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a b s t r a c t

An anisotropic nonlinear crystal mechanics model is developed for a class of ductile aluminum alloys,
with the intent of relating microscopic features and properties to performance of the alloys deformed
at high strain rates that may arise during impact and blast events. A direct numerical simulation of
dynamic tensile deformation of an aluminum polycrystal demonstrates a tendency for shear localization
to occur in regions of the microstructure where the ratio of the rate of residual (i.e., stored) elastic energy
to plastic dissipation is minimal. By coarse-graining predictions of the crystal plasticity framework using
a Taylor averaging scheme, a macroscopic constitutive model is developed to investigate effects of micro-
structure on ballistic perforation resistance of plates of an Al–Cu–Mg–Ag alloy. Specific aspects of micro-
structure investigated include random and rolled cubic textures as well as stored elastic energy and
residual volume changes associated with lattice defects, impurities, and inclusions such as second phases
in the metal–matrix composite. Results suggest performance could be improved by tailoring microstruc-
tures to increase the shear yield strength and the ratio of residual elastic energy to dissipated heat.

Published by Elsevier Ltd.

1. Introduction

Aluminum alloys, as a result of their low mass density, high
strength, and high ductility, are of technological interest for vehic-
ular applications, including aircraft and land vehicles. The class of
materials of present study consists of bulk Al grains (face centered
cubic or FCC crystal structure) and other phases that emerge as a
result of incorporation of secondary elements, either within grains
or near grain boundaries. The material of interest here, Al 2139,
consists primarily of elemental Al and contains smaller amounts
of Cu, Mg, Ag, Mn, and trace amounts of Si and Fe [3]. The micro-
structure may influence mechanical properties in a number of
ways. For example, orientations of individual grains affect elastic
compliance and yield strength; second phases influence disloca-
tion mechanisms, and hence strength, ductility, and energy of cold
working; and precipitates segregated at grain boundaries affect
fracture strength. In Al–Cu–Mg–Ag alloys one important secondary
phase is the X phase, with chemical composition Al2Cu and ortho-
rhombic crystal structure, which can nucleate as thin plates on
{111} planes and in fine distributions leads to creep resistance
and superior strength [14]. A number of other microscopic hetero-
geneities are also possible, including the h phase (tetragonal crystal
structure, also of composition Al2Cu); dispersoids of Mn; and at the
single-atom scale, point defects such as interstitials and vacancies

associated with impurities. Polycrystalline Al 2139 can thus be la-
beled a metal–matrix composite, with the matrix phase itself a
composite mixture of anisotropic grains, and with possible second-
ary phases consisting of X; h, and/or Mn.

An increased understanding of mechanisms affecting dynamic
mechanical performance of aluminum alloys is sought. Relation-
ships between composition, processing routes, microstructure,
strength, and ductility are needed. One goal of the present work
is to suggest promising paths to tailor the material at the scale of
individual crystals and lattice defect distributions in order to im-
prove performance.

In the present paper, a new constitutive model capturing defor-
mation of individual anisotropic crystals with effects of precipitates
and impurities is developed, as presented in Section 2. A unique fea-
ture of the model not included in previous work on metals [4–6] is
explicit consideration of the residual elastic volume change result-
ing from the energy of local stress fields of lattice defects [28,12,35].
More precise values of thermoelastic properties not considered in
Clayton [6] are also used here, following Thomas [32]. The model
is implemented in a dynamic finite element code; a representative
simulation of grain morphology presented in Section 3 indicates
heterogeneous localized deformation resulting from spatial varia-
tions in properties within the microstructure. In Section 4, a new
macroscopic model accounting for homogenized behavior of the
polycrystalline metal–matrix composite is presented, capturing
strain-dependent variations in stored energy of defects in the
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balance of energy and residual volume changes in the equation of
state. The coarse-grained model’s parameters are obtained via cal-
ibration to results of the crystal plasticity model, which itself is too
computationally intensive to enable large scale ballistic simula-
tions. Instead, macroscopic finite element-smooth particle dynamic
simulations incorporating the homogenized material behavior are
used to provide quantitative assessments of possible benefits of
texturing and amplification of energy storage mechanisms on bal-
listic performance, as discussed in Section 5. Such information
may be useful to alloy developers seeking processing paths for
engineered materials at nano- and microscales that offer optimal
performance in structural applications.

2. Model for anisotropic crystal mechanics

The present treatment of geometrically nonlinear, single crystal
elastoplasticity extends previous theory [4,5] to account for free
energy accumulation associated with interactions between dislo-
cations and precipitates or interstitials as well as residual elastic
volume changes. Standard notations of modern continuum
mechanics are used. Boldface type is used for vectors and tensors,
and italic font is used for scalars. Juxtaposition of boldface quanti-
ties implies matrix multiplication. The summation convention ap-
plies over repeated indices. For simplicity, Cartesian coordinates
are used throughout.

The local deformation gradient F satisfies

F ¼ @Xu ¼ FEFhJ1=3FP; ð1Þ

where X are material coordinates, x ¼ uðX; tÞ are spatial coordi-
nates depending on time t;FE accounts for mechanical elastic defor-
mation and rigid body rotation, Fh accounts for thermal expansion
or contraction, and FP accounts for dislocation glide. The scalar J ac-
counts for residual elastic volume changes associated with nonlin-
ear elastic behavior and eigenstresses of defects [28,12]. The
spatial velocity gradient following from (1) is

L ¼ @x _x ¼ _FEFE�1 þ aT
_h1þ ð1=3Þ_JJ�11þ FEFhLPFh�1FE�1; ð2Þ

where the superposed dot and �1 denote a material time derivative
and matrix inversion. For cubic lattices, thermal deformation is iso-
tropic. The coefficient of thermal expansion aT may depend on tem-
perature h, and 1 is the unit tensor. Deviatoric plastic deformation
satisfies the usual rate kinematics

LP ¼ _FPFP�1 ¼
Xn

a¼1

_cðaÞsðaÞ0 �mðaÞ
0 ; ð3Þ

where sðaÞ0 and mðaÞ
0 denote the reference slip director and slip plane

normal for glide system a, with n the total number of systems, and
_cðaÞ is the shearing rate on system a. Slip directors and plane nor-
mals are mapped from the reference to deformed configuration
via the thermoelastic deformation as follows:

sðaÞ ¼ FEFhJ1=3sðaÞ0 ; mðaÞ ¼mðaÞ
0 J�1=3Fh�1FE�1: ð4Þ

In FCC crystals, usual Burgers vectors for mobile dislocations are of the
type a=2h110i, with magnitude b ¼

ffiffiffi
2�1
p

a, where a is the lattice
parameter of the conventional unit cell. Glide planes are of orientation
{111}, leading to 12 independent slip systems of type h1 �10if111g.

The Helmholtz free energy per unit mass is denoted by w. The
specific free energy density of the crystal is written

~qw ¼ 1
2

EE
abC

abvdEE
vd|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

second-order elasticity

þ1
6

EE
abC

abvde/EE
vdEE

e/|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
third-order elasticity

þ 1
2
jXln2|fflfflfflfflffl{zfflfflfflfflffl}

lattice defects

� ~qĉh logðh=h0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
thermal energy

; ð5Þ

where on the left, ~q ¼ JEq is the mass density of the elastically un-
loaded material, q is the mass density of the deformed material, and
JE ¼ det FE. Components of elastic strain are 2EE

ab ¼ FEa:
a dabFEb:

b � dab,
with Kronecker’s delta denoted by d, and summation is invoked
over repeated Greek and lower-case Roman indices. Second- and
third-order elastic coefficients, Cabvd and Cabvde/, may generally de-
pend on temperature, as may the effective shear modulus l. Alumi-
num single crystals exhibit three independent second-order elastic
coefficients and six independent third-order coefficients [32]. Also
in (5), j and X are dimensionless scalars, ĉ is the specific heat per
unit mass, and h0 is a scalar temperature at which the thermal en-
ergy vanishes. The scalar internal state variable n is defined by

n ¼ b
ffiffiffiffiffiffi
qT
p

; ð6Þ

where qT is the total line length per unit volume of dislocations, in
general both mobile and immobile, associated with stored energy of
cold working [26] and strain hardening during plastic flow. Thermo-
dynamic arguments [4,5] lead to the stress–strain relations

Sab ¼ JEFE�1a
:a rabFE�1b

:b ¼ ~q
@w

@EE
ab

¼ CabvdEE
vd þ

1
2

Cabvde/EE
vdEE

e/; ð7Þ

with S the elastic second Piola–Kirchhoff stress and r the Cauchy
stress. The local energy balance in the spatial configuration is

qĉ _h|{z}
temperature change

¼
Xn

a¼1

sðaÞ _cðaÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
dissipation from slip

� p_JJ�1|ffl{zffl}
residual volume changes

� q

 
@w
@n
� h

@ w
@h@n

!
_n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

energy of lattice defects

þ h

 
q@ w

@h@EE �
aT @p

@EE

!
: _EE

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
thermoelastic coupling

� @x � q|fflffl{zfflffl}
heat conduction

; ð8Þ

where sðaÞ ¼ r : sðaÞ �mðaÞ is the resolved shear stress on system a, p
is the Cauchy pressure, and q is the heat flux satisfying

q ¼ �k@xh; ð9Þ

where k is the scalar thermal conductivity. Symbols � and : in (8) de-
note contraction over one and two sets of indices, respectively.

Following the generic Arrhenius form for thermally activated
kinetics,

_cðaÞ ¼ _c0 exp½�GðaÞ=ðkBhÞ�; ð10Þ

where _c0 is a constant with dimensions of 1=t, kB is Boltzmann’s
constant, and GðaÞ is the Gibbs activation energy that depends upon
the state variables [4,5,33]:

GðaÞ ¼ �mkBh½logð~sðaÞ=gðaÞ0 Þ � r logðh=h0Þ�: ð11Þ

Here m and r are dimensionless parameters denoting rate and tem-
perature sensitivity, respectively, and ~sðaÞ ¼ JEsðaÞ. The larger the va-
lue of m, the less rate sensitive the flow stress. A negative value of r
leads to thermal softening from increased dislocation mobility with
increasing temperature. The transient slip resistance gðaÞ0 ¼
gðaÞy þ DgðaÞ arises from the sum of (i) the initial distribution of de-
fects, lattice friction, and viscous, phonon, and electron drag via
constant gðaÞy ; and (ii) evolving barriers to slip such as accumulated
forest dislocations via state variable-dependent contribution
DgðaÞðn; tÞ. The evolution of slip resistance at reference temperature
h0 is dictated by a hardening-minus-dynamic-recovery relation:

_gðaÞ0 ¼ A
Xn

b¼1

qa
b j _cðbÞj � BgðaÞ0

Xn

b¼1

j _cðbÞj; qa
b ¼ da

b þ qð1� da
bÞ; ð12Þ
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where q is the latent hardening ratio equal to unity in what follows
[22], such that all n systems harden equally. In (12), A and B are
constants. The constant gðaÞy is independent of strain rate and
temperature and reflects the initial yield stress at h ¼ h0. Thus,
_gðaÞ0 ¼ dðDgðaÞÞ=dt, where _gðaÞ0 is evaluated according to (12). Possible
influences of rate and temperature on the evolution of hardness gðaÞ0

are apparent upon substitution of the slip rates from (10) and (11)
into (12). The zero subscript on the notation gðaÞ0 is not necessary,
but it is used for consistency with previous work [4,5,33]. The origin
of this subscript follows from the argument that at h ¼ h0, temper-
ature does not affect the apparent yield stress entering the flow rule
(10) resulting from the form of the activation energy in (11).

The following relationship between hardening and the accumu-
lated dislocation line density is used [29]:

DgðaÞ ¼ âlb
ffiffiffiffiffiffi
qT
p

: ð13Þ

Scalar proportionality factor â accounts for dislocation interactions.
The residual elastic energy per unit volume from dislocations ES is
estimated as

ES ¼
1
2
jXln2 ¼ 1

2
jXlb2qT ¼

lb2

4p
log

R
RC

" #
XqT : ð14Þ

The first two equalities in (14) offer a phenomenological represen-
tation of the stored energy of the local stress fields of dislocations.
Such a linear relationship between the scalar dislocation density
and stored energy has been described elsewhere [23,4,5]; in this
relationship, the product jX is simply a proportionality constant
to be calibrated from experimental measurements on stored energy
of cold work [26]. The term following the final equality includes the
well-known logarithmic energy per unit length of a screw disloca-
tion in an isotropic body of infinite extent [13]. Multiplying this en-
ergy per unit length by the product of the line length per unit
volume of dislocations and the scaling factor X then gives the total
energy per unit volume. The relationship R=RC ¼ expð2pjÞ is ob-
tained by straightforward algebra. For straight, non-interacting
screw dislocation lines, a typical estimate is jX � 2 [13]. Contribu-
tions of j to deviations from this approximate value (i.e., jX–2Þ
account for elastic anisotropy, core effects, elastic nonlinearity,
edge and mixed character of dislocations, and dislocation line
curvature. The parameter X is described in more detail below. The
volume change associated with the residual elastic energy of (14)
is [28,12]

J ¼ 1þ l�1ð@l=@p� l=KÞES ¼ 1þ ðjXb2qT=2Þð@l=@p� l=KÞ;
ð15Þ

where for a cubic crystal with second-order constants C11;C12, and
C44, the appropriate bulk and shear moduli K and l satisfy
3K ¼ C11 þ 2C12 and 2l2 ¼ C44ðC11 � C12Þ. The elastic coefficients
and the pressure derivative of the shear modulus in (15) are all
measured at the stress-free reference state. The Taylor–Quinney
factor b dictating plastic work-to-heat conversion in adiabatic pro-
cesses [10,31,26] is defined as

b ¼
Xn

a¼1

sðaÞ _cðaÞ � qð@w=@n� h@2w=@h@nÞ _n
 ! Xn

a¼1

sðaÞ _cðaÞ
 !�1

;

ð16Þ

such that 1� b is the ratio of the rate of stored residual elastic en-
ergy to dissipation resulting from dislocation glide. Manipulating
(6) followed by time differentiation gives

n ¼
~q@w=@n
jlX

¼ 1
âln

Xn

a¼1

DgðaÞ; _n ¼ b
_qT

2
ffiffiffiffiffiffiqT
p � 1

âln

Xn

a¼1

_gðaÞ0 : ð17Þ

Furthermore, from (5) and (13),

~qh
@2w
@h@n

¼ jXh
âln

@l
@h

Xn

a¼1

DgðaÞ; qT ¼
1

âlnb

Xn

a¼1

DgðaÞ
" #2

: ð18Þ

Substituting (17) and (18) into (16) then yields

b ¼ 1� jX lþ h
@l
@h

� � Xn

a¼1

DgðaÞ
Xn

a¼1

_gðaÞ0

" #
ðâlnÞ2

Xn

a¼1

~sðaÞ _cðaÞ
" #�1

:

ð19Þ
As is clear from (8) and (19), when j is held fixed, values of X > 1
amplify the stored energy associated with internal variable n and
equivalently, the residual elastic energy engendered by microscopic
stress fields arising from the dislocation density qT . Such amplifica-
tion would manifest physically in Al–Cu–Mg–Ag alloys from the
presence of second-phase particles of X; h, or Mn that can act as lo-
cal stress risers [2] or barriers to dislocation motion. The increase in
stored energy would be attributed to both the elastic energy of the
deforming second phases and misfit stresses [17], as well as the
elastic interaction energies of dislocations that may build up at
grain and phase boundaries. While j accounts for the self-energy
of dislocations as discussed following (14), X accounts for interac-
tion energies of dislocations with second phases, point defects or
impurities, and other dislocations. If the dislocation density van-
ishes in a reference configuration of minimum free energy (e.g., a
perfect lattice) then the product jX must be positive to ensure that
the free energy (5) increases with increasing defect content. Values
X < 1 are permissible and would reduce the stored energy associ-
ated with lattice defects when j is held fixed.

Parameters entering the single crystal model, many specific to
alloy Al 2139, are compiled in Table 1. Because in applications of
present interest, slip takes place before large deviatoric elastic
strains can arise, third-order elastic constants in (5) are repre-
sented by the simple form [5,7]

Cabvde/ ¼ �2K1d
abdvdde/; ð20Þ

where K1 > 0 accounts for the increase in apparent bulk modulus
with increasing pressure. Elastic constants and their pressure and
temperature derivatives are obtained from Thomas [32]. The
remaining parameters in Table 1 are obtained from the plasticity lit-
erature or calibration to experimental data for Al 2139 [3], with a
random texture as explained in Clayton [6]. The large value of m im-
plies rate insensitivity. A range of values of 1 6 X 6 8 is considered
to investigate effects of stored energy on the thermomechanical re-
sponse, as explained in detail in Section 4.

3. Mesoscale simulation

A direct numerical simulation of individual anisotropic grains is
performed first to provide insight into the high rate mechanical
response of the alloy at the scale of the microstructure.

Table 1
Parameters for crystal model.

Parameter Value Parameter Value

C11 ½GPa� 108 aT ½1=K� 2:3ð10Þ�5 þ 1:7ð10Þ�8Dh
C12 ½GPa� 60.4 ĉ ½J=kgK� 900þ 0:466Dh
C44 ½GPa� 28.3 gðaÞy ½GPa� 0.155
@C11=@h [MPa/K] �35.1 q 1.0
@C12=@h [MPa/K] �6.7 â 0.3
@C44=@h [MPa/K] �14.5 b ½nm� 0.286
@l=@p 1.75 _c0 ½1=s� 0.001
K1 ½GPa� 36.7 m 50
q0 ½kg=m3� 2700 n 12
j 10 A ½GPa� 0.48
h0 ½K� 300 B 1.5
h1 ½K� 934 r �1.1
k ½W=mK� 237 X 1.0, 4.0, 8.0

J.D. Clayton / Composites: Part B 40 (2009) 443–450 445
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Representative results are shown in Fig. 1. Properties are chosen to
correspond to an Al 2139 alloy of the type described in Table 1,
with X ¼ 1. As will be demonstrated later in Section 4, this leads
to an average value of the heat dissipation fraction b on the order
of 0.90–0.95 when considered over a range of strains from zero to
unity. Such a prediction is in general agreement with experimental
observations of Farren and Taylor [10], Havner [11], and references
therein, who noted for commercially pure polycrystalline alumi-
num an average value of b � 0:93. In the present model, effects
of inclusions and precipitates are treated implicitly by the choice
of material parameters, meaning that the second phase particles
are not modeled explicitly. In the present context, the impurities
are too small to resolve efficiently using continuum finite ele-
ments: Mn dispersoids are of diameter 0:1� 0:5 lm [3], and X
platelets are of thickness less than 0:1 lm [14]. The size of the
computational domain is 1 mm� 1 mm, consisting of 100 grains
of an average size of 100 lm, with a random initial texture. Polyg-
onal grain shapes are created using a Voronoi technique [9,25]
with selective mesh refinement in the vicinity of grain boundaries
[4,5]. The finite element method with explicit dynamics and heat
conduction is used in the calculations, as described in [4,5].

The boundary conditions are plane strain, with an applied
stretch in the vertical direction resulting from a velocity of 10 m/s
applied to the upper surface and the bottom surface fixed in the
vertical direction. An initial velocity gradient component in the

direction of stretch of magnitude 104=s is assigned throughout
the domain to minimize inertial effects. These boundary conditions
provide an average applied tensile strain rate of 104=s. Plane strain
boundary conditions are used for the two-dimensional simulations
because they are deemed more representative (than plane stress,
for example) of conditions experienced by a polycrystalline volume
element embedded within a much larger sample of material [38,4].
Special force boundary conditions applied along the lateral edges
constrain these edges to remain vertically straight and parallel,
yet free to contract inwardly due to the Poisson effect as the mesh
undergoes tensile stretch. The lateral edges are free of shear trac-
tion. A uniform acceleration in the direction of contraction is as-
signed to all nodes of a lateral edge, with the value of this nodal
acceleration computed for each explicit time step by dividing the
total reaction force along the edge by the total mass of the nodes
comprising that edge. A similar methodology was used in explicit
simulations of polycrystalline microstructures by Zhou et al. [38]
for imposing periodic shear deformations by averaging forces over
periodic pairs of nodes. The boundary constraints are intended to
instill the mesh with a global deformation mode that could be rep-
resentative of a polycrystalline volume element embedded within a
much larger sample. For example, spatial coordinates of the bound-
aries move in an affine manner according to x ¼ FX, where compo-
nents F1

:1 and F2
:2 measure, respectively, the average lateral

contraction and average applied stretch, �F3
:3 ¼ 1 in plane strain,

Fig. 1. Simulated Al polycrystal with random grain orientations at applied tensile strain of 8%: (a) effective stress, (b) effective plastic strain, (c) temperature, (d) dissipation
fraction, (e) dislocation density, (f) residual volume change.

446 J.D. Clayton / Composites: Part B 40 (2009) 443–450
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and Fa
:A ¼ 0 for a–A. These affine displacement conditions are anal-

ogous to a macroscopic deformation gradient F imposed on a single
linear finite element containing a representative volume of micro-
structure. Although the assumption of plane strain may inhibit
the formation of localized deformation modes such as shear band-
ing and necking, the plane strain condition has been used exten-
sively by a number of authors to study shear localization
phenomena in the context of crystal plasticity or viscoplasticity
[21,38,1]. The constraint imposed on the lateral edges of the mesh
in the present work may also inhibit shear localization; for exam-
ple, necking of the sample would be possible if the lateral edges
were completely free of traction. Thus, the combination of plane
strain and linear displacement conditions used here is expected
to provide a stiffer response than other possible choices of bound-
ary conditions such as plane stress or applied traction conditions
(e.g., null tractions along the lateral edges). The boundary condi-
tions used here are sufficient to provide some insight into the phys-
ics of shear localization in a representative polycrystalline sample
via examination of the field variables (Fig. 1), but a more thorough
investigation, reserved for future work, would also consider of other
kinds of boundary conditions. Three-dimensional elastic and plastic
deformations are permissible, with the full number of potentially
active slip systems, so long as total deformation remains planar,
as assumed in a number of previous works [8,4,5,33]. A uniform ini-
tial temperature of 300 K is assigned along with null heat flux con-
ditions normal to the external boundary. Several mesh densities
were investigated, and to the strain levels shown in Fig. 1, the re-
sults are insensitive to the mesh size.

Results in Fig. 1 correspond to an 8% applied strain, that is,
t ¼ 8 ls. Shown in Fig. 1(a) is the scalar effective stress, found by
�r ¼ ðð3=2Þr0 : r0Þ1=2, with r0 the deviatoric part of the Cauchy stress.
Most grains support stresses on order of 0.5 GPa, but owing to orien-
tation and elastic–plastic anisotropy, some grains are stiffer or more
compliant than others. Shown in Fig. 1(b) is the cumulative effective
plastic strain found by eP ¼

R
ðð2=3ÞDP : DPÞ1=2dt, where DP is the

symmetric part of LP in (3). Several bands of localized deformation
are apparent, most notably that on the lower right side of the domain,
in which the plastic strain approaches 0.5. As is clear from Fig. 1(c),
regions of intense strain correlate with regions of greatest tempera-
ture rise, with temperatures on the order of 450K attained in portions
of the band. As shown in Fig. 1(d), the dissipation fractionb correlates
positively with temperature rise and plastic strain localization. Note
the inverse color scale used in Fig. 1(d), such that red areas corre-
spond to an increased rate of energy storage. This correlation is obvi-
ous from consideration of the energy balance and thermal softening
kinetics in (11): larger values of b lead to larger amounts of energy
converted to temperature rise, which in turn leads to increased ther-
mal softening. Reasons for relatively large local values b � 1 in the
vicinity of regions of intense plastic strain include (i) local dislocation
content approaching saturation such that rates of hardening and en-
ergy storage are minimal; (ii) large magnitudes of slip rates contrib-
uting to the denominator in (16); and (iii) large temperature rise
contributing to the product h@l=@h < 0 in (19). Shear localization
due to adiabatic heat generation and thermal softening in ductile
metals can occur similarly in compression, shear, and mixed-mode
loading [36]. Shown in Fig. 1(e) is the dislocation density associated
with cumulative hardening in (13), while shown in Fig. 1(f) is the
residual elastic volume change J � 1 from (15). Dislocation densities
of the same order of magnitude have been predicted elsewhere
[24,25] in grain-scale crystal plasticity simulations of FCC metals.
The volume changes predicted here are small and do not significantly
affect the pressure (e.g., Dp � 1:5� 10�4K � 12 MPaÞ, and occur in
regions where the dislocation density is highest. According to (15),
the dislocation density and the residual volume change are linearly
related, with ðJ � 1Þ=qT varying with temperature as a result of the
affect of temperature on the elastic moduli.

In summary, the results in Fig. 1 demonstrate positive correla-
tions among temperature rise, plastic strain, and the heat dissipa-
tion fraction b. Increases in parameter X, via processing steps to
increase the capacity for stored energy of mechanical working,
would reduce b, heat conversion, and the tendency for localization
of plastic deformation. Texturing could conceivably increase
stress-carrying capacity, for example, via inclusion of a higher pro-
portion of the stiffer grains evident in Fig. 1(a). A more extensive
study would consider a large number of microstructure morpholo-
gies, grain orientation sets, and loading rates; however, the present
mesoscale simulation is sufficient to demonstrate mechanisms to
be exploited in what follows. Specifically, two mechanisms for pos-
sible performance enhancement – grain orientation and energy
storage – are considered.

4. Coarse-grained macroscopic model

Homogenized results of a number of polycrystal calculations are
used to provide parameters for a macroscopic plasticity model
used in impact simulations. Polycrystalline aggregates consisting
of 300 crystals are subjected to uniform shearing at a constant rate
via F1

:3 ¼ 1þ _ct, where the shear strain is c ¼ _ct. The shear bound-
ary conditions at an applied rate of _c ¼ 104=s are those deemed
most crucial in a ballistic perforation event [27]. Each grain in
the aggregate is sheared adiabatically under the same total defor-
mation gradient [30,4], and each grain has the same volume. In the
polycrystal calculations, two initial textures are considered: ran-
dom and cubic. The random texture is representative of the simu-
lation in Section 3 and results in Fig. 1, while the cubic texture can
be obtained in a ductile plate by rolling [34]. In a previous work [6],
a number of different rolled textures [34] were considered, with
cubic found to give the greatest increase in the shear stress compo-
nent thought to provide the primary resistance to plug formation
[19,27]. For the random texture, each grain is assigned an indepen-
dent set of three Euler angles with a random number generator,
providing for isotropic average behavior. To obtain shear strength
properties appropriate for a plate with a cubic texture subject to
perforation, grains are all aligned with one cube axis parallel to
the normal direction of the Al plate, that is, parallel to x3, the direc-
tion of perforation. The other two cube axes are distributed ran-
domly among the grains in the plane of the plate, the x1 � x2

plane. This provides for transversely isotropic symmetry, and al-
lows for an average resistance of the plate to perforation by a cylin-
drical projectile that would arise from a true cubic texture with the
three cube axes aligned with the normal, transverse, and rolling
directions, respectively [6]. For each initial texture (i.e., random
or cubic), values of X ¼ 1;4; or 8 are also considered, to investi-
gate possible strengthening effects from energy storage.

The volume-averaged shear stress of the aggregate,
�s ¼ V�1 R r13dV , is shown in Fig. 2. Each grain can support a differ-
ent individual shear stress as a result of its particular lattice orien-
tation. Cubic texturing provides a � 25% increase in peak shear
strength over aggregates with random texture. Increases in energy
storage factor X result in a slight increase in shear strength, for
example for random grains at c ¼ 0:4; �s ¼ 0:446 GPa for X ¼ 1
compared to �s ¼ 0:471 GPa for X ¼ 8. The strength difference
arises from the greater heat generated for X ¼ 1, leading to more
thermal softening relative to the prediction for X ¼ 8. Since all
grains are assigned the same deformation, no representation of
localization is included in the results of Fig. 2 that would enhance
the strength distinction afforded by different values of X.

The average dissipation fraction �b ¼ V�1 R bdV is shown in
Fig. 3. Each grain can provide a different value of the local dissipa-
tion fraction (i.e., the integrand) as a result of its own orientation.
In all cases, this quantity decreases initially in conjunction with
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work hardening and dislocation multiplication, then increases
asymptotically towards unity at large strains as the dislocation
content saturates [36,4]. Small differences in the dissipation frac-
tion arise between random and cubic textures. Large differences
arise from the choice of X, as expected from (19). As noted previ-
ously, commercially pure polycrystalline Al exhibits an average
cumulative value of �b � 0:93 [11]. Slightly higher values, e.g.
� 0:95 at strain levels approaching 50%, have been noted for pure
aluminum single crystals [10]. The energy storage is presumably
greater in polycrystals because of concentrated residual elastic en-
ergy near grain boundaries and triple points, as has been predicted
in mesoscale simulations of FCC polycrystals [8]. Also shown in
Fig. 3 are high-rate experimental results from Rosakis et al. [26]
of rate-insensitive alloy Al 2024-T351, where the compressive
plastic strains eP reported in that work are converted to equivalent
shear strains using c �

ffiffiffi
3
p

eP . The adjustable parameter X dictates
the ratio of the rate stored residual elastic energy to inelastic stress
power, as is clear from Fig. 3. The larger the value of X, the greater
the stored energy. Experimental data on �b is not available for Al
2139 which is also fairly rate insensitive ([6] and references there-
in), but the results in Fig. 3 demonstrate that a physically reason-
able range of �b is provided by 1 6 X 6 8. The dissipation fraction
of Al 2024-T351 would seem to correspond to X between 4 and
8, while pure Al would correspond to X � 1. On the other hand,
for alloys of different composition or processing routes, X may
deviate from these values. Differences in X may arise among differ-
ent alloys because of variations in composition and microstructure.
Quantitative expressions relating X to precipitate sizes and volume
fractions, impurity concentrations, and dislocation distributions
remain to be determined by careful microscopic experiments and
numerical simulations at the scale of discrete dislocation dynamics
or molecular dynamics.

The plasticity component of the macroscopic model used here
to represent Al 2139 in ballistic simulations follows from Zerilli
and Armstrong [37]. For FCC metals such as Al, the yield surface
in terms of deviatoric strength is

�r ¼ C0 þ C2eN
P expð�C3hþ C4h log _eÞ; ð21Þ

where _e ¼ ðð2=3ÞD : DÞ1=2 is the effective total strain rate and D is
the symmetric part of the total velocity gradient L. Symbols
C0;C2;C3;C4, and N denote fitting parameters, and G is the macro-
scopic shear modulus. Values corresponding to the Al alloy of pres-
ent interest with different textures are listed in Table 2; specifically,
C4 ¼ 0 implies rate insensitivity, and C2 is higher for the cubic tex-
ture than the random texture, leading to the increased flow stress of
the former evident in Fig. 2. These parameters are obtained by fit-
ting (21) to the results of the polycrystal simulations of Fig. 2, again
assuming adiabatic conditions. Note that the material is treated in
the coarse scale model as isotropic, a rigorous assertion only for
Al plates of the random texture. The cubic orientation would afford
transverse isotropy, as discussed above. Thus, the normal strength
of cubic-textured plate in the x3-direction and the shear stresses
r12 and r23 may be over- or underestimated by the assumption of
isotropy. However, the predictions of dynamic perforation will be
accurate so long as the primary resistance to plugging is the shear
stress s ¼ r13 tangential to the penetration direction [19,27]. Also
shown in Table 2 are properties for iron used to model the projectile
in impact simulations that are described in Section 5. The dynamic
yield stress of iron is given by the BCC Zerilli–Armstrong model
[37]:

�r ¼ C0 þ C1 expð�C3hþ C4h log _eÞ þ C5eN
P ; ð22Þ

with C1 and C5 additional parameters. The local macroscopic energy
balance, i.e. the analog of (8) under adiabatic conditions, is

qĉ _h ¼ �br : DP þ 1ðq; h; JÞ; ð23Þ

where 1 accounts for effects of the equation of state of the material
that relates mass density, temperature, and defect content to hydro-
static pressure. The effect of residual elastic volume changes in (15)
is captured in a modified Mie–Gruniesen equation of state as

p ¼ ðK �lþ K2 �l2 þ K3 �l3Þð1� C�l=2Þ þ Cq0ĉDhð1þ �lÞ; ð24Þ

where K;K2, and K3 are dilatational elastic constants, C is Grunie-
sen’s parameter, and �l ¼ JJ�1 � 1 measures recoverable elastic vol-
ume changes. The reference mass density is q0 ¼ qJ ¼ q det F.
Library property values for aluminum [18] are used in (24) in the
ballistic simulations that follow. In the macroscopic model the
residual volume change is found by

J ¼ 1þ ðES=GÞð@G=@p� G=KÞ

¼ 1þ G�1ð@G=@p� G=KÞ
Z
ð1� �bÞJr : DPdt: ð25Þ

The integral in the final term of (25) is the cumulative macroscopic
stored energy per unit reference volume ES, and G is the polycrystalline
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Fig. 2. Average shear stress versus shear strain for Al 2139 polycrystals of various
microstructures.
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Fig. 3. Average heat dissipation fraction versus shear strain for Al 2139 polycrystals
of various microstructures; experimental data points estimated from Rosakis et al.
[26].

Table 2
Parameters for coarse-scale plasticity model.

Parameter Al 2139, random Al 2139, cubic Iron1

C0 ½GPa� 0.40 0.40 0.65
C1 ½GPa� – – 1.03
C2 ½GPa� 2.5 4.5 –
C3 ½1=K� 0.0045 0.0045 0.0070
C4 ½1=K� 0 0 4:16ð10Þ�4

C5 ½GPa� – – 0.27
N 0.30 0.30 0.29
G ½GPa� 26.0 26.0 80.2

1 Zerilli and Armstrong [37].
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shear modulus listed in Table 2. The first relationship in (25) is recog-
nizable as the macroscopic (polycrystalline) analog of the single crystal
expression for residual volume change in the first of (15). The dissipa-
tion fraction �b in (23) and (25) is treated as a polynomial function of the
effective plastic strain:

�b ¼ 1þ B1eP þ B2e2
P þ B3e3

P : ð26Þ

Values of B1; B2, and B3 are calibrated to the results of polycrystal
simulations of Fig. 3 and are listed in Table 3 for each microstruc-
ture. The projectile is assigned the same properties in all simula-
tions, with the default value of �b ¼ 1 and library equation-of-state
parameters [15].

5. Terminal ballistics predictions

Twelve impact simulations are performed to demonstrate pos-
sible effects of initial texture and energy storage on perforation
resistance of an Al–Cu–Mg–Ag plate. These include plates of one
of six different Al alloy microstructures, each subjected to normal
(i.e., null obliquity) penetration by an iron cylindrical projectile
at an impact velocity VI of either 1000 m/s or 1500 m/s. The
dimensions of the projectile are diameter 20 mm and length
22 mm. The plate is 25.4 mm thick and 254 mm� 254 mm square
in the lateral directions. These dimensions are sufficiently large to
enable the projectile to penetrate completely through the target
before interactions of the projectile with release waves from the
lateral edges occur. Trends in results reported below are insensi-
tive to refinement of the mesh via a � 50% increase in the number
of elements.

The macroscopic models outlined in (21)–(26), with properties
listed in Tables 2 and 3, are used for the plate and projectile. Prop-
erties for the Al plate are varied according to microstructure as
listed in Tables 2 and 3: two textures each with three values of X
provide a total of six property sets corresponding to six different
microstructures. The EPIC dynamic finite element code [15] is used,
in which elements are converted to interacting particles at large
effective strains ð> 0:5Þ to avoid numerical difficulties associated
with severe mesh distortion [16,7]. In all simulations, the ductility
of the aluminum plate is assigned a value of unity; when strained
beyond this point, the deviatoric strength of the material degrades
to zero locally. Library properties [15] for ductility and failure of
the iron comprising the projectile are used in all 12 simulations.

Representative results in Fig. 4 depict the simulation after im-
pact at 1500 m/s, with properties of the plate corresponding to ran-
dom grain orientations and X ¼ 1. The plug that typically emerges
in perforation of ductile plates impacted at high velocity [19,27] is
evident in Fig. 4. Stress concentrations along the circumference of
the perforated zone and symmetrically located in two other inte-
rior regions of the plate are evident, with magnitudes on the order
of the maximum yield stress of the material (Fig. 2).

Shown in Fig. 5 is the ratio of the residual velocity VR, i.e. the
average steady-state velocity of the projectile (in the direction nor-
mal to the plate) after complete perforation, to the impact velocity
VI for all 12 simulations. The lower the value of VR=VI , the more
resistant the plate to dynamic perforation. For each microstructure,
this ratio decreases with decreasing impact velocity. Use of a cubic

texture over a random texture seems to offer a �10% reduction in
VR=VI at an impact velocity of 1500 m/s and a 30% or greater reduc-
tion at an impact velocity of 1000 m/s. Recall however that the
assumption of isotropy introduces some uncertainty into these
predictions; a more thorough treatment would fit the polycrystal
model results to an anisotropic yield surface [20]. Residual elastic
energy storage in the plate also influences performance, with
VR=VI reducing by �5% as X is increased from 1 to 8 for an impact
velocity of 1500 m/s, and VR=VI reducing by about �20% as X is in-
creased from 1 to 8 in the random microstructure at an impact
velocity of 1000 m/s. The effect of stored elastic energy is even
stronger for the cubic microstructure at an impact velocity of
1000 m/s, wherein VR=VI is reduced by over 50%, from 0.225 to
0.105, as X is increased from 1 to 8. The improvement in perfor-
mance with increasing X occurs because as less adiabatic heating
takes place in the penetration zone, less localized deformation re-
sults, delaying failure of the material.

6. Conclusions

A crystal plasticity model is developed for precipitate-hardened
aluminum alloys accounting for large deformations, thermody-
namics, nonlinear elasticity, and energy storage mechanisms and
volume changes associated with residual stress fields of lattice de-
fects. Direct numerical simulation of a polycrystalline microstruc-
ture with polygonal grains demonstrates variations from grain to

Table 3
Parameters for dissipation fraction in coarse-scale model.

Parameter Random texture Cubic texture

X ¼ 1 X ¼ 4 X ¼ 8 X ¼ 1 X ¼ 4 X ¼ 8

B1 �0.618 �2.457 �4.873 �0.673 �2.661 �5.224
B2 0.861 3.478 7.054 1.025 4.101 8.176
B3 �0.331 �1.350 �2.776 �0.415 �1.673 �3.378

Fig. 4. Simulation of perforation of Al 2139 plate (random texture,X ¼ 1Þ by iron
cylinder at initial velocity of 1500 m/s, shown here at 100 ls after initial impact.
Effective stress contours in aluminum plate also shown.
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Fig. 5. Normalized residual velocity of projectile after perforation of Al plates with
inelastic properties corresponding to various microstructures.
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grain in stress fields due to anisotropy, as well as positive correla-
tion of the heat dissipation fraction, adiabatic temperature rise,
and plastic strain localization. A macroscopic plasticity model is
calibrated to results of polycrystal simulations. The macroscopic
model accounts, via choice of strain hardening parameters, for dif-
ferences in shear strength afforded by texturing. The macroscopic
model also captures effects of stored energy that depends on the
strain history, and the model accounts for volume changes from
defect generation in the equation of state for the hydrostatic pres-
sure. Impact simulations demonstrate that improved resistance to
ballistic perforation may be afforded by texturing to increase shear
strength or by processing steps that increase the activity of dy-
namic energy storage mechanisms relative to dissipation mecha-
nisms. In the future, in addition to shear localization, fracture
should be given more consideration. For example, mesoscale sim-
ulations of the mechanism of spall fracture [33] that may occur
in blast loading may provide insight into effects of statistical vari-
ability of microstructures, e.g. heterogeneous spatial distributions
of grains and inclusions, on resistance to failure.
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