Human-agent Collaboration Ontology (HACON)™:
Implications for Designing Naturalistic C² Decision Systems

Azad M. Madni, Ph.D.
Weiwen Lin, Ph.D.

TC³ Workshop: Cognitive Elements of Effective Collaboration
Simulation & Human Systems Technology Division
Space and Naval Warfare Systems Center
San Diego

15-17 January 2002
Human-agent Collaboration Ontology (HACON)™: Implications for Designing Naturalistic C2 Decision Systems

Intelligent Systems Technology, Inc, 2800 28th Street, Suite 306, Santa Monica, CA, 90405

<table>
<thead>
<tr>
<th>Report Documentation Page</th>
<th>Form Approved OMB No. 0704-0188</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT DATE</td>
<td>JAN 2002</td>
</tr>
<tr>
<td>2. REPORT TYPE</td>
<td></td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td>00-00-2002 to 00-00-2002</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td></td>
</tr>
<tr>
<td>Human-agent Collaboration Ontology (HACON)™: Implications for Designing Naturalistic C2 Decision Systems</td>
<td></td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Intelligent Systems Technology, Inc, 2800 28th Street, Suite 306, Santa Monica, CA, 90405</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>19</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Proscribed by ANSI Std Z39-18
Presentation Overview

- Human-agent Collaboration
- Human-agent Collaboration in C²
- Understanding Agents
- Human-agent Collaboration Ontology
- Ontology Applications
- Naturalistic Decision-making Example
- Metrics
- Research Program
Human-agent Collaboration

- Is not one human – one agent
- Is more than human-agent communication language
- Goes well beyond human-agent interaction
- Is especially significant in complex decision-making applications

Emphasis is on capitalizing on the respective strengths of humans and agents during collaborative decision-making
Human-agent Collaboration in C²

- Military decision-making applications (e.g., C²) impose certain unique requirements on human-agent collaboration
 - adaptive human-agent collaboration architectures
 - dynamic function reassignment
 - decision-making under time-stress, uncertainty, risk

Emphasis is on optimally leveraging the human role in the face of ongoing changes
Understanding Agents

- Agent Roles
- Agent Classification
- Human-agent Collaboration Regimes
Agent Roles

- **Peers**
 - develop shared understanding of task, their interdependencies, and contingencies
 - achieve seamless handoffs with shared understanding of context
 - deviate from “best practice” shared role when human is overloaded and/or fatigued, or unavailable

- **Associate/Colleague**
 - cooperates with human but performs different tasks than humans do
 - different from peer because this agent cannot be used to replace the human

- **Assistant/Staff**
 - agent performs tasks on behalf of the user
 - agent(s) has a clear notion of a goal and knowledge of the task domain to achieve it
 - shared vocabulary and task domain concepts enables terse, high-level human commands

- **Teacher**
 - pedagogical agent with domain as well as instructional knowledge
 - goal is transfer of knowledge/skills from domain KB/agent to learner
 - learning consists of getting to know and apply concepts, skills

- **Learner**
 - agent “learns” to perform tasks on behalf of the user; the information-seeking policy of the user
Agent Classification

- **User agents**
 - collect relevant information from user to initiate a task
 - interpret user commands/decompose user commands
 - assign work to task agents

- **Task agents**
 - have knowledge of the task domain as well as other task agents or information agents
 - coordinate with other task agents and information agents
 - form plans to achieve goals
 - executes plans

- **Information agents**
 - provide intelligence access to collection assets
 - are initiated either top down (by user or task agent) or bottom up by occurrence of particular information patterns
 - notify other interested agents when a particular condition of interest occurs
 - actively monitor information sources
Human-agent Collaboration Ontology (HACON™)

- Human Representation Schema
- Software Agent Representation Schema
- Human-agent Collaboration Schema
Human Representation Schema
Software Agent Representation Schema
Human-agent Collaboration Schema
Ontology Applications

- Decision-making
- Planning
- Decision support
- Design

For example, HACON can be extended for naturalistic decision-making
Naturalistic Decision-making

- Simply described as “the way people use their experience to make decisions in field settings”
- Emerged from the study of how real people make real decisions in real situations
- Well-suited to describing how decisions are made under time-stress, uncertainty, and risk

NDM has yet to be exploited within Decision Support Systems!
NDM Schema...

... is the first step to operationalizing naturalistic decision-making within DSS
Case-based Reasoning...

- Exploits heuristics and knowledge of previous cases to find a solution to a current problem
- Solution typically takes the form of an adaptation of a solution to a previous case

... is the second key component for operationalizing NDM within DSS
NDM Implementation in DSS

<table>
<thead>
<tr>
<th>NDM Concepts</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familiar Situations</td>
<td>– Similar cases (based on ontology)</td>
</tr>
<tr>
<td>Situation Familiarity Assessment</td>
<td>– Based on reachback for relevant cases using case-based reasoning</td>
</tr>
<tr>
<td>Activation of Information from Memory</td>
<td>– Agent tasking (user agent)</td>
</tr>
<tr>
<td></td>
<td>– Context-driven search of historical cases (information agent)</td>
</tr>
<tr>
<td>Evaluation of Suitability of Contemplated Action</td>
<td>– Case-based reasoning; similarity metrics</td>
</tr>
<tr>
<td>Implementation of Action</td>
<td>– Execution of plan/workflow associated with “best-fit” case (task agent)</td>
</tr>
</tbody>
</table>
Sample Metrics

- Human cognitive load
- Agent utilization statistics
- Task completion times for various human-agent function assignments
- Execution delay due to function reassignment
- Execution delay due to resource unavailability
- Multi-agent synchronization delay due to function reassignment
Research Program

- Create “cognitively-inspired” software testbed based on HACON to investigate performance impacts of:
 - adaptive human-agent collaboration architecture
 - dynamic function reassignment options
 - context switching between human and agents
 - agent learning

We need to understand these issues before we can effectively exploit the human role in shared human-agent C² decision-making systems.