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 Objectives  

 
 Experimental visualization of the stress and deformation fields near dynamically 

propagating crack tips subjected to thermal, mechanical and thermo-mechanical loading 
in graded materials. 

 Development of rate-dependent constitutive models for graded multifunctional materials 
under thermo-mechanical loading. 

 Identification of damage mechanics in graded multifunctional materials subjected to high 
strain rate loading.   

 Development of asymptotic stress fields for stationary and propagating cracks subjected 
to combined thermo-mechanical loading in graded materials. 

 A critical evaluation of the influence of material gradation, thermal loading and loading 
rates on the damage mechanisms of graded materials. 
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1. Asymptotic Stress Fields for Thermo-mechanically Loaded Cracks in FGMs   
 

The problem of a stationary crack in functionally graded materials (FGM) subjected to a 
combination of thermal and mechanical loading was considered. An asymptotic analysis coupled with 
Westergaard’s stress function approach was used to characterize the stress field around the crack-tip. 
Thermal and mechanical properties (e.g. elastic modulus, coefficient of thermal expansion and thermal 
conductivity) were assumed to vary exponentially. The crack was assumed to be inclined to the direction 
of the property gradation. The thermal loading was taken to be a uniform heat flow in a direction inclined 
to the crack. The principal of superposition from linear elasticity was used to solve the problem, whereby 
the problem was divided into a number of sub-problems. The first four terms in the expansion of the 
stress field were derived to explicitly bring out the influence of nonhomogeneity on the structure of the 
stress field. It was observed that the presence of heat flow produced no additional singularity and hence 
the classical inverse square root singularity still prevails around the crack tip. Using these stress fields, 
contours of constant maximum shear stress were generated and the effect of thermal loading on the crack-
tip stress field was discussed. 
 
2. Asymptotic Analysis and Reflection Photoelasticity to Study Transient Crack Propagation in 
FGMs 
 



 
 
 
 

  The behavior of a rapidly moving transient crack in functionally graded materials (FGMs) was 
investigated theoretically and experimentally. First, a systematic theoretical analysis was presented for the 
development of the transient elastodynamic local stress, strain and displacement field expansions near a 
growing mixed mode crack tip in FGMs. The crack propagation direction was assumed to be inclined to 
the direction of the property variation. The displacement potential approach in conjunction with 
asymptotic analysis was utilized to derive explicit expressions for stress, strain and in-plane displacement 
fields. To further understand the transient crack growth behavior a series of dynamic fracture experiments 
were performed with in-house fabricated functionally graded material. The full-field stress data around 
the crack was recorded using dynamic photoelasticity and high-speed digital photography. Due to 
opaqueness of FGMs, birefringent coatings were employed to obtain the full-field isochromatics around 
the crack-tip. The stress field expansions developed in the first part of the study were used to interpret the 
experimental observations. The results of the experiments showed that the higher order transient 
expansion provides an accurate representation of crack-tip fields under severe transient conditions. 
 
3. Dynamic Crack Tip Stress and Displacement Fields under Thermo-Mechanical Loading 
 

Thermomechanical stress and displacement fields for a propagating crack in functionally 
graded materials (FGMs) were developed using displacement potentials and asymptotic analysis. 
The shear modulus, mass density, and coefficient of thermal expansion of the FGMs were 
assumed to vary exponentially along the gradation direction. Temperature and heat flux 
distribution fields were also derived for an exponential variation of thermal conductivity. The 
mode mixity due to mixed-mode loading conditions around the crack tip was accommodated in 
the analysis through the superposition of opening and shear modes. Using the asymptotic stress 
fields, contours of constant maximum shear stress were developed and the results were discussed 
for various crack-tip thermo-mechanical loading conditions. 
 
4. Dynamic Constitutive Behavior of Ti/TiB layer FGM under Thermo-mechanical Loading 

An experimental investigation was conducted to evaluate the thermo-mechanical 
constitutive behavior of a functionally graded material (FGM) under dynamic loading. 
Cylindrical specimens were machined from titanium / titanium mono-boride (Ti/TiB) layered 
FGM plate using electrical discharge machining (EDM). A Split Hopkinson Pressure Bar 
(SHPB) apparatus with infrared spot heaters was used to investigate the effect of temperature on 
mechanical response of the FGM material. A series of experiments were conducted at different 
temperatures and the stress strain relation for different temperatures was obtained. The material 
showed high thermal softening at elevated temperature resulting in a reduction in compressive 
strength and an increase in failure strain. 
 
5. Effect of Dynamic Thermo-Mechanical Stress Field on Crack Propagation Direction in 
Functionally Graded Materials 
 

Asymptotic analysis in conjunction with displacement potentials was used to develop 
thermo-mechanical stress fields for a mixed mode propagating crack in a functionally graded 
material (FGM). First, asymptotic temperature fields were derived for an exponential variation of 
thermal conductivity and later these temperature fields were used in deriving stress fields. Using 
asymptotic thermo-mechanical stress fields the variation of maximum shear stress, 
circumferential stress and strain energy density as a function of temperature around the crack-tip 
were generated. Finally, utilizing the minimum strain energy density criterion and the maximum 



 
    
 
circumferential stress criterion, the crack growth direction for various crack-tip speeds, non-
homogeneity coefficients and temperature fields were determined. 
   
6. Dynamic Fracture Initiation Toughness of Ti/TiB Layered FGM under Thermo-mechanical 
Loading 
 

Initial experiments were conducted to study dynamic fracture initiation toughness of Ti/TiB 
layered FGM was investigated using the modified SHPB apparatus. A three-point bending test specimen 
was machined from Ti/TiB plate using EDM technique. The crack was made using EDM wire of 0.002” 
which results in a very small notch radius.  For the elevated temperature experiment, the specimen was 
first heated up using an induction heating system and the incident bar was made in contact manually just 
before propelling the projectile. A series of experiment were conducted at a fixed high loading rate and 
different temperatures to study the effect of temperature and loading rate on the fracture initiation 
toughness.  

 
7. Experimental Facilities Developed  
 

During the grant, facilities for high temperature testing of FGMs were established. These 
included set-ups with infrared heating system and induction coil heating system that were coupled to our 
existing SHPB apparatus. Also, two and three dimensional full field digital image correlation (DIC) 
techniques including three high speed cameras (Photron SA1) have been procured.   
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ABSTRACT

A fundamental study is conducted to evaluate dynamic fracture and failure in

functionally graded materials (FGM) at room and high temperatures. The study

includes both analytical and experimental evaluation of dynamic fracture in model

and commercially available materials.

Asymptotic analysis in conjunction with displacement potentials is used to

develop thermo-mechanical stress fields for a mixed mode propagating crack in

homogenous and FGMs. First, asymptotic temperature fields are derived for an

exponential variation of thermal conductivity and later these temperature fields

are used in deriving stress fields. Using asymptotic thermo-mechanical stress fields

the variation of maximum shear stress, circumferential stress and strain energy

density as a function of temperature around the crack-tip are generated. Finally,

utilizing the minimum strain energy density criterion and the maximum circum-

ferential stress criterion, the crack growth direction for various crack-tip speeds,

non-homogeneity coefficients and temperature fields are determined.

An experimental investigation is conducted to evaluate the thermo-mechanical

constitutive behavior of a FGM under dynamic loading. Cylindrical specimens are

machined from titanium / titanium mono-boride (Ti/TiB) layered FGM plate us-

ing electrical discharge machining (EDM). A split Hopkinson pressure bar (SHPB)

apparatus with infrared spot heaters is used to investigate the effect of tempera-

ture on mechanical response of the FGM. A series of experiments are conducted

at different temperatures and the stress strain relation for different temperatures

is obtained. The material showed high thermal softening at elevated temperature

resulting in a reduction in compressive strength and an increase in failure strain.

Quasi-static and dynamic fracture initiation toughness of Ti/TiB layered FGM

is investigated using a three point bend specimen. The modified SHPB apparatus



in conjunction with induction coil heating system is used during elevated temper-

ature dynamic loading experiments. A simple and accurate technique has been

developed to identify the time corresponding to the load at which the fracture

initiates. A series of experiments are conducted at different temperatures ranging

from room temperature to 800 oC, and the effect of temperature and loading rate

on the fracture initiation toughness is investigated. The material fracture tough-

ness is found to be sensitive to temperature and the fracture initiation toughness

increases as the temperature increases. Furthermore, the fracture initiation tough-

ness is strain rate sensitive and is higher for dynamic loading as compared to

quasi-static loading.

A model transparent graded materials is used to investigate the steady state

and transient crack propagation in a functionally graded material. High-speed

digital photography combined with photoelasticity technique is used to record the

full-field stress data around the propagating crack. By analyzing the photoelastic

fringe patterns, the propagation crack tip velocity and displacement are obtained.



ACKNOWLEDGMENTS

I thanks the almighty for giving me the strength and determination to weather

the demands of life. (SLECHERNETU EGZIABHER YIMSEGEN)

I would like to express my sincere gratitude to Dr. Arun Shukla for his con-

tinues guidance and support through this research. His patience and inspiriting

nature has been great source of motivation through out my doctoral studies.

A special thanks to Dr. Vijay Chalvendra who helped me to understand the

physics in different angles and Dr. Martin Sadd for his time and discussion during

the development of analytical work. I am also grateful to my phD committee for

their valuable comments during my comprehensive exam.

A spacial thanks to my colleagues in dynamic photomechanics laboratory

Mathew Jackson, Erheng Wang, Nathaniel Gardner, Vijayalakshimi Manneth and

Puneet Kumar for their support and encouragement. The help from the mechan-

ical engineering department faculty and staffs Kevin, Jim , Rob, Joseph, Donna,

Jennifer, Chati and Nanci is greatly acknowledged.

The financial support of the Air Force Office of Scientific Research under grant

No. FA9550-06-1-0162 is acknowledged.

Last but not list, I would like to thank my beloved family my father (Abaye),

my mother (Talem), my sisters and brothers, for their understanding nature, love

and moral and material support. Many thanks to my friends (family) in Boston and

Providence whom I am very close with for their help, affection and encouragement

in making my dreams come true.

iv



PREFACE

The present study addresses the dynamic fracture and failure of functionally

graded materials (FGMs) under thermo - mechanical loading. Analytical and

experimental investigation on the model and commercially available FGMs are

presented.

The first chapter provides a detailed summary of a relevant review of litera-

tures followed by a brief introduction and scope of the present study.

Chapter 2 presents analytical solution for homogenous material subjected to

thermo-mechanical loading. Thermo-mechanical stress field equations are devel-

oped for a mixed-mode crack propagating at constant velocity in homogeneous and

isotropic materials using asymptotic approach along with displacement potentials.

Using these thermo-mechanical stress fields, various components of the stresses are

developed and the effects of temperature on these stress components are discussed.

Asymptotic analysis in conjunction with displacement potentials has been

used to develop thermo-mechanical stress fields for a mixed mode propagating

crack in a FGMs and discussed in detail in chapter 3. Using asymptotic thermo-

mechanical stress fields the variation of maximum shear stress, circumferential

stress and strain energy density as a function of temperature around the crack-

tip are generated.Utilizing the minimum strain energy density criterion and the

maximum circumferential stress criterion, the crack growth direction for various

crack-tip speeds, non-homogeneity coefficients and temperature fields are deter-

mined.

Chapter 4 discusses an experimental investigation conducted to evaluate the

thermo-mechanical constitutive behavior of a FGMs under dynamic loading. A

split Hopkinson pressure bar (SHPB) apparatus with infrared spot heaters is used

to investigate the effect of temperature on mechanical response of the FGM. The

v



material showed high thermal softening at elevated temperature resulting in a

reduction in compressive strength and an increase in failure strain.

Chapter 5 presents the quasi-static and dynamic fracture initiation tough-

ness of Ti/TiB layered FGM. The modified SHPB apparatus in conjunction with

induction coil heating system is used during elevated temperature dynamic load-

ing experiments. A simple and accurate technique has been developed to identify

the time corresponding to the load at which the fracture initiates. The material

fracture toughness is found to be sensitive to temperature and the fracture initia-

tion toughness increases as the temperature increases. Furthermore, the fracture

initiation toughness is strain rate sensitive and is higher for dynamic loading as

compared to quasi-static loading.

Chapter 6 discusses an experimental investigation of the steady state and tran-

sient crack propagation in a transparent functionally graded material. High-speed

digital photography combined with photoelasticity technique is used to record the

full-field stress data around the propagating crack. By analyzing the photoelastic

fringe patterns the dynamic stress intensity factor and propagation velocity of the

crack tip are obtained.

Finally, the summary of the present work and recommendation for the future

work are presented in chapter 7.
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CHAPTER 1

Introduction

1.1 Introduction

The way to outer space requires a high level of technology to design safe, reli-

able, economical and novel transportation systems. When developing a new design,

the engineers consider the conceivable failures of the new system. Today the main

challenging technical problem in designing space access vehicles is the development

of the reentry heat shield that can be reused with minimal refurbishment and test-

ing. On reentry, a shock wave forms ahead of the spacecraft, which heats the

compressed air in the region near the spacecraft to as much as 20,000 0C, creating

thermal loads in excess of one megawatt per square meter. This enormous ther-

mal load heats the aircraft structure up to approximately 1,700 0C. This requires

an external thermal protection systems (TPS) which usually in the form of rigid

surfaces in areas of high or moderate working temperature. In addition to high

temperature and high convective fluxes, TPS must be able to withstand mechani-

cal stresses associated with vibrations at launch, acoustic-frequency vibrations and

structural movement of the vehicle, as well as landing impact. Usually TPS are

composite layers of two different materials with ceramic on the top due to its high

thermal properties and metals in the other end for structural integrity. However,

the property mismatch and high thermal gradient across these two materials re-

sults in delamination and interface failure. A very recent unfortunate example of

this type of failure was the Space Shuttle Columbia. All of the materials involved

in the Columbia accident were classified as belonging to the TPS.

In recent years a new system called functionally graded material (FGM) has

been developed to circumvent for the interface problems that occurs in bi-material

systems. FGMs are materials, which have continuously or discreetly varying me-
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chanical and thermal properties in a specific direction. This type of material was

first proposed in Japan in 1987 for space access vehicles as an alternative to thermal

barrier coatings [1]. FGMs are potential candidates to be used as integrated hot

structure in space access vehicles as the material combination and the composition

of gradation in these materials can be tailored to optimize their performance to

meet multiple functions like thermal resistance and structural integrity. Typically,

FGMs are made of a metal and a ceramic as opposite faces with the intermediate

zones consisting of varying volume fractions of constituents. Titanium / titanium

mono-boride (Ti/TiB), FGM which is currently in use, consists of the desirable

properties of ceramic, such as hardness, corrosion resistance, and high melting tem-

perature, without losing the required properties of metallic titanium, such as good

fracture toughness, machinability and weldability. For efficient design of structures

using FGM a fundamental understanding of the properties of the material at dif-

ferent loading conditions is required. For designing a failure criteria the fracture

parameters and constitutive behavior of this material is important.

1.2 Related Literatures

The elasticity of non-homogeneous solids had been an interesting subject well

before FGMS are developed. Solutions to different types of mixed boundary value

problems in non-homogeneous solids have been obtained by Plevako, [2], Kas-

sir [3, 4], Popov [5] and Singh [6, 7]. The earliest study into the crack problems

in non-homogenous solids can be traced down to early 1970s. Kassir [3] investi-

gated the problem of an axisymmetric penny shaped crack in a cylinder subjected

to pure torsion by varying the shear modulus in axial direction. Later, Dhaliwal

and Singh [8] obtained an expression for the stress intensity factor for a crack in a

semi-infinite non-homogeneous solid subjected to crack face anti plane shear load-

ing. Clements et al. [9] also solved antiplane crack problems for inhomogeneous
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materials and obtained the energy release rates for various crack orientations and

property variations. These initial investigations were focussed on the tearing mode

of fracture, because of its simplicity among the three modes of fracture. Gerasoulis

and Srivastav [10] are the first to analysis the opening mode fracture in nonho-

mogeneous solids, which is of the more practical importance, by assuming plane

strain conditions. Later on Delale and Erdogan [11], Eischen [12] and Erdogan et

al. [13] solved crack problems for non-homogeneous materials under quasi-static

loading.

With the introduction of FGMs, research on fracture mechanics of nonhomo-

geneous solids gained additional impetus. Jin and Noda [14], Konda and Erdo-

gan [15] and Erdogan [16] obtained the stress intensity factors for cracks in FGMs

for different crack orientation, types of loading and levels of nonhomogeneity. Jin

and Batra [17, 18], studied the fracture toughness and resistance curve (R-curve)

of metal-ceramic FGMs using the crack bridging concept and rule of mixtures and

showed that the fracture toughness is significantly increased when a crack grows

from the ceramic-rich region to the metal-rich region in the FGM. All these in-

vestigations concluded that the inverse-square root singularity at the crack is not

affected by nonhomogeneity.

All the above investigations are limited to quasi-static loading conditions. For

propagating cracks in FGMs, Nakagaki et al. [19] developed a finite element simu-

lation of fracture occurring in a ceramic-metal FGM under a dynamic load. They

observed that the crack opening displacement (COD) was higher in the FGM when

crack propagated from the ceramic rich side to the metal rich side as compared

to the reverse direction of propagation. Later on Parameswaran and Shukla [20]

and Chalivendra et al. [21] developed the structure of the first stress invariant

and the out of plane displacement. In their study they brought out the effects
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of nonhomogeniety through an asymptotic analysis. Rousseau and Tippur [22]

have investigated the dynamic fracture of continuously graded particulate (glass -

epoxy) FGMs for cracks aligned along the gradient using interferometry. Lee [23]

developed nonhomogeneity specific terms for individual stress and displacement

components using displacement potentials. Recently, Shukla and Jain [24] and

Chalivendra and Shukla [25] developed transient field equations for cracks propa-

gating at arbitrary velocities. Chalivendra [26] developed an asymptotic analysis

of the transient out of plane displacement fields for a curved crack propagating at

arbitrary velocity in FGMs. Kim and Paulino [27] evaluated the mixed-mode stress

intensity in the form of an equivalent domain integral, in combination with the fi-

nite element method. In another numerical study, Jin and Dodds [28] simulated

the crack growth resistance in a ceramic/metal FGM using a cohesive zone ahead

of the crack front. A review paper by Shukla et al. [29] presents a comprehensive

summary of dynamic fracture studies in FGM.

There are very few studies on the crack problems of FGM under thermal or

thermo-mechanical loading. Kawasaki and Watanabe [30], evaluated the thermo-

mechanical properties of metal/ceramic which simulated the real environment of

the heated inner wall of a rocket combustor. They used Disk-shaped graded sam-

ples of a material combination of partially stabilized zirconia and stainless steel, in

which the ceramic surface of the sample was heated with a burner flame and the

back surface was cooled with flowing water. They determined the critical tempera-

ture of the first crack formation, which was always observed on the ceramic surface

during cooling, and they found that it is almost constant regardless of specimen

size and compositional profile. Based on the experiment, they concluded that the

critical temperature is material-dependent. They also discussed the mechanism

of crack formation and deflection, including spallation, on the basis of the stress
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distributions in the specimen during testing and the fracture mechanics approach.

According to their study, FGM structure is advantageous for TBC application

with the particular emphasis on the capability of vertical-crack arrest and the pos-

sibility of its propagation control by tailoring the graded structure on the basis of

fracture mechanics. Noda [31] studied the thermal stresses and thermal stress in-

tensity factor (SIF) in the FGM subjected to steady temperature fields or thermal

shock. He also presented analytical and numerical studies on the optimal compo-

sition profile problems of the FGM in decreasing thermal stresses. Based on his

study he forwarded the following remarks: 1. When the continuously changing

composition between ceramics and metals selected properly, thermal stresses and

the thermal SIFin FGM can be drastically decreased. 2. The crack propagation

path can be predicted by fracture mechanics analysis.Kawasaki and Watanabe [32],

conducted a well controlled burner-heating-test in order to study the thermal frac-

ture behavior, the cyclic thermal fracture behavior and spallation life of different

metal/ceramic functionally graded thermal barrier coatings (TBC). In PSZ/IN100

FGM, the fracture toughness improved with an increase in the metal phase content.

In PSZ/Inco718 FGM the fracture toughness was lower than that of PSZ/In100

FGM, owing to roughly dispersed metal particles. They observed that function-

ally graded TBC possess the desirable effect for improvement of spallation life

under cyclic thermal loads. In addition, they observed that the spallation life in

functionally graded coatings depends on the composition profile.

All the analytical studies presented in the previous section provide a closed

form solution for determining SIF, however for extracting fracture parameters from

experimental studies under thermo-mechanical loading an asymptotic stress field

around the crack tip is required. In this aspect recently, Jain et al. [33] developed

a field equation for a stationary crack in FGMs, subjected to thermo-mechanical

5



loading. They used an asymptotic analysis coupled with Westergaard’s stress

function approach to characterize the stress field around the crack tip. Using

the stress fields they generated the contour of constant maximum shear stress and

discussed the effect of thermal loading on the-crack tip stress fields. They observed

that the presence of a thermal load produces no additional singularity and hence

the classical inverse square root singularity still prevails around the crack tip. The

development of an asymptotic expansion field equation for FGMs under thermo-

mechanical dynamic loading is a problem yet to be investigated.

In other directions, there are several studies related to the stress and displace-

ment response of FGMs under different loading conditions. For instance Wang et

al. [34] present a solution for the displacement and stress in an FGM subjected to

a vertical point load in a continuously nonhomogeneous transversely isotropic half-

space with Young’s and shear moduli varying exponentially with depth. Horgan

and Chan [35] investigate the effects of material nonhomogeneity on the response of

linearly elastic isotropic hollow circular cylinders under uniform internal or external

pressure. Li et al. [36] examined the mechanical behavior of layered plates made of

metal-ceramic composites with the volume fraction of ceramic reinforcement vary-

ing through thickness direction under impulse loading. Chi and Chung [37] studies

the mechanical behavior of a functionally graded material plate under transverse

loading.

There are also a few theoretical studies on displacement and stress response

of FGMs under thermo-mechanical loading. Praveen and Reddy [38] investigated

the response of functionally graded ceramic-metal plates under mechanical and

thermal loading using a plate finite element method. They investigated the static

and dynamic response of FGM plates by varying the volume fraction of the ceramic

and metallic constituents using a simple power law distribution. They found that
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the deflection and stresses response of the plates with material properties between

those of the ceramic and metal is not intermediate to the responses of the ceramic

and metal plates in the case of both thermal and mechanical loading. However,

in the absence of thermal loading, they found that the dynamic response of the

graded plates is intermediate to that of the metal and ceramic plates.

Dai et al., [39] presented a meshfree model for the active shape control as well

as the dynamic response repression of FGM plate containing distributed piezoelec-

tric sensors and actuators subjected to thermo-mechanical loading. They assumed

that the FGM plate was made of ceramics and metals whose volume fractions vary

continuously in the thickness direction according to the power law. They used the

element-free Galerkin method to derive the shape functions using the moving least

squares (MLS) method. They studied the mechanical loading as well as thermal

gradient. They found that the relations between the deflection and the volume

fraction exponent are quite different under the two loadings. The theoretical stud-

ies presented above attempts to find the displacement and stress response of FGMs

at different loading conditions, however, the studies are not supported by exper-

imental evidence and experimental investigation on the constitutive behavior of

metal/ceramic FGM are not reported.

To date there is not a detailed study on the dynamic thermo-mechanical be-

havior of FGM, particularly on the metal-ceramic based materials. Fundamen-

tal investigation into the thermomechanical response and dynamic failure of the

graded materials is necessary before they can be incorporated into the design of

future space access vehicles that can operate reliably in combined and extreme

environments. The proposed research is intended to fill this gap by a detailed

experimental and analytical investigation of dynamic thermo-mechanical failure of

graded materials.
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1.3 Present Study

The present research is aimed at the critical investigation of the dynamic

fracture and failure properties of functionally graded material under thermo-

mechanical loading. The study involves both analytical and experimental tech-

niques and can be categorized in the following list.

• Analytical study to develop a thermo-mechanical dynamic stress field around

the crack tip in functionally graded material using high order stress field

equations.

• To experimentally investigate the dynamic constitutive behavior of Ti/TiB

functionally graded material under thermo-mechanical loading.

• To experimentally investigate the dynamic fracture initiation toughness in

FGM under thermo-mechanical loading.
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CHAPTER 2

Dynamic Thermo-Mechanical Stress Fields for a Mixed-Mode
Propagating Cracks

2.1 Abstract

Thermo-mechanical stress field equations are developed for a mixed-mode

crack propagating at constant velocity in homogeneous and isotropic materials

using asymptotic approach along with displacement potentials. Asymptotic tem-

perature field equations are first developed for steady state temperature conditions

using insulating crack-face boundary conditions. These temperature field equa-

tions are later used to derive the first three terms of thermo-mechanical stress field

equations for a steady state propagating mixed-mode crack. Using these thermo-

mechanical stress fields, various components of the stresses are developed and the

effects of temperature on these stress components are discussed.

2.2 Introduction

In many practical engineering problems, the structures are subjected to

thermo-mechanical loads. Under these thermo-mechanical loads the cracks in

these structures can initiate and cause catastrophic failure. The crack-tip initi-

ation, rapid crack growth, crack branching and arrest are of significant impor-

tance to understand material’s failure under combined thermo-mechanical loads.

In the classical studies of thermoelastic crack problems, Sih [1] and Kassir and

Bergman [2] investigated quasi-static stress fields for a crack in infinite medium

when it is subjected to special thermal loadings. Later Wilson and Yu [3] employed

finite element analysis and J-integral approach to determine crack-tip stress inten-

sity factors for finite specimen geometries under thermal loads.

In continuation of the above studies, Lee and Sim [4] determined mode-I ther-

12



mal shock stress intensity factor using Bueckner’ weight function method for a

surface cracked infinite strip under sudden conductive cooling. Using a general

finite element model, Chen and Weng [5], investigated a coupled transient ther-

moelastic problem for an edge- cracked plate without an inertia term. Katsareas

et al. [6] determined shock stress intensity factors using boundary-only element

method for surface cracked infinite strip and finite edge cracked plate. Recently,

Hosseini-Tehrani et al. [7] investigated dynamic mode-I stress intensity factors for

an edge crack in a finite specimen geometry using boundary element method in

conjunction with Laplace transforms.

The above studies are focused on the determination of stress intensity factor

values from numerical models using integral transforms. The closed-form solutions

obtained using numerical and integral transform methods cannot be used in ex-

tracting fracture parameters from experimental stress or deformation fields. To

meet this requirement, asymptotic expansion of stress field equations are essen-

tial [8]. Hence in this paper, thermo-mechanical stress fields are developed for a

mixed-mode propagating crack of constant velocity in homogeneous isotropic ma-

terials using asymptotic approach along with displacement potentials. Asymptotic

temperature field equations are first developed for a steady state temperature con-

ditions using insulated crack-tip boundary conditions. These temperature fields

are later used to derive first three terms of thermo-mechanical stress fields for

steady state propagating crack. Using these thermo-mechanical stress fields, vari-

ous stress components are developed and the effect of temperature on these stresses

is discussed.
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2.3 Theoretical Formulation

Hooke’s law for a plane strain thermo-mechanical problem can be written as

σXX = ((λ+ 2µ)εXX + λεY Y − (3λ+ 2µ)αT ) (2.1)

σY Y = ((λ+ 2µ)εY Y + λεXX − (3λ+ 2µ)αT ) (2.2)

τXY = µεXY (2.3)

where X and Y are reference coordinates, σij and εij where i = X, Y and j = X, Y

are in-plane stress and strain components, λ and µ denote Lame’s constant and

shear modulus respectively. α is coefficient of thermal expansion and T represents

the change in temperature in the infinite medium. The equations of motion for a

plane problem in homogeneous isotropic material are given in Eq. 2.4

∂σXX
∂X

+
∂τXY
∂Y

= ρ
∂2u

∂2t
,

∂σY Y
∂Y

+
∂τXY
∂X

= ρ
∂2v

∂2t
(2.4)

where u and v are functions of X, Y and t and represent the displacements in the

X and Y directions respectively with t representing the time. For plane strain

deformation, the displacements u and v are derived from dilatational and shear

wave potentials φ and ψ. These potentials can be expressed as

u =
∂φ

∂X
+
∂ψ

∂Y
, v =

∂φ

∂Y
− ∂ψ

∂X
(2.5)

Substituting Eqs. 2.1 - 2.3 in to Eq.2.4 and utilizing Eq.2.5 and after simplification

the equations of motion in terms of displacement potentials can be expressed as

(2µ+ λ)52 φ− α(3λ+ 2µ)T = ρ
∂2

∂2t
φ (2.6)

µ52 ψ = ρ
∂2

∂2t
ψ (2.7)
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Figure 2.1. Propagating crack tip orientation with respect to reference coordinate
system

where 52 = ∂2

∂X2 + ∂2

∂Y 2

For a propagating crack as shown in Fig. 2.1, the reference coordinates (XandY )

can be transformed to crack tip coordinates using the relations x = Xc− t, y = Y ,

where c is constant crack tip speed. By transforming to crack-tip coordinates and

rearranging terms, the above equations of motion can be written as

α2
l

∂2φ

∂x2
+
∂2φ

∂y2
− α3δ + 2

δ + 2
T = 0 (2.8)

α2
s

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0 (2.9)

where αl =
√

1− ρ
µ

c2

(k+2)
, αs =

√
1− ρ

µ
c2 and δ = λ

µ

It is assumed that in the above transformation, the fields φ and ψ do not depend

explicitly on time in the moving coordinate system and their time dependence is

only through the transformation x = X − ct.

2.3.1 Temperature Fields around the Crack Tip

In this analysis the thermo-elastic cooling and the transient effects are ne-

glected. The steady state heat conduction equation can be written as

∂

∂X

(
k
∂T

∂X

)
+

∂

∂Y

(
k
∂T

∂Y

)
= 0 (2.10)

Where k is the coefficient of thermal conductivity

Assuming that k is constant in the small region around the crack tip, and again
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transforming the above equation to the crack-tip moving coordinate system (x =

Xc− t,y = Y ), it can be written as

52T = 0 (2.11)

where 52 = ∂2

∂x2 + ∂2

∂y2

As this stages asymptotic analysis is performed to solve the above Eq. 2.11 . In

the asymptotic analysis, first a new set of coordinates is introduce as

η1 =
x

ε
η2 =

y

ε
(2.12)

where ε is an arbitrary parameter and is assumed to be 0 < ε < 1

Equation 2.11 can be written in a new scaled coordinates (η1, η2)as

52T = 0 (2.13)

where 52 = ∂2

∂η2
1

+ ∂2

∂η2
2

For the asymptotic analysis T is represented as a power series expansion in ε as

T (x, y) = T (η1ε, η2ε) =
∞∑
m=0

ε
(m+1)

2 Tm(η1, η2) (2.14)

Substituting the infinite series expansion into Eq. 2.13 results in

∞∑
m=0

ε
(m+1)

2

(
∂2Tm
∂η2

1

+
∂2Tm
∂η2

2

)
= 0 (2.15)

For Eq. 2.15 to be valid, the partial differential equations corresponding to each

power of ε (ε1/2, ε, ε3/2...) should vanish independently. This leads to a set of partial

differential equations. Assuming the crack surfaces are insulated (i.e ∂T/∂θ=0 at

θ = π), the solutions for the first three temperature terms can be written as

T = q0ρ
1/2 sin

(
1

2
θ

)
+ q1ρ cos (θ) + q2ρ

3/2 sin

(
3

2
θ

)
(2.16)

where ρ=(η2
1 + η2

2)
1/2

and q0, q1 and q2 are real constants

By transforming T into crack-tip coordinates x and y, the temperature fields near
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the crack-tip can be given as

T = q0r
1/2 sin

(
1

2
θ

)
+ q1r cos (θ) + q2r

3/2 sin

(
3

2
θ

)
(2.17)

where r=(x2 + y2)
1/2

and tan(θ)= y
x

2.3.2 Asymptotic Expansion of Crack Tip Fields

The Eqs. 2.8 and 2.9 are now written in these scaled coordinates as below

α2
l

∂2φ

∂η2
1

+
∂2φ

∂η2
2

− α(3δ + 2)

(δ + 2)
ε2T = 0 (2.18)

α2
s

∂2ψ

∂η2
1

+
∂2ψ

∂η2
2

= 0 (2.19)

At this stage it is assumed that φ, ψ and T are represented as a power series

expansion in

φ(x, y) = φ(εη1, εη2) =
∞∑
m=0

ε
(m+3)

2 φm(η1, η2) (2.20)

ψ(x, y) = ψ(εη1, εη2) =
∞∑
m=0

ε
(m+3)

2 ψm(η1, η2) (2.21)

T (x, y) = T (εη1, εη2) =
∞∑
m=0

ε
(m+1)

2 Tm(η1, η2) (2.22)

As given by Jin and Noda [9] the solution for the temperature field is obtained by

considering the singularity of heat flux near the crack tip. This requires in that the

derivative of temperature field is singular resulting in the potential for temperature

to be one power less than the displacement potentials.

Now substituting Eqs. 2.20 - 2.22 into Eqs. 2.18 and 2.19 gives the following

equations

∞∑
m=0

ε(m+3)/2

(
α2
l

∂2φm
∂η2

1

+
∂2φm
∂η2

2

)
− α(3δ + 2)

(δ + 2)

∞∑
m=0

ε(m+5)/2Tm = 0 (2.23)
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∞∑
m=0

ε(m+3)/2

(
α2
s

∂2ψm
∂η2

1

+
∂2ψm
∂η2

2

)
= 0 (2.24)

For Eqs. 2.23 and 2.24 to be valid, the partial differential equations corresponding

to each power of ε (ε1/2, ε, ε3/2...) should vanish independently. This leads to a

set of partial differential equations. The solutions for m = 0 and m = 1 are well

known and available in literature [10] and can be written as

φm(ρl, θl, t) = Amρ
(m+3)/2
l cos

(
(m+ 3)

2
θl

)
+ Cmρ

(m+3)/2
l sin

(
(m+ 3)

2
θl

)
(2.25)

ψm(ρs, θs, t) = Bmρ
(m+3)/2
s sin

(
(m+ 3)

2
θs

)
+Dmρ

(m+3)/2
s cos

(
(m+ 3)

2
θs

)
(2.26)

where ρl=(η2
1 + α2

l η
2
2)

1/2
, tan(θl)=

αlη2
η1

, ρs=(η2
1 + α2

sη
2
2)

1/2
, tan(θs)=

αsη2
η1

and Am,

Bm, Cm, and Dm are real constants

The solution for equation corresponding to higher power of (m = 2) consists of two

parts: classical solution and particular solution. The classical solution is similar

to the general solution given in Eqs. 2.25 and 2.26. The particular solution can be

obtained using recursive approach [10]. The solutions for m = 2 (φ2 and ψ2) are

given below.

φ2 = A2r
5/2
l cos

(
5

2
θl

)
+ C2r

5/2
l sin

(
5

2
θl

)
+

4

15

(3δ + 2)

(δ + 2)

α

(α2
l − 1)

q0r
5/2 sin

5

2
θ

(2.27)

ψ2 = B2r
5/2
s sin

(
5

2
θs

)
+D2r

5/2
s cos

(
5

2
θs

)
(2.28)

By substituting the expressions for φ0, φ1, φ2, ψ0, ψ1, and ψ2 into the Eqs. 2.20-

2.22 and representing the Eqs.2.20 and 2.21 in terms of crack-tip coordinates, the
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displacement potentials can be represented as

φ = A0r
3/2
l cos

(
3

2
θl

)
+ C0r

3/2
l sin

(
3

2
θl

)
+ A1r

2
l cos (2θl) + C1r

2
l sin (2θl)

+ A2r
5/2
l cos

(
5

2
θl

)
+ C2r

5/2
l sin

(
5

2
θl

)
+

4

15

(3δ + 2)

(δ + 2)

α

(α2
l − 1)

q0r
5/2 sin

5

2
θ

(2.29)

ψ = B0r
3/2
s sin

(
3

2
θs

)
+D0r

3/2
s cos

(
3

2
θs

)
+B1r

2
s sin (2θs) +D1r

2
s cos (2θs)

+B2r
5/2
s sin

(
5

2
θs

)
+D2r

5/2
s cos

(
5

2
θs

)
(2.30)

where rl=(x2 + α2
l y

2)
1/2

, tan(θl)=
αly
x

, rs=(x2 + α2
sy

2)
1/2

, tan(θs)=
αsy
x

2.3.3 Thermo-mechanical Stress Fields

By substituting Eq. 2.29 and Eq. 2.30 into the Eq. 2.5, the displacement

field can be obtained. Further differentiating the displacement field, the in-plane

strain field can be obtained. The strain expressions along with Eq. 2.17 can be

substituted into Eqs. 2.1- 2.3 to obtain in-plane thermo-mechanical stress fields

σxx
µ

=

(
3

4
r
−1/2
l cos

(
θl
2

)(
δ
(
1− α2

l

)
+ 2
))

A0 −
(

3

4
r
−1/2
l sin

(
θl
2

)(
δ
(
1− α2

l

)
+ 2
))

C0

+

(
3

2
r−1/2
s cos

(
θs
2

)
αs

)
B0 +

(
3

2
r−1/2
s sin

(
θs
2

)
αs

)
D0 + 2A1

(
δ
(
1− α2

l

)
+ 2
)

+ 4B1αs +

(
15

4
r
1/2
l cos

(
θl
2

)(
δ
(
1− α2

l

)
+ 2
))

A2

+

(
15

4
r
1/2
l sin

(
θl
2

)(
δ
(
1− α2

l

)
+ 2
))

C2 +

(
15

2
r1/2
s cos

(
θs
2

)
αs

)
B2

−
(

15

2
r−1/2
s sin

(
θs
2

)
αs

)
D2 + 2

(
3δ + 2

δ + 2

α

α2
l − 1

r1/2 sin

(
θ

2

))
q0

+ α(3δ + 2)

(
q0r

1/2 sin
θ

2
+ q1r cos(θ) + q2r

2/2 sin
3θ

2

)
(2.31)
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σyy
µ

=

(
3

4
r
−1/2
l cos

(
θl
2

)(
δ − α2

l (δ + 2)
))

A0 −
(

3

4
r
−1/2
l sin

(
θl
2

)(
δ − α2

l (δ + 2)
))

C0

−
(

3

2
r−1/2
s cos

(
θs
2

)
αs

)
B0 −

(
3

2
r−1/2
s sin

(
θs
2

)
αs

)
D0 − 4A1

(
δ − α2

l (δ + 2)
)

− 4B1αs +

(
15

4
r
1/2
l cos

(
θl
2

)(
δ − α2

l (δ + 2)
))

A2

+

(
15

4
r
1/2
l sin

(
θl
2

)(
δ − α2

l (δ + 2)
))

C2 −
(

15

2
r1/2
s cos

(
θs
2

)
αs

)
B2

+

(
15

2
r−1/2
s sin

(
θs
2

)
αs

)
D2 − 2

(
3δ + 2

δ + 2

α

α2
l − 1

r1/2 sin

(
θ

2

))
q0

− α(3δ + 2)

(
q0r

1/2 sin
θ

2
+ q1r cos(θ) + q2r

2/2 sin
3θ

2

)
(2.32)

τxy
µ

=

(
3

2
αlr
−1/2
l sin

(
θl
2

))
A0 +

(
3

2
αlr
−1/2
l cos

(
θl
2

))
C0

+

(
3

4
r−1/2
s sin

(
θs
2

)
(1 + α2

s)

)
B0 −

(
3

4
r−1/2
s cos

(
θs
2

)
(1 + α2

s)

)
D0

+ 4C1αl − 2D1

(
1− α2

s

)
−
(

15

2
αlr

1/2
l sin

(
θl
2

))
A2

+

(
15

2
αlr

1/2
l cos

(
θl
2

))
C2 −

(
15

4
r1/2
s sin

(
θs
2

)
(1 + α2

s)

)
B2

−
(

15

4
r1/2
s sin

(
θs
2

)
(1 + α2

s)

)
D2 + 2

(
3δ + 2

δ + 2

α

α2
l − 1

r1/2 sin

(
θ

2

))
q0

(2.33)

By considering the singular term in the above equation and using the definition

of the dynamic stress intensity factor KID and KIID for opening and shear modes

and considering the crack face boundary conditions [11] we get

A0 =
4(1 + α2

s)

4αlαs − (1 + α2
s)

2

KID

µ
√

2π
, B0 =

−2αl
1 + α2

s

A0 (2.34)

C0 =
4α2

s

3(4αlαs − (1 + α2
s)

2)

KIID

µ
√

2π
, D0 =

1 + α2
s

2αs
C0 (2.35)

where µ is the shear modulus of the material at the propagating crack-tip, KID

is mode-I dynamic stress intensity factor and KIID is mode-II dynamic stress

intensity factor.
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2.4 Results and Discussion
2.4.1 Variation of Stress Components Near the Crack Tip

Using the developed stress fields, various components of the stress tensor are

evaluated and the effect of temperature on these stress components is discussed.

The coefficient of thermal expansion (α) of titanium (which is of primary interest

in our experimental research), 8.9× 10−6/oC is used. In all the plots only the first

terms are considered.

The superposition of the temperature stress field with the mechanical stress

field results in imposing normal stress on traction free crack faces as shown in

Fig. 2.2a. These stresses on the crack face are generated due to the thermal

stresses produced by the temperature field. The presence of these normal stresses

on the crack face violates one of the boundary conditions and these stresses need

to be removed. The removal of these stresses from the crack face is accomplished

by superimposing an equal and opposite stress field on the crack face. In particular

each point on the crack face is subjected to a line load of specific magnitude such

that normal stresses from the crack face are removed. The solution given by Jiang

et al. [12] for a single line load is extended to derive the stress field around the

crack tip for multiple line loads applied on the crack face line. Fig. 2.2b represents

normal stress (σyy) near the crack tip after the supper position has been added. It

must be mentioned that the crack face loads are relatively small in this example

even for large T and have little influence on the crack tip stress fields.

The thermo-mechanical stress fields these obtained by superposition of

the thermal and mechanical stress fields and suitably modified to ensure proper

boundary conditions were used to generate contours of in plane stresses, maximum

principal stress, maximum shear stress and maximum tangential stress around the

crack tip.
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Figure 2.2. Contour of σyy in MPa for thermo-mechanical stress field around the
crack-tip (q0=250, c/cs = 0.5 and KID = 1MPa-m1/2)(a) Before the opposite
traction field is applied (b) After the opposite traction field is applied.

Fig. 2.3 shows the various normalized in-plane stress components (a) in-plane

σxx, (b) in-plane σyy ,(c) in-plane τxy , and Fig. 2.4 shows the various normalized

principal stress (a) hoop stress σθθ, (b) maximum principal stress σ1 and (c) max-

imum shear stress τmax as a function of angular position θ around the crack tip

for a fixed value of c/cs and different temperature fields. The stresses are nor-

malized with far-field stress determined for KID =1 MPa-m1/2, KIID = 0.2KID

,Keff=
√
K2
ID +K2

IID and r = 0.002m. The stress field is assumed to be elastic

for the temperature field associated with q0 = 100 and q0 = 250.

In Fig. 2.3 and Fig. 2.4, q0 = 0 means no temperature field around the crack-

tip and for this value Fig. 2.4 collapse to the isothermal solution given by Freund [8]

if mode-I and mode-II fields are separated and plotted as shown in Figs. A.1 - A.6

in Appendix A.

The in-plane stress σxx shown in Fig. 2.3(a) has a maximum value ahead of the

crack tip, i.e. at θ= 0o and a local maximum about ± 135o for qo= 0. These local
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Figure 2.3. Normalized mixed mode in-plane stress fields as a function of θ around
the crack-tip for different temperature fields (c/cs = 0.5, r = 0.002m, KID = 1MPa
m1/2, KIID =0.2 KID) 23



Figure 2.4. Normalized mixed mode principal stress fields as a function of θ around
the crack-tip for different temperature fields (c/cs = 0.5, r = 0.002m, KID = 1MPa
m1/2, KIID =0.2 KID)
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maximums increase in magnitude with an increase in q0. It is also observed that

the effect of temperature on σxx is predominantly in the region near to the crack

face. The in-plane stress σyy shown in Fig. 2.3(b) has a maximum value around

-70o for q0 = 0 and this value decreases with an increase in applied temperature.

It also has a local maximum at about 60o and this value increases with an increase

in applied temperature. The in-plane shear stress τxy shown in Fig. 2.3(c) has a

maximum value around -110o and a local maximum around 20o. These maximum

values decreases as q0 increases. There is no shift in the position of the maximum

value of in-plane stresses as the temperature field around the crack-tip changes.

For qo= 0, the hoop stress as shown in Fig. 2.4(a) has a single maximum

value along θ = -30o. As the temperature field increases, this stress develops a

maximum and local maximum values. For example for qo= 250, the hoop stress

develops a maximum value at an angle of 30o and a local maximum value at angle

of -120o to the direction of crack growth. The angular variation of the principal

stresses around the crack tip is shown in Fig. 2.4(b). For no temperature field, this

stress has a maximum value at about -90o and local maximum value at about 450

from the direction of crack growth. As the temperature field increases, however,

the maximum value shifts towards the direction away from the crack growth. In

Fig. 2.4(c), the maximum shear stress as a function of temperature field around the

crack tip is shown. In the case of no temperature field (i.e., qo= 0), the maximum

shear stress has a maximum value at about -115o and a local maximum value at

about 85o from the direction of crack growth. It can be seen from the figure that

as the temperature increases, maximum values occur at four different locations.

2.4.2 Direction of Crack Growth

The theoretical prediction of crack extension angle is investigated by using

the two well-known fracture criterias: minimum strain energy density (S-criterion)
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and maximum circumferential stress (σθθ -criterion).

Minimum Strain-energy Density (MSED) Criterion

According to this criterion [13], the crack initiates when the strain energy

density achieves a critical value and propagates in the direction of minimum strain-

energy density value. The strain energy density dW/dV near the crack tip for an

FGM is given as

dW

dV
= S =

1

4µ

(
(1− ν)

(
σ2
xx + σ2

yy

)
− 2νσxxσyy + σ2

xy

)
(2.36)

Fracture takes place in the direction of minimum S, and the condition can be

obtained by using Eq. 2.37.

∂S

∂θ
= 0,

∂2S

∂θ2
> 0 at S = Sc (2.37)

where Sc is the critical strain energy density

Maximum Circumferential-stress (MCS) Criterion

The maximum circumferential stress criterion [14] states that, crack growth

will occur in the direction of the maximum circumferential stress and will take

place when the maximum circumferential stress reaches a critical value, and it can

be given as Eq. 2.38.

∂σθθ
∂θ

= 0,
∂2σθθ
∂θ2

< 0 at σθθ = (σθθ)c (2.38)

where (σθθ)c is the critical circumferential stress

Based on the above two criteria’s, the effects of velocity and temperature on the

crack extension angle (θ) are investigated.

The crack extension angles as a function of crack tip velocities as predicted

by the above two criterias are shown in Fig. 2.5. For pure mode-I loading
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(KIID/KID = 0), the crack extends along (θ)=0 until the crack tip velocity reaches

a critical value at which instability occurs [15]. When the crack tip velocity reaches

the critical value, the crack deviates and extends to a different angle. For example

at a crack tip velocity of c/cs = 0.7, the MSED criterion predicts a crack extension

angle of about −55o and the MCS criterion predicts about −38o. As the value

of KIID/KID increases from 0 to 1 and later from 1 to ∞ the crack extension

angle increases monotonically. Broek [16], in his book gives the crack extension

angles for mixed mode quasi static loading and these results match well with the

predictions from the current study.

The effect of temperature field on the crack extension angle for a crack tip

velocity of 0.5cs is shown in Fig. 2.6. The figure shows the predicted of crack

extension angle by both the minimum strain energy density and the maximum

circumferential stress criterions. These two criterions predict same crack extension

angles at lower temperatures. Both the criterion show that, the crack extension

direction at room temperature is along θ = −30o and the value decreases slowly

with increase in applied temperature field. For FGM with α > 0, the crack exten-

sion angle is along θ = −15o at room temperature and again the value decreases

with increase in applied temperature field.

The effects of temperature on the crack extension angle as a function of crack

tip velocity are plotted in Fig. 2.7.Fig. 2.7(a) represents crack extension angle as

a function of crack tip velocity for mixed-mode mechanical loading at room and

elevated temperatures predicted by minimum strain energy density criterion. For a

crack tip velocity of c/cs = 0.3, the minimum strain energy density criterion predict

decrease in crack extension angle for increasing temperature fields. Fig. 2.7(b)

represents crack extension angle as a function of crack tip velocity for mixed-mode

mechanical loading at room and elevated temperatures predicted by maximum

27



(a) Minimum strain energy density criterion

(b) Maximum circumferential stress criterion

Figure 2.5. Crack extension angle as a function of crack tip velocity for mixed
mode thermo-mechanical loading (r=0.002m).
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Figure 2.6. Effect of temperature on the crack extension angle for mixed mode
loading (KIID/KID = 0.2, c/cs = 0.5, r = 0.002m).
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circumferential stress criterion. Furthermore, for c/cs > 0.3, both criterions predict

decrease in crack extension angle for increasing temperature field. The difference

in the predicted crack extension angles decreases as the velocity increases and

becomes insignificant at velocities c/cs > 0.55.

2.5 Summary

The stress-fields near the crack tip for mixed-mode thermo-mechanical load-

ing are developed using displacement potentials in conjunction with an asymptotic

approach. These crack-tip field equations can be successfully used in extracting

fracture parameters from experimental stress and deformation fields when ma-

terials are subjected to thermo-mechanical loading. The following are the key

observations of the analytical stress field contours developed using the stress field

equations.

• The temperature field changes the magnitude of the in-plane stress compo-

nents (σxx, σyy and τxy) but the qualitative profile around the crack tip is

not influenced.

• The temperature field influences both the magnitude and the profile of max-

imum shear stress τmax, hoop stress σθθ and the principal stress σ1 around

the crack-tip.

• The crack growth angle decreases with increase in temperature for a given

crack-tip velocity.

• The crack growth angle increases with increase in crack-tip velocity for a

given temperature conditions around the crack-tip.

• The effect of temperature on the crack growth angle is insignificant at higher

crack-tip velocities c/cs > 0.55.
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(a) Minimum strain energy density criterion

(b) Maximum circumferential stress criterion

Figure 2.7. Crack extension angle as a function of crack tip velocity for mixed
mode thermo-mechanical loading (KIID/KID = 0.2, r = 0.002m).
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CHAPTER 3

Effect of Dynamic Thermo-Mechanical Stress Field on Crack
Propagation Direction in Functionally Graded Materials

3.1 Abstract

Asymptotic analysis in conjunction with displacement potentials has been

used to develop thermo-mechanical stress fields for a mixed mode propagating

crack in a functionally graded material (FGM). The shear modulus, mass density,

thermal conductivity and coefficient of thermal expansion of the FGM are assumed

to vary exponentially along the gradation direction. First, asymptotic tempera-

ture fields are derived for an exponential variation of thermal conductivity and

later these temperature fields are used in deriving stress fields. Using asymptotic

thermo-mechanical stress fields the variation of maximum shear stress, circum-

ferential stress and strain energy density as a function of temperature around the

crack-tip are generated. Finally, utilizing the minimum strain energy density crite-

rion and the maximum circumferential stress criterion, the crack growth direction

for various crack-tip speeds, non-homogeneity coefficients and temperature fields

are determined.

3.2 Introduction

Functionally graded materials (FGMs) are essentially non-homogeneous com-

posites which have characteristics of spatially varying microstructure and mechan-

ical/thermal properties to meet a predetermined functional performance [1, 2].

Although their performance in real-life engineering applications are still under

investigation, FGMs have shown promising results when they are subjected to

thermo-mechanical loading [2]. Hasselman and Youngblood [3] were among the first

to study thermal stresses in nonhomogeneous structures associated with thermo-

34



mechanical loading. By introducing thermal conductivity gradient, they realized

significant reductions in the magnitude of the tensile thermal stress in ceramic

cylinders. In other studies, thermal residual stresses are relaxed in metal-ceramic

layered materials by inserting a functionally graded interface layer between the

metal and ceramic [4–6]. In their studies, Kudora et al., and Takashashi et al.,

reported that when subjected to thermal shocks, FGM coatings suffer significantly

less damage than conventional ceramic coatings [7, 8].

In continuation of above studies, several studies on the quasi-static fracture

of FGMs under thermo-mechanical loading have been reported. Assuming expo-

nential variation of material properties, Jin and Noda [9] investigated the steady

thermal stress intensity factors in functionally gradient semi-infinite space with an

edge crack subjected to thermal load. Later, Erdogan and Wu [10] also determined

the steady thermal stress intensity factor of a FGM layer with a surface crack per-

pendicular to the boundaries. By further assuming the exponential variation of

thermal and mechanical properties of the materials, Jin and Batra [11] investigated

stress intensity relaxation problem at the tip of an edge crack in a FGM subjected

to a thermal shock. Using both experimental and numerical techniques, Kokini

and Choules [12] and Kokini and Case [13] studied surface and interface crack-

ing in FGM coatings subjected to thermal shocks. By employing a finite element

method (FEM), Noda [14] analyzed an edge crack problem in a zirconia/titanium

FGM plate subjected to cyclic thermal loads. Using finite element method and

boundary element method, Jin and Paulino [15] studied transient thermal stresses

in an FGM with an edge crack and having constant Young’s modulus and Pois-

son’ ratio but varying thermal properties along the thickness direction. Walters et

al. [16] developed general domain integral methods to obtain stress intensity factors

for surface cracks in FGMs under mode-I thermo-mechanical loading conditions.
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The above studies provide closed form solutions for stress intensity factors under

thermo-mechanical loading, however for extracting fracture parameters from exper-

imental studies, asymptotic expansion of thermo-mechanical stress fields around

the crack tip are essential. In this direction, recently, Jain et al. [17] developed

quasi-static stress and displacement fields for a crack in an infinite FGM medium

under thermo-mechanical loading.

In this paper, the stress fields for a propagating crack at uniform speed

along the direction of mechanical and thermal property variation in a FGM under

thermo-mechanical loading conditions are developed. The elasto-dynamic problem

for FGM is formulated in terms of displacement potentials and the solutions are

obtained through an asymptotic analysis. In analyzing this problem, we transform

the general partial differential equation in the dynamic equilibrium into Laplace’s

equation whose solution involves harmonic functions. Using the developed equa-

tions, angular variation of the maximum shear stress, circumferential stress and

minimum strain energy density are plotted as a function of temperature around

the crack-tip. Using both minimum strain energy density criterion and maximum

circumferential stress criterion, the crack growth directions for various crack-tip

speeds, non-homogeneous coefficients and different temperatures fields are also

determined.

3.3 Theoretical Formulation

At a continuum level, the properties at any given point in an FGM can be

assumed to be same in all directions; hence FGMs can be treated as isotropic

non-homogeneous solids. Spatial variation of elastic properties, mass density and

thermal properties make analytical solutions to the elastodynamic equations ex-

tremely difficult. Hence, an asymptotic analysis similar to that employed by Fre-

und [18] is used to expand the stress field around a propagating crack under thermo-
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mechanical loading conditions. The complete derivation is provided in Appendix

C.

Shear modulus (µ), Lame’s constant (λ), density (ρ) , thermal expansion (α) and

heat conductivity (k) of the FGM are assumed to vary in an exponential manner

as given by Eq. 3.1, whereas, Poisson’s ratio (ν) is assumed to be a constant.

µ = µ0e
(ζX), λ = λ0e

(ζX), ρ = ρ0e
(ζX), α = α0e

(βX), k = k0e
(βX) (3.1)

The equations of motion for a plane problem are given by Eq. 3.2

∂σXX
∂X

+
∂τXY
∂Y

= ρ
∂2u

∂2t
,

∂σY Y
∂Y

+
∂τXY
∂X

= ρ
∂2v

∂2t
(3.2)

The relationship between stresses and strains for a plane strain thermo-mechanical

problem can be written as

σXX = e(ζX)((λ0 + 2µ0)εXX + λεY Y − (3λ0 + 2µ0)α0e
(βX)T ) (3.3)

σY Y = e(ζX)((λ0 + 2µ0)εY Y + λεXX − (3λ0 + 2µ0)α0e
(βX)T ) (3.4)

τXY = e(ζX)µ0εXY (3.5)

where X and Y are reference coordinates,σij and εij where i = X, Y and j = X, Y

are in-plane stress and strain components, λ and µ denote Lame’s constant and

shear modulus respectively and subscript ”o” means at X = 0 as shown in Fig. C.1.

α is coefficient of thermal expansion and T represents the change in temperature

in the infinite medium and ζ and β are nonhomogeneity constants that have the

dimension (length)−1. For plane strain deformation, the displacements u and v

are derived from dilatational and shear wave potentials φ and ψ. These potentials

can be expressed as

u =
∂φ

∂X
+
∂ψ

∂Y
, v =

∂φ

∂Y
− ∂ψ

∂X
(3.6)
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Figure 3.1. Propagating crack tip orientation with respect to reference coordinate
configuration.

Substituting for the stresses and density from Eqs. 3.3 - 3.5 and Eq. 3.1 respec-

tively into Eq. 3.2 and after simplification, the equations of motion become

(2µ0 + λ0)5252φ− ζ
(

(2µ0 + λ0)
∂

∂X
52 φ+ ρ0

∂

∂Y
52 ψ

)
− αc(3λ0 + 2µ0)

((
(β + ζ)βT + (2β + ζ)

∂T

∂X

)
+52T

)
= ρ0

∂2

∂2t
52 φ (3.7)

ρ05252ψ − ζ
(

(µ0
∂

∂X
52 ψ + λ0

∂

∂Y
52 φ

)
− αc(3λ0 + 2µ0)ζ

∂T

∂Y
= ρ0

∂2

∂2t
52 ψ

(3.8)

αc is the coefficient of thermal expansion in the vicinity of the instantaneous crack

tip and is assumed to be constant.

Equations 3.7 and 3.8 can be written as

(δ + 2)52 φ− ζ
(

(δ + 2)
∂

∂X
+

∂

∂Y

)
− αc(3λ0 + 2µ0)

((
(β + ζ)β∆−1T + (2β + ζ)∆−1 ∂T

∂X

)
+ T

)
=
ρ0

µ0

∂2φ

∂2t
(3.9)

52ψ − ζ ∂ψ
∂X

+ ζδ
∂φ

∂Y
− αc(3λ0 + 2µ0)ζ∆−1 ∂T

∂Y
=
ρ0

µ0

∂2ψ

∂2t
(3.10)
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where

∆−1 =
1

52
, δ =

λ0

µ0

For a propagating crack shown in C.1, the transformed crack tip coordinates can

be written as x = X − ct where c is constant crack tip speed. In the moving

coordinate systems the above Eqs. 3.9 and 3.10 can be written as

α2
l

∂2φ

∂x2
+
∂2φ

∂y2
ζ
∂φ

∂x
+

ζ

δ + 2

∂ψ

∂y

− αc
(3δ + 2)

(δ + 2)

((
(β + ζ)β∆−1T + (2β + ζ)∆−1 ∂T

∂X

)
+ T

)
= 0 (3.11)

α2
s

∂2ψ

∂x2
+
∂2ψ

∂y2
+ ζ

∂ψ

∂x
+ ζδ

∂φ

∂y
− αc(3δ + 2)ζ∆−1∂T

∂y
= 0 (3.12)

where

αl =

√
1−

(
c

cl

)2

, αs =

√
1−

(
c

cs

)2

, cs =

√
µc
ρc
, 52 =

∂2

∂x2
+

∂2

∂y2

cl = cs
√

2(1− ν)/(1− 2ν) for plane strain and cl = cs
√

2/(1− ν) for plane stress.

cl and cs are the elastic dilatational wave speed and the elastic shear wave speed

of the material at the crack tip.

It is assumed that in the above transformation, the fields φ and ψ do not

depend explicitly on time in the moving coordinate reference and their time de-

pendence is only through the transformation x = X − ct. To solve the above

equations of motion for displacement potentials φ and ψ using asymptotic ap-

proach, first the derivation of temperature field around the crack-tip is essential.

Hence its derivation is discussed in the following section.

3.3.1 Temperature Fields around the Crack Tip

In this analysis it is assumed that the temperature field around the crack

tip changes asymptotically. Also, the transient effects are neglected. The heat
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conductivity is assumed to vary exponentially as given by Eq. 3.1. The steady

state heat conduction equation can be written as

∂

∂X

(
k
∂T

∂X

)
+

∂

∂Y

(
k
∂T

∂Y

)
= 0 (3.13)

Where k is the coefficient of thermal conductivity

Assuming that k is constant in the region considered, the above equation can be

written as

52T + β
∂T

∂X
= 0 (3.14)

where 52 = ∂2

∂X2 + ∂2

∂Y 2

Transforming the above equation to the crack-tip moving coordinate system (x =

Xc− t,y = Y ), Eq. 3.14 can be written as

52T + β
∂T

∂x
= 0 (3.15)

where 52 = ∂2

∂x2 + ∂2

∂y2

As this stages asymptotic analysis is performed to solve the above Eq. 3.15. In

this process, first a new set of coordinates is introduce as

η1 =
x

ε
η2 =

y

ε
(3.16)

where ε is an arbitrary parameter and is assumed to be 0 < ε < 1

Equation 3.15 can be written in a new scaled coordinates (η1,η2)as

52T + εβ
∂T

∂η1

= 0 (3.17)

where 52 = ∂2

∂η2
1

+ ∂2

∂η2
2

For the asymptotic analysis T is represented as a power series expansion in ε as

T (x, y) = T (η1ε, η2ε) =
∞∑
m=0

ε
(m+1)

2 Tm(η1, η2) (3.18)
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Substituting Eq.3.18 into Eq.3.17 gives the following equation.

∞∑
m=0

ε
(m+1)

2

((
∂2Tm
∂η2

1

+
∂2Tm
∂η2

2

)
+ ε

(m+3)
2 β

∂Tm
∂η1

)
= 0 (3.19)

For Eq.3.19 to be valid, the partial differential equations corresponding to each

power of ε (ε1/2, ε, ε3/2...) should vanish independently. This leads to the set of

partial differential equations.

For m = 0 and m = 1

∂2Tm
∂η2

1

+
∂2Tm
∂η2

2

= 0 (3.20)

For m = 2

∂2T2

∂η2
1

+
∂2T2

∂η2
2

+ β
∂T0

∂η1

= 0 (3.21)

Equation 3.20 (i.e. for m = 0 and m = 1) is ordinary Laplace’s equation in the

domain ρ = η1+iη2 and the solution is same as for homogenous material [19, 20].By

assuming insulated crack surface boundary condition, (i.e. ∂T
∂θ

= 0 at θ = ±π ),

the solution for Eq.3.20 can now be written as

For m = 0

T0 = q0ρ
1/2 sin

(
1

2
θ

)
(3.22)

For m = 1

T1 = q1ρ
1/2 cos (θ) (3.23)

where ρ = (η2
1 + η2

2)
1/2

The solution T2, for Eq.3.21 corresponding to higher powers of ε (m = 2) has

two parts: homogeneous and particular solution. The particular solution can be

obtained using recursive approach [19, 20], and the complete solution for Eq.3.21

is given below.

T2 = q2ρ
3/2 sin

(
3

2
θ

)
+

(
1

4

)
q0βρ

3/2 sin

(
1

2
θ

)
(3.24)

41



Transforming back to crack tip coordinates x and y, the temperature field near the

crack tip is given as

T = q0r
1/2 sin

(
1

2
θ

)
+q1r cos (θ)+q2r

3/2 sin

(
3

2
θ

)
+

(
1

4

)
q0βr

3/2 sin

(
1

2
θ

)
(3.25)

where r=(x2 + y2)
1/2

and θ= tan−1
(
y
x

)

3.3.2 Asymptotic Expansion of Crack Tip Stress Fields

Similar to derivation of temperature field, asymptotic approach is again used

in deriving solutions for displacement potentials of equations of motion Eqs. 3.11

and 3.12. Scaled coordinates as discussed in Eq.3.16 are now applied to Eqs. 3.11

and 3.12 as given below

α2
l

∂2φ

∂η2
1

+
∂2φ

∂η2
2

− ε
(
ζ
∂φ

∂η1

+
ζ

δ + 2

∂ψ

∂η2

)
−

αc
(3δ + 2)

(δ + 2)

(
ε2T + ε3 (2β + ζ) ∆−1 ∂T

∂η1

+ ε4 (β + ζ) β∆−1T

)
= 0 (3.26)

α2
s

∂2ψ

∂η2
1

+
∂2ψ

∂η2
2

− ε
(
ζ
∂ψ

∂η1

+ ζδ
∂φ

∂η2

)
− αc(3δ + 2)ε3ζ∆−1 ∂T

∂η2

= 0 (3.27)

At this stage it is assumed that φ, ψ, and T can be represented as a power

series expansion in ε.

φ(x, y) = φ(εη1, εη2) =
∞∑
m=0

ε
(m+3)

2 φm(η1, η2) (3.28)

ψ(x, y) = ψ(εη1, εη2) =
∞∑
m=0

ε
(m+3)

2 ψm(η1, η2) (3.29)

T (x, y) = T (εη1, εη2) =
∞∑
m=0

ε
(m+1)

2 Tm(η1, η2) (3.30)
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As given by Jin and Noda [9] the solution for the temperature field is obtained

by ensuring the heat flux or the derivative of the temperature field near the crack

tip is singular. This means that the potentials for temperature are one power less

than the displacement potentials. Substituting Eqs. 3.28-3.30 into Eqs.3.26 and

3.27 gives the following equations.

∞∑
m=0

(ε
m+3

2

(
α2
l

∂2φm
∂η2

1

+
∂2φm
∂η2

2

)
− ε

m+5
2

(
ζ
∂φm
∂η1

+
ζ

δ + 2

∂ψm
∂η2

)
−

αc
(3δ + 2)

(δ + 2)

(
ε

m+5
2 Tm + ε

m+7
2 (2β + ζ) ∆−1∂Tm

∂η1

+ ε
m+9

2 (β + ζ) β∆−1Tm

)
) = 0

(3.31)

∞∑
m=0

(ε
m+3

2

(
α2
s

∂2ψm
∂η2

1

+
∂2ψm
∂η2

2

)
− ε

m+5
2

(
ζ
∂ψm
∂η1

+ ζδ
∂φm
∂η2

)
−

αc(3δ + 2)ε
m+7

2 ζ∆−1∂Tm
∂η2

) = 0 (3.32)

For Eqs.3.31 and 3.32 to be valid, the partial differential equations corresponding

to each power of ε (ε3/2,ε2,ε5/2, ...) should vanish independently. This leads to the

following set of partial differential equations.

For m = 0 and m = 1

α2
l

∂2φm
∂η2

1

+
∂2φm
∂η2

2

= 0 (3.33)

α2
s

∂2ψm
∂η2

1

+
∂2ψm
∂η2

2

= 0 (3.34)

For m = 2

α2
l

∂2φ2

∂η2
1

+
∂2φ2

∂η2
2

= −ζ
(
∂φ0

∂η1

+
1

δ + 2

∂ψ0

∂η2

)
+

3δ + 2

δ + 2
αcT0 (3.35)
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α2
l

∂2ψ2

∂η2
1

+
∂2ψ2

∂η2
2

= −ζ
(
∂ψ0

∂η1

+
1

δ + 2

∂φ0

∂η2

)
(3.36)

Eqs. 3.33 and 3.34 are similar to that for homogeneous material where as the

partial differential equations Eqs.3.35 and 3.36, associated with higher powers of

are coupled to the differentials of the lower order functions through the nonho-

mogeneity parameters and temperature term. Eqs. 3.33 and 3.34 (i.e. for m = 0

and m = 1) can be easily reduced to Laplace’s equation in the respective complex

domains ζl = η1 + iαlη2, ζs = η1 + iαsη2 , i =
√
−1 and the solutions are same as

that for homogenous material [18-21] and can be written as

φm(ρl, θl, t) = Amρ
(m+3)/2
l cos

(
(m+ 3)

2
θl

)
+ Cmρ

(m+3)/2
l sin

(
(m+ 3)

2
θl

)
(3.37)

ψm(ρs, θs, t) = Bmρ
(m+3)/2
s sin

(
(m+ 3)

2
θs

)
+Dmρ

(m+3)/2
s cos

(
(m+ 3)

2
θs

)
(3.38)

where

ρl =
(
η2

1 + α2
l η

2
2

)1/2
, tan(θl) =

αlη2

η1

, ρs =
(
η2

1 + α2
sη

2
2

)1/2
, tan(θs) =

αsη2

η1

and Am, Bm, Cm, and Dm are real constants.

Using the definition of dynamic stress intensity factor KID and KIID for opening

mode and shear mode [21], the relation between Ao and KID and Co and KIID are

obtained.

A0 =
4(1 + α2

s)

4αlαs − (1 + α2
s)

2

KID

µ
√

2π
, (3.39)

C0 =
4α2

s

3(4αlαs − (1 + α2
s)

2)

KIID

µ
√

2π
, (3.40)
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where µ is the shear modulus of the material at the propagating crack-tip, KID is

mode-I dynamic stress intensity factor and KIID mode-II dynamic stress intensity

factor. Now considering the crack face boundary conditions σ22 = 0 and σ12 = 0

we can also obtain the following relationship between Ao and Bo and Co and Do

B0 =
−2αl

1 + α2
s

A0 (3.41)

D0 =
1 + α2

s

2αs
C0 (3.42)

The solution for the Eqs. 3.35 and 3.36 corresponding to higher powers of ε (m = 2)

consists of two parts: solution for homogeneous equation and a particular solution

due to nonhomogeneity and temperature and these can be obtained recursively [18,

21]. The solutions φ2 and ψ2 obtained are given below. The solutions φ0, ψ0, φ1 and

ψ1 automatically satisfy the compatibility equations because these the solutions

are same as those for homogeneous materials. Since the non-homogeneous specific

parts of φ2 and ψ2 are obtained from φ0 and ψ0, they also automatically satisfy

the compatibility equations.

φ2 = A2ρ
5/2
l cos

(
5

2
θl

)
+ C2ρ

5/2
l sin

(
5

2
θl

)
− 1

4

ζ

α2
l

ρ
5/2
l

(
A0 cos

(
1

2
θl

)
+ (C0 sin

(
1

2
θl

))
− 2

5

ζ

(δ + 2)

αs
(α2

l − α2
s)
ρ5/2
s

(
B0 cos

(
5

2
θs

)
+ (D0 sin

(
5

2
θs

))
+

4

15

(3δ + 2)

(δ + 2)

αc
(α2

l − 1)
q0ρ

5/2 sin
5

2
θ (3.43)

ψ2 = B2ρ
5/2
s cos

(
5

2
θs

)
+D2ρ

5/2
s sin

(
5

2
θs

)
− 1

4

ζ

α2
s

ρ5/2
s

(
B0 sin

(
1

2
θs

)
+ (D0 cos

(
1

2
θs

))
− 2

5
δ

ζαl
(α2

l − α2
s)
ρ

5/2
l

(
A0 sin

(
5

2
θl

)
+ (C0 sin

(
5

2
θl

))
(3.44)
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By assembling together the above result for the first few terms and by transforming

back to the x− y plane, the combined solution can be written for φ and ψ as Eq.

3.45 and 3.46

φ = A0r
3/2
l cos

(
3

2
θl

)
+ C0r

3/2
l sin

(
3

2
θl

)
+ A1r

2
l cos (2θl) + C1r

2
l sin (2θl)

+ A2r
5/2
l cos

(
5

2
θl

)
+ C2r

5/2
l sin

(
5

2
θl

)
− 1

4

ζ

α2
l

r
5/2
l

(
A0 cos

(
1

2
θl

)
+ (C0 sin

(
1

2
θl

))
− 2

5

ζ

(δ + 2)

αs
(α2

l − α2
s)
r5/2
s

(
B0 cos

(
5

2
θs

)
+ (D0 sin

(
5

2
θs

))
+

4

15

(3δ + 2)

(δ + 2)

αc
(α2

l − 1)
q0r

5/2 sin
5

2
θ (3.45)

ψ = B0r
3/2
s sin

(
3

2
θs

)
+D0r

3/2
s cos

(
3

2
θs

)
+B1r

2
s sin (2θs) +D1r

2
s cos (2θs)

+B2r
5/2
s cos

(
5

2
θs

)
+D2r

5/2
s sin

(
5

2
θs

)
− 1

4

ζ

α2
s

ρ5/2
s

(
B0 sin

(
1

2
θs

)
+ (D0 cos

(
1

2
θs

))
− 2

5
δ

ζαl
(α2

l − α2
s)
ρ

5/2
l

(
A0 sin

(
5

2
θl

)
+ (C0 sin

(
5

2
θl

))
(3.46)

where

rl =
(
x2 + α2

l y
2
)1/2

, tan(θl) =
αly

x
, rs =

(
x2 + α2

sy
2
)1/2

, tan(θs) =
αsy

x

The above definitions of the displacement potentials are now used with Eq. 3.6 to

get the displacements fields. These displacement fields are then used to get strain

fields. These strain fields and Eq. 3.25 are substituted into Eqs. 3.3 - 3.5 to obtain
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in-plane stress fields around the crack tip. They are shown in Eq. 3.47 - 3.50.

σxx
exp(ζx)µ0

=

(
3

4
r
−1/2
l cos

(
θl
2

)(
δ
(
1− α2

l

)
+ 2
))

A0

−
(

3

16

ζ

α2
l

r
1/2
l cos

(
3θl
2

)(
δ
(
1− α2

l

)
+ 2
))

A0

−
(

3

4

ζ

α2
l

r
1/2
l cos

(
θl
2

)(
δ
(
1 + α2

l

)
+ 2
))

A0

−
(

3

4
r
−1/2
l sin

(
θl
2

)(
δ
(
1− α2

l

)
+ 2
))

C0

+

(
3

16

ζ

α2
l

r
1/2
l sin

(
3θl
2

)(
δ
(
1− α2

l

)
− 2
))

C0

+

(
3

4

ζ

α2
l

r
1/2
l sin

(
θl
2

)(
δ
(
1 + α2

l

)
+ 2
))

C0

+

(
3

2
r−1/2
s αs cos

(
θs
2

)
− 3

8

ζ

αs
r1/2
s cos

(
3θs
2

))
B0

+

(
3

2
r−1/2
s αs sin

(
θs
2

)
− 3

8

ζ

αs
r1/2
s sin

(
3θs
2

))
D0

+ 2A1

(
δ
(
1− α2

l

)
+ 2
)

+ 4B1αs

+

((
15

4
r
1/2
l cos

(
θl
2

)(
δ
(
1− α2

l

)
+ 2
))

A2 +

(
15

2
r1/2
s αs cos

(
θs
2

))
B2

)
+

((
15

4
r
1/2
l sin

(
θl
2

)(
δ
(
1− α2

l

)
+ 2
))

C2 −
(

15

2
r1/2
s αs sin

(
θs
2

))
D2

)
−
((

3
ζδα2

l

α2
l − α2

s

r
1/2
l cos

(
θl
2

))
A0 −

(
3
ζδα2

l

α2
l − α2

s

r
1/2
l sin

(
θl
2

))
C0

)
−
(

3

2

ζ

δ + 2

αs
α2
l − α2

s

r1/2
s cos

(
θl
2

)(
δ
(
1− α2

s

)
+ 2
))

B0

+

(
3

2

ζ

δ + 2

αs
α2
l − α2

s

r1/2
s sin

(
θs
2

)(
δ
(
1− α2

s

)
+ 2
))

D0

+ 2

(
3δ + 2

δ + 2

αc
α2
l − 1

r1/2 sin

(
θ

2

))
q0

− αc(3δ + 2)(q0r
1/2 sin

(
θ

2

)
+ q1r cos(θ) + q2r

3/2 sin

(
3θ

2

)
+

1

4
q0βr

3/2 sin

(
θ

2

)
) (3.47)
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σY Y
exp(ζx)µ0

=

(
3

4
r
−1/2
l cos

(
θl
2

)(
δ − α2

l (δ + 2)
))

A0

−
(

3

16

ζ
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l
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(
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)(
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(

3

4

ζ
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l
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4
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+
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3
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+
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+
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+
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(
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1
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) (3.48)
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σxy
exp(ζx)µ0

=
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(

3

16

ζ

α2
s

r1/2
s

(
sin

(
3θs
2

)(
1 + α2

s

)
+ 4 sin

(
θs
2

)(
α2
s − 1

)))
B0

−
(

3

4
r−1/2
s

(
1 + α2

s

)
cos

(
θs
2

))
D0

+

(
3

16

ζ

α2
s

r1/2
s

(
cos

(
3θs
2

)(
1 + α2

s

)
− 4 cos

(
θs
2

)(
α2
s − 1

)))
D0

−
((

15

2
αlr

1/2
l sin

(
θl
2

))
A2 −

(
15

2
αlr

1/2
l αl cos

(
θl
2

))
C2

)
−
((

15

4
r1/2
s

(
1 + α2

s

)
sin

(
θs
2

))
B2 +

(
15

4
r1/2
s

(
1 + α2

s

)
cos

(
θs
2

))
D2

)
+

(
3

2

ζδαl
α2
l − α2

s

r
1/2
l

(
1 + α2

l

)
sin

(
θl
2

))
A0

+

(
3

2

ζδαl
α2
l − α2

s

r
1/2
l

(
1 + α2

s

)
cos

(
θl
2

))
C0

+

(
3

ζ

δ + 2

α2
s

α2
l − α2

s

r1/2
s sin

(
θs
2

))
B0

−
(

3
ζ

δ + 2

α2
s

α2
l − α2

s

r1/2
s cos

(
θs
2

))
D0

+ 2

(
3δ + 2

δ + 2

αc
α2
l − 1

r1/2 cos

(
θ

2

))
q0 (3.49)

3.4 Results and Discussions

The thermo-elasticity relations developed above are next used to study the

effect of temperature field, crack velocity and the non-homogeneity on the variation

of maximum shear stress, the circumferential stress and the strain energy density

around the crack-tip. The coefficient of thermal expansion (αc) of titanium (which

is of primary interest in our experimental research), 8.9 × 10−6/oC is used in the

analysis. The temperature coefficient qo is varied from 0 to 2000 oC/m1/2 . This

variation results in nominal temperature change of about 100 oC. It is assumed

49



that the resulting temperature range generates elastic deformation around the

crack-tip.

To plot the stresses described in the next section, the following fracture pa-

rameters are used: crack tip velocity c/cs=0.5, KID=100 MPa, KIID=0.2KID MPa

and keff=
√
KID +KIID

3.4.1 Variation of Stress Components Near the Crack Tip

The variation of stress field near the crack tip for the given thermo-mechanical

conditions can be represented in many different ways. In this paper, three major

stress components; circumferential tensile stress, maximum principal stress and

maximum shear stress are plotted as a function of angle around the crack-tip. The

variation of maximum shear stress (τmax) for a typical fixed value of Keff/
√

2πr

and constant crack tip velocity (c/cs = 0.5) is plotted as shown in Fig. 3.2. is

plotted for different temperature fields around the crack-tip. The angle at which

maximum shear stress occurs changes with temperature and non homogeneity pa-

rameter. Angular variation of the maximum principal stress and circumferential

tensile stress with fixed value of and constant crack tip velocity (c/cs = 0.5) are

plotted in Fig. 3.3 and Fig. 3.4. Similar trend as seen for maximum shear stress

is observed in both the figures and the values and the angle at which the max-

imums occur change with temperature and non-homogeneity parameters. The

results obtained in the present study collapse to the ones given by Freund [18] for

homogeneous materials without temperature fields (q0 = 0) if mode-I and mode-II

fields are separated and plotted.

3.4.2 Crack Extension Angle

A dynamically moving crack tends to deviate from its path due to crack tip

instability conditions. In the present study, using the derived thermo-mechanical
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Figure 3.2. Variation of normalized maximum shear stress with angle around the
crack-tip for mixed mode thermo-mechanical loading in a FGM for several values
of temperature coefficients (KIID/KID = 0.2, c/cs = 0.5, r = 0.002m).
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Figure 3.3. Variation of normalized the largest principal stress with angle around
the crack-tip for mixed mode thermo-mechanical loading in a FGM for several
values of temperature coefficients (KIID/KID = 0.2, c/cs = 0.5, r = 0.002m).
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Figure 3.4. Variation of normalized circumferential stress with angle around the
crack-tip for mixed mode thermo-mechanical loading in a FGM for several values
of temperature coefficients (KIID/KID = 0.2, c/cs = 0.5, r = 0.002m).
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stress field equations, the effect of temperature, crack-tip velocity and material non-

homogeneity on the crack instability is presented. The theoretical prediction of

crack extension angle is investigated by using the two well-known fracture criterias:

minimum strain energy density (S-criterion) and maximum circumferential stress

(σθθ -criterion).

Minimum strain-energy density (MSED) criterion

According to this criterion [21], the crack initiates when the strain energy density

achieves a critical value and propagates in the direction of minimum strain-energy

density value. The strain energy density dW/dV near the crack tip for an FGM is

given as

dW

dV
= S =

1

4µeζx
(
(1− ν)

(
σ2
xx + σ2

yy

)
− 2νσxxσyy + σ2

xy

)
(3.50)

Fracture takes place in the direction of minimum S, and the condition can be

obtained by using Eq.(37)

∂S

∂θ
= 0,

∂2S

∂θ2
> 0 at S = Sc (3.51)

where Sc is the critical strain energy density

Variations of strain energy density with angle θ from −π to π around the crack-

tip for mixed mode thermo-mechanical loading in an FGM for several values of

the temperature coefficient are plotted in Fig. 3.5. The angle at which the strain

energy density reaches a minimum value changes with temperature and the non-

homogeneity parameter.

Maximum circumferential-stress (MCS) criterion

The maximum circumferential stress criterion [22] states that, crack growth will

occur in the direction of the maximum circumferential stress and will take place

when the maximum circumferential stress reaches a critical value, and it can be
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Figure 3.5. Variation of strain energy density with angle around the crack-tip for
mixed mode thermo-mechanical loading in FGM subjected to different temperature
fields (KIID/KID = 0.2, c/cs = 0.5, r = 0.002m).
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given as Eq.3.52

∂σθθ
∂θ

= 0,
∂2σθθ
∂θ2

< 0 at σθθ = (σθθ)c (3.52)

where (σθθ)c is the critical circumferential stress

Variations of circumferential stress with angle θ around the crack-tip for mixed

mode thermo-mechanical loading in an FGM for several values of temperature co-

efficients are plotted in Fig. 3.6. The angle at which the circumferential stress

reaches a maximum value changes with temperature and non-homogeneity param-

eter.

Based on the above two criteria’s, the effects of velocity, non-homogeneity and

temperature on the crack extension angle (θ) are further investigated.

Effect of Crack Tip Velocity

The crack extension angles as a function of crack tip velocities as predicted

by the above two criterias are shown in Fig. 3.7. For pure mode-I loading

(KIID/KID = 0), the crack extends along until the crack tip velocity reaches a

critical value at which instability occurs [23]. When the crack tip velocity reaches

the critical value, the crack deviates and extends to a different angle. For example

at a crack tip velocity of c/cs = 0.7, the MSED criterion predicts a crack extension

angle of about −55o and the MCS criterion predicts about −38o. On the other

hand, as the value of KIID/KID increases from 0 to 1 and later from 1 to ∞ the

crack extension angle increases monotonically. Broek [24], in his book gives the

crack extension angles for mixed mode quasi static loading and these results match

well with the predictions from the current study.

Effect of Non-homogeneity

The effect of non-homogeneity parameter on crack extension angle for a crack

tip velocity of 0.5cs at room temperature (q0 = 0) is shown in Fig. 3.8. For both
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Figure 3.6. Variation of normalized circumferential stress with angle around the
crack-tip for mixed mode thermo-mechanical loading in FGM subjected to different
temperature fields (KIID/KID = 0.2, c/cs = 0.5, r = 0.002m).
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(a) Minimum strain energy density criterion

(b) Maximum circumferential stress criterion

Figure 3.7. Crack extension angle as a function of crack tip velocity for mixed
mode thermo-mechanical loading in homogeneous material (ζ =0, r=0.002m).
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(a) Minimum strain energy density criterion

(b) Maximum circumferential stress criterion

Figure 3.8. Crack extension angle as a function of non-homogeneity parameter for
mixed mode crack without heat (c/cs=0.5, r=0.002m).
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homogenous material (i.e. ζ = 0 ) and a FGM with increasing stiffness in the

direction of crack growth (i.e. ζ > 0), the MCS criterion provides a maximum

value and the MSED criterion provides a minimum value along θ = 0 under pure

mode-I loading (KIID/KID = 0). However, for a FGM with decreasing stiffness in

the direction of crack growth (i.e. ζ < 0 ), the MCS criterion provides a maximum

value at angle of about −55o and the MSED criterion provides minimum value at

angle of about −28o. It can be also observed that, for complete range of KIID/KID

values, a FGM with α < 0 has larger crack extension angle compared to both

homogenous and a FGM with α > 0. This might be attributed to presence of

compliant material ahead of the crack tip and the propagating crack needs less

energy to be unstable.

Effect of Temperature

The effect of temperature field on the crack extension angle for a crack tip

velocity of 0.5cs is shown in Fig. 3.9. Both the criterion show that, for homogeneous

material, the crack extension direction at room temperature is along θ = −30o and

the value decreases slowly with increase in applied temperature field. For FGM

with α > 0, the crack extension angle is along θ = −15o at room temperature and

again the value decreases with increase in applied temperature field. In the case of

FGM with α < 0, the crack extension angle is about−50o at room temperature and

increases in magnitude as the temperature increases. The increased temperature

field increases the compliance of the already compliant material (in case ofα < 0)

and hence the propagating crack needs less energy to cause instability.

Effect of Crack Tip Velocity, Temperature and Non-homogeneity

The effects of temperature on the crack extension angle as a function of crack

tip velocity in homogeneous material, a FGM with α > 0 and a FGM with α < 0
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(a) Minimum strain energy density criterion

(b) Maximum circumferential stress criterion

Figure 3.9. Effect of temperature on the crack extension angle for mixed mode
loading in FGM (KIID/KID = 0.2, c/cs = 0.5, r = 0.002m).
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are plotted in Figs. 3.10, 3.11 and 3.12. Figure 3.10 represents crack extension

angle as a function of crack tip velocity for mixed-mode mechanical loading in

homogeneous material at room and elevated temperatures. For a crack tip velocity

of c/cs = 0.3, both the criterions predict decrease in crack extension angle for

increasing temperature fields. Furthermore, for c/cs > 0.3, both criterions initially

predict decrease in crack extension angle for increasing temperature field and show

insignificant change at higher velocities.

Figure 3.11 represents crack extension angle as a function of crack-tip velocity

at room and at elevated temperatures for mixed mode mechanical loading in FGM

with α > 0. For a crack tip velocity of c/cs = 0.3, the MSED criterion predicts a

single value of θ = 0o. However for the same crack tip velocity, the MCS criterion

predicts different crack extension angles for different temperature fields. Again

similar to Fig. 3.10, for c/cs > 0.3, FGM with α > 0 the crack extension angle

decreases as the temperature increases. However, as the crack velocity increases

the difference in crack extension angles becomes less and less.

Figure 3.12 represents crack extension angle as a function of crack-tip velocity

in the direction of crack growth at room and at elevated temperatures for mixed

mode mechanical loading in FGM with α < 0 . The variation of crack extension

angle in Fig. 3.12 shows significantly different trend compared to the above two

cases. Both criterions predict different crack extension angles at c/cs = 0.3 for

different temperature fields. As the velocity increases, the crack extension angle

initially decreases and then increases. It is quite contrasting to above two cases

that for any crack tip velocity, higher the temperature higher the crack extension

angle. The different trend predicted for FGM with α < 0 might be again attributed

to compliant material ahead of the propagating crack tip.

Previous work in literature states that the critical velocity at which the crack
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(a) Minimum strain energy density criterion

(b) Maximum circumferential stress criterion

Figure 3.10. Crack extension angle as a function of crack tip velocity for mixed
mode thermo-mechanical loading for homogenous material (KIID/KID = 0.2, ζ =
0, r = 0.002m).
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(a) Minimum strain energy density criterion

(b) Maximum circumferential stress criterion

Figure 3.11. Crack extension angle as a function of crack tip velocity for mixed
mode thermo-mechanical loading at different temperature (KIID/KID = 0.2, ζ =
0.4, r = 0.002m).
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(a) Minimum strain energy density criterion

(b) Maximum circumferential stress criterion

Figure 3.12. Crack extension angle as a function of crack tip velocity for mixed
mode thermo-mechanical loading at different temperature (KIID/KID = 0.2, ζ =
−0.4, r = 0.002m).
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instability starts in running cracks depends on the extent of non-singular stress

fields at the crack-tip [18]. It is noted from the derived equations that stress-field

terms associated with non- homogeneity and temperature field are non-singular

and this could be the reason why the crack extension angle is different for different

non-homogeneity parameters and temperatures. However, the non-homogeneity

parameter has more significant role in the crack extension angle compared to the

effect of temperature field.

3.5 Summary

The stress-fields near the crack tip for mixed mode thermo-mechanical load-

ing in graded material are developed using displacement potentials in conjugation

with an asymptotic approach. Using insulated crack face boundary condition and

steady state heat conduction assumption, first the temperature field near to the

crack tip is developed. By incorporating the developed temperature field into the

mechanical field, the thermo-mechanical stress fields near to the crack tip are devel-

oped. Using the developed equations, angular variation of maximum shear stress,

circumferential stress and the largest principal stress are plotted as a function of

temperature around the crack-tip. Using both minimum strain energy density cri-

terion and maximum circumferential stress criterion, the crack instability direction

for various crack-tip speeds and non-homogeneous coefficients is also determined.
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CHAPTER 4

Dynamic Constitutive Behavior of Ti/TiB FGM under Thermo-
Mechanical Loading

4.1 Abstract

An experimental investigation is conducted to evaluate the thermo-mechanical

constitutive behavior of a functionally graded material (FGM) under dynamic

loading. Cylindrical specimens are machined from titanium / titanium mono-

boride (Ti/TiB) layered FGM plate using electrical discharge machining (EDM).

A Split Hopkinson Pressure Bar (SHPB) apparatus with infrared spot heaters is

used to investigate the effect of temperature on mechanical response of the FGM

material. A series of experiments are conducted at different temperatures and

the stress strain relation for different temperatures is obtained. The material

showed high thermal softening at elevated temperature resulting in a reduction in

compressive strength and an increase in failure strain.

4.2 Introduction

FGMs are materials, which have continuously or discreetly varying mechanical

and thermal properties in a specific direction. Ideally, by grading the composition

from one surface to another, it is possible to create a material suitable for a par-

ticular application. This type of material was first proposed in Japan in 1987 for

space access vehicles that can operate reliably in combined thermal and mechan-

ical loadings. Typically, FGMs are made of a metal and a ceramic as opposite

faces with the intermediate zones consisting of varying volume fractions of con-

stituents. Titanium / titanium mono-boride (Ti/TiB) is one of the FGM which

is currently in use. This material consists of the desirable properties of ceramic,

such as hardness, corrosion resistance, and high melting temperature, without los-
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ing the required properties of metallic titanium, such as good fracture toughness,

machinability and weldability.

For efficient design of structures using FGM materials a fundamental under-

standing of the properties of FGM materials at different loading conditions is

required. To date research on FGM materials has focused mostly on quasi-static

problems with very few studies in the dynamic regime. Also, most of the mechanics

studies relate to crack problems. Delale and Erdogan [1], Eischen [2] and Jin and

Noda [3] solved crack problems for non-homogeneous materials under quasi-static

mechanical loading. All these investigations concluded that the inverse-square

root singularity at the crack is not affected by nonhomogeneity. For propagating

cracks in FGMs, Parameswaran and Shukla [4] and Chalivendra et al. [5] devel-

oped the structure of the first stress invariant and the out of plane displacement. In

their study they brought out the effects of nonhomogeniety through an asymptotic

analysis. Lee [6] developed nonhomogeneity specific terms for individual stress

and displacement components using displacement potentials. Recently, Shukla

and Jain [7] and Chalivendra and Shukla [8] developed transient field equations

for cracks propagating at arbitrary velocities. Chalivendra [9] developed an asymp-

totic analysis of the transient out of plane displacement fields for a curved crack

propagating at arbitrary velocity in FGMs. A review paper by Shukla et al. [10]

presents a comprehensive summary of dynamic fracture studies in FGM’s.

There are few studies related to the stress and displacement fields due to ap-

plied loads in graded materials, For instance Wang et al. [11] present the solution

for displacements and stresses in an FGM subjected to a vertical point load in

a continuously inhomogeneous transversely isotropic half-space with Young’s and

shear moduli varying exponentially with depth. Horgan and Chan [12] investigate

the effects of material inhomogeneity on the response of linearly elastic isotropic
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hollow circular cylinders under uniform internal or external pressure. Li et al. [13]

examined the mechanical behavior of layered plates made of metal-ceramic com-

posites with the volume fraction of ceramic reinforcement varying through thick-

ness direction under impulse loading. Chi and Chung [14] studies the mechanical

behavior of functionally graded material plate under transverse loading.

There are very few studies on the properties of FGM under thermal or thermo-

mechanical loading. Jain et al. [15] developed the stress field equations for quasi

static cracks under thermo-mechanical loading in FGM’s. Praveen and Reddy [16]

carried out the nonlinear transient analysis of stress and deflection for a function-

ally graded ceramic-metal plate under thermal loading by using the finite element

method (FEM). They found that the response of the plates with material properties

between those of the ceramic and metal is not intermediate to the response of the

ceramic and metal plates. Dai et al. [17] also presented thermo-mechanical anal-

ysis of deflections under different loadings in FGM plates containing distributed

piezoelectric sensors and actuators using element-free Galerkin method.

In this paper an experimental investigation on the dynamic constitutive be-

havior of Ti/TiB FGM under thermo-mechanical loading is presented. SHPB

apparatus with infrared spot heating system is used to investigate the constitutive

properties of the FGM at different temperatures. The material exhibited thermal

softening at higher temperatures, which results in a decrease in flow stress and an

increase in failure strain. The effect of machining conditions on the constitutive

behavior is also demonstrated in these experiments.

4.3 Material and Specimen Geometry

The layered (Ti/TiB) functionally graded material used in this study is sup-

plied by BAE Systems in the form 3.175 mm thick plates. Hill et al. [18] have

explained the fabrication technique for this material and their procedure is pre-
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sented below. Tape cast layer composed of varying mixtures of titanium and

titanium diboride powders are placed on top of commercially pure titanium metal

plate. The assembled laminate is hot pressed at 1578 K at a pressure of 12.8 MPa.

In order to facilitate densification at this temperature, a proprietary sintering aid-

containing nickel is added to the starting powders. This material creates a liquid

phase at 1215 K that also catalyzes the reaction of titanium and TiB2 to form TiB

with virtually no residual TiB2. The resulting FGM is composed of seven layers

ranging from pure Ti on one side to 85% TiB on the other [18]. The material used

in our studies shows no clear or distinct interface between the layers as shown in

Fig. 4.1. Table 4.1 shows the composition and the physical properties of each layer

of the FGM as provided by the vendor and [18].

Figure 4.1. Scanning electron microscope image of layer 1 (TiB 0%), layer 2 (TiB
15%) and layer 3 (TiB 30%).

Cylindrical specimens with diameter of 7.62 mm and thickness of 3.175 mm are

machined from the FGM plate discussed above. An electrical discharge machining

(EDM) technique is used to machine the specimens. The thickness of the specimen

is selected from the available FGM plate thickness, where as the diameter of the

specimen is selected based on the SHPB theory to assure uniform loading and

constant stain rate. The first batch of specimens is machined using wire EDM and
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Table 4.1. Composition and elastic properties of Ti/TiB FGM

Layer no. Vol. %Ti Vol. %
TiB

Thickness
(mm)

E (GPa) ν

1 100 0 0.2032 106 0.340
2 85 15 0.3810 170 0.278
3 70 30 0.3810 227 0.238
4 55 45 0.3810 262 -
5 40 60 0.3810 289 -
6 25 75 0.3810 303 0.152
7 15 85 1.0668 316 0.140

cooled by flooding (Fig. 4.2a). The second batch of specimens is machined with

wire EDM with the material fully immersed in coolant (Fig. 4.2b).

Figure 4.2. Wire EDM machined specimens (a) cooled by flooding, (b) cooled by
fully immersing in coolant.

4.4 Experimental Procedure

SHPB apparatus with infrared spot heaters is used to investigate the dynamic

behavior of Ti/TiB FGM at room and at elevated temperatures. In the present

study, the technique used by Lennon and Ramesh, [19] and Shazly et al. [20] is

adapted. The schematic description of the SHPB in our lab is shown in Fig. 4.3

and the set-up with infrared (IR) spot heaters is shown in Fig. 4.4. The IR spot

heaters have a circular cut shields that can concentrate a heat flux as high as 650
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watts per 6.45 square centimeters at the focal point with a 6.35 mm diameter.

The bars are made up of 12.7 mm diameter marraging steel having nominal yield

strength of 2500 MPa. The striker bar is 101.6 mm long, while the incident and

transmitter bars are 1.27 m long. The striker bar is propelled using an air-operated

gun. Two strain gages are placed on both the incident and the transmitter bar at

equal distance form the bar-specimen assembly. These gages are placed at 1800 to

each other to avoid the bending effect on the strain data. The strain signals are

recorded using a Vishay 2301A signal-conditioning amplifier that connects with an

oscilloscope. The specimen is sandwiched between the two bars. However, during

the elevated temperature testing two-carbide inserts are placed between the two

bars and the specimen is sandwiched between the inserts. The inserts are used to

eliminate the temperature gradient in the bars. The inserts are impedance matched

to the bars and hence do not disturb the incident, transmitted and reflected wave

profiles. The insert and the bar are placed in a sleeve to assist in alignment.

The assembly of the carbide inserts with the specimen and the position of the

thermocouple is shown in Fig. 4.5.

For elevated temperature experiment, the specimen is heated up to the de-

sired temperature (usually about 30 oC - 40 oC higher than the test temperature)

and the bars are brought manually in contact with the inserts-specimen-inserts

assembly. The temperature of the specimen is monitored by 0.127 mm chromel-

alumel thermocouple, which is attached into the specimen using high temperature

epoxy. Digital camera is used to record the temperature reading and to monitor

the sequence of loading on the specimen. The exact temperature on the specimen

at which the load applied is found form the record. Boron nitride is used as the

lubrication between specimen-inserts and inserts-bar assembly for all elevated tem-
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Figure 4.3. Schematic of split Hopkinson pressure bar.

Figure 4.4. Split Hopkinson pressure bar with heater assembly.
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Figure 4.5. Specimen-carbide inserts, thermocouple and sleeves assembly.

perature experiments. In most of the experiments it takes less than two minutes

to heat the specimen to the required temperature. It takes less than 10 seconds to

bring the bars in contact with the specimen and fire the gun.

Using the above configuration a series of experiments was conducted. For all

experiments a clay pulse shaper is placed on the impact face of the incident bar.

The pulse shaper smoothes the relative sharp front of the incident stress wave,

thus allowing high strain-rate experiments to be conducted at near constant strain

rates [20]. This also helps the premature failure of the relatively brittle Ti/TiB

FGM, especially during the early part of stress wave loading [20]. A typical strain

record from one of the experiment is shown in Fig. 4.6.

4.5 Results and Discussion
4.5.1 Stress-strain Relation

A series of eight experiments is conducted at four different temperatures on

specimens machined by wire EDM and cooled by flooding. The stress strain curves

obtained from the dynamic experiments with strain rate of about 3± 103 per sec

are shown in Fig. 4.7. The stress-strain curves show a monotonic increase till

failure is reached. In all these experiments failure was achieved. The unloading

part of the curves after failure is not meaningful. At room temperature a failure

stress of 2150 MPa and a failure strain of 1.4 % is observed. As the temperature
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Figure 4.6. Typical strain pulse profiles obtained during an experiment.
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increases a reduction in the failure stress and an increase in the failure strain is

observed. For example at 600 oC a failure stress of 910 MPa and a failure strain

of 2.6 % is observed. In all the room temperature experiments the specimens fail

completely leaving small fragments as shown in Fig. 4.8. It was also observed

that the fragmentation process even at room temperature was associated with a

flash of light. A typical flash of light during failure was recorded using a digital

camera and is shown in Fig. 4.9. The occurrence of flash led us to believe that high

residual stresses were present in the material and these could have been created

during the machining process. The material fabrication technique is believed to

create a relatively stress free material. The coloration on the edge of the specimen

shown in Fig. 4.2a indicates a heat-effected zone generated during machining by

wire EDM.

Figure 4.7. True stress-True strain curve as a function of temperature (specimen
cooled by flooding during EDM).

To investigate the effect of machining technique on the behavior of the ma-

terial another batch of sample was machined using EDM with the material fully
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Figure 4.8. A typical failed specimen at room temperature under dynamic loading.

Figure 4.9. A flash of light produced during room temperature dynamic experiment
of specimen machined by EDM and cooled by flooding.
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immersed in the coolant. A series of eight experiments was again conducted using

these specimens at four different temperatures. Figure 4.10 shows the dynamic

compressive stress strain curve of the materials at different temperatures. At room

temperature a failure stress of 3050 MPa and a failure strain 0f 1.2 % is obtained.

As the temperature increases, the ductility of the material increases and results in

an increase in the failure strain and a decrease in failure stress. For example, at

the testing temperature of 730 oC a failure stress of 2300 MPa and a failure strain

of 2.6 % are observed and at 800 oC a failure stress of 2100 MPa and a failure

strain of 3.4 % are obtained. There was no flash of light observed during testing of

these specimens. Figure 4.11 shows the effect of temperature on the failure stress

Figure 4.10. True stress - True stain curve as a function of temperature (specimen
fully immersed in coolant during EDM).

of Ti/TiB for both the machining cases considered. Both the curves show similar

trend that the failure stress decreases as the temperature increase. In the case of

specimen machined by EDM and cooled by flooding the failure stress at 600 oC

is reduced by 54 % compared with the room temperature failure stress. For fully
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immersed cooling EDM specimen the failure stress at 800 oC is reduced by 30 %

compared with the room temperature failure stress.

Figure 4.11. Failure stress as a function of temperature.

4.5.2 Post Failure Analysis

Photographs of the fracture specimen were taken for post failure analysis. In

all the room temperature experiments the specimens fractured completely, leaving

small fragments as shown in Fig. 4.8. However in the case of high temperature ex-

periments the specimens fracture leaving the fragments loosely bonded as shown in

Fig. 4.12. This indicates at higher temperature the material is thermally softened

and shows a ductile failure. Figure 4.13 shows a micrograph image of fragment

from a room temperature experiment. From the figure it is observed that the
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cracks run predominantly in the loading direction, which is perpendicular to the

interface of layers, indicating the bonding of the interface is strong. Scanning

Figure 4.12. Typical failed specimen during dynamic loading at elevated temper-
ature.

Electron Microscopic (SEM) images were taken of the fractured specimens tested

at four different temperatures. Figure 14 shows SEM images of four high temper-

ature specimens taken at a magnification of 1000. The post mortem examination

of the failed specimens showed that at room temperature and at 460 oC the spec-

imens fracture by cleavage (Fig. 4.14a and Fig. 4.14b). The fracture surfaces from

specimens tested at temperatures of 730 oC and 800 oC are shown in Fig. 4.14c

and Fig. 4.14d respectively, and both of them indicate a ductile failure mode. A

number of large smooth surfaces observed in Fig. 4.14c and Fig. 4.14d are believed

to have been caused by plastic shear [21]. These smooth surfaces are shown at

higher magnification (5000 times) in Fig. 4.15a and Fig. 4.15b.

4.6 Summary

The dynamic constitutive behavior of Ti/TiB FGM under thermo-mechanical

loading is investigated. SHPB apparatus along with spot heaters is utilized to
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Figure 4.13. Typical fracture surface of Ti/TiB specimen.

study the dynamic constitutive behavior of the material in the temperature range

from 25 oC to 800 oC. The findings are summarized and presented as follows:

• There are no distinct interfaces between the layers of the FGM material

investigated. The bonds between the layers are strong and the cracks run

predominantly perpendicular to the layers during fracture.

• Samples cut by wire EDM and cooled by flooding and tested at 25 oC show a

failure stress of 2150 MPa and a failure strain of 1.4 %. At 600 oC the same

sample type shows a failure stress of 910 MPa and a failure strain of 2.6 %.

This represents a 54 % reduction in failure stress and an 85 % increases in

failure strain.

• Fully immersed cooled EDM specimens tested at 25 oC show a failure stress

of 3050 MPa and a failure strain of 1.25 %. At 800 oC a failure stress of

2100 MPa and a failure strain of 3.4 % is observed. This represents a 30 %

reduction in failure stress and a 125 % increase in failure strain.
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Figure 4.14. SEM images, at a magnification of 1000, of fracture surface of four
different specimens tested at four different temperatures.
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Figure 4.15. SEM images, at a magnification of 5000, of fracture surface of speci-
mens tested as two different temperatures.

• The FGM material showed thermal softening at higher temperature with

a decrease in failure stress and an increase in failure strain for both the

machining cases considered.

• The specimens machined from fully immersed cooling EDM show superior

compressive strength at room and at elevated temperature when compared

to sample machined by EDM with flooding. This is due to the presence of

residual stresses in the specimens that were not fully immersed for cooling

during machining.

• The post mortem SEM images indicate cleavage type failure in specimens

tested at 460 oC and below. The failure mechanism changes to ductile at

higher temperatures.

List of References

[1] F. Delale and F. Erdogan, “The crack problem for a nonhomogeneous plane,”
J. Appl. Mech., vol. 50, p. 6780, 1983.

85



[2] J. Eischen, “Fracture of nonhomogeneous materials,” International Journal
of Fracture, vol. 34 (3), p. 322, 1987.

[3] Z. Jin and N. Noda, “Crack-tip singular fields in nonhomogeneous materials,”
J. Appl. Mech., vol. 61, pp. 738–739, 1994.

[4] V. Parameswaran and A. Shukla, “Crack-tip stress fields for dynamic fracture
in functionally gradient materials,” Mechanics of Materials, vol. 31, pp. 579–
596, 1999.

[5] A. Chalivendra, V. B. Shukla and V. Parameswaran, “Dynamic out of plane
displacement fields for an inclined crack in graded materials,” Journal of Elas-
ticity, vol. 69, pp. 99–119, 2002.

[6] K. H. Lee, “Characteristics of a crack propagating along the gradient in func-
tionally gradient materials,” Int. J. of Solids and Structures, vol. 41, pp.
2879–2898, 2004.

[7] A. Shukla and N. Jain, “Dynamic damage growth in particle reinforced graded
materials,” International Journal of Impact Engineering, vol. 30, p. 777803,
2004.

[8] V. B. Chalivendra and A. Shukla, “Transient elastodynamic crack growth
in functionally graded materials,” Journal of Applied Mechanics, vol. 72, p.
23727, 2005.

[9] V. B. Chalivendra, “Asymptotic analysis of transient curved crack in function-
ally graded materials,” International Journal of Solids and Structures, vol. 44,
p. 465479, 2007.

[10] N. Shukla, A. Jain and R. Chona, “A review of dynmaic fracture studies in
functionally graded materials,” Strain, vol. 43, pp. 76–95, 2007.

[11] C. S. P. E. Wang, C. D. Tzeng and J. J. Lio, “Displacements and stresses due
to a vertical point load in an inhomogeneous transversely isotropic half-space,”
International Journal of Rock Mechanics and Mining Science, vol. 40(5), pp.
667–685, 2003.

[12] C. O. Horgan and A. M. Chan, “The pressurized hollow cylinder or disk prob-
lem for functionally graded isotropic linearly elastic materials,” J. Elasticity,
vol. 55, pp. 43–59, 1999.

[13] K. T. Li, Y. Ramesh and E. Chin, “Dynamic characterization of layered and
graded structures under impulsive loading,” International Journal of Solids
and Structures, vol. 38(34-35), pp. 6045–6061, 2001.

86



[14] S. H. Chi and Y. L. Chung, “Mechanical behavior of functionally graded
material plates under transverse load part i: Analysis,” Int. J. Solids. Struct.,
vol. 43, pp. 3657–3674, 2006.

[15] R. Jain, N. Chona and A. Shukla, “Asymptotic stress fields for thermome-
chanically loaded cracks in fgmsn,” Journal of ASTM International, vol. 3(7),
2006.

[16] G. N. Praveen and J. N. Reddy, “Nonlinear transient thermoelastic analysis
of functionally graded ceramic-metal plates,” Int. J. Solids Structure., vol. 35,
pp. 4457–4476, 1998.

[17] G. H. X. Dai, K.Y. Liu and K. Lim, “Thermomechanical analysis of func-
tionally graded material (fgm) plates using element-free galerkin method,”
Computers and Structures, vol. 83, p. 14871502, 2005.

[18] R. P. G. M. Z. Hill, M. Carprnter and J. Gibeling, “Fracture resistance testing
of monolithic and composite brittle materials,” in ASTM STP 1409, 2002.

[19] A. M. Lennon and K. T. Ramesh, “A technique for measuring the dynamic be-
havior of materials at high temperatures,” International Journal of Plasticity,
vol. 14, p. 12791292., 1998.

[20] V. Shazly, M. Prakash and S. Draper, “Mechanical behavior of gamma-met
px under uniaxial loading at elevated temperatures and high strain rates,”
International Journal of Solids and Structures, vol. 41, pp. 6485–6503, 2004.

[21] “Metals handbook, fractography and atlas of fractographs, asm vol. 9, eighth
edition, 1974.”

87



CHAPTER 5

Quasi-Static and Dynamic Fracture Initiation Toughness of Ti/TiB
Layered Functionally Graded Material under Thermo-Mechanical

Loading

5.1 Abstract

Quasi-static and dynamic fracture initiation toughness of Ti/TiB layered

Functionally Graded Material (FGM) is investigated using a three point bend

specimen. The modified split Hopkinson pressure bar (SHPB) apparatus in con-

junction with induction coil heating system is used during elevated temperature

dynamic loading experiments. A simple and accurate technique has been devel-

oped to identify the time corresponding to the load at which the fracture initiates.

A series of experiments are conducted at different temperatures ranging from room

temperature to 800 oC, and the effect of temperature and loading rate on the frac-

ture initiation toughness is investigated. The material fracture toughness is found

to be sensitive to temperature and the fracture initiation toughness increases as the

temperature increases. Furthermore, the fracture initiation toughness is strain rate

sensitive and is higher for dynamic loading as compared to quasi-static loading.

5.2 Introduction

An experimental investigation is conducted to research quasi-static and dy-

namic fracture initiation toughness of Ti/TiB FGM under thermo-mechanical

loading. Ti/TiB is a commercially available metal/ceramic FGM that has been

proposed for many different applications. The basic idea behind the design of

metal/ceramic FGMs is to reduce the problem associated with the low toughness

of ceramics. Hence the fracture toughness is the primary and limiting parameter

to design structures using metal/ceramic FGMs. Due to this fact, number of re-

searchers have studied theoretically the fracture behavior of FGMs. For example,
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Delale and Erdogan [1], Eischen [2] and Jin and Noda [3] solved crack problems

for non-homogeneous materials under quasi-static mechanical loading. All these

investigations concluded that the inverse-square root singularity at the crack is

not affected by non-homogeneity. Similarly, for propagating cracks in FGMs, the

theoretical studies concluded that the crack tip fields are similar to that of homoge-

nous material provided that the FGMs are continuous and piece-wise continuously

differentiable [4–6]. Jin and Batra [7] further studied the effects of quasistatic

loading conditions, specimen size and metal particle size on the crack growth re-

sistance curve (R-curve) and the residual strength of a ceramic-metal FGM using

crack-bridging concept.

On the other hand, there are very limited experimental studies on the fracture

behavior of metal/ceramic FGMs. Hill et al. [8] have studied the fracture behavior

of Ti/TiB FGM using single-edged-notched bend specimens and reported that the

pre-cracking method and residual stress have a significant effect on the measured

fracture toughness. The study is limited to room temperature and quasi-static

loading. The study by Kidane and Shukla [9] on the constitutive behavior of

Ti/TiB FGM confirmed that the material showed thermal softening at higher

temperatures and this resulted in a decrease in failure stress and an increase in

failure strain. But the fracture behavior of Ti/TiB under dynamic loading and at

elevated temperatures has not been investigated yet.

The purpose of this experimental study is to fill that gap and investigate the

effect of temperature and loading rate on the fracture initiation toughness of this

material. An experimental investigation on the fracture initiation toughness of

Ti/TiB under quasi-static and dynamic loading is conducted at different tempera-

tures ranging from room temperature to 800 oC. The fracture initiation toughness

is found to be temperature dependant, increases with raise in temperature, and
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Table 5.1. Composition and elastic properties of Ti/TiB FGM

Layer no. Vol. %Ti Vol. %
TiB

Thickness
(mm)

E (GPa) ν

1 100 0 0.4064 106 0.340
2 85 15 0.7620 170 0.278
3 70 30 0.7620 227 0.238
4 55 45 0.7620 262 -
5 40 60 0.7620 289 -
6 25 75 0.7620 303 0.152
7 15 85 2.1336 316 0.140

also loading rate dependant, higher at dynamic loading compared with quasi-static

loading.

5.3 Material and Specimen Geometry

The material used in this experimental study is a Ti/TiB FGM layered plate

supplied by BAE systems. It is a 7.36 mm thick pate with seven layers, no clear

or distinct interface between them, ranging from pure Ti on one side to 85 % TiB

on the other. The details of the fabrication technique and material properties can

be found in the literature [8, 9]. The thickness and the properties of each layer are

listed in Table 5.1.

Two different batches of three point bend specimens are machined, from the

FGM plate discussed above, using an electrical discharge machining (EDM) tech-

nique. The first batch of specimens is machined in such a way that the grada-

tion is in the thickness direction, i.e. the crack is perpendicular to the gradation

(Fig. 5.1a). The second batch of specimens is machined in such a way that the

crack is along the gradation direction (Fig. 5.1b). The thickness of the specimen

is selected from the available FGM plate thicknesses, where as the other dimen-

sions are determined based on ASTM Test Methods for Measurement of Fracture

Toughness (E1820-96). Due to the brittle nature of this material no fatigue pre-

crack was made. However, the crack was made using EDM wire of 0.0508 mm,
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Figure 5.1. Three point bend specimen (a) FGM graded in the thickness direction
(b) FGM graded in the crack direction (all dimensions are in mm)
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resulting in a very small notch root radius.

5.4 Experimental Procedure
5.4.1 Quasi-static Fracture Initiation Toughness

The quasi-static fracture initiation toughness is investigated using a three-

point bending experiment. The three point bend specimen is placed between the

loading bar and supporting block as shown in Fig. 5.2. The experiment is con-

ducted at different temperatures ranging from 25 oC to 800 oC. A tungsten carbide

loading tip is used to eliminate the deformation of the loading bar at higher tem-

perature. The specimen is heated to the desired temperature using an induction

heating system. The induction heater has a precise controller that enables us to

control the temperature to the desired value. The experiment is conducted under

a fixed loading rate of 1mm/min at room temperature. To avoid the creep effect

during elevated temperature, a loading rate of 5 mm/min is used.

Figure 5.2. Quasi-static three point bed experimental setup.
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5.4.2 Dynamic Fracture Initiation Toughness

A modified split Hopkinson pressure bar (SHPB) apparatus with induction

heating system is used to investigate the dynamic fracture initiation toughness

of Ti/TiB FGM. The modified SHPB is a well-developed method to study the

dynamic fracture initiation toughness of engineering materials. The principle of

modified SHPB is presented in brief and the detailed theory can be found in the

literature [10, 11]. The schematic of the modified SHPB apparatus is shown in

Fig. 5.3. As displayed in the figure, the apparatus mainly consists of an incident

bar, striker bar and pressure gun. To reduce the impendence mismatch between

the specimen and the incident bar, a T6061 aluminum material is used for the

incident bar. To generate a well-defined loading pulse, the same material that is

used for the incident bar is used for the striker bar. Two semiconductor strain

gages are attached in the middle of the incident bar diametrically opposite to one

another. The semiconductor strain gages are about 75 times more sensitive than

the foil type strain gages and are preferred to capture very small strain signals.

Figure 5.3. Schematic representation of modified SHPB apparatus with induction
heater.

During loading, the specimen is sandwiched between the incident bar and the

rigid frame. For an elevated temperature experiment, the bar is first kept apart

and the specimen is heated to the desired temperature (usually about 20 oC to 50

93



oC higher than the test temperature) and later the bar is brought manually into

contact with the specimen. The temperature of the specimen is monitored by 0.127

mm chromel-alumel thermocouple, which is spot welded onto the specimen. Once

the specimen is in contact with the incident bar, the striker bar is propelled towards

the incident bar using an air-operated gun. The impact generates a compressive

stress wave in the bar which propagates toward the bar/specimen interface. When

the wave reaches the specimen, some of the wave is reflected back and part of the

wave is transmitted into the specimen. The incident and reflected strain signals

are recorded using a Vishay 2301A signal-conditioning amplifier that is connected

with an oscilloscope. The load history at the specimen/bar interface is obtained

from the recorded strain data using a one dimensional elastic wave theory [10]

given by Eq. 5.1.

F (t) = (εi(t) + εr(t))EA (5.1)

where F is the force, εi and εr are the incident and reflected strain pulses, E is the

Young’s modulus, and A is the cross sectional area of the bar.

In order to avoid the transient effects all dynamic experiments are conducted

at a striker speed of 1.0 m/sec. When the time of fracture is sufficiently long, the

dynamic stress intensity factor can be calculated from the input load as

KI(t) =
F (t)

B
√
W
f
( a
W

)
(5.2)

where KI is the stress intensity factor, B the specimen thickness, W the specimen

width, a the initial crack length and f(a/W ) is a geometric factor.

The dynamic fracture initiation toughness (KID) corresponds to the stress

intensity factor at the time of crack initiation. i.e. KID = KI (tinitiation).

One of the challenges in the dynamic fracture initiation toughness experiment

is to find a method to accurately determine the crack initiation time. Researchers

[12–14] used a strain gage to detect the fracture-initiation time at high loading
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rate. Usually the gage is placed on the specimen near the crack tip, and when the

fracture initiates, the sudden decrease of strain as a function of time corresponds to

the crack initiation point. However, the time that the stress wave travels from the

crack tip to the strain gage has to be deducted to obtain the correct crack initiation

time. This is difficult in the case of materials with unknown stress wave speed. In

the present study, a simple and accurate technique is developed to identify the time

corresponding to the load required to initiate the crack. A conductive silver paint

is placed ahead of the crack tip on a non-conductive substrate, in the direction of

expected crack path. The paint is connected to a strain gage which is attached to

the loading bar at the same position where the two semiconductor strain gages are

located. When the fracture initiates, the sudden jump in the strain signal indicates

the crack initiation time, and this is used later to determine the load associated

with the fracture initiation time.

A schematic of strain signals from the semiconductor strain gages and the

foil type strain gage connected with the silver paint are shown in Fig. 5.4. In the

figure, t1 is the duration of the incident wave, t2 is the duration of the reflected

wave, t3 is the time required by the wave to travel from the location of the strain

gages to the bar-specimen interface and to return back to the location of the strain

gages and t is the total time duration starting from the wave passing the location

of the strain gages until the fracture occurs (silver paint broken). Hence, t3/2 is

the time required by the wave to travel from the location of the strain gages to the

bar-specimen interface. Therefore, ti = t - t3/2 is the time required to initiate the

fracture. Also the location of this time (ti) in the incident and reflected signal is

shown by the dotted.

Using the above configuration a series of experiments are conducted at dif-

ferent temperatures. For all experiments a pulse shaper is placed on the impact
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Figure 5.4. A schematic of strain signals from the semiconductor strain gages and
the foil type strain gage connected with silver paint.

face of the incident bar. The pulse shaper smoothes the relative sharp front of the

incident stress wave, thus allowing high strain-rate experiments to be conducted at

near constant strain rates [9]. This also helps the premature failure of the relatively

brittle Ti/TiB FGM, especially during the early part of stress wave loading [9].

5.5 Results and Discussions
5.5.1 Quasi-static Fracture Initiation Toughness of FGM Graded in

the Thickness Direction

Fig. 5.5 shows, a typical load history curve for a quasi-static three point bend

experiment of FGM graded in the thickness direction. From the plot, it can be

seen that there is a clear and well defined peak load at which the crack initiates.

The load history shown above represents the integrated structure resistance, not

the load in each separate layer. The fracture resistance across the thickness in

each layer may vary, as observed by Wadgaonkar and Parameswaran [15]. This

phenomenon is also observed from the failed specimen subjected to quasi-static

loading shown in Fig. 5.6. As shown in the figure, the fracture topography of the

surface is different from one end to the other. The fracture surface near the TiB
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rich layer is smooth and the surface near the Ti rich layer is rough. This indicates

that, the energy required to fracture the surface is different for the two extreme

ends, and the fracture may first start from the TiB rich end and later propagate

towards Ti rich side.

Figure 5.5. Typical load-time plot for FGM graded in the thickness direction under
quasi-static loading (25 oC).

However, the intention of the present study is to determine the fracture ini-

tiation toughness of the integrated structure, and not the fracture resistance of

each layer. Hence, the single load history obtained from the integrated structure

is used to calculate the fracture initiation toughness. By following a similar proce-

dure, a series of experiments are conducted, and the fracture initiation toughness

at different temperatures is obtained.

Fig. 5.7 shows the quasi-static fracture initiation toughness of FGM graded in

the thickness direction as a function of temperature. A total of three experiments

are conducted at each temperature and the bars indicate the range of values ob-

97



Figure 5.6. Typical failed specimen of FGM graded in thickness direction under
quasi-static loading (25 oC).

tained. The room temperature quasi-static fracture initiation toughness is about

4.75 ± 0.07 MPa m1/2 and the value increase to 10.43 ± 0.52 MPa m1/2 at 800

oC. The quasi-static fracture initiation toughness increases linearly as the test

temperature raises. It can be argued that at elevated temperature the material is

thermally softened and this results in an increase in fracture toughness.

5.5.2 Quasi-static Fracture Initiation Toughness of FGM Graded in
the Crack Direction

In this experiment the specimen is first pre-cracked to 2.54 mm from TiB rich

side, which means up to the middle of 75 % TiB and 25 % Ti layer, and the crack

is allowed to run towards Ti rich end as shown in Fig. 5.8. The crack is chosen

to start from the TiB side, as the fracture resistance of TiB is much lower than

that of Ti. Fig. 5.9 shows a typical load history curve for a quasi-static fracture

experiment at 25 oC. The figure displays a definite and clear peak load followed
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Figure 5.7. Effect of temperature on the fracture initiation toughness of FGM
graded in the thickness direction under quasi-static loading.

by yet another peak load that occurred after the decline of the first. The first peak

load corresponds to the load required to initiate the crack, in 75 % TiB and 25

% Ti layer, and the second peak load corresponds to the load required to crack

the next layer, i.e. 60 % TiB and 40 % Ti, which is 0.35 mm away from the

initial position of crack tip. Fig. 5.10 shows a typical fracture surface, investigated

at room temperature. From the figure it is clear where the second peak load

occurred. Furthermore, it is observed the fracture surface near to the TiB rich

layer is smooth and is rough towards the Ti rich side. Even though the crack has

already started at the first peak load, still more energy is required for the crack to

propagate to the next layer.

Fig. 5.11 shows a typical load time curve for a quasi-static fracture experiment

at elevated temperatures. Unlike the room temperature experiment, there is no

repeated peak load, the load decreased slowly after it reached the critical value.

From the load history it can be clearly seen that the temperature reduces the
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Figure 5.8. A schematic representation of crack on FGM specimen graded in the
crack direction.

Figure 5.9. Typical load-time plot for FGM graded in the crack direction under
quasi-static and room temperature loading (25 oC).
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Figure 5.10. Typical failed specimen of FGM graded in the crack direction under
quasi-static loading (25 oC).

brittleness of the material. For all the cases considered, the first peak load is used

to calculate the fracture initiation toughness.

Fig. 5.12 shows the fracture initiation toughness as a function of temperature

for FGM graded in the crack direction. A total of three experiments are conducted

at each temperature and the bars indicate the range of values obtained. The quasi-

static fracture initiation toughness at room temperature (25 oC) is about 3.75 ±

0.05 MPa m1/2 and increases to about 9.55 ± 0.44 MPa m1/2 at 800 oC. The

trend on the quasi-static fracture initiation toughness of FGM graded in the crack

direction is same as that of FGM graded in the thickness direction. With both, the

fracture initiation toughness increases consistently with an increase in temperature.

5.5.3 Dynamic Fracture Initiation Toughness of FGM Graded in the
Thickness Direction

A typical strain record from one of the dynamic experiments of FGM graded

in the thickness direction is shown in Fig. 5.13. The sudden jump in strain signal

from the strain gage, which was attached to the conductive silver paint, indicates
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Figure 5.11. Typical load - time plot for FGM graded in the crack direction under
quasi-static elevated temperature loading.

Figure 5.12. Effect of temperature on the fracture initiation toughness of FGM
graded in the crack direction under quasi-static loading.
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the crack initiation time. As shown in the figure, the crack initiates 140 µs after the

stress wave enters the specimen and this allows the wave to reverberate sufficiently

to create an equilibrium loading condition before the crack initiates. Fig. 5.14

Figure 5.13. Typical incident and reflected strain plot of FGM graded in the
thickness direction subject to room temperature dynamic loading.

shows the dynamic fracture initiation toughness of FGM graded in the thickness

direction as a function of temperature. A total of three experiments are conducted

at each temperature and the bars indicate the range of values obtained. At room

temperature the dynamic fracture initiation toughness is about 5.2 ± 0.20 MPa

m1/2 and about 11.96 ± 0.77 MPa m1/2 at 800 oC. It is also observed that the

fracture initiation toughness increases linearly with increase in temperature. This

can be attributed to the fact that, at higher temperature the material is softened

and results in increased fracture toughness. This phenomenon agrees with the

one observed by the authors in their previous study during the investigation of the

dynamic constitutive behavior of this material [9]. Fig. 5.15 shows the SEM images

of typical fracture surface of FGM graded in the thickness direction subjected to
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dynamic loading at different temperatures. The images are taken near the crack

tip at the Ti rich end. It can be seen that the fracture surface becomes more

ductile as the temperature increases.

Figure 5.14. Effect of temperature on the fracture initiation toughness of FGM
graded in the thickness direction under dynamic loading.

5.5.4 Dynamic Fracture Initiation Toughness of FGM Graded in the
Crack Direction

A typical strain signal obtained from the dynamic fracture experiment for

FGM graded in the crack direction is shown in Fig. 5.16. As discussed in the

previous section, the conductive silver paint is used to identify the load which

corresponds to the fracture initiation time. The fracture initiates after 60 µs

and this allowed the wave to reverberate about 20 times in the specimen before

crack initiates. This is sufficient to create an equilibrium loading condition before

the crack initiates. High speed digital imaging is also used to study the contact

history of the bar and specimen and the fracture process. Fig. 5.17 shows typical

high speed images taken during a dynamic fracture experiment of FGM graded in
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Figure 5.15. SEM images of typical fracture surface of FGM graded in the thickness
direction subjected to dynamic loading at different temperatures.
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the crack direction at a temperature of 800 oC. It can be clearly seen that the bar

is always in contact with the specimen during the failure process. Hence, the use

of load corresponding to the crack initiation time is justified in the calculation of

calculate the dynamic fracture initiation toughness.

Figure 5.16. Typical strain signal obtained from the dynamic fracture experiments
of FGM graded in the crack direction subjected to dynamic loading.

Fig. 5.18 shows the dynamic fracture initiation toughness as a function of

temperature for FGM along the crack direction. A total of three experiments are

conducted at each temperature and the bars indicate the range of values obtained.

A similar trend as observed in the previous batch of specimen is seen here, the

dynamic fracture initiation toughness increases with increase in temperature. At

room temperature the dynamic fracture initiation toughness is about 5.0 ± 0.07

MPa m1/2 and increases to 10.55 ± 0.85 MPa m1/2 at 800 oC. SEM images of the

micro structure at different temperatures at the crack tip (75 % TiB, 25 % Ti) are

shown in Fig. 5.19. Some evidence of stretching associated with material softening

appears at high temperatures.
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Figure 5.17. Typical high speed digital images of FGM graded in the crack direc-
tion subjected to dynamic loading at 800 oC.

Figure 5.18. Effect of temperature on the fracture initiation toughness of FGM
graded in the crack direction under dynamic loading.
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Figure 5.19. SEM images of typical fracture surface of FGM graded in the crack
direction subjected to dynamic loading at different temperatures.
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5.5.5 Effect of Loading Rate on the Fracture Initiation Toughness of
FGM

The quasi-static and dynamic fracture initiation toughness of FGM, through

the thickness direction and along the crack direction, as a function of tempera-

ture are shown in Fig. 5.20 and Fig. 5.21. In the figure, it is clear the fracture

initiation toughness is load rate dependant. The fracture initiation toughness at

all temperatures is higher in dynamic loading (2.5 MN/sec) as compared with the

corresponding quasi-static loading (100 N/Sec).

Figure 5.20. Effect of temperature on the fracture initiation toughness of FGM
graded in the thickness direction under quasi-static and dynamic loading.

5.6 Summary

The quasi-static and dynamic fracture initiation toughness of Ti/TiB FGM is

investigated under thermo-mechanical loading. A simple and accurate technique

has been developed to identify the time corresponding to the load at which the

crack initiates. The findings are summarized below:

• The fracture initiation toughness is temperature dependent, and it increases
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Figure 5.21. Effect of temperature on the fracture initiation toughness of FGM
graded in the crack direction under quasi-static and dynamic loading.

as the temperature increases. For FGM graded in the thickness direction,

as the temperature increase from room temperature to 800 oC, the quasi-

static fracture initiation toughness increased by 160 % and the dynamic

fracture initiation toughness increased by 130 %. For FGM graded in the

crack direction, as the temperature increased from room temperature to 800

oC, the quasi-static fracture initiation toughness increased by 154 % and the

dynamic fracture initiation toughness increased by 110 %.

• The fracture initiation toughness is rate dependent; it is higher at dynamic

loading as compared with quasi-static loading. For FGM graded in the thick-

ness direction, the room temperature fracture initiation toughness increased

by 30 % and the fracture initiation toughness at 800 oC increased by 15 % as

the loading rate increased from 100 N/sec to 2.5 MN/sec. For FGM graded

in the crack direction, the room temperature fracture initiation toughness

increased by 33 % and the fracture initiation toughness at 800 oC increased
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by 10 % for the same increasing in the loading rate.
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CHAPTER 6

Dynamic Crack Propagation in Transparent Functionally Graded
Material

6.1 Abstract

A model transparent graded materials is used to investigate the steady state

and transient crack propagation in a functionally graded material. A transparent

graded material was fabricated using two different materials systems of polymer

resin, which were cast using a special mold; to give continuously graded properties

along the crack propagation direction. High-speed digital photography combined

with photoelasticity technique is used to record the full-field stress data around the

propagating crack. By analyzing the photoelastic fringe patterns the propagation

velocity of the crack tip are obtained.

6.2 Introduction

In this study, dynamic fracture in transparent FGM has been investigated for

different crack configuration and specimen geometries to completely characterize

the behavior of a moving crack in FGMs. The specimen geometry used in this

study was Single Edge Notch Tension (SENT). Dynamic photoelastic studies along

with high-speed photography were applied to obtain full-field stress data for a

propagating crack in above-mentioned FGMs. The real time images were analyzed

to calculate the crack length, crack velocity and dynamic stress intensity factor.

FGMs are materials, which have continuously varying mechanical properties in a

specific direction. Even though FGM is a preferable material for different specific

applications, few studies are available on the dynamic fracture behavior of these

materials. This calls for further investigation of fracture behavior of FGM under

different loading conditions. Photoelasticity technique with high speed digital
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imaging system is one of the most widely used technique to study the fracture

behavior of materials and was used in this study.

Analytical work on functionally graded materials goes back as early as the

late 1960s when soil was modeled as a nonhomogeneous material by Gibson [1].

More recently, for propagating cracks in FGMs, Parameswaran and Shukla [2] and

Chalivendra et al. [3], developed the structure of the first stress invariant and the

out of plane displacement. In their study they brought out the effects of non-

homogeniety through an asymptotic analysis. Lee [4] developed nonhomogeneity

specific terms for individual stress and displacement components using displace-

ment potentials. A review paper by Shukla et al. [5] presents a comprehensive

summary of dynamic fracture studies in FGM.

In contrast there are only few experimental studies on the dynamic fracture of

FGM. Parameswaran and Shukla [6] used photoelasticity to investigate dynamic

fracture in FGMs with discrete property variation. Li et al. [7] have investigated

the quasi static fracture properties of FGM crated by selective ultraviolet (UV)

irradiation of a polymer. Rousseau and Tippur [8] studied the crack-tip defor-

mation in FGMs subjected to low velocity impact. Recently, Jain and Shukla [9]

investigated the transient crack growth behavior in FGM fabricated as a partic-

ulate composite with continuously varying particle volume fraction along a single

dimension.

Apart from a few studies reported above there is no sufficient experimental

work, explaining the stress fields near the crack tip. In this experimental study,

dynamic photoelasticity and high-speed digital imaging were used to study the

dynamic fracture behavior of FGM. The crack tip stress fields were recorded at

different time intervals. The crack velocity, acceleration and the dynamic stress

intensity factor have been calculated.
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6.3 Material and Specimen Preparation

A transparent graded material was fabricated and the mechanical properties

was determined, at Sangju National University, South Korea, using two different

materials systems of polymer resin. This was accomplished by pouring the two

resins in a specially prepared mold. Resin 1 was poured first in an inclined mold

and was let to cure till gelation occurred. Resin 2 was then poured at top of

Resin 1 and let to cure. These two polymers had different Young’s modulus,

different fringe constants but the same density. The resulting composite created

an inclined interface as shown in Fig. 6.1 and produced graded properties. The

Young’s modulus and Poisson’s ratio of these two resins were obtained using a

cross strain gage in tensile load. The stress fringe constant was determined using

a compressive diamond test. The materials and photoelasticity properties of these

resins are shown in Table. 6.1.

Figure 6.1. In-house fabricated typical SENT specimen: a) FGM with increasing
Young’s modulus in the direction of crack propagation, b) FGM decreasing in
young’s modulus in the direction of crack propagation (Dimensions W=127mm,
H/W=2, h/W=1.45)
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Table 6.1. Material properties of polymer resins

Polymer type Young’s
modulus
(GPa)

Poisson’s
ratio

Stress
fringe
constant
(kN/m)

Density
(ρ )

Resin 1 (hard) 2.45 0.38 17.30 1200
Resin 2 (soft) 0.46 0.50 5.10 1200

6.4 Experimental Procedure
6.4.1 Dynamic Fracture at Constant Velocity

A schematic of the photoelastic configuration used for studying dynamic crack

propagation is shown in Fig. 6.2. High-speed digital imaging was employed along

with dynamic photoelasticity to obtain real time, full-field quantification of the

dynamic failure process. Two circular polarizers were placed on either side of the

specimen to form a light-field circular polariscope. Power Light 2500DR xenon

flash lamps (Photogenic Inc.) were used as light sources to illuminate the speci-

men and a monochromatic filter was placed just before the camera to ensure that

the imaged isochromatic fringe patterns correspond to a single wavelength of light.

The isochromatic images were captured at preset time interval using an Imacon

200 ultra-high-speed digital camera. This CCD based camera provides 16 indepen-

dently programmable digital images of dynamic events up to a maximum framing

rate of 200 X106 frames/s. The camera has a facility to choose different range of

interframe times. Interframe times were chosen so as to ensure that the dynamic

fracture event was captured within the 16 frames.

Single Edge Notched Tension (SENT) specimens were machined from FGM

material prepared in the procedure explained above. A series of experiments was

conducted with two different SENT specimen geometries. The configurations con-

sidered in this study were (a) crack propagating towards increasing fracture tough-

ness direction, Fig. 6.1a and (b) crack propagating towards decreasing fracture
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Figure 6.2. Schematic configuration for dynamic photoelastic experiment of trans-
parent FGM
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toughness directions, Fig. 6.1b. During the experiment the specimens were stat-

ically loaded to a predetermined value of initiation stress intensity factor using

INSTRON 5585 apparatus. The crack was initiated by tapping a sharp razor

blade on the specimen notch. Upon initiation of crack, a conductive silver paint

lined near the crack tip in the direction of crack growth and connected with an

electronic circuit triggered a high-speed camera IMACON 200. The camera was

set to take photographs at a rate of 50,000 frames per second and an exposure

time of 200 ns. The camera recorded 16 frames of the crack propagation event (0-

400µs).

6.4.2 Transient Crack Propagation

Dynamic fracture in the FGM material explained above for transient crack tip

loading was also investigated. The modified SENT specimen shown in Fig. 6.3 was

used. The same experimental procedure as explained above was followed. However,

in this case the camera was set at a rate of 140,000 frames per sec. During loading,

first the crack propagates towards the circular hole and arrests until the load reach

its critical value to propagates into the second crack. Once again the load reach

the critical value it suddenly accelerates resulting in a transient crack propagation.

6.5 Results and Discussion
6.5.1 Crack tip velocity

Typical isochromatic fringes obtained from the dynamic fracture experiments

with constantly moving crack tip loading are shown in Fig. 6.4 and 6.5. From

isochromatic fringes shown above, it was observed that, there is a closure force act-

ing behind the crack tip. This can be clearly seen in the case of crack propagating

towards decreasing fracture toughness (increasing Young’s modulus) direction as

shown in Fig. 6.5. This is expected because at the left end of the specimen, the
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Figure 6.3. Modified SENT specimen for transient crack propagation in FGM
(Dimensions W=127mm, H/W=2, h/W=1.45, a1=12mm, a2= 5 mm, D=5 mm l
=20mm).
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beginning of the crack, the softer part of the material is thick and has a tendency

to stay together as the crack propagates through the harder layer. The crack tip

distance with the corresponding time is determined from the images. Using these

images the crack length as a function of time is plotted in Fig. 6.6. The data

is later used to determine the crack tip velocity as a function of time as shown

in Fig. From these figures it can be seen that for both the cases, for increasing

and decreasing stiffness in the crack propagation direction, the crack velocity is

constant and about 350 m/s.

Figure 6.4. The dynamic isochromatic fringes at the crack tip for FGM with
decreasing Young’s modulus along the crack propagating direction. Time interval
between each frame is 20 s

Typical isochromatic images obtained from the dynamic fracture of transient

crack propagation loading experiments are shown in Fig. 6.7. Using these images,

the crack length and velocity as a function of time is calculated and plotted as
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Figure 6.5. The dynamic isochromatic fringes at the crack tip for FGM with
increasing Young’s modulus along the crack propagating direction. Time interval
between each frame is 20 s

Figure 6.6. Crack length and velocity as a function of time for linearly varying
FGM under dynamic loading
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shown in Fig. 6.8. It is observed that the crack tip velocity increases at high

acceleration until it reaches a maximum of 550 m/s and 470 m/s for increasing

and decreasing stiffness respectively. Then the velocity oscillates with an average

value of 300 m/s for the rest of crack propagation event.

Figure 6.7. The dynamic isochromatic fringes for transient crack propagation
on FGM with increasing Young’s modulus along the crack propagating direction.
Time interval between each frame is 7 s

6.5.2 Dynamic Stress Intensity Factor

The isochromatic fringes obtained during the dynamic experiment were used

to extract the dynamic stress intensity factors. It can be seen that the isochro-

matics are symmetric about the crack plane, which indicates the opening mode

(mode I) dominant loading at the crack-tip. In the present analysis, the dynamic

stress fields for FGM with linearly varying properties developed by Lee [4] is used.
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Figure 6.8. Crack length and velocity as a function of time for linearly varying
FGM under transient dynamic loading

Isochromatics from each of the frames were analyzed using the aforementioned

photoelastic procedure to obtain the stress intensity factor history. A detailed

analysis of the isochromatic fringes associated with the dynamic fracture behavior

of the crack, which contains crack initiation and propagation can be found [3, 4, 6].

However the available stress field does not support the gradation across the

thickness direction. In the present experiment, it is observed that the gradation

through the thickness direction has effect on the fracture behavior especially for the

case of decreasing Young’s modulus in the crack propagation direction. Hence, fur-

ther investigation is required to accurately determine the dynamic stress intensity

factor .

6.6 Summary

Simple procedure for preparing a transparent model FGMs with continuous

gradation of properties was developed using two different polymer resins. The

physical, elastic and fracture properties of the prepared FGMs were characterized.
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Dynamic photoelasticity along with high speed photography was used to investi-

gate the behavior of moving crack in FGMs. The propagation crack tip velocity

and displacement are obtained.
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CHAPTER 7

Conclusions and Recommendations

7.1 Conclusions

During this project a fundamental study was conducted to evaluate dynamic

fracture and failure in functionally graded materials (FGMs) at room and at high

temperatures. Room temperature studies included experimental and analytical

evaluation of dynamic fracture in model materials. Analytical studies are con-

ducted to develop thermo-mechanical stress, strain and displacement fields around

stationary cracks and around cracks propagating under steady state conditions.

An experimental study is also investigated on the dynamic constitutive and frac-

ture initiation toughness of the commercially available functionally graded material

(Ti/TiB). The findings from the presented study are summarized bellow.

• The stress-fields near the crack tip for mixed mode thermo-mechanical load-

ing in homogeneous and graded material are developed using displacement

potentials in conjugation with an asymptotic approach. Using the devel-

oped equations, angular variation of maximum shear stress, circumferential

stress and the largest principal stress are plotted as a function of tempera-

ture around the crack-tip. Using both minimum strain energy density cri-

terion and maximum circumferential stress criterion, the crack instability

direction for various crack-tip speeds and non-homogeneous coefficients is

also determined. It observed that the crack extension angle for mixed mode

thermo-mechanical loading depends on the crack tip velocity, temperature

and non-homogeny parameter.

• The dynamic constitutive behavior of Ti/TiB FGM under thermo-mechanical

loading is investigated. The FGM showed thermal softening at higher tem-
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perature with a decrease in failure stress and an increase in failure strain.

Finally it is observed that, the failure mechanism changes to ductile at higher

temperatures.

• The quasi-static and dynamic fracture initiation toughness of Ti/TiB FGM

is investigated under thermo-mechanical loading. A simple and accurate

technique has been developed to identify the time corresponding to the load

at which the crack initiates. Further it is observed that the fracture initiation

toughness is temperature and rate dependent.

• A model transparent graded material is used to investigate the steady state

and transient crack propagation in a functionally graded material. It ob-

served that that for both the cases, for increasing and decreasing stiffness in

the crack propagation direction, the crack velocity is constant. On the other

hand; for transient crack propagation experiment, it is observed that the

crack tip velocity increases at high acceleration until it reaches a maximum

value and then remain constant for the rest of crack propagation event.

7.2 Recommendations

The current research represents a fundamental and first step in understanding

the dynamic fracture and failure of functionally graded materials under thermo-

mechanical loading. In the future work, investigation should be conducted to

exploit the properties of graded multi-functional materials under different loading

conditions and to predict their performance and structural integrity under extreme

mechanical and thermal environments. The high temperature facilities and the

dynamic stress fields that has been developed as a part of the present work can

be utilized. The specific deliverables of the proposed project are summarized as

follows:
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• Analytical development of transient stress, strain and displacement fields

for propagating cracks in FGM subjected to combined and rapidly changing

thermo-mechanical loading under a variety of boundary conditions.

• Dynamic response of FGM when subjected to controlled shock loading at

various temperatures utilizing 3D digital image correlation techniques and

high speed imaging under different boundary conditions.

• Development of constitutive models for various spatially tailored materials at

high temperatures and high strain rates of loading with and without confining

stresses.

• Low and high speed impact response of FGM at various temperatures and

boundary conditions.

• Finally, development of physics-based failure models for the combined en-

vironment response of spatially tailored materials and structures that show

good correlation between simple laboratory experiments and structural ap-

plications.
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APPENDIX A

Validation Plots

Various stress fields obtained from the analytical study presented in chapter

2, if mode-I and mode-II fields are separated and plotted, are shown below. These

plots perfectly matches with the isothermal solution given by Freund.

Figure A.1. Variation of the circumferential tensile stress with angle θ around the
crack edge for several value of normalized crack speed. Crack growth is in mode
I. (r = 0.002m, KID = 1MPa m1/2)
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Figure A.2. Variation of maximum principal stress with angle θ around the crack
edge for several value of normalized crack speed. Crack growth is in mode I. (r =
0.002m, KID = 1MPa m1/2)
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Figure A.3. Variation of the maximum shear stress with angle θ around the crack
edge for several value of normalized crack speed. Crack growth is in mode II. (r =
0.002m, KIID = 1MPa m1/2)
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Figure A.4. Variation of the circumferential tensile stress with angle θ around the
crack edge for several value of normalized crack speed. Crack growth is in mode
II. (r = 0.002m, KIID = 1MPa m1/2)
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Figure A.5. Variation of maximum principal stress with angle θ around the crack
edge for several value of normalized crack speed. Crack growth is in mode II. (r =
0.002m, KIID = 1MPa m1/2)
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Figure A.6. Variation of the maximum shear stress with angle θ around the crack
edge for several value of normalized crack speed. Crack growth is in mode I.(r =
0.002m, KID = 1MPa m1/2)
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APPENDIX B

Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Program to calculate and plot Thermo-Mechanical Stress and

%% Displacement Fields for Propagating Crack Tip in

%% Functionally Graded Materials

%% Program used to plot figures given in Chapter 2 and 3

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

clc;

%general constants

mue=1e09;

rho=1200;

nue=0.3;

k=2*nue/(1-2*nue);

ac=8.5e-6;

q0=250;

q1=0;

q2=0;

%The constants in the stress functions

K1D=1e6;%input(’Enter the value of K1:’);

K2D=0.2*K1D;

Kef=sqrt(K1D^2+K2D^2);

%Nonhomozeneous constants

beta=0;

zeta=0;%input(’Enter the value of nonhomogeneity factor:’);

TD=0.003;% input(’the domain for fringe generation= ’);

NOP=51; %input(’Number of points =’);

ds=2*TD/(NOP-1);

xc=[-TD:ds:TD];

yc=[-TD:ds:TD];

count_i=0;

idata=1;
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mue_c=exp(TD*zeta)*mue;

rho_c=exp(TD*zeta)*rho;

cs=sqrt(mue_c/rho_c);

cl=cs*sqrt(2+k);

sr=0.5; %ratio of crack speed to shear wave speed at crack tip

c=sr*cs;

al=sqrt(1-(c/cl)^2);

as=sqrt(1-(c/cs)^2);

count_i=0;

A0=((4*(1+(as^2)))/((4*al*as)-((1+(as^2))^2)))*(K1D/(3*mue*sqrt(2*pi)));

B0=((-2*al)/(1+(as^2)))*A0;

C0=(8*as)/(3*(4*as*al-(1+as^2)^2))*(K2D/(mue*sqrt(2*pi)));

D0=((1+as^2)/(2*as))*C0;

H=k*(1-al^2)+2;

G=k*(1-as^2)+2;

L=k*(1+al^2)+2;

M=k*(1+as^2)+2;

N=k-(al^2)*(k+2);

O=k-(as^2)*(k+2);

P=k+(al^2)*(k+2);

Q=k+(as^2)*(k+2);

P1=(zeta*k*(al^2))/(al^2-as^2);

P2=(zeta*as/((k+2)*(al^2-as^2)));

Q1=((3*k+2)/(k+2))*(ac/((al^2)-1));

L1=(zeta/(al^2));

L2=zeta/as;

%Expresseion for Stress

for j=1:1:NOP

r=0.002;

t(j)=-pi+(j-1)*2*pi/(NOP-1);

% t(j)=(j-1)*2*pi/((NOP-1));

x(j)=r*cos(t(j));
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y(j)=r*sin(t(j));

%q1=-(1+as^2)/(1-as^2)*r^(-1/2)*q0;

rl(j)=sqrt((x(j)^2)+((al^2)*(y(j)^2)));

rs(j)=sqrt((x(j)^2)+((as^2)*(y(j)^2)));

tl(j)=atan2((al*y(j)),x(j));

ts(j)=atan2((as*y(j)),x(j));

%t(j)=atan2(y(j), x(i));

x_bar(j)=(x(j));%*cos(zeta)-(y(j)*sin(zeta));

s11_1(j)=(3*H/4)*A0*(rl(j)^(-1/2))*cos(tl(j)/2)+(-3*L1*H/16)

*A0*(rl(j)^(1/2))*cos(3*tl(j)/2)+(-3*L1/4)

*A0*L*(rl(j)^(1/2))*cos(tl(j)/2);

s11_2(j)=-(3*H/4)*C0*(rl(j)^(-1/2))*sin(tl(j)/2)+(3*L1*H/16)*

C0*(rl(j)^(1/2))*sin(3*tl(j)/2)+(-3*L1/4)

*C0*L*(rl(j)^(1/2))*sin(tl(j)/2);

s11_3(j)=(3*as/2)*B0*(rs(j)^(-1/2))*cos(ts(j)/2)-(3*L2/8)

*B0*(rs(j)^(1/2))*cos(3*ts(j)/2);

s11_4(j)=(3*as/2)*D0*(rs(j)^(-1/2))*sin(ts(j)/2)-(3*L2/8)

*D0*(rs(j)^(1/2))*sin(3*ts(j)/2);

s11_5(j)=-3*P1*A0*(rl(j)^(1/2))*cos(tl(j)/2)-(3*P2/2)*G

*B0*(rs(j)^(1/2))*cos(ts(j)/2);

s11_6(j)=3*P1*C0*(rl(j)^(1/2))*sin(tl(j)/2)-(3*P2/2)*G

*D0*(rs(j)^(1/2))*sin(ts(j)/2);

s11_7(j)=2*Q1*q0*(r^(1/2))*sin(t(j)/2);

s11_8(j)=-(3*k+2)*ac*(q0*r^(1/2)*sin(t(j)/2)+q1*

r*cos(t(j))+q2*r^(3/2)*sin(3*t(j)/2));

s11(j)=(mue*exp(zeta*(TD+x_bar(j))))*(s11_1(j)+s11_2(j)

+s11_3(j)+s11_4(j)+s11_5(j)+s11_6(j)+s11_7(j)+s11_8(j));

s22_1(j)=(3*N/4)*A0*(rl(j)^(-1/2))*cos(tl(j)/2)-(3*L1*N/16)

*A0*(rl(j)^(1/2))*cos(3*tl(j)/2)-(3*L1*P/4)

*A0*(rl(j)^(1/2))*cos(tl(j)/2);

s22_2(j)=-(3*N/4)*C0*(rl(j)^(-1/2))*sin(tl(j)/2)+(3*L1*N/16)

*C0*(rl(j)^(1/2))*sin(3*tl(j)/2)-(3*L1*P/4)

*C0*(rl(j)^(1/2))*sin(tl(j)/2);

s22_3(j)=-(3*as/2)*B0*(rs(j)^(-1/2))*cos(ts(j)/2)+(3*L2/8)

*B0*(rs(j)^(1/2))*cos(3*ts(j)/2);

s22_4(j)=-(3*as/2)*D0*(rs(j)^(-1/2))*sin(ts(j)/2)+(3*L2/8)

*D0*(rs(j)^(1/2))*sin(3*ts(j)/2);

s22_5(j)=3*P1*A0*(rl(j)^(1/2))*cos(tl(j)/2)-(3*P2*O/2)

*B0*(rs(j)^(1/2))*cos(ts(j)/2);
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s22_6(j)=-3*P1*C0*(rl(j)^(1/2))*sin(tl(j)/2)-(3*P2*O/2)

*D0*(rs(j)^(1/2))*sin(ts(j)/2);

s22_7(j)=-2*Q1*q0*(r^(1/2))*sin(t(j)/2);

s22_8(j)=-(3*k+2)*ac*(q0*r^(1/2)*sin(t(j)/2))+q1*r*cos(t(j))

+q2*r^(3/2)*sin(3*t(j)/2));

if j==NOP %| j==1

s22_9(j)=-ac*(3*k+2)*((1+as^2)/(1-as^2))*q0*sqrt(r);

elseif j==1

s22_9(j)=ac*(3*k+2)*((1+as^2)/(1-as^2))*q0*sqrt(r);

else

s22_9(j)=0;

end

s22(j)=(mue*exp(zeta*(TD+x_bar(j))))*(s22_1(j)+s22_2(j)+s22_3(j)

+s22_4(j)+s22_5(j)+s22_6(j)+s22_7(j)+s22_8(j)+s22_9(j));

s12_1(j)=(3/2)*A0*al*(rl(j)^(-1/2))*sin(tl(j)/2)

-(3*L1*al/8)*A0*(rl(j)^(1/2))*sin(3*tl(j)/2);

s12_2(j)=(3/2)*C0*al*(rl(j)^(-1/2))*cos(tl(j)/2)

-(3*L1*al/8)*C0*(rl(j)^(1/2))*cos(3*tl(j)/2);

s12_3(j)=(3/4)*(1+(as^2))*B0*(rs(j)^(-1/2))*sin(ts(j)/2)-(3*L2/(as*16))

*B0*(rs(j)^(1/2))*sin(3*ts(j)/2)+(3*L2/(as*4))*(1-(as^2))

*B0*(rs(j)^(1/2))*sin(ts(j)/2);

s12_4(j)=-(3/4)*(1+(as^2))*D0*(rs(j)^(-1/2))*cos(ts(j)/2)-(3*L2/(as*16))

*D0*(rs(j)^(1/2))*cos(3*ts(j)/2)-(3*L2/(as*4))*(1-(as^2))

*D0*(rs(j)^(1/2))*cos(ts(j)/2);

s12_5(j)=2*Q1*q0*(r^(1/2))*cos(t(j)/2);

s12(j)=(mue*exp(zeta*(TD+x_bar(j))))*(s12_1(j)+s12_2(j)

+s12_3(j)+s12_4(j)+s12_5(j));

sed(j)=(1/(4*(mue*exp(zeta*x_bar(j)))))*((1-nue)*(( s11(j))^2

+(s22(j))^2)-2*nue* s11(j)* s22(j)+2*( s12(j))^2);

sigv(j)=s11(j)+s22(j);

sigr(j)=s11(j)*(cos(t(j)))^2+s22(j)*(sin(t(j)))^2

+2*s12(j)*(cos(t(j))*sin(t(j)));

sigt(j)=s11(j)*(sin(t(j)))^2+s22(j)*(cos(t(j)))^2

-2*s12(j)*(cos(t(j))*sin(t(j)));

sigrt(j)=-s11(j)*(cos(t(j))*sin(t(j)))+s22(j)*(sin(t(j))*cos(t(j)))

+s12(j)*((cos(t(j)))^2-(sin(t(j)))^2);

sigm1(j)=((s11(j)+s22(j))/2)+sqrt((((s11(j)-s22(j))/2)^2)+s12(j)^2);

tmax(j)=sqrt(((s22(j)-s11(j))/2)^2+s12(j)^2);

sedr(j)=(1/((1+nue)*4*(mue*exp(x_bar(j)))))*((sigr(j))^2

+(sigt(j))^2-2*nue*sigt(j)*sigr(j)-nue^2*(sigr(j)
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+sigt(j))+2*(1+nue)*(sigrt(j))^2);

% To calculate the stress filed due to opposit traction at the crack face

for i=1:1:NOP

% x(i)=xc(i);

c(i)=i*0.00006; %0.00006; %points where the load is taken

% p(i)=(5.5e18*c(i)^6-5.6e16*c(i)^5+2.3e14*c(i)^4-5e11*c(i)^3+

%7e8*c(i)^2+ 6.8e4*c(i))/22;%c=100, 5 order poly

p(i)=0; %c=0

% p(i)=(1.2e13*c(i)^4-1e11*c(i)^3+4.25e8*c(i)^2+1.3e5*c(i))/10;

%force distribution c=100 , 3 ord poly

if t(j) <= 0

% p(i)=-(5.5e18*c(i)^6-5.6e16*c(i)^5+2.3e14*c(i)^4-5e11*c(i)^3

+7e8*c(i)^2+6.8e4*c(i))/12;%c=100, 5 order poly

p(i)=-(3e13*c(i)^4-2.53e11*c(i)^3+1.05e9*c(i)^2+3.3e5*c(i))/12;

%force distribution c=250

else

% p(i)=(5.5e18*c(i)^6-5.6e16*c(i)^5+2.3e14*c(i)^4-5e11*c(i)^3

+7e8*c(i)^2+6.8e4*c(i))/12; %c=100, 5 order poly

p(i)=(3e13*c(i)^4-2.53e11*c(i)^3+1.05e9*c(i)^2+3.3e5*c(i))/12;

%force distribution c=250

end;

%p(i)=-(1e25*c(i)^8-1.3143e23*c(i)^7+7.162e20*c(i)^6-2e18*c(i)^5

-3.5e15*c(i)^4-3.667e12*c(i)^3+2.6e9*c(i)^2+8.6e4*c(i))/740;

%c=250, 7th poly

%p(i)=2*(3e13*c(i)^4-2.53e11*c(i)^3+1.05e9*c(i)^2+3.3e5*c(i))/10;

%force distribution c=500

%y(j)=yc(j);

%c(j)=j*0.00006;

r2(j,i)=sqrt((x(j)+c(i))^2+y(j)^2);

t2(j,i)=atan2(y(j),(x(j)+c(i)));

pc=(p(i)*sqrt(c(i)));

% pc=p*sqrt(b);

% sigy(j)=(pc/(pi*r1(j).*sqrt(r)))*(cos(t1(j)+t(j)/2)

+(1/2)*sin(t(j))*sin(t1(j)+3*t(j)/2)

+(r/r1(j))*sin(t(j))*sin(2*t1(j)+t(j)/2));

sigx(j,i)=(pc/(pi*r2(j,i).*sqrt(r)))*(cos(t2(j,i)+t(j)/2)

-(1/2)*sin(t(j))*sin(t2(j,i)+3*t(j)/2)

-(r/r2(j,i))*sin(t(j))*sin(2*t2(j,i)+t(j)/2));

sigy(j,i)=(pc/(pi*r2(j,i).*sqrt(r)))*(cos(t2(j,i)+t(j)/2)

+(1/2)*sin(t(j))*sin(t2(j,i)+3*t(j)/2)

+(r/r2(j,i))*sin(t(j))*sin(2*t2(j,i)+t(j)/2));
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sigxy(j,i)=(pc/(pi*r2(j,i).*sqrt(r)))*((1/2)*sin(t2(j,i))*cos(t2(j,i)

+3*t(j)/2)+(r/r2(j,i))*sin(t(j))*cos(2*t2(j,i)+t(j)/2));

end

end

for j=1:1:NOP

sumx=0;

sumy=0;

sumxy=0;

for i=1:1:NOP

sumx=sigx(j,i)+sumx;

sumy=sigy(j,i)+sumy;

sumxy=sigxy(j,i)+sumxy;

end

sig11(j)=sumx;

sig22(j)=sumy;

sig12(j)=sumxy;

sedb(j)=(1/(4*(mue*exp(x_bar(j)))))*((1-nue)*(( sig11(j))^2

+(sig22(j))^2)-2*nue* sig11(j)* sig22(j)+2*(sig12(j))^2);

sigvb(j)=sig11(j)+sig22(j);

sigrb(j)=sig11(j)*(cos(t(j)))^2+sig22(j)*(sin(t(j)))^2

+2*sig12(j)*(cos(t(j))*sin(t(j)));

sigtb(j)=sig11(j)*(sin(t(j)))^2+sig22(j)*(cos(t(j)))^2

-2*sig12(j)*(cos(t(j))*sin(t(j)));

sigrtb(j)=-sig11(j)*(cos(t(j))*sin(t(j)))

+sig22(j)*(sin(t(j))*cos(t(j)))+sig12(j)*

((cos(t(j)))^2-(sin(t(j)))^2);

sigm1b(j)=((sig11(j)+sig22(j))/2)+sqrt((((sig11(j)

-sig22(j))/2)^2)+sig12(j)^2);

tmaxb(j)=sqrt(((sig22(j)-sig11(j))/2)^2+sig12(j)^2);

sedrb(j)=(1/((1+nue)*4*(mue*exp(x_bar(j)))))*((sigrb(j))^2

+(sigtb(j))^2-2*nue*sigtb(j)*sigrb(j)

-nue^2*(sigrb(j)+sigtb(j))+2*(1+nue)*(sigrtb(j))^2);

end

for j=1:1:NOP

sigma1(j)=(((s11(j)+sig11(j))+(s22(j)+sig22(j)))/2)+sqrt(((((s11(j)

+sig11(j))-(s22(j)+sig22(j)))/2)^2)+(s12(j)+sig12(j))^2);

taumax(j)=sqrt((((s22(j)+sig22(j))-(s11(j)+sig11(j)))/2)^2

+(s12(j)+sig12(j))^2);

sigmat(j)=(s11(j)+sig11(j))*(sin(t(j)))^2+(s22(j)+sig22(j))*

(cos(t(j)))^2-2*(s12(j)+sig12(j))*(cos(t(j))*sin(t(j)));

sigmart(j)=-(s11(j)+sig11(j))*(cos(t(j))*sin(t(j)))+(s22(j)

+sig22(j))*(sin(t(j))*cos(t(j)))+(s12(j)+sig12(j))*

((cos(t(j)))^2-(sin(t(j)))^2);
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sigmar(j)=(s11(j)+sig11(j))*(cos(t(j)))^2+(s22(j)+sig22(j))*

(sin(t(j)))^2+2*(s12(j)+sig12(j))*(cos(t(j))*sin(t(j)));

end

plot(t*(180/pi),(s22/(Kef/sqrt(2*pi*r))),’mo’); % combined

xlabel(’\theta (degrees)’);

ylabel(’u (N. mm /mm^3)’);

hold on;

plot(t*(180/pi),((taumax)/(Kef/sqrt(2*pi*r))),’b’); % raction

xlabel(’\theta (degree)’);

ylabel(’\sigma_y_y/ (K_e_f_f / \surd(2\pir))’);

hold on;

plot(t*(180/pi),(sig22)/(Kef/sqrt(2*pi*r)),’r’) % before raction

hold on;

xlabel(’\theta (degrees)’);

ylabel(’\tau_m_a_x / (K_I / \surd(2\pir))’);

title(’ \sigma_y’);

legend(’q_o = 0’, ’q_o = 1000’,’q_o= 2000’);
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APPENDIX C

Theoretical Formulation

Thermo-mechanical Displacement, Strain and Stress Field for Mixed
Mode Loading in FGM

The equations of motion for a plane problem are given by Eq. C.1

∂σXX
∂X

+
∂τXY
∂Y

= ρ
∂2u

∂2t
,

∂σY Y
∂Y

+
∂τXY
∂X

= ρ
∂2v

∂2t
(C.1)

The relationship between stresses and strains for a plane strain thermo-mechanical

problem can be written as

σXX = (λ+ 2µ)εXX + λεY Y − α(3λ+ 2µ)T (C.2)

σY Y = (λ+ 2µ)εY Y + λεXX − α(3λ+ 2µ)T (C.3)

τXY = µεXY (C.4)

where X and Y are reference coordinates,σij and εij where i = X, Y and j = X, Y

are in-plane stress and strain components, λ and µ denote Lame’s constant and

shear modulus respectively. α is coefficient of thermal expansion and T represents

the change in temperature in the infinite medium. For non homogenious materials

Shear modulus (µ), Lame’s constant (λ), density (ρ) , thermal expansion (α) and

heat conductivity (k) of the FGM are assumed to vary in an exponential manner

as given by Eq. C.5, whereas, Poisson’s ratio (ν) is assumed to be a constant.

µ = µ0e
(ζX), λ = λ0e

(ζX), ρ = ρ0e
(ζX), α = α0e

(βX), k = k0e
(βX) (C.5)

subscript ”o” means at X = 0 as shown in Fig. C.1. and ζ and β are nonhomogene-

ity constants that have the dimension (length)−1. For plane strain deformation,
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Figure C.1. Propagating crack tip orientation with respect to reference coordinate
configuration.

the displacements u and v are derived from dilatational and shear wave potentials

φ and ψ. These potentials can be expressed as

u =
∂φ

∂X
+
∂ψ

∂Y
, v =

∂φ

∂Y
− ∂ψ

∂X
(C.6)

The strain can be derived from the displacement relation giveb by Eq. C.6

εX =
∂u

∂X
=

∂2φ

∂X2
+

∂2ψ

∂X∂Y

εY =
∂v

∂Y
=
∂2φ

∂Y 2
− ∂2ψ

∂X∂Y

εXY =
∂u

∂Y
+

∂v

∂X
= 2

∂2φ

∂X∂Y
− ∂2ψ

∂X2
+
∂2ψ

∂Y 2
(C.7)

Substituting the relation for µ, λ, ρ, α and k from Eq. C.5 the Hookes’s law for

non-homogenous material can be written as

σXX = e(ζX)((λ0 + 2µ0)εXX + λ0εY Y − (3λ0 + 2µ0)α0e
(βX)T ) (C.8)

σY Y = e(ζX)((λ0 + 2µ0)εY Y + λ0εXX − (3λ0 + 2µ0)α0e
(βX)T ) (C.9)

τXY = e(ζX)µ0εXY (C.10)
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By substituting the strain relation given by Eq. C.7 into Eqs. C.8 - C.10, the

Hookes’s law for non-homogenious material in terms of displacement potentials

can be written as

σXX = e(ζX)((λ0 + 2µ0)(
∂2φ

∂X2
+

∂2ψ

∂X∂Y
) + λ0(

∂2φ

∂Y 2
− ∂2ψ

∂X∂Y
)

− (3λ0 + 2µ0)α0e
(βX)T ) (C.11)

σY Y = e(ζX)((λ0 + 2µ0)
∂2φ

∂Y 2
− ∂2ψ

∂X∂Y
+ λ0

∂2φ

∂X2
+

∂2ψ

∂X∂Y

− (3λ0 + 2µ0)α0e
(βX)T ) (C.12)

τXY = e(ζX)µ0

(
2
∂2φ

∂X∂Y
− ∂2ψ

∂X2
+
∂2ψ

∂Y 2

)
(C.13)

Substituting the stresses from Eqs. C.11 - C.13 into Eq. C.1 and after simplifica-

tion, the equations of motion become

(2µ0 + λ0)
∂

∂X
52 φ+ µ0

∂

∂Y
52 ψ − α0ε

βX(3λ0 + 2µ0)

(
βT +

∂T

∂X

)
+ ζ

(
λ052 φ+ µ0(2

∂2φ

∂X2
+ 2

∂2ψ

∂x∂Y
)− α0ε

βX(3λ0 + 2µ0)T

)
= ρ0

∂2

∂2t

(
∂φ

∂X
+
∂ψ

∂Y

)
(C.14)

(2µ0 + λ0)
∂

∂Y
52 φ− µ0

∂

∂X
52 ψ − α0ε

βX(3λ0 + 2µ0)
∂T

∂Y

+ ζµ0

(
2
∂2φ

∂X∂Y
− ∂2ψ

∂X2
+
∂2ψ

∂Y 2

)
= ρ0

∂2

∂2t

(
∂φ

∂Y
− ∂ψ

∂X

)
(C.15)

The above equation can be further simplified by rearranging Eqs. C.14 and C.15

in the following way

∂
∂X

(Eq. C.14) + ∂
∂Y

(Eq. C.15) after simplification gives

(2µ0 + λ0)5252φ− ζ
(

(2µ0 + λ0)
∂

∂X
52 φ+ µ0

∂

∂Y
52 ψ

)
− α0ε

βX(3λ0 + 2µ0)

((
(β + ζ)βT + (2β + ζ)

∂T

∂X

)
+52T

)
= ρ0

∂2

∂2t
52 φ

(C.16)
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Similarly ∂
∂Y

(Eq.C.14) + ∂
∂X

(Eq.C.15) after simplification gives

µ05252ψ − ζ
(

(µ0
∂

∂X
52 ψ + λ0

∂

∂Y
52 φ

)
− α0ε

βX(3λ0 + 2µ0)ζ
∂T

∂Y
= ρ0

∂2

∂2t
52 ψ

(C.17)

The above equation can be further simplified to

(δ + 2)52 φ− ζ
(

(δ + 2)
∂

∂X
φ+

∂

∂Y
ψ

)
− αc(3λ0 + 2µ0)

((
(β + ζ)β∆−1T + (2β + ζ)∆−1 ∂T

∂X

)
+ T

)
=
ρ0

µ0

∂2φ

∂2t

(C.18)

52ψ − ζ ∂ψ
∂X

+ ζδ
∂φ

∂Y
− αc(3λ0 + 2µ0)ζ∆−1 ∂T

∂Y
=
ρ0

µ0

∂2ψ

∂2t
(C.19)

where

∆−1 =
1

52
, δ =

λ0

µ0

αc = α0ε
βX is the coefficient of thermal expansion in the vicinity of the instanta-

neous crack tip and is assumed to be constant.

Transforming to the Crack Tip Coordinates

For a propagating crack shown in Fig. C.1, the transformed crack tip coordi-

nates can be written as x = X − ct where c is constant crack tip speed. In the

moving coordinate systems the above Eqs. C.18 and C.19 can be written as

α2
l

∂2φ

∂x2
+
∂2φ

∂y2
ζ
∂φ

∂x
+

ζ

δ + 2

∂ψ

∂y

− αc
(3δ + 2)

(δ + 2)

((
(β + ζ)β∆−1T + (2β + ζ)∆−1 ∂T

∂X

)
+ T

)
= 0 (C.20)

α2
s

∂2ψ

∂x2
+
∂2ψ

∂y2
+ ζ

∂ψ

∂x
+ ζδ

∂φ

∂y
− αc(3δ + 2)ζ∆−1∂T

∂y
= 0 (C.21)
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where

αl =

√
1−

(
c

cl

)2

, αs =

√
1−

(
c

cs

)2

, cs =

√
µc
ρc
, 52 =

∂2

∂x2
+

∂2

∂y2

cl = cs
√

2(1− ν)/(1− 2ν) for plane strain and cl = cs
√

2/(1− ν) for plane stress.

cl and cs are the elastic dilatational wave speed and the elastic shear wave speed

of the material at the crack tip.

Asymptotic Expansion of Crack Tip Stress Fields

Asymptotic approach is used in deriving solutions for displacement potentials

of equations of motion Eqs. C.20 and C.21. A new set of coordinates is introduce

as

η1 =
x

ε
, η2 =

y

ε
(C.22)

∂

∂x
=

1

ε

1

∂η1

,
∂

∂y
=

1

ε

1

∂η2

,
∂2

∂x2
=

1

ε2
1

∂η2
1

and
∂2

∂y2
=

1

ε2
1

∂η2
2

(C.23)

where ε is an arbitrary parameter and is assumed to be 0 < ε < 1

Equation C.20 and C.21 can be written in a new scaled coordinates (η1, η2)as

α2
l

∂2φ

∂η2
1

+
∂2φ

∂η2
2

− ε
(
ζ
∂φ

∂η1

+
ζ

δ + 2

∂ψ

∂η2

)
−

αc
(3δ + 2)

(δ + 2)

(
ε2T + ε3 (2β + ζ) ∆−1 ∂T

∂η1

+ ε4 (β + ζ) β∆−1T

)
= 0 (C.24)

α2
s

∂2ψ

∂η2
1

+
∂2ψ

∂η2
2

− ε
(
ζ
∂ψ

∂η1

+ ζδ
∂φ

∂η2

)
− αc(3δ + 2)ε3ζ∆−1 ∂T

∂η2

= 0 (C.25)

At this stage it is assumed that φ, ψ, and T can be represented as a power series
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expansion in ε.

φ(x, y) = φ(εη1, εη2) =
∞∑
m=0

ε
(m+3)

2 φm(η1, η2)

ψ(x, y) = ψ(εη1, εη2) =
∞∑
m=0

ε
(m+3)

2 ψm(η1, η2)

T (x, y) = T (εη1, εη2) =
∞∑
m=0

ε
(m+1)

2 Tm(η1, η2) (C.26)

Substituting Eq. C.26 into Eqs. C.24 and C.25 gives the following equations

∞∑
m=0

(ε
m+3

2

(
α2
l

∂2φm
∂η2

1

+
∂2φm
∂η2

2

)
+ ε

m+5
2

(
ζ
∂φm
∂η1

+
ζ

δ + 2

∂ψm
∂η2

)
−

αc
(3δ + 2)

(δ + 2)

(
ε

m+5
2 Tm + ε

m+7
2 (2β + ζ) ∆−1∂Tm

∂η1

+ ε
m+9

2 (β + ζ) β∆−1Tm

)
) = 0

(C.27)

∞∑
m=0

(ε
m+3

2

(
α2
s

∂2ψm
∂η2

1

+
∂2ψm
∂η2

2

)
+ ε

m+5
2

(
ζ
∂ψm
∂η1

+ ζδ
∂φm
∂η2

)
−

αc(3δ + 2)ε
m+7

2 ζ∆−1∂Tm
∂η2

) = 0 (C.28)

For Eqs.C.27 and C.28 to be valid, the partial differential equations corresponding

to each power of ε (ε3/2,ε2,ε5/2, ...) should vanish independently. The solution for

the first few terms of the series are considered.

For m = 0, the above equation Eqs. C.27 and C.28 gives

ε
3
2

(
α2
l

∂2φ0

∂η2
1

+
∂2φ0

∂η2
2

)
+ ε

5
2

(
ζ
∂φ0

∂η1

+
ζ

δ + 2

∂ψ0

∂η2

)
−

αc
(3δ + 2)

(δ + 2)

(
ε

5
2T0 + ε

7
2 (2β + ζ) ∆−1∂T0

∂η1

+ ε
9
2 (β + ζ) β∆−1T0

)
= 0 (C.29)

ε
3
2

(
α2
s

∂2ψ0

∂η2
1

+
∂2ψ0

∂η2
2

)
+ ε

5
2

(
ζ
∂ψ0

∂η1

+ ζδ
∂φ0

∂η2

)
− αc(3δ + 2)ε

7
2 ζ∆−1∂T0

∂η2

= 0

(C.30)
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For m = 1, the above equation Eqs. C.27 and C.28 gives

ε2
(
α2
l

∂2φ1

∂η2
1

+
∂2φ1

∂η2
2

)
+ ε3

(
ζ
∂φ1

∂η1

+
ζ

δ + 2

∂ψ1

∂η2

)
−

αc
(3δ + 2)

(δ + 2)

(
ε3T1 + ε4 (2β + ζ) ∆−1∂T1

∂η1

+ ε5 (β + ζ) β∆−1T1

)
= 0 (C.31)

ε2
(
α2
s

∂2ψ1

∂η2
1

+
∂2ψ1

∂η2
2

)
+ ε3

(
ζ
∂ψ1

∂η1

+ ζδ
∂φ1

∂η2

)
− αc(3δ + 2)ε4ζ∆−1∂T1

∂η2

= 0 (C.32)

For m = 2, the above equation Eqs. C.27 and C.28 gives

ε
5
2

(
α2
l

∂2φ2

∂η2
1

+
∂2φ2

∂η2
2

)
+ ε

7
2

(
ζ
∂φ2

∂η1

+
ζ

δ + 2

∂ψ2

∂η2

)
−

αc
(3δ + 2)

(δ + 2)

(
ε

7
2T2 + ε

9
2 (2β + ζ) ∆−1∂T2

∂η1

+ ε
11
2 (β + ζ) β∆−1T2

)
= 0 (C.33)

ε
5
2

(
α2
s

∂2ψ2

∂η2
1

+
∂2ψ2

∂η2
2

)
+ ε

7
2

(
ζ
∂ψ2

∂η1

+ ζδ
∂φ2

∂η2

)
− αc(3δ + 2)ε

9
2 ζ∆−1∂T2

∂η2

= 0

(C.34)

By collecting the partial differential equations corresponding to each power of ε

(ε3/2,ε2,ε5/2, ...) leads to the following set of partial differential equations.

ε
3
2 terms(m = 0)

α2
l

∂2φ0

∂η2
1

+
∂2φ0

∂η2
2

= 0 (C.35)

α2
s

∂2ψ0

∂η2
1

+
∂2ψ0

∂η2
2

= 0 (C.36)

εs terms (m = 1)

α2
l

∂2φ1

∂η2
1

+
∂2φ1

∂η2
2

= 0 (C.37)

α2
s

∂2ψ1

∂η2
1

+
∂2ψ1

∂η2
2

= 0 (C.38)
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ε
5
2 terms (m = 2)

α2
l

∂2φ2

∂η2
1

+
∂2φ2

∂η2
2

= −ζ
(
∂φ0

∂η1

+
1

δ + 2

∂ψ0

∂η2

)
+

3δ + 2

δ + 2
αcT0 (C.39)

α2
l

∂2ψ2

∂η2
1

+
∂2ψ2

∂η2
2

= −ζ
(
∂ψ0

∂η1

+
1

δ + 2

∂φ0

∂η2

)
(C.40)

Eqs. C.35 - C.38 are similar to that for homogeneous material where as the par-

tial differential equations Eqs. C.39 and C.40, associated with higher powers of

are coupled to the differentials of the lower order functions through the nonho-

mogeneity parameters and temperature term. Eqs. C.35 - C.38 (i.e. for m = 0

and m = 1) can be easily reduced to Laplace’s equation in the respective complex

domains ζl = η1 + iαlη2, ζs = η1 + iαsη2 , i =
√
−1 and the solutions are same as

that for homogenous material and can be written as

φm(ρl, θl, t) = Amρ
(m+3)/2
l cos

(
(m+ 3)

2
θl

)
+Cmρ

(m+3)/2
l sin

(
(m+ 3)

2
θl

)
(C.41)

ψm(ρs, θs, t) = Bmρ
(m+3)/2
s sin

(
(m+ 3)

2
θs

)
+Dmρ

(m+3)/2
s cos

(
(m+ 3)

2
θs

)
(C.42)

where

ρl =
(
η2

1 + α2
l η

2
2

)1/2
, tan(θl) =

αlη2

η1

, ρs =
(
η2

1 + α2
sη

2
2

)1/2
, tan(θs) =

αsη2

η1

and Am, Bm, Cm, and Dm are real constants.

The solution for the Eqs. C.39 and C.40 corresponding to higher powers of ε (m

= 2) consists of two parts: solution for homogeneous equation and a particular

solution due to nonhomogeneity and temperature and these can be obtained re-

cursively. Eq. C.39 can be divided into four different problems as shown below
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α2
l

∂2φ2

∂η2
1

+
∂2φ2

∂η2
2

= 0 (C.43)

α2
l

∂2φ2

∂η2
1

+
∂2φ2

∂η2
2

= −ζ ∂φ0

∂η1

(C.44)

α2
l

∂2φ2

∂η2
1

+
∂2φ2

∂η2
2

= − ζ

δ + 2

∂ψ0

∂η2

(C.45)

α2
l

∂2φ2

∂η2
1

+
∂2φ2

∂η2
2

=
3δ + 2

δ + 2
αcT0 (C.46)

By solving the above partial differential equations separately and later by adding

all together, the solution for φ2 can obtained as

φ2 = A2ρ
5/2
l cos

(
5

2
θl

)
+ C2ρ

5/2
l sin

(
5

2
θl

)
− 1

4

ζ

α2
l

ρ
5/2
l

(
A0 cos

(
1

2
θl

)
+ C0 sin

(
1

2
θl

))
− 2

5

ζ

(δ + 2)

αs
(α2

l − α2
s)
ρ5/2
s

(
B0 cos

(
5

2
θs

)
+D0 sin

(
5

2
θs

))
+

4

15

(3δ + 2)

(δ + 2)

αc
(α2

l − 1)
q0ρ

5/2 sin
5

2
θ (C.47)

Similarly Eq. C.40 can be divided into three different problems as shown below

α2
l

∂2ψ2

∂η2
1

+
∂2ψ2

∂η2
2

= 0 (C.48)

α2
l

∂2ψ2

∂η2
1

+
∂2ψ2

∂η2
2

= −ζ ∂ψ0

∂η1

(C.49)

α2
l

∂2ψ2

∂η2
1

+
∂2ψ2

∂η2
2

= − ζ

δ + 2

∂φ0

∂η2

(C.50)
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By solving the above partial differential equations separately and later by adding

all together, the solution for ψ2 can be obtained as

ψ2 = B2ρ
5/2
s cos

(
5

2
θs

)
+D2ρ

5/2
s sin

(
5

2
θs

)
− 1

4

ζ

α2
s

ρ5/2
s

(
B0 sin

(
1

2
θs

)
+D0 cos

(
1

2
θs

))
− 2

5
δ

ζαl
(α2

l − α2
s)
ρ

5/2
l

(
A0 sin

(
5

2
θl

)
+ C0 sin

(
5

2
θl

))
(C.51)

The solutions φ0, ψ0, φ1 and ψ1 automatically satisfy the compatibility equations

because these the solutions are same as those for homogeneous materials. Since

the non-homogeneous specific parts of φ2 and ψ2 are obtained from φ0 and ψ0,

they also automatically satisfy the compatibility equations.

By assembling together the above result for the first few terms and by transforming

back to the x− y plane, the combined solution can be written for φ and ψ as Eq.

C.52 and C.53

φ = A0r
3/2
l cos

(
3

2
θl

)
+ C0r

3/2
l sin

(
3

2
θl

)
+ A1r

2
l cos (2θl) + C1r

2
l sin (2θl)

+ A2r
5/2
l cos

(
5

2
θl

)
+ C2r

5/2
l sin

(
5

2
θl

)
− 1

4

ζ

α2
l

r
5/2
l

(
A0 cos

(
1

2
θl

)
+ C0 sin

(
1

2
θl

))
− 2

5

ζ

(δ + 2)

αs
(α2

l − α2
s)
r5/2
s

(
B0 cos

(
5

2
θs

)
+D0 sin

(
5

2
θs

))
+

4

15

(3δ + 2)

(δ + 2)

αc
(α2

l − 1)
q0r

5/2 sin
5

2
θ (C.52)
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ψ = B0r
3/2
s sin

(
3

2
θs

)
+D0r

3/2
s cos

(
3

2
θs

)
+B1r

2
s sin (2θs) +D1r

2
s cos (2θs)

+B2r
5/2
s cos

(
5

2
θs

)
+D2r

5/2
s sin

(
5

2
θs

)
− 1

4

ζ

α2
s

ρ5/2
s

(
B0 sin

(
1

2
θs

)
+D0 cos

(
1

2
θs

))
− 2

5
δ

ζαl
(α2

l − α2
s)
ρ

5/2
l

(
A0 sin

(
5

2
θl

)
+ C0 sin

(
5

2
θl

))
(C.53)

where

rl =
(
x2 + α2

l y
2
)1/2

, tan(θl) =
αly

x
, rs =

(
x2 + α2

sy
2
)1/2

, tan(θs) =
αsy

x

The above displacement potentials are now used with Eq.C.6 to get the dis-

placements fields. The in-plane displacement can be given as
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u =

(
3

2
r
1/2
l cos

(
1

2
θl

)
− 1

8

ζ

α2
l

r
3/2
l

(
3 cos

(
1

2
θl

)
+ 2 cos

(
3

2
θl

)))
A0

+

(
3

2
r
1/2
l sin

(
1

2
θl

)
− 1

8

ζ

α2
l

r
3/2
l

(
−3 sin

(
1

2
θl

)
+ 2 sin

(
3

2
θl

)))
C0

+

(
3

2
αsr

1/2
s cos

(
1

2
θs

)
− 1

8

ζ

αs
r3/2
s

(
3 cos

(
1

2
θs

)
− 2 cos

(
3

2
θs

)))
B0(

−3

2
αsr

1/2
s cos

(
1

2
θs

)
− 1

8

ζ

αs
r3/2
s

(
3 sin

(
1

2
θs

)
+ 2 sin

(
3

2
θs

)))
D0

+ 2A1rl cos (θl) + 2C1rl sin (θl) + 2B1rsαs cos (2θs) + 2D1rsαs sin (2θs)

+
5

2
A2r

3/2
l cos

(
3

2
θl

)
+

5

2
B2αsr

3/2
s cos

(
3

2
θs

)
+

5

2

+ C2r
3/2
l sin

(
3

2
θl

)
− 5

2
D2αsr

3/2
s sin

(
3

2
θs

)
− ζδα2

l

α2
l − α2

s

(
A0r

3/2
l cos

(
3

2
θl

)
+ C0r

3/2
l sin

(
3

2
θl

))
− ζ

δ + 2

αs
α2
l − α2

s

(
B0r

3/2
s cos

(
3

2
θs

)
+D0r

3/2
s sin

(
3

2
θs

))
− ζδα2

l

α2
l − α2

s

(
A0r

3/2
l cos

(
3

2
θl

)
− C0r

3/2
l sin

(
3

2
θl

))
− ζ

δ + 2

αs
α2
l − α2

s

(
B0r

3/2
s cos

(
3

2
θs

)
−D0r

3/2
s cos

(
3

2
θs

))
+

3

2

(3δ + 2)

(δ + 2)

αc
(α2

l − 1)
q0r

3/2 sin
3

2
θ (C.54)

152



v =

(
−3

2
αlr

1/2
l sin

(
1

2
θl

)
− 1

8

ζ

αl
r
3/2
l

(
3 sin

(
1

2
θl

)
+ 2 sin

(
3

2
θl

)))
A0

+

(
3

2
αlr

1/2
l cos

(
1

2
θl

)
− 1

8

ζ

αl
r
3/2
l

(
3 cos

(
1

2
θl

)
− 2 cos

(
3

2
θl

)))
C0

+

(
−3

2
r1/2
s sin

(
1

2
θs

)
− 1

8

ζ

α2
s

r3/2
s

(
3 sin

(
1

2
θs

)
− 2 sin

(
3

2
θs

)))
B0

+

(
−3

2
r1/2
s cos

(
1

2
θs

)
− 1

8

ζ

α2
s

r3/2
s

(
−3 cos

(
1

2
θs

)
− 2 cos

(
3

2
θs

)))
D0

− 2A1rlαl sin (θl)− 2B1rs sin (θs) + 2C1αlrl cos (θl)− 2D1rs cos (θs)

− 5

2
A2αlr

3/2
l sin

(
3

2
θl

)
− 5

2
B2r

3/2
s cos

(
3

2
θs

)
+

5

2
C2αlr

3/2
l sin

(
3

2
θl

)
− 5

2
D2r

3/2
s cos

(
3

2
θs

)
+

ζδαl
α2
l − α2

s

(
A0r

3/2
l sin

(
3

2
θl

)
+ C0r

3/2
l cos

(
3

2
θl

))
+

ζ

δ + 2

α2
s

α2
l − α2

s

(
B0r

3/2
s sin

(
3

2
θs

)
−D0r

3/2
s cos

(
3

2
θs

))
+

3

2

(3δ + 2)

(δ + 2)

αc
(α2

l − 1)
q0r

3/2 cos
s

2
θ (C.55)

Temperature Fields around the Crack Tip

In this analysis it is assumed that the temperature field around the crack

tip changes asymptotically. Also, the transient effects are neglected. The heat

conductivity is assumed to vary exponentially as given by Eq. C.5. The steady

state heat conduction equation can be written as

∂

∂X

(
k
∂T

∂X

)
+

∂

∂Y

(
k
∂T

∂Y

)
= 0 (C.56)

Where k is the coefficient of thermal conductivity

Assuming that k is constant in the region considered, the above equation can be

written as

52T + β
∂T

∂X
= 0 (C.57)

where 52 = ∂2

∂X2 + ∂2

∂Y 2

Transforming the above equation to the crack-tip moving coordinate system (x =
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Xc− t, y = Y ), Eq. C.57 can be written as

52T + β
∂T

∂x
= 0 (C.58)

where 52 = ∂2

∂x2 + ∂2

∂y2

As this stages asymptotic analysis is performed to solve the above Eq. C.58.

Eq. C.58 in a new scaled coordinates (η1, η2) given by Eq. C.22can be written

as

52T + εβ
∂T

∂η1

= 0 (C.59)

where 52 = ∂2

∂η2
1

+ ∂2

∂η2
2

For the asymptotic analysis T is represented as a power series expansion in ε as

T (x, y) = T (η1ε, η2ε) =
∞∑
m=0

ε
(m+1)

2 Tm(η1, η2) (C.60)

Substituting Eq.C.60 into Eq.C.59 gives the following equation.

∞∑
m=0

ε
(m+1)

2

((
∂2Tm
∂η2

1

+
∂2Tm
∂η2

2

)
+ ε

(m+3)
2 β

∂Tm
∂η1

)
= 0 (C.61)

For Eq.C.61 to be valid, the partial differential equations corresponding to each

power of ε (ε1/2, ε, ε3/2...) should vanish independently. This leads to the set of

partial differential equations.

For m = 0, the above equation Eq. C.61 gives

ε1/2
(
∂2T0

∂η2
1

+
∂2T0

∂η2
2

)
+ ε3/2β

∂T0

∂η1

= 0 (C.62)

For m = 1, the above equation Eq. C.61 gives

ε

(
∂2T1

∂η2
1

+
∂2T1

∂η2
2

)
+ ε2β

∂T0

∂η1

= 0 (C.63)

For m = 2, the above equation Eqs. C.61 gives

ε3/2
(
∂2T2

∂η2
1

+
∂2T2

∂η2
2

)
+ ε5/2β

∂T2

∂η1

= 0 (C.64)
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By collecting the partial differential equations corresponding to each power of ε

(ε1/2,ε,ε3/2, ...) leads to the following set of partial differential equations.

ε
1
2 terms(m = 0) (

∂2T0

∂η2
1

+
∂2T0

∂η2
2

)
= 0 (C.65)

ε terms (m = 1) (
∂2T1

∂η2
1

+
∂2T1

∂η2
2

)
= 0 (C.66)

ε
5
2 terms (m = 2) (

∂2T2

∂η2
1

+
∂2T2

∂η2
2

)
+ β

∂T0

∂η1

= 0 (C.67)

Eqs. C.65 and C.66 are similar to that for homogeneous material where as the

partial differential equation Eq. C.67 associated with higher powers of m is cou-

pled to the differentials of the lower order functions through the nonhomogeneity

parameters and temperature term. Eqs. C.65 and C.66 (i.e. for m = 0 and m = 1)

can be easily reduced to Laplace’s equation in the respective complex domains

ρ = η1 + iη2 , and i =
√
−1 and the solutions are same as that for homogenous

material. By using crack tip insulated boundary condition i.e ∂T
∂θ

= 0, at θ = π,

the solution for above laplace equation can written as

For m = 0

T0 = q0ρ
1/2 sin

(
1

2
θ

)
(C.68)

For m = 1

T1 = q1ρ
1/2 cos (θ) (C.69)

where ρ = (η2
1 + η2

2)
1/2

The solution T2, for Eq.C.67 corresponding to higher powers of ε (m = 2) has two

155



parts: homogeneous and particular solution and can be written independently as

follows (
∂2T2

∂η2
1

+
∂2T2

∂η2
2

)
= 0 (C.70)

(
∂2T2

∂η2
1

+
∂2T2

∂η2
2

)
= −β∂T0

∂η1

(C.71)

Eq. C.70 is similar to that for homogeneous material and the particular solution

can be obtained using recursive approach, and the complete solution for Eq. C.70

and Eq. C.71 is given below.

T2 = q2ρ
3/2 sin

(
3

2
θ

)
+

(
1

4

)
q0βρ

3/2 sin

(
1

2
θ

)
(C.72)

By adding the above terms, the temperature field for the first 2 terms can be given

as

T = q0ρ
1/2 sin

(
1

2
θ

)
+ q1ρ cos (θ) + q2ρ

3/2 sin

(
3

2
θ

)
+

(
1

4

)
q0βρ

3/2 sin

(
1

2
θ

)
(C.73)

where ρ=(η2
1 + η2

2)
1/2

and θ= tan−1
(
η2
η1

)
Transforming back to crack tip coordinates (x and y), the temperature field near

the crack tip is given as

T = q0r
1/2 sin

(
1

2
θ

)
+q1r cos (θ)+q2r

3/2 sin

(
3

2
θ

)
+

(
1

4

)
q0βr

3/2 sin

(
1

2
θ

)
(C.74)

where r=(x2 + y2)
1/2

and θ= tan−1
(
y
x

)
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In-plane Strain Fields

By substituting the eqs. C.54 and C.55 in to Eq. C.7, and after simplification

the in plane strain can written as

εxx =

(
3

4
r
−1/2
l cos

(
θl
2

)
− 1

8

ζ

α2
l

r
1/2
l

(
6 cos

(
θl
2

)
+

3

2
cos

(
3θl
2

)))
A0

+

(
−3

4
r
−1/2
l sin

(
θl
2

)
− 1

8

ζ

α2
l

r
1/2
l

(
6 sin

(
θl
2

)
− 3

2
sin

(
3θl
2

)))
C0

+

(
3

4
αsr

−1/2
s cos

(
θs
2

)
− 3

16

ζ

αs
r1/2
s cos

(
3θs
2

))
B0 + 2A1

+

(
3

4
αsr

−1/2
s sin

(
θs
2

)
− 3

16

ζ

αs
r1/2
s sin

(
3θs
2

))
D0 + 2B1αs

+
15

4
r
1/2
l cos

(
θl
2

)
A2 +

15

4
r1/2
s αs cos

(
θs
2

)
B2

+
15

4
r
1/2
l sin

(
θl
2

)
C2 −

15

4
r1/2
s αs sin

(
θs
2

)
D2

− 3

2

ζδα2
l

α2
l − α2

s

r
1/2
l

(
A0 cos

(
θl
2

)
− C0 sin

(
θl
2

))
+

3

2

ζ

δ + 2

αs
α2
l − α2

s

r1/2
s

(
B0 cos

(
θl
2

)
+D0 sin

(
θl
2

))
+

3δ + 2

δ + 2

αc
α2
l − 1

r1/2q0 sin

(
θ

2

)
(C.75)
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εyy =

(
−3

4
r
−1/2
l cos

(
θl
2

)
− 1

8
ζr

1/2
l

(
6 cos

(
θl
2

)
− 3

2
cos

(
3θl
2

)))
A0

+

(
3

4
r
−1/2
l sin

(
θl
2

)
− 1

8
ζr

1/2
l

(
6 sin

(
θl
2

)
+

3

2
sin

(
3θl
2

)))
C0

+

(
−3

4
αsr

−1/2
s cos

(
θs
2

)
+

3

16

ζ

αs
r1/2
s cos

(
3θs
2

))
B0 + 2A1α

2
l

+

(
−3

4
αsr

−1/2
s sin

(
θs
2

)
+

3

16

ζ

αs
r1/2
s sin

(
3θs
2
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D0 + 2B1αs
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4
α2
l r

1/2
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In-plane Stress Fields

The strain fields given by Eqs. C.75 - C.77 and the temperature field given

by Eq. C.74 are substituted into Eqs. C.2 - C.4 to obtain the in-plan stress fields
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around the crack tip presented given by Eqs. C.78 - C.80
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APPENDIX D

Split Hopkinson Bar Theory

Longitudinal wave in a homogeneous bar with density ρ and Young’s modulus

Eb can be given as

∂2u

∂t2
= c2

∂2u

∂x2
(D-1)

where c is longitudinal wave velocity in the bar given by c =
√

Eb

ρ
, u is the

displacement and t is time.

The general solution for the above 1D partial differential equation can be written

as

u = f(x− ct) + g(x+ ct) (D-2)

where f and g are arbitrary functions determined by initial conditions.

From Eq. D-2, the strain (ε), stress (σ) and particle velocity (u̇) in the bar

can be derived as

ε =
∂u

∂x
=
∂f

∂x
+
∂g

∂x
(D-3)

σ = Eε = E(f ′ + g′) (D-4)

u̇ =
∂u

∂t
=
∂f

∂t
+
∂g

∂t
= −cf ′ + cg′ = c(−f ′ + g′) (D-5)

Split Hopkinson bar apparatus consists of two elastic bars with small specimen

attached in between the bars as shown in Fig. D.1. In the figure; the incident,

reflected and transmitted waves are indicated with the corresponding directions.

Using Eq. D-2 the displacements of the bar (u1 and u2) at the interfaces can be

given as,

u1 = f1(x− ct) + g1(x+ ct) = ui + ur (D-6)
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Figure D.1. Schematic representation of SHPB

u2 = f2(x− ct) = ut (D-7)

where ui, ur and ut are incident reflected and transmitted waves

Following similar procedure and using the above equations, the particle velocity,

strain and stress at the interface of the bar are derived as follows

Particle velocity

u̇1 = c(−f ′

1 + g
′

1) = c(−εi + εr) (D-8)

u̇2 = c(−f ′

2) = −cεt (D-9)

Strain

ε1 = f
′

1 + g
′

1 = u
′

i + u
′

r = −εi + εr (D-10)

ε2 = f
′

2 = u
′

t = εt (D-11)

Stress

σ1 = Eε1 = E(εi + εr) (D-12)

σ2 = Eε2 = Eεt (D-13)
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So long as the stress in the bars remains under elastic limits, specimen stress,

strain, and strain rate can be calculated from the recorded strain histories.

Strain rate in the specimen can be given as

ε̇s =
u̇2 − u̇1

ls

=
c

ls
(εi − εt − εr) (D-14)

Strain in the specimen:

εs =

∫ t

0

ε̇sdt

=
c

ls

∫ t

0

(εi − εt − εr)dt (D-15)

Stress in the specimen

σs =
Fa
As

(D-16)

where Fa average force of two interfaces, and A and As are bar and specimen cross

sectional areas respectively.

The average force Fa can be given as

Fa =
F1 + F2

2

=
σ1A+ σ2A

2
(D-17)

Substituting Eq. D-17 in to Eq. D-16 results in

σs =
σ1A+ σ2A

2As

=
EA

2As
(εi + εt + εr) (D-18)

The stress and strain of the specimen must be equilibrium during the loading

process, i.e

εi = εt + εr (D-19)
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By using the above equilibrium relation, the equation for strain rate, strain and

stress in the specimen can be reduce to

ε̇s =
2c

ls
εr (D-20)

εs = −2c

ls

∫ t

0

εrdt (D-21)

σs =
EA

As
εt (D-22)

Conditions to Satisfy the Equilibrium of the Specimen

• The elastic waves in the bars must be one-dimension longitudinal wave i.e

the wave length � radii of the bar. This can be maintained generally by

making the length of the striker bar 5 times larger than the radii of the bar.

• The specimen must deform uniformly. This can be achieved by

a. Making the wave pulse long enough

b. Choosing the specimen dimension using Eq. D-24

ls
ds

=

√
3νs
4

(D-23)

where ls, ds and νs are length, diameter and poison’s ration of the specimen.

c. Lubricating the interfaces of the bars and the specimen

Dimension of the Tungsten Carbide Inserts

During the elevated temperature testing two-carbide inserts are placed be-

tween the two bars and the specimen is sandwiched between the inserts as shown

in Fig. D.2. The inserts are used to eliminate the temperature gradient in the

bars. The inserts are impedance matched to the bars and hence do not disturb the

incident, transmitted and reflected wave profiles.

The dimension of the tungsten carbide insert is chosen by using the impedance
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Figure D.2. Schematic description of SHPB with heaters

Table D.1. Material properties of marraging steel and tungsten carbide

Material type Young’s modulus (GPa) Density (ρ )

Marraging steel 200 8080
Tungsten carbide 566 143800

relation given by Eq. D-25

ρsAscs = ρcAccc (D-24)

where ρs, As and cs are density, cross sectional area and wave speed of the bar

respectively and ρc, Ac and cc are density, cross sectional area and wave speed of

the inserts.

The mechanical and physical properties of the marraging steel and the tung-

sten carbide is given in the following Table. D.1

All variables in Eq. D-24, except the the cross-sectional are of the tungsten car-

bide inserts is known. The cross-sectional area of the tungsten carbide insert is

determined from Eq. D-24 as

Ac =
ρsAscs
ρccc

= 56.6mm2 (D-25)

i.e

Dc = 8.38mm (D-26)
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Therefore a tungsten bar with diameter of Dc= 8.38 mm is chosen. To make sure

that the impedance is properly matched, a calibration experiment is conducted.

The calibration is made by attaching the two tungsten carbide inserts and sand-

wiched them between the bars as shown in Fig. D.3. During loading the projectile

hits the incident bar, and the stress wave propagates from incident bar to the

transmitter bar through the tungsten carbide inserts. The strain on the incident

and transmitter bars is measured using the stain gages (sg) attached on the bars.

Fig. D.4 shows typical incident and transmitted signals from the calibration ex-

Figure D.3. Schematic description of calibration experimental setup

periment. As shown in the figure the incident and transmitted signals are identical

and there is no reflected signal observed. This can be seen clearly in the Fig. D.5,

where the incident signal is plotted on the top of the reflected signal.

Specimen Dimension

The length of the specimen is determined from the available plate thickness

Length of the specimen is 3.175 mm

To determine the diameter of the specimen the criteria relation given be Eq. D-23

is considered and a 10% axial strain is assumed

The axial strain in the specimen can be given as

εa =
∆L

L
= 0.1 (D-27)
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Figure D.4. Typical incident and transmitted signal from calibration experiment

Figure D.5. Incident and transmitted signals plotted at the same position
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The poison’s ration for the material considered is ν is 0.3

Therefore the lateral strain on the specimen cab be written as

εa =
∆D

D
=
Df −D0

D0

= 0.03 (D-28)

where Df = Diameter of the specimen after deformation

D0 = Diameter of the specimen before deformation

Rearranging Eq. D-28 will results in

Df

D0

= 1.03⇒ D0 =
Df

1.03
(D-29)

At this point it should be notice that, the diameter of the deformed specimen

should be less than the diameter of the inserts. i.e Df ≤ 8.38 mm

Using the relation given by Eq. D-29 and considering the maximum limit of the

deformation, a specimen with initial diameter D0 = 7.62 mm is obtained.
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