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Abstract.  In this paper we report the electrical and thermal performance characteristics of 1200 V, 100 
A, 200oC (Tj), SiC MOSFET power modules configured in a dual-switch topology.  Each switch-diode 
pair was populated by 2 x 56 mm2 SiC MOSFETs and 2 x 32 mm2 SiC JBS diodes providing the 100 A 
rating at 200oC.  Static and dynamic characterization, over rated temperature and power ranges, highlights 
the performance potential of this technology for highly efficient drive and power conversion applications.  
Electrical performance comparisons were also made between SiC power modules and equivalently rated 
and packaged IGBT modules.  Even at a modest Tj=125oC, conduction and dynamic loss evaluation for 
20kHz, Id=100A operation demonstrated a significant efficiency advantage (38-43%) over the IGBT 
components.  Initial reliability data also illustrates the potential for SiC technology to provide robust 
performance in harsh environments. 

Introduction 

Owing to the significant research and development efforts over the past 15 years, SiC materials and power 
device technology have rapidly matured.  SiC substrates of 75 and 100 mm with low micropipe densities 
are standard products, and zero-micropipe wafers have been recently marketed [1].  Although 
dislocations, particles, and other performance detracting flaws remain and are the focus of ongoing 
improvement efforts, material quality is now primarily a yield and thus a device cost driver. These 
advances are reflected by demonstrations of a wide range of power devices with 300 V to multi-kV 
ratings and current capability of up to 75 A/die [2,3].  In addition, the legacy harsh-environment 
technology-pull for SiC and other wide bandgap semiconductors is rapidly being subordinated by 
renewed global interest in reduced energy consumption, hybrid vehicle commercialization, and alternative 
energy generation requirements for efficient, cost-effective power electronics.  These factors have led to 
the pending emergence of SiC switching devices in the commercial market, long seen as a requisite 
compliment to existing SiC diode products prior to significant market penetration.  Many applications will 
necessarily require device technology be provided as power modules (PM) designed to enable the accrual 
of SiC’s potential.  In this paper we report the performance characteristics of 1200 V, 100 A, 200oC, SiC 
MOSFET-based dual-switch power modules.  Comparisons between SiC and low-loss insulated gate 
bipolar transistor (IGBT) PM’s were also accomplished and are summarized in the following sections. 

Module Design and Characterization 

An evolutionary approach to the development of SiC MOSFET power modules was adopted in which 
Generation I modules utilized commercial polyphenyl sulfide (PPS) cases with 170 W/mK AlN 
substrates, 221oC liquidus 96.5Sn3.5Ag solder, and low CTE (~4 ppm/K) Cu-C baseplate components to 
satisfy intermediate 150oC heatsink temperature (TSink) requirements.  This approach enabled rapid 
prototyping, units for environmental testing, and electrical performance comparison to commercial IGBT 
modules in identical form factor.  Generation II modules, targeting a higher TSink=200oC capability, 
required custom design which incorporated high temperature materials, and an integrated heatsink 
enabling baseplate elimination.  Gen I module substrates were fabricated in two configurations, Ia and Ib 
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Figure 3.  SiC power module VTH data as a function of  
temperature.  Data represents the average of 4 modules  
(5 parallel 20A or 2 parallel 80 A die).  

Figure 2.  Typical I-V characteristics for 20A (solid lines) 
and 80A MOSFET’s.  RON,sp shown for Vgs=20V. 

using CREE, Inc. 4H-SiC MOSFETs and JBS diodes.  Gen Ia utilized five 4.7 x 4.7 mm 20 A SiC 
MOSFETs and three  4 x 8.2 mm 50 A SiC JBS diodes for each of the two phase-leg switches and is 
shown in Fig 1a).  Inductive impedance considerations, due to excessive wirebond length, and the larger 
die area required for current de-rating at 150oC or 200oC operating temperatures, necessitated the Ib 
 

  
Figure 1.  SiC module die layout for a) 20 A MOSFETs, b) 80 A MOSFETs, and c) die. 

 
layout redesign and utilization of large area ID=80 A, 56 mm2 SiC MOSFETs.  A populated large area die 
module is shown in Fig 1b in which two 80 A MOSFET and two 31.6 mm2 JBS die per switch are used.  
Fig 1c) shows both the 20 A and 80 A MOSFET die for comparison.  Fig 2 illustrates representative 
room-temperature I-V characteristics of both the 20 A and 80 A MOSFET die used in the Generation I 

modules, including typical specific on-resistivity 
values of 7.96 and 7.34 m-cm2 for VGS=20V.  
Detailed design and terminal characteristics for these 
devices are published elsewhere [4,5]. Subsequent to 
packaging, individual switches in the dual 
configured modules were subjected to extensive 
static and dynamic electrical and thermal 
characterization.  Fig’s 3 and 4 illustrate 
representative post-fabrication yield screening data 
for several modules built using both 20 A and 80 A 
MOSFET, and 50 A JBS die.  Fig.3 shows a typical 
four module switch average threshold voltage (VTH) 
dependency on temperature using an ID=10mA 
module definition at VTH.  The approximately 0.5 V 
difference between the 20 A and 80 A data in Fig 3 
reflects the process dependency of VTH and in this 
instance is due to slightly differing oxidation 
parameters used for the two lots of devices.  On the 
other hand, the data shown is representative of the 
nominal VTH observed.  Fig. 4 shows the average 
measured switch forward voltage module (Vf) data 
for ID=100 A. The figure includes curves for both 15 
and 20 V MOSFET gate bias conditions as a 
function of temperature as well as the JBS diode-
pair.  As is typical of present SiC MOSFET device 
characteristics, the 20 V gate bias mitigates the 
T<100oC negative Vf coefficient for VGS=15 V 
attributed to thermalization of the near bandedge 
interface state traps and the associated decrease in 
channel mobility and resistivity. 

a) 

b)

c) 
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Figure 4.  Average Vf characteristics for 20A and 80 A SiC 
MOSFETs and 50 A JBS diode module switches as f(T).

Table I.  Modeled thermal impedance results for selected module materials. 

Thermal Considerations.  Development of modules designed for 150 – 200oC operation necessarily 
require consideration of thermal expansion coefficients (CTE), elastic moduli, bonding metallurgies, 
potting dielectric stability, and other factors related to 
thermal cycle-life and operational reliability over an 
expanded temperature range [6].  In addition to peak 
operational temperatures, consideration must be given 
to the temperature distributions and resulting gradients 
throughout the module as these exacerbate thermo-
mechanical CTE-related failure modes.  Thermal 
impedance dictates maximum Tj and operational 
limits, while T drives cycle life reliability.  Elemental 
metal baseplate and other components provide the 
highest thermal conductivities, but are associated with 
the largest CTE mismatch between die and substrate 
ceramics.  The Gen I module design process involved 
detailed 2D analytical and 3D finite element analysis 
(FEA) modeling of selected components in order to balance Tpeak and T considerations.  Comparisons 
were made between 3 different baseplate materials; AlSiC (=180W/mK, 6.7 ppm/K), Cu (=383 W/mK, 
16.4 ppm/K), and a Cu-C metal matrix composite (MMC) composition with Z=200 W/mK, and 
CTEXY=4 ppm/K.  Direct bonded copper AlN (4.5 ppm/K) substrates were selected for both their thermal 
conductivity and close CTE match to the SiC die (3.8 ppm/K) and composite baseplates, and the 
previously mentioned SnAg die and substrate attach solder was also used.  Table I summarizes the 
thermal impedance results of the 20 A die modeling efforts and includes the individual die and per-switch 
results for both MOSFET and JBS diodes.  Also included in the table are the IGBT module values for an 
identically rated and packaged Powerex part.  Differences between 2D and 3D calculations are due to the 
over simplified heat spreading and geometry assumptions of the 2D calculations.  Coupled with FEA 
mechanical stress calculations, MMC Cu-C was identified as providing the best balance to  and CTE 
design considerations.  Dielectric potting materials are also a critical concern for high temperature module 

reliability and operation.  Two 
candidate (Wacker RT745S, NuSil 
R2188) high temperature silicone-
based gels have accumulated over 
570 hours at 1200V and 250oC with 
no increase in the baseline 1-4 A 
leakage range.  These gels have 
previously been shown to provide 
stable performance at 200oC and 
10kV, and thus far appear suitable 
for up to 250oC environments.  

Performance Characterization.  Fabricated phase-leg modules were subjected to static and dynamic testing 
to quantify operational performance characteristics. Inductively clamped double-pulse 500 V, 100 A 
switch testing and 100 A on-state conduction loss comparisons were made between SiC MOSFET dual 
modules and 1200 V, 100 A rated IGBT modules in identical module form factor.  Switching loss analysis 
was conducted using third generation trench-gate high switching speed CM100DY-24NFH modules while 
conduction loss comparisons were performed using low-loss CM100DY-24NF parts. 
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Table 2.  IGBT and SiC MOSFET switch and conduction loss summary 

Figure 5.  VF as a function of Ic,Id comparing 1200 V SiC 
MOSFET-JBS diode module switches to 1200 V Si IBGT-
PiN diode modules (CM100DY-24NF) at T=25oC, 150oC . 

  Fig. 5 illustrates typical conduction loss comparative 
data for one switch in the IGBT and MOSFET 
modules as a function of conduction current.  The data 
reflects a significant reduction in on-state 100 A 
conduction losses of 41% and 38% at 25 and 150oC, 
respectively.  At 200oC the SiC module losses 
increase approximately 20% above their 150oC value 
at ID=100 A, but still remain below IGBT losses at 
25oC.  100 A, 50% duty cycle dynamic loss 
characterization reflected the expected unipolar 
advantage of the MOSFET-JBS module switches over 
the CM100DY-24NFH bipolar Si technology, with 
the advantage becoming more pronounced at high 
temperatures due to the increasing IGBT and PiN 
minority carrier lifetimes.  Table 2 summarizes the 
results of the loss analysis testing for both 25oC and 

150oC temperatures, and reflects the significant advantage of SiC MOSFET power modules over 
comparable Si IGBT technology.  In addition to electrical and loss characterization, modules are currently 
undergoing extensive reliability and qualification testing.  Initial thermal shock, HTGB, HTRB, and 
power cycling test results reflect 
the sound design considerations 
and robust characteristics of these 
modules.  Coupled with the 
superior electrical performance 
characteristics SiC MOSFET 
power modules have been shown 
to possess, this technology is highly suited for satisfy high efficiency, harsh environment applications. 

Summary 

Design considerations and performance characteristics of initial 150oC Generation I SiC MOSFET power 
modules have been presented and shown to provide superior performance compared to existing Si IGBT 
components.  Utilization of the selected robust design and materials yielded a 14% weight reduction, 
superior CTE match for cycle-life reliability, and minimal thermal performance penalty.  The results 
achieved illustrate the maturity of SiC device technology and the potential to realize practical 
configurations capable of leveraging its’ significant performance benefits. 
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