
REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704'()188). Respondents should be aware that notwithstanding any other provision of law, no 
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 

1. REPORT DATE (DD-MM-YYYY) 12. REPORT TYPE 3. DATES COVERED (From - To) 
03/0112010 Final Technical 0110112007 - 12/3112009 

4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER 

NUMERICAL SIMULATION OF HYPERSONIC BOUNDARY LAYER 
RECEPTIVITY, TRANSIENT GROWTH AND TRANSITION WITH SURFACE 

Sb. GRANT NUMBER 

ROUGHNESS FA9550-07-1-0414 

Sc. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) Sd. PROJECT NUMBER 

Xiaolin Zhong 
Se. TASK NUMBER 

Sf. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

Mechanical and Aerospace Engineering Department 
University of California, Los Angeles, CA 90095 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

AIRFORCE OFFICE OF SCIENTIFIC RESEARCH, AFOSRJNA 
875 North Randolph Street Suite 325, Room 3112 
Arlington, Virginia 22203 11. SPONSOR/MONITOR'S REPORT 

NUMBER(S) 

12. DlSTRIBUTION/AVAILABILITYSTATEMENT 

APPROVED FOR PUBLIC RELEASE 
DISTRIBUTION IS UNLIMITED 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

The objective of this research is to conduct DNS studies of hypersonic boundary layer receptivity, transient growth and transition with surface 
roughness. The main approach is to use DNS as a research tool to study the boundary layer receptivity and transient-growth mechanisms in 
hypersonic flows, including the development of numerical algorithms and parallel computer codes of higher order numerical methods for the 
simulation of hypersonic flows with surface roughness of fmite heights. During the three-year period, we have conducted DNS studies on the 
hypersonic boundary layer flows over flat plates and blunt cones. A new high-order cut -cell method has been developed for the numerical 

simulation of hypersonic boundary layer transition with finite height surface roughness. The method has been applied to the numerical simulations 
of two-dimensional hypersonic flows over a flat plate. Furthermore, the stabilization effect of the surface porous coating over a flat plate is 
extensively studied by series of numerical simulations. We also collaborate with Prof. Tumin in the University of Arizona to compare numerical 
and theoretical results on receptivity of a Mach 5.92 flow over a flat plate to wall blowing-suction, and to analyze the nonparallel flow effect. 

1S. SUBJECT TERMS 

HYPERSONIC BOUNDARY LAYER, RECEPTNITY, TRANSIENT GROWTH, TRANSITION, DIRECTION NUMERICAL 
SIMULATION, HIGH-ORDER CUT -CELL METHODS. 

16. SECURITY CLASSIFICATION OF: u 17. LIMITATION OF 

a. REPORT b.ABSTRACT c. THIS PAGE ABSTRACT 

UL 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

XIAOLIN ZHONG 

19b. TELEPHONE NUMBER (Include area code) 

(310) 825-2905 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 

Adobe Professional 7.0 



 

 

FINAL TECHNICAL REPORT 

 

NUMERICAL SIMULATION OF HYPERSONIC BOUNDARY LAYER 

RECEPTIVITY, TRANSIENT GROWTH AND TRANSITION WITH 

SURFACE ROUGHNESS 
 

Grant Number: FA9550-07-1-0414 

 

 

(01/01/2007 to 12/31/2009) 

 

 

 

 

 

Xiaolin Zhong 

Professor 

Mechanical and Aerospace Engineering Department 

University of California, Los Angeles 

Los Angeles, California 90095-1597 

phone: (310) 825-2905 

e-mail: xiaolin@seas.ucla.edu 

 

 

 

 

 

 

 

 

 

 

Prepared for: 

Air Force Office of Scientific Research 

AFOSR/NA 

4015 Wilson Boulevard, Room 713 

Arlington VA 22203-1954 

Grant Monitor: Dr. John Schmisseur/NA 

 

 



 1

Contents 

 
1 SUMMARY .................................................................................................................................. 2 

2 RESEARCH OBJECTIVES ...................................................................................................... 4 

3 RESEARCH ACCOMPLISHMENTS ...................................................................................... 5 

3.1 DEVELOPMENT OF A NEW HIGH-ORDER CUT-CELL METHOD ............................................... 6 

3.2 STUDIED THE STABILITY OF A MACH 5.92 FLAT-PLATE BOUNDARY LAYER WITH FINITE 

HEIGHT ROUGHNESS IN DIFFERENT LOCATIONS .............................................................................. 8 

3.3 STUDIED THE STABILIZATION OF A MACH 5.92 FLAT-PLATE BOUNDARY LAYER USING 

LOCAL SECTIONS OF POROUS COATINGS ....................................................................................... 10 

3.4 COLLABORATED WITH PROF. TUMIN ON RECEPTIVITY OF THE MACH 5.92 FLOW OVER A 

FLAT PLATE TO WALL BLOWING-SUCTION .................................................................................... 13 

3.5 STUDIED THE NOSE-BLUNTNESS AND ENTROPY-LAYER EFFECTS ON HYPERSONIC 

BOUNDARY LAYER IN THE CONTEXT OF TRANSIENT GROWTH WITH OR WITHOUT SURFACE 

ROUGHNESS..................................................................................................................................... 13 

4 SUMMARY OF RESEARCH ACCOMPLISHMENTS ....................................................... 15 

5 DEVELOPMENT OF A NEW HIGH-ORDER CUT-CELL METHOD ............................ 16 

5.1 INTRODUCTION .................................................................................................................... 16 

5.2 HIGH-ORDER CUT-CELL METHOD ..................................................................................... 20 

5.3 TEST AND APPLICATIONS...................................................................................................... 33 

6 STABILIZATION OF A MACH 5.92 FLAT-PLATE BOUNDARY LAYER WITH 

FINITE HEIGHT SURFACE ROUGHNESS ............................................................................... 33 

6.1 FLOW CONDITIONS AND ROUGHNESS MODEL ..................................................................... 34 

6.5 STABILIZATION EFFECT OF LOCATION OF THE FINITE ROUGHNESS ................................... 44 

7 PERSONNEL ............................................................................................................................ 47 

8 PUBLICATIONS ...................................................................................................................... 48 

9 ACKNOWLEDGEMENT / DISCLAIMER ........................................................................... 50 

10 REFERENCES....................................................................................................................... 50 

 



 2

1 SUMMARY 

 

Recent research has shown that one possible explanation to bypass transition is the transient growth 

theory. However, there has not been any direct numerical simulation study on transient growth in 

hypersonic boundary layers. Furthermore, it is not known how the optimal disturbances computed 

by the transient growth theory are generated by surface roughness. It is also not clear what the role 

of freestream disturbances are in the transient growth theory. These are important issues related to 

the receptivity of transient growth, which need to be resolved. The understanding of such a complex 

flow phenomena can best be obtained through a coordinated study involving both computational 

and theoretical analyses. Direct numerical simulation (DNS) is uniquely suited for such studies 

because the complete receptivity process and transient growth can be simulated with minimum 

simplification assumptions. Supported by AFOSR under the Grant number FA9550-04-1-0029 from 

January 2004 to December 2006, our group at UCLA has demonstrated that our unique high-order 

shock fitting simulation approach is a powerful tool in studying supersonic and hypersonic 

boundary-layer stability and transition physics. We have conducted extensive DNS studies on the 

flow mechanisms of hypersonic boundary layer receptivity and stability. Our computer code is fully 

validated by comparing numerical simulation solutions with available experimental or theoretical 

results on hypersonic boundary layer receptivity and stability. 

 

The objective of the three-year research is to conduct DNS studies of hypersonic boundary layer 

receptivity, transient growth and transition with surface roughness. The main approach of the 

proposed research is to use DNS as a research tool to study the boundary layer receptivity and 

transient-growth mechanisms in hypersonic flows, including the development of numerical 

algorithms and parallel computer codes of higher order numerical methods for the simulation of hypersonic 

flows with surface roughness of finite heights. During the three-year period, we have conducted DNS 

studies on the hypersonic boundary layer flows over flat plates and blunt cones. A new high-order 

cut-cell method has been developed for the numerical simulation of hypersonic boundary layer 

transition with finite height surface roughness. The method has been applied to the numerical 

simulations of two-dimensional hypersonic flows over a flat plate. Furthermore, the stabilization 

effect of the surface porous coating over a flat plate is extensively studied by series of numerical 

simulations. We also collaborate with Prof. Tumin in the University of Arizona to compare 

numerical and theoretical results on receptivity of a Mach 5.92 flow over a flat plate to wall 

blowing-suction, and to deeply analyze the nonparallel flow effects. Our numerical studies have 

been validated to be of high accuracy and led to further understanding of hypersonic boundary layer 

receptivity mechanism. Such understanding can lead to better tool for the prediction and control of 

high speed boundary layer transition. 

 

The main research contributions are:  

 

1. We have developed a new high-order cut-cell method for the numerical simulation of 

hypersonic boundary layer transition with finite height surface roughness. Parallel computer codes 

of the numerical method have been implemented. The new high-order cut-cell method has been 
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tested in the computations of several one and two-dimensional hyperbolic and elliptic equation 

in irregular domains. The results show that up to fourth-order accuracy in both 2L  and L∞ norm 

can be obtained for the current cut-cell method for both problems. 

 

2. We subsequently have applied a third-order cut-cell method to the two-dimensional 

compressible Navier-Stokes equations for simulating roughness induced receptivity for 

hypersonic flow over a flat plate with a blowing and suction slot placed near the leading edge. 

The surface roughness height is approximately half of the local boundary thickness. The results 

show that the roughness location plays an important role in the developments of mode S initially 

excited by the blowing-suction actuator. Mode S is destabilized only when the roughness 

element is located close upstream of the synchronization point. On the other hand, when the 

roughness element is downstream of the synchronization point, mode S is stabilized. This 

happens even when the roughness is still within the unstable region of mode S. Therefore, the 

synchronization point and finite roughness location is critical to the receptivity process.  

 

3. We have extensively studied the stabilization of a Mach 5.92 flat-plate boundary layer using 

local sections of porous coating by series of numerical simulations. The stabilization effect of 

porous coating on hypersonic boundary layers over flat plates and cones has been successfully 

demonstrated by theoretical analyses, experiments, and numerical simulations. It has been found 

that porous coating slightly destabilizes the Mack first mode whereas it significantly stabilizes 

the Mack second mode. In previous studies, porous coating covers either the entire flat plate or 

the surface around half the cone circumference. The effect of porous coating locations on 

boundary layer stabilizations has not been considered. Furthermore, the destabilization effect of 

porous coating on the Mack first mode has not been studied in detail. In our numerical 

simulations, we focus on the effect of porous coating locations and the destabilization of the 

Mack first mode. It is found that the synchronization point of mode S and mode F plays an 

important role on boundary layer stabilization. Disturbances are destabilized when porous 

coating is located upstream of the synchronization point whereas they are stabilized when 

porous coating is downstream of the synchronization point. For felt-metal porous coating, 

destabilization of the Mack first mode is significant.  

 

4. We collaborate with Prof. Tumin in the University of Arizona to compare numerical and 

theoretical results on receptivity of the Mach 5.92 flow over a flat plate to wall blowing-suction, 

and to deeply analyze the nonparallel flow effects. The perturbation flow field is decomposed 

into normal modes with the help of the multimode decomposition technique based on the spatial 

biorthogonal eigenfunction system. The decomposition allows filtering out the stable and 

unstable modes hidden behind perturbations having another physical nature. The results indicate 

that nonparallel flow effects stabilize the second mode whereas destabilize the first mode. 

 

5. We have also conducted numerical simulation studies of Stetson’s Mach 5.5 experiments on the 

nose bluntness effects. Three nose radii of 0.0156in, 0.5in, and 1.5in are used to study the nose 

bluntness effects on boundary layer instability and transition. The simulation results show that 
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the increase of nose bluntness leads to the substantial decrease in local Reynolds numbers along 

the edge of the boundary layers. 

  

2 RESEARCH OBJECTIVES 

 

The prediction of laminar-turbulent transition in supersonic and hypersonic boundary layers is a 

critical part of the aerodynamics and heating analyses for the development of hypersonic 

transportation vehicles and re-entry vehicles. The key for an accurate transition prediction is the 

understanding of the physical mechanisms that lead to transition. However, many important 

physical mechanisms leading to hypersonic boundary layer transition are currently still not well 

understood. Recent research has shown that one possible explanation to bypass transition is the 

transient growth theory. However, there has not been any direct numerical simulation study on 

transient growth in hypersonic boundary layers. Furthermore, it is not known how the optimal 

disturbances computed by the transient growth theory are generated by surface roughness. It is also 

not clear what the role of freestream disturbances are in the transient growth theory. These are 

important issues related to the receptivity of transient growth, which need to be resolved. Due to the 

difficulties in conducting hypervelocity experiments and the complexity of hypersonic flows, 

fundamental hypersonic studies increasingly rely on the use of DNS as a research tool. In recent 

years, DNS has become a powerful tool in the studies of the stability and receptivity of supersonic 

and hypersonic boundary layers.  

 

Supported by AFOSR, we have developed high-order shock-fitting DNS methods [1], which can be 

directly applied to hypersonic boundary layers over realistic blunt bodies with the effects of nose 

bluntness, the presence of bow shock waves, and the real-gas effects at high temperatures. In the 

past several years, we have studied the receptivity and stability of a number of 2-D and 3-D 

hypersonic flows over flat plates [2-6], and blunt cones [7-10].  

 

The main objectives of this research are to conduct extensive direct numerical simulation studies on 

the early stage of hypersonic boundary layer receptivity, transient growth, and transition for blunt 

cones and flat plates, and to develop numerical algorithms and parallel computer codes of higher 

order numerical methods for the simulation of hypersonic flows with surface roughness of finite 

heights. The effects of surface roughness, nose bluntness, and freestream disturbances are studied 

by numerical simulations. 

 

The project has been carried out in three years with the following research tasks: 

 

1. Development of new high-order direct numerical simulation methods and 3-D 

computer codes to simulate arbitrary surface roughness effects. A new high-order 

cut-cell method for the numerical simulation of hypersonic boundary layer transition 

with finite height surface roughness [3, 4]. Parallel computer codes of the numerical 

method have been implemented. The new high-order cut-cell method has been tested in 

the computations of several one and two-dimensional hyperbolic and elliptic equation 
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in irregular domains. The results show that up to fourth-order accuracy in both 2L  and 

L∞ norm can be obtained for the current cut-cell method for both problems. We 

subsequently have applied a third-order cut-cell method to the two-dimensional 

compressible Navier-Stokes equations for simulating roughness induced receptivity for 

hypersonic flow over a flat plate with a blowing and suction slot placed near the 

leading edge. The surface roughness height is approximately half of the local boundary 

thickness. 

 

2. DNS studies of the stabilization of a Mach 5.92 flat-plate boundary layer using 

local sections of porous coating. In our numerical simulations [2], we focus on the 

effect of porous coating locations and the destabilization of the Mack first mode. It is 

found that the synchronization point of mode S and mode F plays an important role on 

boundary layer stabilization. Disturbances are destabilized when porous coating is 

located upstream of the synchronization point whereas they are stabilized when porous 

coating is downstream of the synchronization point. For felt-metal porous coating, 

destabilization of the Mack first mode is significant.  

 

3. Collaborate with Prof. Tumin in the University of Arizona to compare numerical 

and theoretical results on receptivity of the Mach 5.92 flow over a flat plate to wall 

blowing-suction, and to deeply analyze the nonparallel flow effects [6]. The 

perturbation flow field is decomposed into normal modes with the help of the 

multimode decomposition technique based on the spatial biorthogonal eigenfunction 

system. The decomposition allows filtering out the stable and unstable modes hidden 

behind perturbations having another physical nature. The results indicate that 

nonparallel flow effects stabilize the second mode whereas destabilize the first mode. 

 

4. DNS studies of nose-bluntness and entropy-layer effects on hypersonic boundary 

layer in the context of transient growth with or without surface roughness. We 

conduct DNS investigations of transition reversal due to the nose bluntness effects for 

hypersonic boundary layer over blunt cones and blunt flat plates [10, 11]. A large 

number of test cases of various nose bluntness, Mach numbers, surface roughness, and 

Reynolds numbers are studied. We study the nose bluntness effects in the context of 

receptivity, transient growth, and subsequent development of instability waves. 

 

 

3 RESEARCH ACCOMPLISHMENTS 

 

The research project described in the previous section was carried out in a three period from 

January 1, 2007 to December 31, 2009. The three-year research project supported by this grant has 

led to the publications of  

 

1. Six papers in the archive journals or book chapters, 
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2. Eighteen conference papers (mainly AIAA papers), 

 

More importantly, the research has produced a large amount of new results, and has led to new 

understanding of a number of hypersonic boundary layer receptivity mechanisms. The 

understanding of the receptivity process is the key to improve current hypersonic boundary layer 

transition prediction methods. In the following sections, the major research accomplishments are 

summarized, followed by a more details discussions of some of our new results in hypersonic 

boundary layer receptivity. 

 

3.1 Development of a new high-order cut-cell method 

 

Publications: [1], [7], [18] 

 

During the three-year project, we developed a new high-order cut cell method for computing 

boundary layer transition with surface roughness. Due to the difficulty in grid generation for 

numerical simulation of high-speed flow with arbitrary surface roughness elements, it is 

advantageous to use a fixed-grid cut-cell method to compute such flow. The grid can be a smooth 

curvilinear body-fitted one along a baseline smooth surface without the roughness. The actual 

surface with roughness will cut across the grid lines, which create irregular grid points. Most of the 

previous Cartesian-grid cut-cell (or sharp-interface) methods with different boundary treatments, 

however, are only first or second order accurate at the interface. The relative low accuracy at the 

interface may not be sufficient for numerically simulating laminar-turbulent boundary-layer 

transition involving surface roughness. For a simulation study of hypersonic boundary layer 

transition shown in Fig. 1, it is necessary to consider the effects of both a bow shock and an 

arbitrary roughness element on the lower surface. More details can be found in [1]. Numerical 

methods for such studies need to be high-order accurate both in resolving the complex 

shock/disturbance interaction and in resolving a wide range of flow time and length scales. In 

addition, high-order accuracy is required for the local finite difference schemes for local region 

adjacent to the surface of the roughness element. In this paper, we present a new high-order cut-cell 

method for numerical simulation of roughness induced transition in viscous hypersonic 

boundary-layer flows. This method is mainly based on finite difference method, and is different in 

implementation from all the methods discussed above. To overcome the small cell problem, we 

adopt Gibou and Fedkiw’s shifting-interpolation-stencil strategy, i.e., the “drop point” approach. 

The new cut-cell method is uniformly high-order for both regular and irregular grid points. The 

computational accuracy of our third and fourth order accurate cut-cell methods is tested for the 

computations of Poisson and hyperbolic equation with Dirichlet boundary conditions in irregular 

domains. We then test a third-order accurate cut-cell method for the two-dimensional Navier-Stokes 

equations. The new scheme is used to simulate steady and unsteady hypersonic boundary layer 

flows over a flat plate with an isolated surface roughness element (Fig. 1). The bow shock generated 

from the leading edge of the flat plate is treated as a computational boundary and discretized based 

on Zhong’s [1] high-order finite-difference shock-fitting method. The unsteady flow over flat plate 

is excited by a narrow blowing and suction slot composed of 15 different frequencies mounted near 

the leading edge. Several multi-dimensional cases are tested to demonstrate the order of accuracy 



 7

for these numerical methods.  

h
δ

Bow Shock

X

Y

Ma>1

Bounary Layer

Surface RoughnessBlow Suction

Flat Plate
 

Fig. 1. An example hypersonic flow over flat plate with surface roughness induced boundary layer transition. 

 

Figure 2 shows the numerical solution of an elliptic equation in an irregular domain given by 

2 ( ( )) ( ( ))xx yyu u x X s y Y s dsδ δ
Γ

+ = − −∫ . The interfaceΓ  is a circle defined by 2 2 1/ 4x y+ = . The 

computational domain is 2( , ) [ 1,1]x y ∈ −  . A fourth order cut cell method is used to compute the 

two-dimensional example and the exact solution for the case of 80 80× grids. This figure shows a 

very good agreement between the exact and numerical solutions. There is no spurious oscillation for 

the numerical solutions in the region adjacent to the interface. 
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Fig. 2. Comparison of the solution, ( , )u x y , computed by Version 2 of the fourth-order cut-cell method 

(
4( )O h ) for the two-dimensional example and the exact ( eu ) (grid: 80 80× ): 1) and 2) are contours of the 

solution, 3) is distribution along the x  direction. 
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Table 1 shows the computational errors, in L∞  and 2L  norms respectively, with four different grid 

sets. As expected, table 1 shows that the orders in infinity norm are lower than those of the second 

norm. Overall, the fourth-order cut-cell method with third-order boundary closure schemes produces 

a fourth-order global accuracy in 2L  norm for the solutions to the two-dimensional problem.  

Table 1. Computational errors in 2L  norm of the two versions of the cut-cell methods (
3( )O h  and 

4( )O h ) 

for the  two-dimensional test case of LeVeque and Li [12]. 

 

  
Cut Cell Method 1   Cut Cell Method 2 

N  Θ  
2NE  Ratio p  Θ  

2NE  Ratio p  

20 0.5 4.791(-4)   1.0 1.967(-4) 
  

40 0.5 4.040(-5) 11.9 3.56 1.0 1.437(-5) 13.7 3.77 

80 0.5 2.919(-6) 9.54 3.25 1.0 9.049(-7) 15.9 3.99 

160 0.5 2.945(-7) 9.91 3.30 1.0 5.773(-8) 15.7 3.97 
 

 

3.2 Studied the stability of a mach 5.92 flat-plate boundary layer with finite height roughness 

in different locations 

 

Publications: [7], [14] 

 

The receptivity of a Mach 5.92 boundary-layer flow over a flat plate with finite surface roughness to 

periodic two-dimensional wall perturbations is investigated by numerical simulations and linear 

stability theory (LST). The flow conditions are the same as those of Maslov et al.’s leading-edge 

experiment [13]. The steady base flow is simulated by solving two-dimensional compressible 

Navier-Stokes equations with a combination of a fifth-order shock-fitting method and a third-order 

cut cell scheme. Accuracy of the numerical steady base flow is validated by comparing with the 

theoretical self-similar boundary-layer solution and the published experimental results. The 

characteristics of boundary-layer wave modes are identified and evaluated by comparing the results 

of LST and numerical simulations. In receptivity simulations, blowing-suction is used as the 

periodic two-dimensional wall perturbation, which is introduced to the steady base flow by a 

forcing slot located on the flat plate. The effects of finite surface roughness on receptivity process 

are studied by considering four cases of different roughness location. Fig. 3 compare normalized 

Mach number and dimensionless streamwise velocity distributions across the boundary layer at 

three different locations of x = 0.00096 m, 0.00121 m, and 0.000138 m. The numerical results agree 

well with the experimental results and the boundary-layer solution near the plate. However, in the 

region of η > 5, the numerical results have a better agreement with the experimental results. The 

difference between the numerical results and the boundary-layer solution is mainly caused by the 
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existence of the bow shock, because the effect of the bow shock is neglected in the calculation of 

the compressible boundary-layer equations.  
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Fig. 3 Numerical simulation of a Mach 5.92 flat-plate boundary layer to two-dimensional wall perturbations and 

comparisons of normalized Mach number and dimensionless streamwise velocity. 

 

Four cases are simulated by using the high-order cut cell method. Specifically, roughness locations 

with respect to the synchronization point at 0.331x m=  are as follows, 

 

• Case 1: Upstream of the synchronization point 0.185x m= ; The roughness height 

1
0.00081

2
h mδ= = . 

• Case 2: Upstream of the synchronization point 0.260x m= ; The roughness height 

1
0.00111

2
h mδ= = . 

• Case  3:  Synchronization point 0.331x m= ; The roughness height 
1

0.00141
2

h mδ= =  

• Case 4: Downstream of the synchronization point 0.410x m= ; The roughness height 

1
0.00171

2
h mδ= = . 
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Fig. 4 Numerical simulation of receptivity of the Mach 5.92 flow over a flat plate to two-dimensional wall 

perturbations with surface roughness: 1) amplitude comparison of pressure, 2) & 3) comparison of numerical 

and LST growth rates. 
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Fig. 4 shows the pressure amplitude on the flat plate surface with roughness located in different 

locations. It shows that for all four cases, the development of two-dimensional wall perturbations 

eventually result in the same type of instability wave (mode S) in the boundary layer. When the 

surface roughness located in the far upstream of the synchronization point (Case 1), the instability 

wave develops in the same way as the case without roughness. But as the roughness moves 

gradually into the downstream (Case 2), the growth rate of the mode S increases, which reflects chat 

the amplitude of pressure in the flat plate surface is amplified. Mode S is destabilized when the 

roughness element is placed sufficient close to the synchronization point. In Case 3 and 4, when the 

roughness located in downstream of synchronization point, the finite surface roughness stabilizes 

the mode S inside the boundary layer. The amplitude of pressure perturbation is reduced in further 

downstream.  

 

3.3 Studied the stabilization of a mach 5.92 flat-plate boundary layer using local sections of 

porous coatings 

 

Publications: [3], [9], [13], [15], [20] 

 

Passive control of boundary layer transition by using porous coating to stabilize hypersonic 

boundary layers over flat plates and cones has been successfully demonstrated by theoretical 

analyses, experiments, and numerical simulations [14-18]. Fedorov et al. [14] performed theoretical 

analyses on the second-mode stability of a hypersonic boundary layer over a flat plate covered by 

an ultrasonically absorptive coating (UAC). They found that the second mode growth was 

massively reduced, because the porous layer absorbed the disturbance energy. To demonstrate the 

stabilization effect of UAC on the second mode, Rasheed et al. [15] experimentally studied the 

stability of a Mach 5 boundary layer on a sharp 5.06-deg half-angle cone at zero angle of attack. 

The cone had a smooth surface around half the cone circumference and an UAC porous surface on 

the other half. Their experiments indicated that the porous surface was highly effective in stabilizing 

the second mode and delaying transition, when the pore size was significantly smaller than the 

disturbance wavelength. Fedorov et al. [16] experimentally and theoretically studied the effect of an 

UAC on hypersonic boundary layer instabilities. Their experiments were performed on a 7-degree 

half-angle sharp cone in a Mach 6 wind tunnel. Half-surface of the cone was solid whereas the other 

half-surface was covered by a felt-metal coating. Both theoretical predictions and experimental 

measurements on two- and three-dimensional disturbances showed that the porous coating strongly 

stabilized the second mode and marginally destabilized the first mode. Maslov [17] experimentally 

studied the stabilization of hypersonic boundary layer by micro structural porous coating. In his 

experiments, both regular porous UAC and random felt-metal porous UAC are used. The results 

confirmed that porous coating strongly stabilizes the second mode and marginally destabilizes the 

first mode. Compared with regular structure UAC, felt-metal UAC is much stronger in first mode 

destabilization, with the peak amplitude of the first mode increasing around 70%. Egorov et al. [18] 

studied the effect of porous coating on stability and receptivity of a Mach 6 flat-plate boundary 

layer by two-dimensional numerical simulation using a second-order TVD scheme. They found that 

a porous coating of regular porosity effectively diminishes the second mode growth rate, while 

weakly affecting acoustic waves.  
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In previous studies, porous coating covers either the entire flat plate or the surface around half the 

cone circumference. The effect of porous coating locations on boundary layer stabilizations has not 

been considered. Furthermore, the destabilization effect of porous coating on the Mack first mode 

has not been studied in detail. However, how to locate porous coatings may affect the efficiency of 

the boundary layer stabilization. The first mode at a given frequency is spatially developed into the 

second mode at the same frequency when propagating downstream. Therefore, destabilization of the 

first mode decreases the efficiency of the second mode stabilization. In current research, the 

stabilization of a Mach 5.92 boundary layer over a flat plate using local sections of porous coating 

is studied by a combination of direct numerical simulation (DNS) and linear stability theory (LST), 

focusing on the effect of porous coating locations and the destabilization of the Mack first mode. 

The stability simulations consist of two steps: 1. periodic disturbances corresponding to mode S or 

mode F are superimposed on steady base flow at a cross-section of the boundary layer to show 

spatial development of the wave; 2. local sections of porous coating are used downstream of the 

superimposed wave to investigate its effect on boundary layer instability. The model of the 

felt-metal porous coating is the same as that of Fedorov et al. [16]. At step 2, a series of numerical 

simulations are carried out by putting porous coatings both upstream and downstream of the 

synchronization point. Numerical simulation results are interpreted by comparing with the 

theoretical analyses of LST. 

 

 

Fig. 5 Spatial developments of superimposed mode S and mode F: pressure amplitude and growth rates  

Fig. 6 shows the spatial developments of superimposed mode S and mode F. Periodic disturbances 

corresponding to mode S or mode F at a frequency of 100 kHz is superimposed on steady base flow 

at a cross-section of the boundary layer at x* = 69.00 mm (R = 987.24). In this figure, the spatial 

development of superimposed mode F with an amplitude parameter being 10
-8

 is also plotted. It is 

clearly shown that the spatial developments of mode F with different amplitudes have the same 

profile. One hundred times difference in superimposed disturbance amplitude leads to 100 times 

amplitude difference in spatial development, which illustrates the linear properties of disturbances. 

After mode S is superimposed at x* = 69.00 mm, it grows dramatically with the peak of amplitude 

being around x* = 0.8 m. The scenario of mode F is quite different from that of mode S. After the 
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transient process, amplitude of mode F is decreasing because mode F is a stable wave. The lowest 

amplitude of mode F is observed at around x* = 0.24 m. Then the wave grows quite similar to mode 

S, also with the peak of amplitude being around x* = 0.8 m.  

 

Fig. 7 also compares the growth rate calculated from stability simulations with that obtained from 

LST for superimposed mode S and mode F. For mode S, the growth rate of stability simulation has 

a good agreement with that of LST in the region from ω = 0.11 to ω = 0.13. When ω is larger than 

0.13, the growth rate of stability simulation is larger than that of LST, i.e., mode S obtained by 

stability simulation becomes more stable than that predicted by LST. For mode F, the figure shows 

that the growth rate of stability simulation initially has a good agreement with that of LST. However, 

it approaches that of mode S near the synchronization point, which indicates that mode F changes to 

mode S near the synchronization point. After the change, the growth rate of stability simulation has  

a good agreement with that of mode S. The discrepancy between the growth rates of mode S 

calculated from stability simulation and LST, when ω is larger than 0.13, is mainly caused by the 

nonparallel flow effect. 

 

Fig. 8  Amplitude distributions of pressure perturbation along the flat plate. 

Fig. 9 shows amplitude distributions of pressure perturbation along the flat plate for the six cases of 

porous coating, together with the spatial development of mode S. It is noticed that pressure 

perturbations of all the six cases with porous coating have a similar profile as that of purely mode S 

without porous coating, both having the peak of amplitude at around x* = 0.8 m. However, porous 

coating does affect the amplitude of mode S. For cases 1 to 3, porous coatings are upstream of the 

synchronization point. Amplitude of pressure perturbation increases with the number of porous 

coating increasing from case 1 to case 3. For cases 4 to 6, porous coatings except the first three are 

downstream of the synchronization point. Amplitude of pressure perturbation decreases with the 

number of porous coating increasing from case 4 to case 6. The results show that porous coating 

destabilizes the Mack first mode whereas it stabilizes the Mack second mode. All the six cases of 
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stability simulations show larger peak amplitude of mode S, which means destabilization of the 

Mack first mode is quite significant. In order to control boundary layer transition, it is very 

important to put porous coating downstream of the synchronization point, where mode S 

corresponds to the Mack second mode. 

 

3.4 Collaborated with Prof. Tumin on receptivity of the Mach 5.92 flow over a flat plate to 

wall blowing-suction 

 

Publications: [4], [10], [19] 

 

Direct numerical simulations of receptivity in a boundary layer over a flat plate are carried out with 

2D perturbations introduced into the flow by periodic-in-time blowing-suction through a slot [5]. 

The perturbation flow field was decomposed into normal modes with the help of the multimode 

decomposition technique based on the spatial biorthogonal eigenfunction system. The 

decomposition allows filtering out the stable and unstable modes hidden behind perturbations 

having another physical nature. Method of multiple scales (MMS) is used to investigate the 

nonparallel flow effects.  

 

Fig.7 Comparisons of growth rates and pressure perturbation amplitudes. 

 

Fig. 7 compares the growth rates and pressure perturbation amplitude obtained from numerical 

simulations with those predicted by LST and MMS. Both figures show that the predictions of MMS 

have a good agreement with the numerical results. Nonparallel flow effects destabilize the first 

mode whereas stabilize the second mode. Also it is caused by the nonparallel flow effects that, in 

the numerical simulation results, the growth rate of the second mode is always smaller than that 

predicted by the linear stability theory. 

 

3.5 Studied the nose-bluntness and entropy-layer effects on hypersonic boundary layer in the 

context of transient growth with or without surface roughness.  
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Publications: [16], [24] 

 

For hypersonic boundary layers over blunt cones, the transition reversal phenomenon refers to the 

experimental observation that the laminar-turbulent transition location moves upstream with 

increasing nose radius when it is larger than a certain critical value. Currently, there is no 

satisfactory explanation for transition reversal phenomenon. All previous linear stability theory 

(LST) and numerical simulation studies on the nose bluntness effects have not found transition 

reversal. The previous theoretical and computational studies, however, have not been done on the 

actual experimental flow conditions which had shown transition reversal. 

 

Surface roughness has been shown to have profound effects on boundary layer transition. Recent 

research has shown that one possible explanation to bypass transition is the transient growth theory. 

However, there has not been any direct numerical simulation study on transient growth in 

hypersonic boundary layers. Furthermore, it is not known how the optimal disturbances computed 

by the transient growth theory are generated by surface roughness. This paper presents some initial 

results in our on-going numerical simulation study on the receptivity of the hypersonic boundary 

layers to stationary surface roughness without any freestream forcing waves. The flow conditions 

are those of Stetson’s 1984 wind-tunnel experiments for Mach 7.99 flow over a 7 degree half-angle 

blunt cone [19]. The simulation results show that the roughness element generates streamwise 

vortices inside the boundary layer. In the computational domain studied in current project, the 

induced perturbation mainly decays after the roughness. No strong transient growth appears 

immediately behind the roughness element. 

 
Fig.8 Distributions of u perturbation magnitudes for all 14 modes along a streamwise grid line located near the 

edge of the boundary layer. 

 

Fig. 8 shows the distribution of u perturbation magnitudes for all 14 modes along a streamwise grid 

line located near the edge of the boundary layer. The perturbations rise rapidly for flow over the 

roughness. Downstream of the roughness, the perturbations drop initially for all n. On the other 

hand, the perturbations for 1 n = start to increase after the initial drop, while the perturbations for 
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other modes decrease. No obvious strong transient growth can be observed in the current simulation 

within the limited length of the flow field behind the roughness element. 

 

Fig.9 Cross-sectional view of the contours of u perturbations for two of the 14 modes. 

 

Fig. 9 shows the cross-sectional view of the contours of temperature and horizontal velocity 

perturbations for two of the 14 modes (n = 1 and 8). The features for all other modes are similar to 

those in the figures. For the cases of n = 1 and n = 8 , Fig. 11 shows that the flow decelerates behind 

the peak of the roughness heights, and accelerates behind the valleys of the roughness element, as a 

results of the streamwise vortices generated by the surface roughness. The results indicate the 

generation of the streamwise vortices by the surface roughness. 

 

4 SUMMARY OF RESEARCH ACCOMPLISHMENTS 

 

In the report period, we have mainly focused on the DNS studies of receptivity of supersonic and 

hypersonic boundary layer flows. A new high-order cut-cell method has been developed for the 

numerical simulation of hypersonic boundary layer transition with finite height surface roughness. 

The method has been applied to the numerical simulations of two-dimensional hypersonic flows 

over a flat plate. Furthermore, the stabilization effect of the surface porous coating over a flat plate 

is extensively studied by series of numerical simulations. We also collaborate with Prof. Tumin in 

the University of Arizona to compare numerical and theoretical results on receptivity of a Mach 

5.92 flow over a flat plate to wall blowing-suction, and to deeply analyze the nonparallel flow 

effects. The most significant research accomplishments are 

 

1. We developed a new high-order cut-cell method for computing boundary layer transition with 

finite surface roughness. Due to the difficulty in grid generation for numerical simulation of 

high-speed flow with arbitrary surface roughness elements, it is advantageous to use a fixed-grid 

cut-cell method to compute such flow. Our new method is mainly based on finite difference 

method, and adopts Gibou and Fedkiw’s shifting-interpolation-stencil strategy, i.e., the “drop 

point” approach, to avoid the “smell cell” problem. The new cut-cell method is uniformly 
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high-order for all grids in the computational domain. The computational accuracy of our third 

and fourth order accurate cut-cell methods is tested for the computations of Poisson and 

hyperbolic equation with Dirichlet boundary conditions in irregular domains. We then test a 

third-order accurate cut-cell method for the two-dimensional Navier-Stokes equations. The new 

scheme is used to simulate steady and unsteady hypersonic boundary layer flows over a flat 

plate with an isolated surface roughness element (Fig. 1). 

 

2. We have studied the stabilization of a Mach 5.92 over a flat plate to two-dimensional wall 

blowing-suction perturbation with finite roughness located in different locations. The numerical 

results show that the development of two-dimensional wall perturbations eventually results in 

the same type of instability wave (mode S) in the boundary layer with roughness. The roughness 

location plays an important role in the developments of mode S by the blowing-suction actuator. 

Mode S is destabilized only when the roughness element is located close upstream of the 

synchronization point. On the other hand, when the roughness element in is downstream of the 

synchronization point, mode S is stabilized. This happens even when the roughness is still 

within the unstable region of mode S. Therefore, the synchronization point and finite roughness 

location is critical to the receptivity process. The relationship between the location of the 

roughness and the synchronization point suggests that, in order to control or delay the 

laminar-turbulent transition more efficiently, the roughness element should be placed upstream 

of the synchronization point between mode S and mode F. 

 

5 DEVELOPMENT OF A NEW HIGH-ORDER CUT-CELL METHOD 

 

One major accomplishment of the current research project is the development of a new high-order 

cut-cell method. Our new method is mainly based on finite difference method, and adopts Gibou 

and Fedkiw’s shifting-interpolation-stencil strategy, i.e., the “drop point” approach, to avoid the 

“smell cell” problem. The new cut-cell method is uniformly high-order for all grids in the 

computational domain. The computational accuracy of our third and fourth order accurate cut-cell 

methods is tested for the computations of Poisson and hyperbolic equation with Dirichlet boundary 

conditions in irregular domains. We then test a third-order accurate cut-cell method for the 

two-dimensional Navier-Stokes equations. The new scheme is used to simulate steady and unsteady 

hypersonic boundary layer flows over a flat plate with an isolated surface roughness element. The 

new high-order cut-cell method has been tested and published in Publications: [7], [18]. 

 

5.1 Introduction 

 

The understanding of physical mechanisms of roughness induced boundary-layer transition is 

critical to the development of hypersonic vehicles [20]. Transition can have a first-order impact on 

the lift and drag, stability and control, and heat transfer properties of the vehicles [21]. For example, 

roughness induced transition is an important consideration in the design of thermal protection 

systems (TPS) of hypersonic vehicles [22, 23]. Figure 10 shows an example surface roughness on 

test models for hypersonic boundary layer transition. For a reentry vehicle entering earth’s 
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atmosphere, it initially experiences a heating environment associated with a laminar boundary layer. 

As the vehicle attitude decreases, the vehicle surface becomes rougher and the boundary layer 

becomes turbulent. The transition from a laminar boundary layer to a turbulent one leads to the 

increase of surface heating rates by a factor of five or more. Thus the ability to understand and 

predict the physics of roughness induced transition plays an essential role in the design of TPS for 

reentry vehicles. Currently, surface roughness, especially arbitrary roughness induced 

laminar-turbulent transition in hypersonic boundary layers is still poorly understood due to the 

limitation in experimental facilities and numerical methods [24].  

 

     

 

 

Fig. 10. An example surface roughness on test models for hypersonic boundary layer transition: 1) isolated 

roughness, 2) distributed roughness [25]. 

Direct numerical simulation has become an effective research tool for studying hypersonic 

boundary layer receptivity, stability and transition by numerically solving the time-dependent 

three-dimensional Navier–Stokes equations for the temporally or spatially evolving instability 

waves. It is necessary to use high-order numerical methods for the simulation in order to resolve the 

wide range of length and time scales of the complex wave fields in hypersonic boundary layers. 

Hence, high-order finite-difference schemes have recently received much attention for the direct 

numerical simulations of transitional and turbulent flows [26-31]. Zhong [1] presented a fifth-order 

upwind finite difference shock fitting method for the direct numerical simulation of hypersonic 

flows with a strong bow shock and with stiff source terms. The use of the shock-fitting method 

makes it possible to accurately compute the shock-disturbance interactions, and the development of 

instability waves in the boundary layers. The fifth-order shock-fitting schemes were derived on a 

uniform grid. For a curvilinear stretched grid, typically used in simulations of viscous flow in a 

boundary layer, the physical coordinates with a non-uniform grid are first transformed to a uniform 

grid in the computational coordinates. The high-order schemes are subsequently applied to the 

transformed equations in a uniform grid. The fifth-order shock-fitting scheme was used for 

numerical studies of the receptivity of two-dimensional Mach 15 flows over a blunt leading edge 

[32]. 

 

Most of the DNS methods, however, have been developed for smooth surfaces computed by 
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body-fitted grids. Such methods may not be able to compute flow with surface roughness elements 

similar to those shown in Fig. 10. The main obstacle is the difficulty in generate smooth body-fitted 

grids around the surface of arbitrary roughness. One approach for overcoming the difficulty in grid 

generation is to use a Cartesian grid method, which is easy in grid generation. Cartesian grid 

methods can also take full advantage of fast computer architectures such as parallel computers and 

can serve as a very flexible method for simulating flow around complex geometries. On the other 

hand, a Cartesian grid method, the grid lines are not aligned with the body surface. As a result, 

special treatment is needed to compute the flow equations in local regions adjacent to the solid 

surface.  

 

Various Cartesian grid methods have been developed and used to solve problems with arbitrary 

geometry [33-37]. Peskin developed the immersed boundary method (IBM) [37] for the simulation 

of blood flow in hearts. The method is based on Cartesian grids where the surface of solid 

membrane is represented by a discrete delta function. This delta function is added into the 

Navier-Stocks equations to reflect the immersed boundary between the two phase flows. The 

resulting equations are discretized by a standard finite difference method in a fixed Cartesian grid 

system. Since its introduction, the IBM methods have been applied to many different fluid flow 

problems, including flow interaction with solid surface. For example, Marxen et al. [38] applied the 

IBM to simulate the effects of a localized two-dimensional roughness element on  the disturbance 

amplification in a hypersonic boundary layer. However, since the immersed boundary method uses 

the discrete delta function approach, it leads to a smeared interface with a thickness in an order of a 

mesh width. The immersed boundary method is locally first-order accurate at the interface, which 

may not be accurate enough for the DNS of hypersonic boundary transition problems. 

 

In contrast to the immersed boundary method with smeared interfaces, “sharp interface” Cartesian 

grid methods, which maintain second-order accuracy at the interfaces, have been developed [34, 39]. 

Udaykumar et al. [34, 35] used the finite-volume methodology to solve the incompressible 

Navier-Stokes equations for flow interacting with moving bodies. The method is based on a fixed 

Cartesian mesh where the solid boundaries can move across the grid lines. The flow equations are 

discretized by an overall second-order-accurate finite-volume technique. The interface is 

represented as a sharp boundary between the fluid and solid phases. A one-sided bilinear 

interpolation is applied to calculate the accurate flow conditions in the sharp irregular boundary. 

Johansen, McCorquodale and Colella [39, 40] developed a similar sharp-interface Cartesian grid 

method for solving two-dimensional Poisson and heat equations on irregular domains. Their method 

was based on finite-volume formulation, with imbedded irregular grid cells on the boundary. The 

irregular grid cells were treated by conservative differencing of second-order accurate fluxes on 

each cell volume. The method is second order accurate for a problem with irregular boundary. 

 

Fedkiw and Gibou [33, 41] developed a ghost fluid method, which is a different implementation of 

the sharp interface methods, for solving flow equations in arbitrary domain. The basic idea was to 

extrapolate variables on one side of the boundary into a number of ghost cells located on other side 

of the solid boundary. The method was uniformly second order. Gibou and Fedkiw [41] improved 

accuracy of the ghost fluid method to fourth-order accuracy for both the Laplace equation and the 
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heat equation with Dirichlet boundary conditions on irregular domains. Finite difference 

discretization was used to solve the equations in an irregular domain. The sharp interface Cartesian 

grid method has also been termed cut-cell method in handling irregular grid cells along the 

boundary [42]. 

 

For multi-phase flows with moving interfaces, an immersed interface method was developed and 

has been widely used [43-53]. For an immersed interface method, a Cartesian grid is often used 

where a sharp interface moves freely across the fixed grid lines. This method can achieve a second 

or higher order global accuracy by incorporating jump conditions into the finite difference formulas 

for variables and their derivatives at the interface. This method was first developed by Leveque and 

Li [12] to solve elliptic equations with discontinuous coefficients and singular sources. The original 

method was second order in the interior of the domain and locally first order at the interface.  

Leveque and Li [54] subsequently extended the method to the Stokes flow with elastic boundaries 

or surface tension. Wiegmann and Bube [46, 47] developed an explicit jump immersed interface 

method for special cases where the explicit jump conditions of variables and their high-order 

derivatives are known. This method can only achieve arbitrary high-order accuracy if the 

corresponding high-order derivatives of jump conditions can be analytically derived. Zhong [53] 

developed a new high-order immersed interface method which does not require second and higher 

derivatives of jump conditions. The main idea was to use a wider grid stencil across the interface 

instead of taking higher derivatives of jump conditions to achieve high-order accuracy for finite 

difference formulas at the interface. 

 

For sharp-interface Cartesian grid methods, a “small cell problem” [55] of numerical instability 

would arise when finite-difference or finite-volume methods are applied to relatively small-sized 

irregular grid cells created by a sharp-interface Cartesian grid method. For a time-dependent 

problem, the small cell problem will significantly restrict the size of times steps in temporal 

integration methods. Many methods have been proposed to resolve the small cell problem. Berger 

and Leveque [55] used a rotating box method. Johansen and Colella [39] used a flux-redistribution 

procedure. Quirk [56] and Udaykumar [35] employed a cell merging method to avoid small cells in 

order to maintain numerical stability.  

 

Gibou and Fedkiw [41] presented a stable fourth-order finite difference method for solving the 

Laplace equation on an irregular domain. They showed that a good rule of thumb for removing 

small cell restriction is that the interpolation should be shift to be centered one grid points left or 

right if the interpolation stencil involves point considered to be relatively close to the boundary.  

 

Due to the difficulty in grid generation for numerical simulation of high-speed flow with arbitrary 

surface roughness elements, it is advantageous to use a fixed-grid cut-cell method to compute such 

flow. The grid can be a smooth curvilinear body-fitted one along a baseline smooth surface without 

the roughness. The actual surface with roughness will cut across the grid lines, which create 

irregular grid points. Most of the previous Cartesian-grid cut-cell (or sharp-interface) methods with 

different boundary treatments, however, are only first or second order accurate at the interface. The 

relative low accuracy at the interface may not be sufficient for numerically simulating 
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laminar-turbulent boundary-layer transition involving surface roughness. For a simulation study of 

hypersonic boundary layer transition shown in Fig. 1, it is necessary to consider the effects of both a 

bow shock and an arbitrary roughness element on the lower surface. More details can be found in 

[1]. Numerical methods for such studies need to be high-order accurate both in resolving the 

complex shock/disturbance interaction and in resolving a wide range of flow time and length scales. 

In addition, high-order accuracy is required for the local finite difference schemes for local region 

adjacent to the surface of the roughness element. In this paper, we present a new high-order cut-cell 

method for numerical simulation of roughness induced transition in viscous hypersonic 

boundary-layer flows. This method is mainly based on finite difference method, and is different in 

implementation from all the methods discussed above. To overcome the small cell problem, we 

adopt Gibou and Fedkiw’s shifting-interpolation-stencil strategy, i.e., the “drop point” approach. 

The new cut-cell method is uniformly high-order for both regular and irregular grid points. The 

computational accuracy of our third and fourth order accurate cut-cell methods is tested for the 

computations of Poisson and hyperbolic equation with Dirichlet boundary conditions in irregular 

domains. We then test a third-order accurate cut-cell method for the two-dimensional Navier-Stokes 

equations. The new scheme is used to simulate steady and unsteady hypersonic boundary layer 

flows over a flat plate with an isolated surface roughness element (Fig. 1). The bow shock generated 

from the leading edge of the flat plate is treated as a computational boundary and discretized based 

on Zhong’s [1] high-order finite-difference shock-fitting method. The unsteady flow over flat plate 

is excited by a narrow blowing and suction slot composed of 15 different frequencies mounted near 

the leading edge. Several multi-dimensional cases are tested to demonstrate the order of accuracy 

for these numerical methods.   

 

5.2 High-Order Cut-Cell Method 

 

Our high-order cut-cell method is presented in this section for the numerical simulation of 

hypersonic boundary-layer transition with arbitrary surface roughness. The traditional numerical 

methods of choice for the DNS of transitional and turbulent flows have been spectral methods 

because of their high accuracies [57-59]. But the applications of spectral methods have been limited 

to flows in simple domains. Finite-difference methods have recently received much attention for the 

DNS of transitional and turbulent flows, especially compressible flows, [29, 60-63] because they 

can be easily applied to complex geometries. High-order schemes are required because traditional 

second-order schemes do not provide adequate accuracy level for the direct numerical simulation. 

Most high-order finite-difference methods used in direct numerical simulation are central difference 

schemes [29, 63] which introduce only phase errors but no dissipative errors in numerical solutions. 

The shortfall of central schemes is that they are often not robust enough in convection dominated 

hypersonic flow simulations. On the other hand, Rai et al. [60] show that upwind-bias schemes are 

very robust in hypersonic flow simulation even when they are made high-order accurate. They use a 

spatially fifth-order upwind finite-difference scheme in an upwind-bias stencil to compute the 

Navier–Stokes equations. The numerical dissipation in the upwind-bias schemes is enough to 

control the aliasing errors and could maintain the overall stability of the method.[64] 

 

5.2.1 Computational Grids and Classification of Grid Points 
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A schematic of a computational domain and a cut-cell grid in roughness induced hypersonic 

boundary layer transition is shown in Fig. 11. This figure shows a typical hypersonic flow over a 

blunt body, where a bow shock is created by the supersonic freestream. In this paper, a high-order 

shock-fitting method is used to track the movement of the bow shock which is treated as the upper 

boundary of the computational domain. The computational grid for a shock fitting formulation is 

bounded between the bow shock above and the blunt body below.  

 

The cut-cell grid is a smooth curvilinear grid fitted to the baseline body shape without the roughness. 

As a result, the roughness surface cuts across the grid lines. The roughness surface, Γ , is 

represented by surface equation in the following form,  

 

 : ( , , ) 0f x y zΓ =  (1) 

 

For a problem concerning practical arbitrary roughness in hypersonic vehicle surface, it is likely 

that there is not an analytical equation applicable to represent the shape of the roughness element. In 

this case, a set of n  discrete coordinate points { }1 1 1 2 2 2( , , ), ( , , ),..., ( , , )n n nx y z x y z x y z  along the 

physical roughness surface are used to represent the surface. With these roughness data, we can 

reconstruct the roughness surface for simulation by using a high-order piecewise polynomial 

interpolation.   
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Fig. 11. Physical and computational domain and a cut-cell grid of hypersonic flow over a blunt body with 

surface roughness: 1) physical grid, 2) computational grid with a transformed roughness. 

 

 

Both the governing Equation and the roughness equation (1) in the physical domain are transformed 

into a Cartesian computational domain bounded by bow shock and flat plate boundary. Under the 

computational coordinate system, the body fitted grids are represented by a curvilinear 
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three-dimensional coordinates ( , , , )ξ η ς τ along the grid lines. The unsteady movement of the bow 

shock is treated as the computational upper boundary located at 
maxη η= , which is time dependent. 

The other grid lines constξ = and constς =  remains stationary during computations. The 

coordinate transformation is defined by: 

 

 

( , , ) ( , , , )

( , , , ) ( , , , )

( , , ) ( , , , )

x y z x x

x y z t y y

x y z z z

t t

ξ ξ ξ η ς τ
η η ξ η ς τ
ς ς ξ η ς τ
τ τ

= = 
 = = 

↔ 
= = 

 = = 

 (2) 

 

where ( , , , )x y z t  are the physical coordinates defined under Cartesian coordinate system. 

 

Substituting Eq. (2) into the governing N-S equation, we obtain a system of transformed governing 

equations in the computational domain ( , , , )ξ η ς τ  as 

 

 
' ' '1 ' ' ' (1/ )
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J τ ξ η ζ ξ η ζ τ
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 (3) 

 

The transformed fluxes of the equation above are: 
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Where , , , , , , ,,x y z x y z x y zξ ξ ξ η η η ς ς ς are transformation metrics, and J is Jacobean matrix of coordinate 

transformation defined by 

 

 
( , , )

( , , )
J

x y z

ξ η ς∂
=
∂

 (10) 

 

In addition to the transformation of the governing equations, the equation for the surface roughness 

is also transformed into the computational domain and can be represented as  

 

 ( ( , , ), ( , , , ), ( , , )) 0f x y z x y z t x y zξ η ς =  (11) 

 

The grids transformation metrics and the Jacobean matrix J can be obtained either by analytical 

formulas of the coordinate transformation or by numerical approximation. 

 

With the coordinate transformation, a set of uniformly distributed Cartesian grids can be generated 

in the computational domain where the grid distribution in the physical domain is not uniformly 

distributed. Because smooth body-fitted grids are generated in the regular computational domain 

without the roughness as shown in Fig. 11 (b), some of the Cartesian grid cells may be cut by the 

roughness boundary, which leads to irregular Cartesian grid cells.  
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Fig. 12. Classification of four types of grids for the high-order cut-cell method in computational domain ( , )ξ η , 

where∇ represents regular point, ⊗  dropped point, O boundary point, and •  irregular point. 
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In the current high-order cut-cell finite-difference method, four different types of grid points are 

defined according to their relative locations with respective to the roughness surface. Different 

numerical algorithms are implemented for different types of points. The four types of points, as 

shown in Error! Reference source not found.12, are defined as: 

 

• Boundary points. The points created by the intersection of roughness interface Γ  and grid 

lines are boundary points. They are not part of the original Cartesian grid, and they are used 

in finite difference formulas for grid points adjacent to the roughness surface. 

 

• Irregular points: For those points located close enough to the roughness boundary Γ  that 

their finite difference stencils contain a boundary point, they are defined as irregular points. 

In the finite difference approximation involving an irregular point, local grid spacing 

becomes non-uniform because of the inclusion of a boundary point in the stencil. 

 

• Dropped points. If a grid point is adjacent to a boundary point along a grid line with a distance 

smaller than a pre-specified critical ratio Θ  in the ξ  or η  direction, it is defined as a 

dropped point along that direction. A dropped point is removed from the grid stencil in the 

formulation of a local finite difference approximation in the corresponding direction. It 

should be noted that a grid point can be a drop point in one direction, but a regular point in 

another direction. Therefore, dropped points are removed in the “dropped direction” only. 

The same points may be included in finite difference stencils in the other directions if these 

points are not defined as “dropped”. The value of non-dimensional critical ratio Θ  is an 

adjustable parameter. In the cases of third and fourth order methods, Θ  is selected to be 

0.5  and 1.0  respectively. All of the points on the solid side of the computational domain 

are defined as dropped points as well. They do not participate in any numerical calculation. 

 

• Regular points: All other grid points produced by the intersection of grid lines themselves are 

defined as regular points. Since they are relatively far away from boundary points, a standard 

finite difference approach in a uniform grid can be applied. 

 

 

5.2.2. Finite-Difference Algorithms for Different Types of Grid Points 

 

The derivatives of the flux terms in Eq. (3) are discretized by different methods for the four 

different types of grid points. The flux terms in regular points are computed by the standard upwind 

finite difference scheme introduced in next section. To calculate the flux in irregular points, a 

high-order non-uniform-grid finite difference method, the stencil of which consists of regular, 

irregular and boundary points. The dropped points shown in Error! Reference source not 

found.12 are not included in non-uniform or uniform grid stencils for computing flux terms in a 

“dropped” direction. The main purpose of defining a dropped point is to avoid the small cell 

problem introduced in Section 1. The removal of drop points from finite difference formulas 

ensures that the distance between two adjacent grid points in a finite-difference stencil is large 
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enough in order to prevent from the deterioration of corresponding high-order method for 

computing the hyperbolic part of Eq. (3).  Based on the different grid classifications in the 

computational domain, the details of the different discretization methods for the four types of points 

are described as follows. 

 

5.2.2.1 Regular points and shock-fitting methods 

 

Since regular points are not affected by the presence of roughness boundary, regular high-order 

upwind schemes of Zhong [1] are used for the discretization of the governing equations for these 

points. In addition, the bow shock shown in Fig. 11 is treated by a high-order shock-fitting approach. 

The finite difference methods and formulas used for the regular points and the bow shock are briefly 

described here. More details can be found in Zhong [1]. 

 

5.2.2.2. Irregular points 

 

Contrary to the standard fifth-order finite-difference schemes used for regular points, special 

treatment is needed in the discretization of the governing equations for the irregular points because 

boundary points are included into the finite difference stencil. Fig. 13 shows a schematic of a grid 

stencil for irregular points near the boundary. In this figure, grid points 2ξ  and 3ξ  are irregular 

points, 1ξ  is a boundary point, while the grid point between 1ξ  and 2ξ  is a dropped point 

because it is too close the boundary point. The dropped point is removed from the stencil for the 

irregular point schemes. The rest of the grid points are regular points. For example, for a local 

third-order finite-difference approximation at the irregular point 2ξ , the grid stencil consists of the 

following five grid points: 1ξ , 2ξ , …, 5ξ . The grid spacing between the points involved are not 

uniform because 

 1
h

θ
σ = ≠

∆
 (12) 

 

where θ  is the spacing between 1ξ  and 2ξ , and h∆ is the uniform grid spacing of the regular 

grid.  Therefore, a non-uniform-grid finite difference schemes are needed for irregular points. 
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Fig. 13. A schematic of a grid stencil for an  irregular point with 3p =  , 5q = and 
3 2 3{ , }ξ ξ ξΩ = , θ  is 

non-uniform grid spacing after removing a dropped point, h∆ is the normal grid spacing, ⊗ represents the 

dropped point, O represents the boundary point, and • represents irregular and regular points. 

It is assumed that p  is the local order of accuracy in boundary of the simulation. In order to 

maintain a ( 1)p th+ −  order global accuracy for the distretization of both the inviscid and viscous 

flux terms, all local non-uniform schemes for irregular points need to be at least p th−  order 

accuracy. In our construction of high-order cut-cell scheme, if a grid stencil with a number of q  

grids is used for discretizing regular points near the boundary in each direction of the computational 

domain, there are / 2q    irregular points near a boundary surface. We denote the collection of all 

irregular points near this boundary in one direction as set p

ξΩ , where the superscript represents the 

direction of the stencil and the subscript represents the local order of schemes at this point. 

 

As a general convention, the boundary point is labeled as 
1ξ , the irregular points are labeled as 

2 3 / 2 1
, ,...,

q
ξ ξ ξ +  

sequentially in the order of their distances from the boundary point. A special case 

with 3p =  and 5q =  is shown in Fig. 13. There may or may not be a drop point in the stencil for 

an irregular point depending on the spacing between the boundary point and its closet regular grid 

point. As discussed earlier in this paper, if the non-dimensionalized grid spacing between the 

dropped point ⊗  and the boundary point O  is less than a pre-described critical ratio Θ  , this 

dropped point is removed from the grid stencil in corresponding direction. Otherwise, there is no 

dropped point in the stencil. 

   

Finite difference formulas for viscous flux terms in irregular points 
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The discretization of viscous term vF  for an irregular point involves the calculations of second 

order derivatives since vF  contains gradient terms, such as  and u T∇ ∇
��

. Under the coordinate 

transformation of Eq. (2),  and u T∇ ∇
��

can be expressed as derivatives with respect to coordinates in 

the computational domain ( , , , )ξ η ς τ . A two-step algorithm is employed for the computations of 

viscous fluxes. First, the gradient of velocity and temperature  and u T∇ ∇
��

 is computed at each 

grid point. Using these results, the values of flux vector vF  
is evaluated at all grid points. Second, 

the derivatives of vF  are computed by a finite difference scheme. Since the computations in both 

steps involve only calculations of first-order derivatives, the same high-order finite-difference 

schemes are used at each step. In order to do this, the first derivative has to be computed at the 

boundary points. For boundary points with regular finite-difference stencil, the first-derivative can 

be calculated by using one-side finite-difference scheme, e.g. for 4
th

 order simulation: 

 

 2 3 4 5

1

4 6 4
( )

x

u u u u
u

h

+− +=
∆

 (12) 

 

For boundary points with irregular finite-difference stencil, the first-derivative can be evaluated by 

using non-uniform one-side finite-difference scheme. The derivation details can follow the 

following steps. 

 

The general formulation of a non-uniform-grid finite-difference scheme for computing the viscous 

terms for an irregular point iξ of p

ξΩ
 

can be written in the following form: 

 

1' 1
'

, ,
1

1 ( ) '
( )     for  where 2,3,..., / 2 1

!

qqq
v v

i k v k i p
k ii

F C h F
a F i q

h q

ξσ ξξξ

−−

=

 
  
 

 ∂ ∆ ∂= − ∈Ω = +∑     ∂∂ ∆ 
 (13) 

 

The subscripts of coefficient 
,i ka  stand for the k th− coefficient for the i th−  irregular point as 

defined for the case of 3p=  and 5q = (Fig. 13). The coefficient 
,i ka

 
is function of σ , which is 

defined in Eq. (12), and C  is a constant. 

 

The coefficients of non-uniform-grid finite-difference equation (Eq. (13)) for every i th−  irregular 

grid point in set p

ξΩ can be derived either by a Taylor series expansion, or by taking a derivative of 

a polynomial interpolated through the non-uniform stencil. We use polynomial interpolation in this 

paper. Specifically, for each irregular point, the Lagrange interpolation polynomial can be written as 
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= = ≠

 
 
 
 

−= ∑ ∏ −
ɶ  (14) 

 

where 
1( )qP ξ−
ɶ is a polynomial interpolating through the grid stencil. Differentiating Eq. (14) once 

with respect to ξ , we have  

 

 
'

1 '

,
1 1, 1, ,

( ) 1q q q
qv m

v l
l l m l nn n l m m l m n

PF
F

ξ ξ ξ
ξ ξ ξ ξξ ξ

−

= = ≠ = ≠ ≠

  
      

∂∂ −≈ = ∑ ∑ ∏ − −∂ ∂

ɶ

 (15) 

 

 

Substituting 
i

ξ ξ=  into the equation above and comparing terms with those of Eq. (13), we 

obtain the coefficients 
,i ka  as follows 

 

 
,

1, 1, ,

1
          for  1, 2..

q q
i m

i k
n n k k mm m k m n k n

a k q
ξ ξ
ξ ξ ξ ξ= ≠ = ≠ ≠

 
 
 
 

−= =∑ ∏ − −
 (16) 

where 
,i ka

 
is a function of σ  defined in Eq. (12). In a shock-fitting calculation, the computational 

grid changes with the movement of the bow shock. As a result, the value of θ  is a function of time 

because of the shock movement.  

 

During the time advancement in the simulation, the grid metrics in the computational domain 

bounded by the moving shock vary from one time step to the next. As a result, the σ values are not 

constant. Thus we need to recalculate the finite-difference coefficients 
,i ka  for all irregular points 

in each time step. In our simulation, the formulas for the coefficients are stored in the computer 

memory, and their values are computed explicitly when the finite-difference schemes are 

implemented in each direction.  

  

Finite difference formulas for inviscid flux terms in irregular points 

 

Similar to the local algorithms for the viscous terms at irregular points, a non-uniform-grid 

high-order upwind scheme is used to discretize the inviscid fluxes, 'F +
 and 'F − . For every 

irregular grid point, there are several possible grid stencils for finite-difference approximation of the 

flux derivatives of the same accuracy order. Different choices of stencils for these boundary closure 

schemes lead to different stability characteristics for the overall algorithm. Since 'F +
 and 'F −  

have either all positive or all negative eigenvalues, local grid stencils for finite-difference 
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approximation of the flux derivatives are chosen so that the discretization for the fluxes are upwind 

biased, while maintaining high-order accuracy. Therefore, for a given irregular grid point, the 

stencil for 'F +
 may be different from the stencil for 'F − . In addition, a grid stencil for these 

fluxes may or may not include the boundary point.  

 

The non-uniform-grid finite-difference schemes for the inviscid flux terms of positive and negative 

eigenvalues can be written as  

 

 ,
1

' 1
'      for  where 2,3,..., / 2 1

q
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F
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 (18) 

 

The stencil contains a total of q  grid points as shown in Fig. 13. The upwind schemes are 

represented by different sets of coefficients of the two formulas above. Because the upwind bias 

stencil used for 
'F

ξ

+∂
∂

 does not include the boundary point, the coefficients 
,i kb+  is not a function 

of σ  defined in Eq. (12). On the other hand, 
,i kb−  is a function of σ  because the upwind stencil 

for 
'F

ξ

−∂
∂

 includes the boundary point. The coefficients for each upwind scheme above can be 

calculated following the same general formulas given by Eqs. (15) and (16). 

 

The higher-order non-uniform finite-difference stencils require sufficiently many grid points near 

the roughness surface. When the grids are insufficient for local high-order finite-difference stencil, 

there are two approaches to overcome the problem. The first approach is to maintain the original 

number of grids point in the local high-order finite-difference stencil. More grid points can be 

clustered or generated near the irregular boundary by either adjusting the coordination 

transformation, or refining the grids in the computational domain. The global grids refinement tends 

to be very computationally expensive to later simulation. Local grids refinement approach can also 

be adapted, but extra interpolation procedure has to be implemented for different levels of grids. By 

generating enough grids points near the irregular interface, the order of accuracy for cut-cell method 

is maintained. The second approach is to reduce the number of grids in the local finite-difference 

stencil, where corresponding lower order of non-uniform finite-difference method can be applied. 

By using this treatment, the local order of accuracy is reduced. If the boundary nearly degenerates, 

the accuracy of current cut-cell method will not be affected, provided that the boundary interface 

can be expressed accurately in a numerical or analytical form.  
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5.2.2.3. Boundary points 

 

As shown in Fig. 11, boundary points are the marker points located at the intersection between the 

roughness surface and grid lines. The governing equations are not solved at these points. However, 

flow variables at these points are needed for finite-difference algorithms of the irregular points near 

the roughness surface. The solid interface imposes the non-slip and non-flow-through conditions for 

flow velocities at the boundary points. Depending on the actual thermal conditions of the solid 

surface, either an isothermal or adiabatic wall can be specified. In this paper, only the isothermal 

wall is considered. In this case, both the velocities and temperature of the boundary points are 

specified by the wall boundary conditions. The local pressure on the solid surface (boundary points) 

needs to be computed by the local flow conditions near the wall.  

 

There are several approaches to compute the pressure at the boundary points. One approach is to 

integrate a local wall-normal momentum equation to obtain the wall pressure. We can also use an 

approximation assumption of zero pressure gradients at the wall to determine the pressure there. In 

a previous paper, Zhong used a fifth-order polynomial extrapolation to determine the wall pressure 

[1]. Satisfactory results have been obtained with this approach. We follow the extrapolation 

approach of Zhong [1] to determine the pressure at the boundary points. 

 

In computing pressure at the boundary points, the polynomial extrapolation is required to have 

comparable order of accuracy as that of the interior schemes in order to maintain the expected 

global accuracy. To maintain a ( 1)p th+ − order global accuracy of the upwind schemes developed 

in the last sections, it is desirable to have at least p th−  order of accuracy for the extrapolation for 

the boundary points.  

 

Since a boundary point is formed by the intersection of the roughness interface with one of the grid 

lines, the extrapolation is conducted along the direction of the same grid line. We use the grid line 

along the ξ  direction as an example. The methods can be applied the other directions similarly. In 

two and three-dimensional cases, there is options of either constructing the extrapolation along the 

direction normal to the solid interface, or doing it along the grid lines. Though either method can be 

used in multi-dimensional problems, the latter approach is used in this paper since it is simper in 

implementation and more stable for simulations of current tests. In this case, the determination of 

pressure at the boundary points is a one-dimensional extrapolation along one of the grid lines. The 

one-dimensional stencil of Fig. 13, which involves non-uniform grid spacing θ , is used to derive 

the extrapolation formulas for the pressure at the boundary point. For example, for the case of four 

point extrapolation shown in Fig. 13, pressure at the boundary point 1( )p ξ  is obtained by a third 

degree polynomial interpolating through the following four interior pressures: 2( )p ξ , 3( )p ξ , 

4( )p ξ , and 5( )p ξ . The grid spacing between neighboring grid points is a constant value of h∆ , 
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with the exception that the distance between the first and second points are θ . If there is a dropped 

point in the stencil, the dropped point is not used in the extrapolation calculations. 

 

For two-dimensional problems, the high-order extrapolation along the  or ξ η direction is employed 

to extrapolate pressure from the interior domain into the boundary. A total of p  grid points in the 

direction associated with the boundary point are chosen to be included in the extrapolation stencil. 

Again, dropped points are not included in the extrapolation stencil. This procedure can prevent the 

small cell problem of producing numerical instability near the solid boundary.  

 

5.2.2.4. Dropped points 

 

In this paper, in order to avoid the small cell problem, a grid point is designated as a dropped point 

if its distance from a neighboring boundary point along a grid line is smaller than a pre-determined 

value Θ . The dropped point, which is associated with a grid direction, is removed in the 

finite-difference grid stencil along the grid line for the irregular points near the boundary. On the 

other hand, a grid point may become a dropped point in one direction, but remain a regular or 

irregular point in another. For example, point 1P  in Fig. 14 is a dropped point in the ξ  direction, 

but a regular point in the η  direction. In this case, the flow variables at point 1P  are not used in 

finite difference formulas for derivatives in the ξ  direction. However, the flow variables at the 

same grid point are needed for finite difference formulas for derivatives in the η  direction. The 

flow variables at this dropped point 1P  
are obtained by the interpolation of a stencil along the ξ  

direction. 

 

For a grid point which is a regular or irregular point in one direction, but a dropped point in 

another, finite difference schemes along the former direction may include this point in its stencil.  

As shown in Fig. 14 for the case of 3p = , the finite-difference stencil for an irregular point Q  

located at ( , )i jξ η contains five points in the η  direction, which are in set 

2 1 1 2
{( , ),  ( , ),  ( , ),  ( , ),  ( , )}

Q i j i j i j j i ji
ξ η ξ η ξ η ξ η ξ η+ + − −Ω = . There are two dropped points along the ξ  

direction in this set of stencil 
QΩ : point 1P  at 

1( , )i jξ η −  
and point 2P  at 

2( , )i jξ η − . If the points 

1P and 2P  are removed from the stencil used in the calculations of flux terms 

' '/  and /vF Fη η∂ ∂ ∂ ∂  in Q , the stencil set 
QΩ  needs to be shifted two grids down to include 
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3( , )i jξ η − and 
4( , )i jξ η −  

to maintain the accuracy. In this case, the resulting stencil for Q  may 

contain a significantly large intervalθ  compared with the normal grid spacing h∆ , which may 

lead to a deterioration of accuracy of the method. Therefore, we maintain the original grid stencil 

QΩ , which includes points 1P  
and 2P , along the η  direction for point Q . We calculate the flow 

variables of these two dropped points by interpolation along the ξ  direction. 
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Fig. 14. An example of a grid point, such as point 1P  and point 2P , which is a regular or irregular point in one 

direction, but a dropped point in another for the case of 3p = : ∇ represents regular points, ⊗dropped 

points, O  boundary points, and • irregular points. 

 

For the case of 3p =  for point 1P , a third-order polynomial interpolation along the ξ  direction 

is employed to compute the flow variables at this point. The interpolation is carried out along the 

ξ  direction, which is along the direction where the point is dropped. For 3p =  as shown in Fig. 

14, the interpolation stencil for point 
1P  is set 

1 1 2 1{( , ),  ( , ),  }P i j i j Bξ η ξ η− − − −Ω = , where B  

represents the boundary point. For higher order method, the order of interpolation needs to be 

increased accordingly. For 4p = , a fourth order interpolation should be used. For a general case 

of p th− order methods at the boundary, a total of 1p−  adjacent grid points and exactly one 

boundary point along the ξ  direction are chosen as the interpolation stencil. The interpolant can 
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be written as  

 

 1
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1 1,
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n n ll l n

U U
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−
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ɶ  (19) 

Where 
1p

ξ is the ξ  coordinate of dropped point, { }, 1..iU i p= is conservative flow variables at 

the grid points of the interpolation stencil.   

 

Similar interpolation procedures can also be carried out if a point is designated as a dropped point 

in the η  direction, but is an irregular or regular point in the ξ  direction.  If a grid point is 

designated as a dropped point in both the ξ  and η  directions, there is no need to do 

interpolations because this point is removed from the calculations of both directions. 

 

5.3 Test and applications 

 

The new high-order cut-cell method has been tested in the computations of several one and 

two-dimensional hyperbolic and elliptic equation in irregular domains. The results show that up to 

fourth-order accuracy in both 2L  and L∞ norm can be obtained for the current cut-cell method for 

both problems. We subsequently have applied a third-order cut-cell method to the two-dimensional 

compressible Navier-Stokes equations for simulating roughness induced receptivity for hypersonic 

flow over a flat plate with a blowing and suction slot placed near the leading edge. The surface 

roughness height is approximately half of the local boundary thickness. By using the uniformly 

third-order cut-cell method, small disturbances generated by the blowing and suction slot are well 

resolved around the roughness element. The results obtained by the new third-order cut-cell method 

are consistent with those of the linear stability analysis results. In addition, steady solutions of the 

flow affected by the roughness are well captured by the cut-cell method. The simulation results 

suggest that the existence of small surface roughness (
1

 h=  
2
δ ) affects the propagation of 

instability waves in the hypersonic boundary layer. The details regarding the tests can be fond in [1].  

 

6 STABILIZATION OF A MACH 5.92 FLAT-PLATE BOUNDARY LAYER 

WITH FINITE HEIGHT SURFACE ROUGHNESS 

 

One of the major accomplishments of the current research project is on revealing the receptivity 

mechanism of a hypersonic boundary layer with finite surface roughness to wall blowing-suction. 

These results are discussed in more detail in this section. Details of these results have been 

published in Publications: [3], [9], [13], [15], [20]. 
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6.1 Flow conditions and roughness model 

 

With the development of advanced computers and numerical techniques, numerical simulation of 

the receptivity process by directly solving Navier-Stokes equations has become feasible. By solving 

the compressible linearized Navier-Stokes equations, Malik et al. [65] investigated the responses of 

a Mach 8 flow over a sharp wedge of a half-angle of 5.3
o
 to three types of external forcing: a planar 

free-stream acoustic wave, a narrow acoustic beam enforced on the bow shock near the leading 

edge, and a blowing-suction slot on the wedge surface. They concluded that these three types of 

forcing eventually resulted in the same type of instability waves in the boundary layer. However the 

receptivity mechanism was not studied in detail. Ma and Zhong [66] studied the receptivity 

mechanisms of the same hypersonic boundary layer to various freestream disturbances, i.e., fast and 

slow acoustic waves, vorticity waves, and entropy waves, by solving the two-dimensional 

compressible Navier-Stokes equations. They found that the stable modes in the boundary layer 

played a very important role in the receptivity process. 

 

In this report, the new cut-cell method introduced in Section 5 is used to compute hypersonic 

viscous flow over a flat plate with an isolated surface roughness element (Fig. 1). Both steady and 

unsteady flows are considered. The freestream flow conditions are the same as those used in 

Maslov’s experiment [13] as follows,  

 

 

60.72, * / 1.32 10 /

5.92, 48.69 , 742.76

rP R u m

M T K P Pa

ρ µ∞ ∞ ∞ ∞

∞ ∞ ∞

 = = = ×


= = =
 (20) 

 

where M∞ , T∞ , P∞ , rP , R∞  are Mach number, temperature, pressure, Prantle number and unit 

Reynolds number, respectively. The flat plate is assumed to be isothermal with a constant 

temperature of 350.0wT K= . The total length of the flat plate is about 1.69m .  

 

In this section, unless stated otherwise, most flow variables are presented as dimensionless ones. 

The main exception is that the x  and y  coordinates are presented in dimensional form so that the 

simulational results can be easily related to the experimental setup. For other variables, we 

nondimensionalize the flow velocities by the freestream velocity u∞ , density by ρ∞ , pressure by 

2( )uρ∞ ∞ , and temperature by T∞ . 

 

An isolated roughness element of smooth shape is placed on the surface of the flat plate at 

0.185x m=  downstream. Motivatied by Whiteheard’s experiments [67], the shape of the surface 

roughness is chosen to be a two-dimensional bump, governed by the following elliptic equation, 
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2
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( )cx x y
h

a b

− + =  (21) 

 

The computations of this study are performed under the following parameters: 

2,  1,  0.185ca b x m= = =  and / 2h δ=  where   0.00081mδ =  which corresponds to the boundary 

layer thickness at cx  as shown in Fig. 15.  
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Fig. 15. 1) Computational grid for hypersonic flow over a flat plate with an isolated surface roughness. The 

grid size is 241 121× (showing one out of four grid points in both directions, 2). Comparison of the current 

shock-fitting results with theoretical solutions (  and e eT u ) for temperature and wall normal velocity 

distributions long a wall-normal grid line located at 0.1676x m= on the plate surface. 

 

In this report, a third-order cut-cell method described in Section 5 is used to compute the 

two-dimensional viscous hypersonic flow over the flat plate with the roughness element. As 

described in Section 5, a coordinate transformation is employed to transform the physical domain 

shown in Fig. 15 into a rectangle computational domain with a set of Cartesian grid. The optimal 

transformation formula is determined by the specific physical problem considered. For viscous flow 

over a flat plate, it is necessary to cluster more grid points at the bottom wall surface in order to 

resolve the viscous boundary layer. In this paper, a two-step mapping procedure is used to obtain 

better resolution inside the viscous boundary layer.  

 

In the first step of the transformation, the entire physical domain shown in Fig. 15 is transformed 

into a square domain defined on [0,1] [0,1]× as an intermediate coordinate space. The 

transformation relation is defined as: 

 



 36 

 

( , )

strartx x
X

L

y
Y

H x y
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
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 (22) 

 

where ( , )X Y  is defined under the intermediate coordinate system, L  is the streamwise length of 

the flat plate in physical domain, 
start
x is the streamwise coordinate of starting point of computation 

in each zone, and the distance along η  direction between the solid wall and bow shock is referred 

to H . 

 

In the second step of the transformation, the intermediate plane in the ( , )X Y space is mapped into 

the final computational domain ( , )ξ η  in order to cluster more grid points into the viscous 

boundary layer near the flat plate surface. In the present study, an exponential stretch function is 

used to cluster grids in the η  direction as follows, 
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 (23) 

 

where β  is the stretching parameter. The value of 1.01β = is used in this paper. With this 

β value, about 50%  of the total grid points in the η  direction are clustered inside the boundary 

layer. The combination of the transformations of these two steps leads to overall transformation 

given by Eq. (2).  

 

In the computational domain ( ,  )ξ η , the baseline grid is a set of Cartesian grid similar to the 

schematic shown in Fig. 11 (2). The interaction of the roughness surface with the grid lines creates 

cut cells, which are treated by the current cut-cell method. The surface equation (21) of the 

roughness surface is transformed into the computational domain in order to apply the cut-cell 

method. By substituting Eqs. (22) and (23) into the roughness surface Eq. (21), the analytical 



 37 

equation for roughness surface in the computational domain can be written as  
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From Eq. (24), we can calculate the coordinates of the boundary points by computing the 

coordinates of the intersection between the roughness surface and the grid lines. For a given value 

of ξ  along the roughness surface, the Newton iteration method is employed to solve Eq. (24) for 

the corresponding value of η  on the surface for a boundary point, and vice versa. Having 

computed the boundary points, we can identify all irregular and dropped points near the roughness 

surface. The remaining grid points are regular points. 

 

After computing all coordinates of the irregular, regular, boundary and dropped points as shown in 

Fig. 11, the current high-order cut-cell method is applied to discretize Eq. (3). The bow shock is 

treated by a high-order shock-fitting method. The overall accuracy of simulation is determined by the 

order of scheme used for computing the inviscid and viscous flux terms.  

 

6.2. Steady flow solution without surface roughness 

 

The steady mean flow solutions are calculated by using the fifth-order shock-fitting method. But in 

the leading edge region of the flat plate, there is a singularity at the tip of the plate and the 

high-order shock fitting method cannot be used there. Thus a second-order TVD shock-capturing 

method is employed to calculate a small local flow field around the tip of the flat plate. The 

computational domain for the TVD calculations starts at 0.006x m= −  and ends at a very short 

distance downstream of the leading edge at 0.003x m= . A total 241 121×  grid points are used. A 

TVD scheme, which follows that used by Lee et al. [68], is applied to Eq. (3). The semi-discrete 

system of ordinary differential equations are then solved by using a fourth-order Runge-Kutta 

method.   

 

Having obtained the steady state solutions at the leading edge, we then use the solution of the TVD 

scheme as the inlet condition to start the subsequent shock-fitting calculations. The computational 

domain for the high-order shock-fitting methods starts at 0.003x m= and ends at 1.68784x m= . In 

actual simulations, the computational domain is divided into 30 zones, with total of 5936 grid points 

in the streamwise direction and 121 points in the wall-normal direction. As mentioned above, the 

second zone uses the results of the first zone of the second-order TVD solution as the inlet condition. 

A later zone uses the interpolation of its former zone’s data as the inlet condition. 
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The solutions for the steady viscous flow over the flat plate with no surface roughness are first 

obtained. Fig. 15 shows the streamwise velocity and temperature profiles along the wall-normal 

direction at 0.1676x m= near the wall. The current numerical solutions obtained by the fifth-order 

shock-fitting scheme are compared with the self-similar boundary layer solution. In order to 

compare with the self-similar solution of the boundary layer, the y  coordinate is 

nondimensionalized by /x uµ ρ∞ ∞ ∞ . Fig. 15 illustrates that the results of the current numerical 

simulation agree very well with the theoretical solutions near the wall. The second-order TVD 

scheme is accurate enough to be used as the inlet condition of the fifth-order shock-fitting method 

downstream of the leading edge. 

 

6.3. Steady flow solution with an isolated surface roughness 

 

The roughness model proposed in Sec 6.1 is simulated by using the high-order cut-cell method with 

same flow condition in Sec 6.2. In this report, the results of a third-order ( 3p = ) cut-cell method is 

presented. In simulation, the numerical dissipation coefficient α  is chosen within range 

[0.25 6.0]− . All the simulations are very stable. Thus the numerical dissipation of the interior scheme 

may only have minor influence on the overall stability. 

 

Fig. 16 shows steady flow solutions computed by the third-order cut-cell method, in both the 

streamline pattern and the contours of wall normal velocity and pressure components. In order to 

assess the numerical accuracy of the solutions, steady solutions are obtained by using the following 

two sets of grids: 241 121×  and 441 121× . Due to the restriction of computational time, the grid 

refinement study is only performed with respect to streamwise resolution in one zone. The 

wall-normal velocities computed by fine and coarse grids are plotted with the same levels of 

contour line in Fig. 16. The good agreement between these two sets of results suggests that the grid 

resolution used in the current simulations is high enough for the steady flow simulation. Fig. 16 also 

shows the steady-flow pressure contours for flow over a flat plate with an isolated roughness 

computed by the third-order cut-cell method. Because the flow is supersonic behind the bow shock, 

a family of Mach waves is generated by flow over the roughness. The compression waves are 

followed by expansion waves when the flow expands around the roughness surface. These Mach 

waves are approximately parallel to the bow shock interface in the later zones. 
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Fig. 16. Hypersonic flow solutions in the region near the roughness element computed by the third-order 

cut-cell method: 1) streamline pattern, 2) contour lines of wall normal velocity components computed by using 

two sets of grids (coarse grid: 241 121× , fine grids: 441 121× ), 3) wall normal velocity contour 4),Pressure 

contours for two-dimensional hypersonic flow over a flat plate with an isolated roughness computed by the 

third-order cut-cell method. The total grid points in this range of the flow field is 1920 121× . 

 

The steady flow solutions demonstrate that, affected by the roughness, hypersonic boundary layer 

over the flat plate is modified significantly in the regions both downstream and upstream of the 

roughness element. The parallel flow assumption is no longer valid for flow near the roughness. 

Consequently, normal-mode linear stability analysis may not be accurate in this flow region. Thus a 

different boundary layer instability mechanism may be introduced. One the other hand, the effects 

of the roughness is most significant in the regions surrounding the roughness.  The roughness 

effects on the steady flow decay if we move further downstream. Thus the flow is approximately 

parallel again in the far downstream of the surface roughness. Linear Stability Theory (LST) can be 

applied to analyze the flow field which is approximately parallel. Good agreement between 

numerical and theoretical solutions can be achieved. More details can be found in [69]. 

 

6.4. Receptivity of hypersonic flow with surface roughness to wall blowing and suction 

 

In this section, the new third-order cut-cell method is applied to the computation of transient 

responses of the same Mach 5.92 boundary layer to forcing waves introduced by a blowing and 
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suction slot located on the plate surface.  It is termed the receptivity problem of the boundary layer 

to forcing waves [24]. The receptivity problem is critical to the understanding of physical 

mechanisms of hypersonic boundary layer transition. The receptivity of the same hypersonic 

boundary layer to wall blowing and suction has been studied by Wang and Zhong [70] and [71] for 

smooth surface without roughness. In this paper, we study the additional effects of the isolated 

surface roughness on the receptivity process by using the current third-order cut-cell method. The 

current results are compared with those of [70] and [71] to study the effects of surface roughness on 

the receptivity process. 

 

The receptivity study is mainly concerned with the excitation of instability waves, the 

characteristics of which can be analyzed by the linear stability theory [72]. The instability theory 

analyzes the propagation of individual sinusoidal waves in the streamwise direction inside the 

boundary layer. These waves are referred as Tollmien-Schlichting (T-S) waves for low speed flow. 

The instability waves are vorticity waves, whose amplitudes vary though the boundary layer and die 

off exponentially outside the boundary layer. For the case of small perturbations in the flow field, 

the perturbations of flow variables can be written in the form of a normal mode, i.e., 
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where θ  is the perturbation of temperature. The frequency of the waves is ω  and the streamwise 

and spanwise wave numbers of the instability wave are represented by α ,  and β  respectively. 

 

Substituting Eq. (25) into a linearized version of the full Navier-Stokes, we obtain a system of 

linearized equations of the stability theory. These equations are required to satisfy a number of 

boundary conditions. By imposing the homogenous physical conditions, the number of solutions of 

an eigen problem to the linearized equations with specific value of ,α β and W  is constrained. 

The relation for the instability wave parameter ,α β and W  are referred as dispersion relations in 

the following form,                    

 ( , )W W α β=  (26) 

Extensive numerical and theoretical research has been conducted to solve the linearized 

Navier-Stokes equations and many characteristics regarding the instability waves in hypersonic 

boundary layers have been discovered. [13, 72-75]. Mack [72] identified the unstable modes by 
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using the linear stability theory. He showed that inside a supersonic boundary layer, there are 

multiple higher instability modes in addition to the first mode, which is the compressible 

counterpart of T-S waves in the incompressible boundary layers. These instability modes in the 

supersonic boundary layer are termed as first mode, second mode, third mode, etc. The second 

mode is also called the Mack mode. For supersonic boundary layer with Mach number larger than 

four, the second Mack mode is the most unstable mode, and it plays an important role in 

hypersonic boundary layer transition.  

 

To excite the propagation of small disturbances inside the boundary layer, a blowing and suction 

slot is imposed as periodic-in-time boundary conditions for the perturbations of the mass flux on the 

wall. The blow-suction slot is located at 0.030x m= and spreads over several grids spaces. The 

perturbations in the blowing and suction slot are governed by the following function: 
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where 0q is an amplitude parameter, 1nw nf= is circular frequency of this multi-frequency 

perturbation, and ( )g l is a non-dimensional x-direction profile function defined as 
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The variable l  is the non-dimensional parameter associated with current coordinate of this blowing 

and suction, 
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he basic frequency 1f  
is given by 1 50f kHz= , and the other 14 different frequencies are imposed 

as  100,150, 200... f kHz=  for 2,3, 4.... n =  This steady and unsteady flow conditions used in the 

current simulation are the same as those used in the simulation conducted by Wang et al. [70] for 

the cases of smooth wall without roughness. Balakumar [76] also investigated the receptivity of a 

2-D roughness to acoustic waves and found the isolated roughness does not contribute much in 

generating unstable disturbances. 
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Fig. 17. Comparison of contours of pressure perturbations for unsteady Mach 5.92 flow over a flat plate with 

and without surface roughness. The forcing frequency is 150f kHz= . The current results for flow without 1), 

or with 2) roughness are computed by the third-order cut-cell method. 

 

The simulation is carried out with combined forcing waves of fifteen frequencies. A Fast Fourier 

Transformation (FFT) technique is used to separate the results with different frequencies. Fig. 17 

compares the contours of pressure perturbations for unsteady Mach 5.92 flow over a flat plate with 

and without surface roughness. The forcing frequency is 150f kHz= . The current results for flow 

with roughness are computed by the third-order cut-cell method. The corresponding results for the 

smooth surface without roughness was obtained by Wang and Zhong [70] and [71]. Fig. 17 (1) 

shows that, for the case of no surface roughness, instability waves, which are induced by the forcing 

waves introduced at the blowing and suction slot, propagate dowstream in the streamwise direction 

inside the boundary layer.  Fig. 17 (2) shows how the roughness element interacts with the wave 

propagation inside the boundary layer.  

 

Fig. 18 compares the contours of pressure perturbations for cases with and without surface 

roughness for a longer flow region with combined 15 forcing frequencies. The roughness is located 

at 0.185cx m= . The pressure disturbances at flat plate surface are reduced significantly after the 

instability waves pass the surface of roughness element. Thus the local surface roughness could 

potentially stabilize the instability waves in the boundary layer. 
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Fig. 18. Comparison of contours of pressure perturbations for unsteady Mach 5.92 flow over a flat plate with 

and without surface roughness for a longer flow region. The forcing frequency is combined 15 frequencies. 

The roughness is located at 0.185cx m= . 

A muti-domain spectral collocation (MDSC) method of Malik [77] is used to conduct stability 

analysis of the steady solution for the hypersonic flow over the roughness element. More details 

about the linear stability analysis and methods can be found in [77].  

 

The dimensionless frequency used for linear stability analysis is defined as 
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where F  is dimensionless frequency, ν  is kinematic viscous coefficient. In present 

simulation,
5 26.05 10 /v m s−= × , 

55.30 10F −= ×  for the case of 100f kHz= and 
827.29 /u m s∞ = .  

In LST analyses of boundary layer flows, the Reynolds number based on the local length scale of 

boundary layer thickness, δ  , is generally used. They are expressed as 

 

 ,
u x

R
u

ρ δ µδ
µ ρ
∞ ∞ ∞

∞ ∞ ∞

= =  (31) 

Hence the relation between the R  and the unite Reynolds number R∞  is,  

 

 R R x∞=  (32) 

 

With the definitions of Reynolds number R  and the dimensionless frequency F , the dimensionless 

circular frequency ω  can also be expressed as 

 

 RFω =  (33) 
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Fig. 19. Wave mode profiles obtained by linear stability analysis at various locations: 1) mode F profile for 

velocity, 2) mode F profile for pressure, 3) mode S profile for velocity, 4) mode S profile for pressure. The 

amplitudes of disturbances are nondimensionlized by their corresponding values on the surface of flat plate. 

 

There are two major wave modes in hypersonic boundary layers: mode F and mode S. Fig. 19 

shows wave mode profiles obtained by linear stability analysis at various locations for both mode F 

and mode S. The disturbance amplitudes are nondimensionlized by the pressure disturbance on the 

surface of flat plate, e.g. '( ) ( ) / (0)u y u y p= ɶ ɶ . In the upstream of roughness at 0.1620x m= where the 

roughness effects on the mean flow are not that significant, mode S and mode F can be indentified 

clearly. As we move gradually downstream, the profiles of the wave modes vary significantly. 

After 0.1980x m= , mode S and mode F can be identified again by examining their perturbation 

profiles. The mean flow solution obtained by the cut-cell method can produce accuracy results for 

the stability analysis. 

 

6.5 Stabilization effect of location of the finite roughness 

 

In order to investigate the effect of location of the finite surface roughness on receptivity and 

stabilization, a series of numerical simulations have been carried out for different roughness 

locations. Specifically, four cases of different roughness locations are considered. Fig. 20 shows a 

schematic of different roughness locations for the four cases. In each case, wall blowing-suction 
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with fifteen frequencies is introduced on the flat plate surface. The subsequent responses of the 

boundary layer are simulated by the high-order cut-cell finite difference method.  
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Fig. 20 A schematic of locations of the blowing-suction actuator for the four cases: 1. flat plate; 2. bow shock; 

3. surface roughness; 4. boundary layer; 5. blowing suction. 

 

Specifically, roughness locations with respect to the synchronization point at 0.331x m=  are as 

follows, 

 

• Case 1: Upstream of the synchronization point 0.185x m= ; The roughness height 

1
0.00081

2
h mδ= = . 

 

• Case 2: Upstream of the synchronization point 0.260x m= ; The roughness height 

1
0.00111

2
h mδ= = . 

 

• Case 3:  Synchronization point 0.331x m= ; The roughness height 
1

0.00141
2

h mδ= =  

 

• Case 4: Downstream of the synchronization point 0.410x m= ; The roughness height 

1
0.00171

2
h mδ= = . 

 

Fig. 21 shows the pressure amplitude on the flat plate surface with roughness located in different 

locations. It shows that for all four cases, the development of two-dimensional wall perturbations 

eventually result in the same type of instability wave (mode S) in the boundary layer. When the 
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surface roughness located in the far upstream of the synchronization point (Case 1), the instability 

wave develops in the same way as the case without roughness. But as the roughness moves 

gradually into the downstream (Case 2), the amplitude of pressure in the flat plate surface is 

amplified. Mode S is destabilized when the roughness element is placed sufficient close to the 

synchronization point. In Case 3 and Case 4, when the roughness located in downstream of 

synchronization point, the finite surface roughness stabilizes the unstable wave inside the boundary 

layer. The amplitude of pressure perturbation is reduced in further downstream.  
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Fig. 21. Numerical simulation of receptivity of the Mach 5.92 flow over a flat plate to two-dimensional wall 

perturbations with surface roughness: Amplitude comparison of pressure for four cases. 
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Fig. 22. Numerical simulation of receptivity of the Mach 5.92 flow over a flat plate to two-dimensional wall 

perturbations with surface roughness: comparison of numerical and LST growth rates. 
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Fig. 22 shows the comparison of numerical and LST growth rate 
i

α  as variation of dimensionless 

circular frequencyω . The DNS result and LST does not agree initially due to the existence of 

various eigen modes perturbations. After 0.12 ( 0.33 )x mω > > , mode S becomes dominant among 

the eigen modes spectral. Thus after the Mode S fully develops in the boundary layer, the 

theoretical growth rate 
i

α  of Mode S plotted in red lines agrees well with the DNS result. In the 

region surrounding the surface roughness element, the pressure perturbation on the plate surface 

oscillates strongly for all four cases, which drive the growth rate 
i

α  to be infinite. But in the 

downstream of surface roughness, the mean flow is restored and the Mode S growth rate can be 

calculated. For Case 1, the growth rate does not change much with the roughness effect. This shows 

the roughness only affect local mean flow and local mode S instability. But for Case 2, mode S is 

destabilized before the synchronization point ( 0.12ω ≈ ), and develops in a similar way to case 

without roughness after that. Thus the modified local mean flow amplifies the amplitude of 

perturbation. One explanation to this is the non-parallel feature of local mean flow with positive 

wall-normal velocity. For Case 3 and 4, being very different from Case 1 and 2, mode S is stabilized 

after the synchronization point. This once again can be explained as the non-parallel feature of the 

local mean flow with roughness in the upstream and negative wall-normal velocity. More accurate 

theoretical analysis tools beyond LST should be adopted to analyze this non-parallel region.    

 

To summarize, the current simulation results have indicated that the roughness location plays an 

important role in the developments of mode S by the blowing-suction actuator. Mode S is 

destabilized only when the roughness element is located close upstream of the synchronization point. 

On the other hand, when the roughness element in is downstream of the synchronization point, 

mode S is stabilized. This happens even when the roughness is still within the unstable region of 

mode S. Therefore, the synchronization point and finite roughness location is critical to the 

receptivity process. The relationship between the location of the roughness and the synchronization 

point suggests that, in order to control or delay the laminar-turbulent transition more efficiently, the 

roughness element should be placed upstream of the synchronization point between mode S and 

mode F. 
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