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Executive Summary 

Advances in sensing technology have yielded large complex data sets that often outpace our 

ability to reliably and efficiently analyze the data.  Numerous sensing modalities can be 

employed in a battlefield environment, each collecting different information pertinent to a given 

task (e.g. target detection and acquisition).  For example, third generation Forward Looking 

Infrared (FLIR) sensors can record data from a scene in both the Mid-wave IR (MWIR) and 

Long-wave IR (LWIR) regimes.  One would conceivably want to combine the information from 

these two wavelength regimes in such a way as to improve target detection and classification.  

More generally, what is needed are the algorithms that can integrate data from different sensing 

modalities to produce useful information for the warfighter. 

This work identifies an appropriate framework for integrating, or fusing, data from multiple 

sources to produce actionable intelligence.  Central to this process is the concept of 

dimensionality reduction.  Simply stated, dimensionality reduction is the process of taking a 

collection of high-dimensional data vectors (e.g., a collection of images) of dimension M and 

applying an appropriate transformation that results in data vectors of dimension D<<M.  If the 

transformation is performed correctly, the useful information in the original M data vectors is 

preserved in the much-reduced data space of dimension D.  We believe that fusion and 

classification of high-dimensional data is greatly improved if a proper, low-dimensional 

representation can be found.   

To achieve this goal we propose using two recent developments in signal processing.  Both 

approaches seek better data representations (models) and, hence, an improved ability to reduce 

high-dimensional data while preserving the useful information.  The first such approach involves 

using over-determined dictionaries or “frame” representations for the data.  This approach 

transforms the data into just a few appropriately chosen vectors and results in a large information 

compression.  The second technique comprises a class of intelligent data reduction algorithms 

known collectively as Nonlinear Dimensionality Reduction (NLDR).  These algorithms have had 

great success in a limited number of applications where traditional, linear techniques fail.   

_______________
Manuscript approved August 12, 2009. 
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 In short, both the method of frames and NLDR approaches provide better models for the 

data.  Better data models lead directly to 1) a large reduction in data dimensionality and 2) 

improved data classification. 

Background 

The purpose of any dimensionality reduction technique is to intelligently reduce the size of large, 

complex data sets so that information of interest can be identified and classified quickly and 

accurately while redundant or unnecessary information is ignored.   This is accomplished by 

transforming the original data to a smaller space that contains only the information of interest.  

Extraneous information is discarded.  This not only improves the process of information 

extraction but also significantly reduces computational effort.  The exact process chosen to 

accomplish the reduction, however, can lead to vastly different results.  We believe that two 

newly developed techniques, sparse representations (modeling) and nonlinear dimensionality 

reduction (NLDR), can offer significant improvements in information extraction, fusion and 

classification over conventional approaches. 

In this section we provide a brief introduction to data analysis using overdetermined dictionaries 

and Nonlinear Dimensionality Reduction (NLDR) techniques.  Also discussed is the Support 

Vector Machine (SVM), a well-known algorithm that can be employed for data classification.  

Sparse representations 

It is quite common in signal processing to represent a received signal 
 

y = y1, y2 ,…, yM( ) , 

consisting of M discrete observations, as a linear combination of some basis  

 
 

y = Ax  (1.1) 

where A is the M x M set of basis vectors and  
x is the coefficient vector associated with the 

decomposition.  For example, if A is the cosine basis the values in  
x  are the real parts of the 

Fourier Transform.  If the original signal 
 

y  is taken as a sinusoid then the vector  
x  will contain 

only 1 non-zero component corresponding to the vector in A with the same frequency as 
 

y .  The 

decomposition in this case is said to be sparse in the sense that a single number (the non-zero 
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amplitude of the sinusoid) captures all the information in 
 

y .  A proper choice of basis has 

yielded a reduction in dimensionality from M to 1.  The reason for such a large dimensionality 

reduction in this case is that we chose the correct signal model, i.e. the cosine basis.  In general, 

however, we do not know the signal model a priori.   

The decomposition given by Eqn. 1.1 is actually more restrictive than need be.  There is nothing 

to prevent us from specifying more than M (spanning) vectors in modeling the signal.  In fact, 

there has been a recent explosion of literature devoted to the concept of using overdetermined 

dictionaries to represent data1.  Sometimes referred to as “frames” (provided they meet certain 

mathematical criteria), these dictionaries require that a constraint be placed on the problem 1.1 as 

it no longer possesses a unique solution.  The constraint must be chosen so that “desirable” 

solutions can be found.  Let  A ∈MxK  be an overdetermined dictionary of vectors with M<K.  

We may now write 1.1 as   

 
 
minx  x L  subject to y=Ax  (1.2) 

i.e., solve the overdetermined system of linear equations subject to the constraint that the vector 

 
x  have the smallest possible L-norm.  In the spirit of the above mentioned Fourier analysis 

example, the “desirable” solution minimizes the L=0 norm, defined as 

 
 

x 0 = # i : xi ≠ 0{ }  (1.3) 

where we simply count the number of non-zero coefficient vectors that result from the 

decomposition.  Heuristically this makes sense as we are attempting to find the representation 

that takes all M observations and reduces their information content to a single number (again, as 

with the Fourier example).  Solutions  
x that are found in this fashion are said to be sparse.  

Algorithms for finding sparse solutions are currently available including Matching Pursuits2 or 

Basis Pursuits and their variations1. 

Typically, the problem is more complicated than the one given by 1.2.  We are often in the 

position of needing to find the best possible dictionary A and the associated sparse coefficient 

vector that results from the dictionary choice.  It is also frequently the case that we will have 
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access to multiple training samples 
 

yi  i = 1…N as opposed to a single piece of data as is implied 

by 1.2.  For this more complicated problem, the optimization becomes 

 
 

min
A, xi{ }i=1

N

xi 0
i=1

N

∑   subject to yi − Axi 2 < ε,  1 ≤ i ≤ N  (1.4) 

That is to say, find a dictionary that minimizes the 2-norm in the reconstruction and, given that 

dictionary, find the sparsest possible solution.  Solutions to this problem may be found in an 

iterative fashion, first solving for the coefficients 
 

xi , then solving for the dictionary A.  As an 

example, consider the image compression application demonstrated in Fig. 1.     

 

 

 

 

Fig. 1: Results of applying several different compression algorithms to a 180x220 pixel image.  Images taken from1 

 

The original image is reconstructed using a cosine (JPEG) and wavelet (JPEG-2000) basis as 

well as the traditional covariance-based PCA algorithm.  The final frame shows the results of 

applying the so-called K-SVD algorithm1. This algorithm is one approach to solving 1.4 thereby 

finding an overcomplete dictionary representation that admits sparse solutions1.  Shown beneath 

the figures are the peak signal-to-noise ratios achieved for a given level of compression.  Clearly 

the sparse representations (and corresponding dictionaries) found by solving 1.4 can significantly 

outperform the results of applying a standard basis. 

What is attractive from the data fusion perspective is the ability of these solutions to significantly 

compress information from very high-dimensional data sources.  Again, we believe that fusion is 

much more easily accomplished in a low dimensional space.  Our conceptual view of how the 

sparse data modeling would lead to data fusion is found in Fig. 2. 
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Fig. 2: NRL approach to data fusion.  For each individual piece of ni dimensional data, find the dictionary and 
coefficient vector that allows for a sparse representation.  The concatenated coefficient vector of dimension 
d<<n1+n2+n3 can then be used to classify the data in the low-dimensional space.  Support Vector Machines (SVM) 
are one well-known approach to drawing decision surfaces for classification purposes 

 

For each piece of data we find an associated low-dimensional representation.  The concatenation 

of these representations occupies a greatly reduced data space while still capturing the 

information present in the original data vectors.  Classification efficiency will be greatly 

improved by working in the reduced, fused space. 

To this point we have not discussed the specific classifier used to operate on the low-dimensional 

space.  What is needed for the classification problem is a means of drawing separating surfaces 

between the different classes of data as shown in Fig. 2.  For example, we may wish to 

distinguish data corresponding to military targets from those corresponding to civilian objects.  

Assuming that the low-dimensional representation has effectively captured the differences 

between these two classes and placed them on separate parts of the manifold, we seek a method 

that can draw a dividing or “decision” surface between the two.  This allows for future points to 
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be classified as belonging to either the military or civilian classes.  One effective approach for 

dividing up a space of arbitrary dimension is the Support Vector Machine (SVM)3.  The SVM 

takes training data with known relationships between data and class, and solves the optimization 

problem of finding the hyper-surface that maximizes separation between nearby vectors (the 

support vectors) of the different classes.  The SVM algorithm is now standard and software for 

various platforms is readily available4.  Although not the focus of this work, the SVM is a crucial 

component to making the final assessment as to which class the data belong.  The SVM is 

illustrated schematically in Fig. 2. 

Nonlinear Dimensionality Reduction (NLDR) 

A second, complementary approach to sparse signal representations is the idea of nonlinear 

dimensionality reduction (NLDR).  The goal of the NLDR techniques is also to find a low 

dimensional representation of complex high-dimensional data.  Consider N samples of an M-

dimensional data vector 
 

yi ∈
M   i = 1…N .  Each of these vectors can be thought of as a point in 

M-dimensional Euclidean space.  What if we were able to find a much lower D-dimensional 

representation of the data, D<<M such that the data vectors maintain the same relationship to 

one another as in the high-dimensional space?  This is the goal of  NLDR approaches. 

One of the earliest NLDR techniques was developed in 2000 by Roweis & Saul and is referred to 

as Locally Linear Embedding (LLE)5.  This approach begins by building linear models to 

describe local geometric relationships among data points in the original, high-dimensional data 

space.  The new, low-dimensional space is then obtained by projecting the original data in such a 

way as to preserve this local geometry.  Another approach developed around the same time was 

the ISOMAP approach of Tenenbaum et al.6 Subsequently developed techniques include 

diffusion maps7, Hessian eigenmaps8 and the Laplacian kernel approach of Jones et al.9  In each 

of the approaches the general goal is the same: construct some measure of local manifold 

geometry in the high-dimensional space and preserve that measure in projecting down to the low 

dimensional space.  Because these approaches are based on local geometric considerations rather 

than global linear mappings, they are appropriate in situations for which the high-dimensional 

data are not linearly separable (an implicit assumption made by traditional approaches).  
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An important advantage of NLDR compared to conventional approaches concerns how the data 

are treated mathematically.  Conventional approaches typically produce a new, smaller data 

space from linear combinations of the original data.  One common example is the Principal 

Component Analysis (PCA) approach which seeks linear combinations of the original data axes 

along which the data shows highest variance, next-highest variance, etc.  The assumption of 

linearity is a severe constraint since there is no reason to believe that the key pieces of 

information to be extracted from the data are linearly separable from the noise and clutter.  

NLDR approaches recognize this fact and allow the data to be nonlinearly related. The result is a 

data reduction approach that much more accurately captures the proper information relationships 

among the data thus allowing for accurate classification.  A simple example is shown in Figure 3.  

 

Fig. 3.Comparison of conventional approach to data reduction (PCA) and one of the NLDR approaches, 
Local Linear Embedding (LLE).  The PCA-based reduction cannot resolve the true relationship among the data 
points and the end result would be a large number of false alarms.   LLE reduction preserves the correct 
information relationships among the data. Here, the PCA approach did NOT simply “squash” the original data 
onto the x1-x2 plane, rather it formed a linear combination of the x1-x2-x3 axes to obtain new y1-y2 axes 
depicted in the upper right plot.  

 

In this simple example, the original data lives on a manifold known as the “Swiss roll” – a 

manifold shape that is particularly useful for illuminating the differences between linear and 

nonlinear approaches to dimensionality reduction. Here both PCA and LLE algorithms were 
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applied to obtain a 2-D reduced dimensionality space. Both PCA and LLE mapped points that 

were close together in the original data to points that are close together in the reduced 

dimensionality space – this is good. Unfortunately, PCA also maps points that are far away from 

each other in the original space (dark red and dark blue, for example) on top of each other in the 

reduced (D = 2) space. This will inevitably lead to confusion in the reduced space concerning the 

information relationship among these points.  On the other hand, LLE clearly maintains the 

proper relationship among the red, yellow, and blue points in the reduced space and classification 

will be much more accurate in this case.  

In general, the NLDR techniques work by first forming a connectivity matrix, or Markov matrix, 

describing how the high-dimensional data relate to one another geometrically.  For example, in 

the diffusion map technique the matrix is formed as 

 
 
Aij = K σ( ) = e− yi −

yj /σ 2

 (1.5) 

where a Gaussian kernel (parameterized by σ )is used to define distances between each sample i 

and every other sample j.  It can be shown that after proper normalization, the eigen-vectors of 

this matrix are a geometry preserving, low-dimensional embedding7.  Other NLDR techniques 

work in the same fashion: find a sparse matrix that captures local geometric information among 

the data vectors and take the first “D” eigenvectors as the new, reduced dimensionality 

coordinates. 

There are a few ways in which one could conceivably use the NLDR approaches to fuse data 

from different modalities.  The first of these is illustrated in Fig. 4. Data from the individual 

sensing modalities are first reduced to occupy a low dimensional space.  These low dimensional 

spaces can then be joined together to form the “fused” low-dimensional space.  Again, a SVM is 

envisioned as a good way to divide the low-dimensional space into separate classes.  

A second approach would be to combine the data before applying the NLDR approaches.  In this 

approach one would effectively be letting the NLDR method perform the fusion implicitly.  This 

approach is illustrated schematically in Figure 5. 
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Fig. 4: One approach to using NLDR techniques for data fusion.  Each piece of data is reduced to a low-
dimensional manifold using the appropriate NLDR technique and appropriate choice of kernel.  The sub-spaces are 
then concatenated together for classification purposes. 

 

 

Fig. 5:  Schematic showing second possible application of NLDR to data fusion.  The data from the different sensing 
modalities are first concatenated into one large data vector.  These samples are then reduced (and fused) using the 
NLDR approach to produce the low-dimensional space for classification. 

 

One could also conceive of a hybrid approach whereby sparse representations, as found using 

overdetermined dictionaries, form a relatively low-dimensional manifold.  The NLDR techniques 

could then operate on this manifold in order to get still better classification performance. 
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Clearly there are many ways to perform dimensionality reduction – nearly all of which have 

some merit.  The eventual choice will, as always, depend on the specific application under study 

and the sensing modalities involved.  The general framework, as presented here, illustrates some 

of these possibilities and describes how they might be used in problems of  high-dimensional 

data fusion. 

 

Summary 

We argue that any algorithm that can find sparse, low-dimensional representations of data is an 

excellent candidate for data fusion and classification.  By capturing the key information in a 

piece of data in only a few coordinates, one can greatly reduce the amount of information that 

needs to be processed.  In effect, these approaches are designed to discard redundant and 

unnecessary information or clutter, thus improving both the accuracy and speed of classification.  

A number of important applications can be aided by such an approach.  Analysis of multi-

spectral data, combinations of ground-based and air-based sensing modalities, or even fusion of 

time-series and image data are all areas where the above described methods could be valuable. 

 

References 

                                                

1 D. L. Bruckstein, D. L. Donoho, and M. Elad, “From Sparse Solutions of Systems of Equations 
to Sparse Modeling of Signals and Images”, SIAM Review, 51(1), 34-81, 2009. 

2 G. K. Rhode, J. M. Nichols, and F. Bucholtz, “Chaotic Signal Detection and Estimation Based 
on Decompositions Over Attracting Sets: Applications to Secure Communications. Chaos 18, 
013114, 2008. 

3 V. Vapnik, “Statistical Learning Theory”, Wiley, New York, 1998. 

4 Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, 2001. 
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm 

5 S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by Locally Linear 
Embedding”, Science 290, 2323-2326. 



 

 11 

                                                                                                                                                       

6 J. B. Tenenbaum, V. de Silva and J. C. Langford, “A global geometric framework for nonlinear 
dimensionality reduction” Science 290 2319-2323, 2000. 

7 R. R. Coifman and S. Lafon, “Diffusion Maps”, Applied Computational Harmonic Analysis 21, 
5-30, 2006. 

8 D. L. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embedding techniques for 
high-dimensional data”, Proceedings of the National Academy of Sciences USA 100(10), 5591-
5596, 2003. 

9 P. W. Jones and M. Maggioni and R. Schul, “Manifold Parametrizations by Eigenfunctions of 
the Laplacian and Heat Kernels” Proceedings of the National Academy of Sciences USA 105(6), 
1803-1808, 2008. 






