)
paa(t) = paa(0)e=!) (30)
pas(t) = pas(0)e ), (31)
pra(t) = pra(0)e™*® (32)
pii(t) = pii(0) (1=1,2,3,4) (33)

where f(t) is defined in (18). Let us note that in the limit
~ — 00, we recover the standard Markov approximation
where f(t) =Tt/2.

Although there 1s no compact analytical expression for
the concurrence C'(p(t)) with an arbitrary initial state,
we can readily show that preservation of entanglement is
restricted by the inequality

Clp(t)) < e (p(0)). (34)

A sharper result occurs for the X matrix under consid-
eration because the diagonal elements are independent of
t. Since they all vanish as exp(—f(t)) for increasing ¢, we
know that Q(¢) must eventually become strictly negative
if diagonal values are initially non-zero (e.g., any finite-
temperature equilibrium state). Negative ) mandates
CAP =0, so ESD must occur. Next we will consider key
limiting cases.

C. Entanglement decay: Stationary limit

We consider now the stationary limit 4¢ > 1. Then
r

) =Flr e =gt 6

Therefore, from (34), we get
Clp(1)) < e 11 C(p(0)). (36)

Hence, the entanglement decay rate is at least as rapid as
I', and may be much faster. Clearly, the stationary limit
is identical to the Markov limit a(t — s) = Td(t — s).



FIG. 2: The graph shows C*F vs. T't and v/T. The value
a = 1/3 has been chosen. The reservoir bandwidth ~ controls
the approach to the Markov limit, and we see that for v < I’
the inevitable onset of ESD (the region where C(¢) = 0) can
be substantially delayed.

D. Entanglement decay: Short-time limit

Now let us turn to the opposite limiting case: vt < 1.
In this case, we can use the following approximation,

1
e~ — 4t + 572152 (37)
Therefore,
|
f) = ZF'yt (38)

Then concurrence decay 1s bounded by
Clp(t)) < e 2C(p(0)) (39)

Hence, the effective disentanglement time is given by:

/2
Tdis = ﬁ (40)

Clearly, for non-Markovian noises, the short-time limit
is more interesting since 1t shows that the resultant en-
tanglement behavior deviates significantly from the well-
known Markov dynamics. Obviously, the smaller v is, the
better approximation we have. For both limiting cases,
it 1s easy to prove that a sufficient condition for ESD to
oceur is pi1paapsspaa 7 0 [34].

V. EVALUATION FOR A SPECIAL X STATE

In Fig. 2 we show the evolution of the concurrence for
a specific X-form entangled state:

o oo

1
AB _ =

oo O R
O == O
O == O

where 0 < o < 1, so the initial concurrence is C'(0) =
2/3[1 — /a(l —a)] > 0.

The time dependence of the concurrence of this state
is well-known in the Markov dephasing limit [9, 28]. For
our present non-Markovian case, which introduces the
environmental bandwidth 7, the time dependence of the
() parameter satisfies

2

QW =3(0 - al=a).

For all finite values of v the quantity e~/(*) approaches
zero exponentially at long times, and then @Q(¢) must
become negative, so ESD inevitably occurs, with a finite
disentanglement time {gsp given by

e~ tes) — (1 — a). (43)

Fig. 3 shows several interesting features of entangle-
ment evolution under Ornstein-Uhlenbeck noise. Clearly,
we see that non-Markovian noises have markedly different
affects on entanglement evolution at short times, while
the long time limit gives rise to familiar Markov behav-
ior. First, note that ESD must occur for the entire pa-
rameter range of «, except for the end points a = 0,1,
given our initial X-state. However, the ESD times are dif-
ferent for non-Markovian short-time and stationary limit

0.4

20

FIG. 3: The graphs show C2% vs. t with o = 1/3. Fig.
3a shows that with v/T" = 0.5, an initially non-Markovian
entanglement (solid line) evolves in a markedly different way
compared to its Markov limit (dotted line). Clearly, the short-
time limit (dashed line) gives a better approximation than the
stationary limit (dotted line). However, as shown in Fig.3b
where v/T" = 5, the difference is washed out at later times
when the short-time limit (dashed line) ceases to be a good
approximation.



cases. From Fig. 3a, it should be noted that the dis-
entanglement time for non-Markovian regimes could be
significantly longer than the disentanglement times in the
Markov limit if the dissipation i1s small. However, once
the state becomes separable it will never become entan-
gled again. That is, entanglement rebirth or revival does

not occur for Ornstein-Uhlenbeck noise [14].

VI. CONCLUDING REMARKS

We have presented here, as a contribution to the sci-
entific memory of Krzystof Wodkiewicz, the first results
of a new investigation that has clear connections to his
long-time interest in quantum systems evolving under the
influence of stochastic perturbations. One of the targets
of his creativity and energy, over many years, was the
challenge presented by the influence of non-Markovian
noise and we have addressed that challenge with some
calculations focused on entanglement.

We have shown that entanglement dynamics under
Ornstein-Uhlenbeck noise can be affected in several dif-
ferent ways, depending on the initial entangled states and
the noise correlation time. It can be seen that the non-
Markovian properties can prolong the life of entangle-

ment. We note that the effective long-time relaxation
rate I' is ordinarily associated with experimentally ac-
cessible relaxation times such as 77 and 75. Fig. 2 high-
lights the unusual domain v < I'; in which these times
are shorter than the internal environmental relaxation
time 7.. Entanglement survival is of fundamental inter-
est at short times in quantum information processing (see
[35, 36]). In the case of the short-time limit our results
capture the features of quadratic rather than exponen-
tial decay at early times. In this simple model, non-
Markovian noises appear to play a role as a short-time
decoherence buffer, but entanglement measured by con-
currence will inevitably conform to the stationary limit
at long times. Finally, it is interesting to note that our
findings based on the classical phase noise model can be
extended into the case of quantum phase noises where the
environment is modeled as a set of harmonic oscillators
at a finite temperature [37].
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