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Abstract

My thesis covers two general circulation problems that involve the stability of large-
scale oceanic flows and the importance of non-local effects.

The first problem examines the stability of meridional boundary currents, which
are found on both sides of most ocean basins because of the presence of continents.
A linear stability analysis of a meridional boundary current on the beta-plane is
performed using a quasi-geostrophic model in order to determine the existence of ra-
diating instabilities, a type of instability that propagates energy away from its origin
region by exciting Rossby waves and can thus act as a source of eddy energy for the
ocean interior. It is found that radiating instabilities are commonly found in both
eastern and western boundary currents. However, there are some significant differ-
ences that make eastern boundary currents more interesting from a radiation point of
view. They possess a larger number of radiating modes, characterized by horizontal
wavenumbers which would make them appear like zonal jets as they propagate into
the ocean interior.

The second problem examines the circulation in a nonlinear thermally-forced two-
layer quasi-geostrophic ocean. The only driving force for the circulation in the model
is a cross-isopycnal flux parameterized as interface relaxation. This forcing is similar
to the radiative damping used commonly in atmospheric models, except that it is
applied to the ocean circulation in a closed basin and is meant to represent the
large-scale thermal forcing acting on the oceans. It is found that in the strongly
nonlinear regime a substantial, not directly thermally-driven barotropic circulation
is generated. Its variability in the limit of weak bottom drag is dominated by high-
frequency barotropic basin modes. It is demonstrated that the excitation of basin
normal modes has significant consequences for the mean state of the system and its
variability, conclusions that are likely to apply for any other system whose variability
is dominated by basin modes, no matter the forcing. A linear stability analysis
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performed on a wind- and a thermally-forced double-gyre circulation reveals that
under certain conditions the basin modes can arise from local instabilities of the flow.

Thesis Supervisor: Michael A. Spall
Title: Senior Scientist
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Chapter 1

Introduction

My thesis covers two general circulation problems, involving the stability of large-

scale oceanic flows and the presence of non-local effects. By non-local effects it is

meant phenomena, such as radiation of Rossby waves away from a current or ex-

citation of basin oscillations, that are caused by a localized instability but act to

spread the instability influence to a much broader region. Both problems are treated

in a general setting, not designed to represent any specific ocean or current. The

approach undertaken instead is to use a combination of theoretical arguments and

simple numerical models in order to isolate and gain understanding of the processes

in an idealized setting. The basic characteristics of the phenomena can then be used

to draw implications and carry comparisons with observations from different regions

in the real ocean or in more complete ocean circulation models.

The first problem, presented in Chapter 2, deals with the radiating instabilities

of meridional currents. An instability is said to be radiating if it has the ability

through the excitation of Rossby waves to extend its influence beyond its origin

region. A necessary condition for radiation is that the wavelengths and frequencies

of the perturbations generated by the local instability of the current match those of

the freely propagating Rossby waves in the ocean interior (McIntyre and Weissman,

1978). Radiating instabilities can be seen as a mechanism leading to the redistribution

of eddy energy in a system. Altimetry observations of eddy variability in the world
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ocean show that the majority of the eddy kinetic energy is concentrated in the regions

of strong currents (Le Traon and Morrow, 2000). This suggests that the bulk of the

eddy variability is due to local instabilities of the mean flow. However, as noted

in Le Traon and Morrow (2000), eddy energy is present everywhere in the ocean.

Radiation of Rossby waves from the source regions is one of the mechanisms that can

account for the presence of eddy energy away from strong currents.

The question of energy radiation away from unstable jets has been previously

looked at, but mostly in the context of zonal jets with applications to the Gulf Stream

and the atmospheric circulation. For the Gulf Stream, radiating instability has been

suggested as an explanation for the observed slow meridional decay of eddy energy

away from the current (Talley, 1983a,b). In the context of the atmospheric circulation,

radiating waves in zonally varying zonal flows have been used to explain the spatial

distribution of cyclogenesis (Pierrehumbert, 1984; Finley and Nathan, 1993). Some

studies on radiating instabilities have also been done of currents including a meridional

component (Kamenkovich and Pedlosky, 1996; Fantini and Tung, 1987). They show

that radiation is much easier if the mean flow is tilted in the meridional direction, or

if, at the extreme, it flows entirely in the meridional direction.

Because of the presence of continents, nearly meridional boundary currents are

widespread in the world ocean. They are present on both the eastern and the western

sides of almost all basins and are often characterized by instabilities. If some of the

instabilities occurring in the boundary currents are of the radiating type, then this

raises the possibility that unstable boundary currents can be one of the contributors

acting as a source of eddy energy for the ocean interior. Since radiation is related

to the excitation of Rossby waves, which propagate energy in different zonal direc-

tions depending on their wavelength (westward for long waves and eastward for short

waves), it can be anticipated that there may be some differences between the stability

properties of eastern and western boundary currents. Our goal and new contribution

with the work presented in this thesis is to examine systematically the stability of

meridional boundary currents in both a barotropic and a two-layer baroclinic setup,
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with the particular question in mind to determine the differences in the radiating

properties of eastern and western boundary currents.

The next problem, presented in Chapters 3 to 6, deals with the dynamics of the

circulation in a thermally-forced quasi-geostrophic (QG) model. A two-layer QG

model can be thought of as an idealized representation of the upper warm ocean

separated from the cold abyssal ocean by the thermocline. There is an extensive

list of studies based on QG models on a variety of topics ranging from properties

of the general ocean circulation and boundary layer dynamics (Rhines and Young,

1982; Cessi et al., 1987; Lozier and Riser, 1989; Fox-Kemper, 2003) to eddy-driven

flows and internal modes of variability of the circulation (Holland, 1978; McCalpin

and Haidvogel, 1996; Dijkstra and Katsman, 1997; Berloff and McWilliams, 1999a;

Simonnet, 2005).

What is common for the majority of these studies, is that they consider a wind-

driven circulation and assume adiabatic dynamics. Therefore, effects such as sources

of heat or diapicnal mixing that lead to water property transformations are neglected.

Given that in the interior of the ocean, motion along isopycnal surfaces is strongly

favored over motion across them, this is a good first approximation (Pedlosky, 1998).

Nevertheless, cross-isopycnal fluxes play a role in setting the large-scale ocean circula-

tion as well. The simple conceptual model for the abyssal circulation by (Stommel and

Arons, 1960) is based on the idea that there is a uniform upwelling in the interior of

the ocean resulting from vertical mixing, that acts in a manner similar to the Ekman

pumping velocity for the ocean thermocline and drives the abyssal flow. Presence of

cross-isopycnal flux is essential also when considering the question of cross-gyre flow

and communication between the subtropical and subpolar gyres (Pedlosky, 1998).

The scope of the second problem presented in this thesis is to examine the large-scale

ocean circulation driven by a cross-isopycnal flux, representative of the large-scale

thermal forcing acting on the oceans. This is done in the context of an idealized

two-layer thermally forced QG model. Thus, unlike most other QG models studies,

we have completely ignored the wind stress in order to focus on the large-scale ocean
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circulation driven by cross-isopycnal flux alone.

The challenge when considering a simple layer model for a thermally-forced ocean

is to introduce a physically meaningful representation of the cross-isopycnal flux.

One option would be to apply an externally defined spatial distribution of the cross-

isopycnal flux, very much like the Ekman pumping velocity is specified in models

(Luyten and Stommel, 1986). However, this is a rather artificial definition, given that

in reality the vertical mixing and thus the cross-isopycnal flux depend on the local

stratification and small-scale turbulent processes, which are highly variable. Another

option, adopted in the work presented here, is to use a parameterization of the cross-

isopycnal flux in terms of relaxation of the thermocline displacement to a prescribed

equilibrium profile. This is commonly used in atmospheric layer models in order to

represent the explicit diabatic effects due to radiative heating (Gill, 1982; Held, 2000).

In the atmospheric context, in the absence of motion the vertical temperature profile

of the atmosphere is determined by the solar radiation and is referred to as radiative

temperature equilibrium. When the fluid is in motion, relaxing the interface to this

equilibrium profile is used to model the radiative driving of the atmosphere.

In the oceanic context, we have chosen to apply the same relaxation parameteri-

zation of the cross-isopycnal flux in order to represent the large-scale thermal forcing

acting on the oceans. One major difference is that the oceans, unlike the atmosphere,

are not driven by radiation but by surface heat fluxes, which makes the use of the

parameterization less obvious. There is thus the additional underlying assumption

that the heat fluxes acting on the surface of the ocean are transmitted down the

water column through vertical mixing and other processes to the thermocline, where

conversion of fluid between the density layers occurs. Thus, the relaxation parame-

terization of the cross-isopycnal flux can be thought of as a crude representation of

the vertical mixing in the thermocline. This leads to a model of the ocean circulation

driven, at first look, by ”internal” sources of heat, which however are a representation

of the surface heating and cooling.

A linear QG model with relaxation parameterization of the cross-isopycnal flux
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has been previously used in the oceanic context in order to determine the spatial

distribution of the vertical velocity resulting from surface cooling and heating in a

β-plane basin (Pedlosky and Spall, 2005; Pedlosky, 2006). The new contribution of

the work presented in the second part of this thesis is that we consider a model with

nonlinear dynamics, where the advection of relative and stretching vorticity is in-

cluded. Our goal is to study the properties of the thermally-forced circulation when

the role of the nonlinear terms, as measured by the Reynolds number, is increased.

We are interested in describing and understanding the time-mean large-scale ocean

circulation and its variability that is driven by diapicnal fluxes at the thermocline.

The element that puts this study apart from the atmospheric studies using a relax-

ation cross-isopycnal flux, is that in the atmospheric case the circulation in a zonally

unbounded domain is normally considered, while for the ocean, we are examining the

thermally-forced circulation confined to a closed basin.

The presentation of the work is as follows. In Chapter 3, the two-layer thermally-

forced QG model is presented in detail and its physical meaning discussed. In Chapter

4, we examine the low Reynolds number steady regime of circulation, while in Chapter

5 the focus is on the strongly nonlinear time-dependent regime of circulation. Finally,

in Chapter 6 we are interested in determining how the thermally-forced circulation

transitions from steady to time-dependent behavior by performing a linear stability

analysis.

One feature of the thermally-forced circulation that becomes evident, is that the

variability of the circulation in the time-dependent regime is dominated by barotropic

Rossby basin modes, which represent free modes of oscillation of the circulation in

a closed basin. We show (in Chapter 6) that under certain conditions the basin

modes can be excited from local instabilities of the mean flow. Therefore, this is

another example of a non-local effect, where a local instability of the flow is able

to affect a much broader region by exciting basin-scale oscillations. The majority

of the analyses carried in Chapter 5 deal with establishing different consequences of

the presence of variability in the form of strong barotropic Rossby basin modes. It
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is important to note however, that although we have examined the particular case

of a thermally-forced ocean dominated by barotropic Rossby basin modes, all results

from this Chapter can be taken in a more general context. They are likely to hold for

any other situation, where strong barotropic oscillation are excited, independently

of how they are driven. In other words, we are expecting that the same type of

behavior can be found in a wind-driven ocean if barotropic basin modes are excited.

Possible regions of interest where these results may apply, are semi-enclosed basins and

marginal seas, where variability in the form of high-frequency barotropic oscillations

suggestive of Rossby basin modes has been observed (Warren et al., 2002; Weijer

et al., 2007a; Fu et al., 2001; Stanev and Rachev, 1999).

16



Chapter 2

Part 1: Radiating instability of a

meridional boundary current∗

2.1 Introduction

Radiating instability refers to an instability of the mean flow that propagates energy

away from the source of instability (McIntyre and Weissman, 1978). It can be con-

trasted with a trapped instability the influence of which is confined mainly to the

locally unstable region and has no impact on the far field. Previous studies of ra-

diating instabilities in the oceanic context have shown that parallel zonal eastward

barotropic jets do not support radiating instabilities (Talley, 1983a,b). For these cur-

rents the perturbation energy stays trapped near the mean jet and none is radiated

toward the far field. However, radiating instabilities are possible if the far field is

made baroclinic or if a westward component is added to the jet (Talley, 1983a). An-

other way to obtain radiation is by introducing even slight non-zonality in the mean

flow (Kamenkovich and Pedlosky, 1996).

A meridional current can be seen as an extreme case of non-zonality. The stability

of meridional currents is less studied in the literature but is nonetheless of great inter-

∗This chapter is based on the paper ”Radiating instability of a meridional boundary current”
by H. G. Hristova, J. Pedlosky and M. A. Spall, J. Phys. Oceanogr., vol. 38, pp. 2294–2307, 2008.
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est. Because of the presence of continents, boundary currents that are meridional or

close to meridional are present on both sides of most ocean basins. Unstable bound-

ary currents can be an important source of eddy kinetic energy. If the instabilities

are radiating, then the energy of the disturbances will be transported long distances

and will be able to potentially affect the mean circulation and its variability in the

interior of the basin. Radiating instabilities propagate energy away from the locally

unstable region by coupling to the free Rossby waves in the far field. This brings

attention to a possible difference between eastern and western boundary currents.

Short and long Rossby waves have different zonal directions of energy propagation so

they introduce an asymmetry between eastern and western boundary currents. One

can therefore anticipate different radiating properties depending on which side of the

basin the current is situated on.

There are several previous studies relevant to the stability of meridional flows. In

Walker and Pedlosky (2002) the baroclinic instability of a 2-layer meridional flow in a

channel is examined. Compared to its zonal counterpart, the main distinction is that

an arbitrarily small vertical shear leads to growing perturbations. The lack of critical

threshold for linear stability is a consequence of the fact that the contributions to

the mean potential vorticity gradient coming from the planetary vorticity and the

mean shear are in different directions. Meridional currents are also known to have

radiating instabilities. In Fantini and Tung (1987) the particular case of a meridional

barotropic boundary current situated on the western side of a basin and adjacent to a

motionless semi-infinite region is examined. The authors find that radiating unstable

waves are generated that propagate energy eastward toward the ocean interior. The

unstable waves have long meridional wavelengths and phase speeds that are larger

than the speed of the jet that generates them.

The objective here is to expand our knowledge of radiating instabilities of merid-

ional boundary currents. This is done in the context of a layered QG model on the

β-plane with no dissipation. As in Fantini and Tung (1987), the boundary current is

idealized by a piecewise constant profile bounded by a solid wall on one side and a
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semi-infinite motionless far field region on the other side. By solving the resulting lin-

ear stability problem, one can find whether and under what conditions the meridional

current can have radiating instabilities. Compared to previous studies, emphasis is

put on the differences between the stability properties of eastern and western bound-

ary currents. Also, both barotropic and 2-layer baroclinic configurations are studied.

The plan of the presentation is as follows. Section 2.2 presents the formulation

of the problem and discusses the results for the barotropic QG model. It also gives

some extended discussion on the structure of the radiating instabilities. Section 2.3

deals with the stability of a purely baroclinic meridional current using a 2-layer QG

model. Conclusions and physical implications are given in Section 2.4.

2.2 The barotropic case

2.2.1 Formulation

For reasons of mathematical convenience, the boundary current is idealized as a piece-

wise constant meridional velocity profile

V =

 V∗ , |x| < x0

0 , |x| > x0

, (2.1)

as in Fantini and Tung (1987). The velocity V∗ is taken positive without loss of gen-

erality. Depending on where the motionless far field is located, the flow corresponds

to a western or an eastern boundary current as shown in Fig.2-1. The basic state

is sustained by some large scale forcing, not specified here, since it does not appear

in the linear stability problem. The departures ψ(x, y, t) from the basic state are

decomposed into normal modes

ψ(x, y, t) = Re{φ(x) eim(y−ct)}, (2.2)

19



x0x = − x0x = +

y

x

V

V = 0

x0x = − x0x = +

y

xV = 0

V

a) b)

Figure 2-1: Basic state for the stability problem. Configurations for a) a western and
b) an eastern boundary current.

where m is the meridional (downstream) wavenumber and c, the phase speed in that

direction. The amplitude φ(x) satisfies the linearized barotropic quasi-geostrophic

potential vorticity equation

(V − c)
[
φ
′′ −m2φ

]
+
Q̄y

im
φ′ − Q̄x φ = 0, (2.3)

where
{
Q̄x, Q̄y

}
is the potential vorticity gradient of the basic state given by

Q̄x =
d2V

dx2
, Q̄y = β. (2.4)

All variables above are non-dimensionalized using as scales the current width L∗ = 2x0

and the current velocity V∗. The non-dimensional planetary vorticity gradient is

β = β0L
2
∗/V∗.

For the basic state chosen here, equation (2.3) can be further simplified since the

horizontal shear and Q̄x are identically zero. Special care has to be taken, however,

of the points x = ±x0 where the velocity V is discontinuous and Q̄x is undefined.

At these points, jump conditions derived from (2.3) hold (Kamenkovich and Ped-

losky, 1996). Their role is to impose the continuity of the streamline slopes and the
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tangential pressure gradient

∆

[
φ

V − c

]
= 0, ∆

[
(V − c)φ′ + β

im
φ

]
= 0. (2.5)

Here, ∆[·] indicates the jump of the quantities in the brackets at the point x = +x0

for a western and x = −x0 for an eastern boundary current. The boundary condition

on the other side of the current where there is a solid wall, is φ = 0, i.e no-normal

flow.

The advantage of choosing a piecewise constant basic flow is that the stability

problem (2.3) becomes a constant coefficient ODE. The amplitude φ is thus of the

form φ ∼ Aeikx, where the zonal wavenumber k is related to the phase speed c,

the meridional wavenumber m and the other parameters of the problem through a

dispersion relation. What is left to satisfy is the boundary and jump conditions at

x = ±x0, the imposition of which leads to a homogeneous algebraic system. The

eigenvalues c are found by solving numerically the nonlinear equation that results

from requiring that the determinant of the homogeneous system be zero so that there

is a non-trivial solution. Once the eigenvalues c are found, the solution in both the

far field and the boundary current region can be reconstructed. More details on the

method of solution are given in Appendix A.1.

2.2.2 Identifying the radiating instabilities

Suppose that for given parameter β and meridional wavenumber m, we have found

a value for the phase speed c such that the stability problem (2.3), as well as all

boundary and jump conditions are satisfied. In the far field region (|x| > x0) the

solution is then of the form

ψ(x, y, t) = Re
{
Aeikrxeim(y−crt)

}
e−kixemcit, (2.6)
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where the complex zonal wavenumber k is related to the frequency ω = cm (in general,

a complex number as well) through the barotropic Rossby wave dispersion relation

cm = − βk

k2 +m2
. (2.7)

The solution (2.6) consists of a wave with amplitude envelope that, for unstable modes

(mci > 0), is growing in time and decaying with distance from the source. The spatial

decay is a consequence of the fact that for a perturbation that is growing in time and

propagating, the amplitude observed far from the source has been generated at an

earlier time and is thus smaller than what is currently observed near the source.

From (2.7) it follows that for each eigenvalue c, there are two solutions for the zonal

wavenumber k. As shown in Fantini and Tung (1987), these two solutions have

opposite signed imaginary parts ki, as well as zonal group velocities. One of these

solutions is appropriate for a western boundary current while the other, for an eastern

boundary current, since the two configurations require different sign ki in order to

have vanishing perturbation at infinity (see (2.6)). Equivalently, one can say that

given the eigenvalue c, the far field solution consists only of the Rossby wave that has

zonal group velocity away from the locally unstable region.

Because a radiating unstable solution decays into the far field very much as is

expected from a trapped one, it may be confusing at first how to distinguish between

the two. The distinction is however clear in the weakly unstable limit. In the limit

ci → 0, the far field structure of a radiating solution becomes a pure Rossby wave,

i.e ki → 0, while for a trapped solution ki stays finite. A mathematical expression of

the statement above can be obtained from expanding the complex Rossby dispersion

relation (2.7) in a Taylor series where ki is the small parameter, i.e. k = kr + iki and

|ki| � |kr|. If only the first order term in ki is kept, we obtain for the eigenvalue

c(kr + iki) = c(ki = 0) + iki
∂c

∂k
(ki = 0) +O(k2

i ). (2.8)
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The real part of (2.8) states that

cr ≈ c(ki = 0) = − βkr
m(k2

r +m2)
. (2.9)

In other words, in this limit the real parts of the eigenvalue c and the zonal wavenum-

ber k are related through the Rossby dispersion relation. In particular, for given β and

m, there is a real-valued solution for kr only if the phase speed cr lies within the allow-

able range for barotropic Rossby wave phase speeds which is −β/2m2 < cr < β/2m2.

For meridional phase speed cr that satisfies this condition, there are two possible

values for kr that correspond to a zonally long (kr < m) and zonally short (kr > m)

wave and are solutions for an eastern and a western boundary current respectively.

The imaginary part of (2.8) states that

ci ≈ ki
∂c

∂k
(ki = 0) =

ki
m
cxg(ki = 0), (2.10)

where cxg = β(k2
r−m2)/(k2

r+m2)2 is the zonal group velocity of free barotropic Rossby

waves. It follows that the spatial decay scale in the far field 1/ki is proportional to

the group velocity cxg and the inverse of the growth rate mci. Thus, radiating unstable

waves have amplitude envelopes that decay away from the source since packages of

bigger and bigger amplitude are propagated at cxg as time advances.

For practical purposes, in order to determine if an eigenmode corresponds to a

radiating instability, one follows the unstable mode until it becomes marginally stable,

i.e. ci = 0. If ki also vanishes in this limit, then the instability is radiating. The

mode has a radiating wave structure in the far field roughly as long as 0 < |ki| < |kr|

(Fantini and Tung, 1987; Kamenkovich and Pedlosky, 1996).

2.2.3 Results

The only non-dimensional parameter that characterizes the barotropic problem is the

β-parameter, defined previously as β = β0L
2
∗/V∗ where L∗ and V∗ are the current
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width and velocity. The linear stability problem defined in Section 2.2.1 is solved for

the specific choice β = 0.5, a typical order one value, but the results are qualitatively

representative of the general behavior of the system as there is no critical value of β

for instability. When solving the eigenvalue problem, we are interested in finding the

unstable eigenvalues and following them as the meridional wavenumber m is varied

so that we can determine whether they are radiating or not.

Western boundary current

The results are in essence the same as in Fantini and Tung (1987) except for the

different choice of β. In the short wave end of the explored range of meridional

wavenumbers, there is a single unstable eigenvalue (solid black line in Fig. 2-2) that

asymptotes to c = 0.5 + i0.5 when m→ +∞. The lack of short meridional wave cut-

off is artificial and is due to the choice of discontinuous basic state profile. When the

meridional wavenumber m is decreased, the growth rate mci for this mode decreases

and reaches zero at the critical wavenumber m∗ = 0.355, while its meridional phase

speed cr increases and eventually becomes larger than one, i.e. faster than the current.

Besides this mode, an additional number of unstable eigenvalues, not mentioned in

Fantini and Tung (1987), are found (a representative is shown in Fig. 2-2 with a solid

gray line). All these modes have cr > 1, i.e. they are faster than the current (see

Fig. 2-2a). Because of the trend of ci to decrease to zero while cr goes to 1, when the

meridional wavenumber is increased, they are thought to originate in their short wave

limit from the singular point c = 1. Because of the singularity however, the point

c = 1 cannot be reached numerically and this is only assumed. Their growth rates

are significantly weaker but they exist for slightly smaller values for the meridional

wavenumber than the critical value m∗ (see Fig. 2-2b). Nevertheless, as concluded in

Fantini and Tung (1987), it is found that there is a long meridional wave cut-off for the

linear stability of a western boundary current. Hence, for meridional wavenumbers

below the cut-off value, all eigenvalues have negative imaginary parts, i.e the current

is linearly stable.
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Figure 2-2: Meridional phase speed (a) and growth rate (b) as a function of the
meridional wavenumber for the barotropic case with β = 0.5. Solid/dot-dashed lines
are used for the western/eastern boundary current. For each configuration, the most
unstable eigenvalue is shown in black and the next unstable eigenvalue in gray.
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Figure 2-3: Logarithm of the ratio |kr|/|ki| as a function of the meridional wavenumber
for the western (a) and eastern (b) configurations. Here, kr and ki are the real and
imaginary part of the zonal wavenumber in the far field. Same line and color code
is used for the eigenvalues as in Fig. 2-2. Positive values indicate radiating wave
structure.

Concerning the radiating nature of the instabilities, it is the long wave end of the

explored range of meridional wavenumbers, when cr > 1, that qualifies as radiating.

In Fig. 2-3a the logarithm of the ratio |kr|/|ki|, kr and ki being the real and imaginary

part of the zonal wavenumber in the far field, is plotted as a function of m. For all

modes, when the meridional wavenumber is decreased, the ratio |kr|/|ki| goes to
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Figure 2-4: Structure of a radiating wave for the western and eastern boundary
current for the barotropic case. Only the real part of the solution in the far field φ(x)
is plotted as a function of x.

infinity while the growth rate decreases, which indicates that in the limit of zero

growth rate the solution is a pure wave (ki = 0). The modes have a radiating wave

structure, defined by |kr| > |ki| or positive values for log(|kr|/|ki|), over some interval

of meridional wavenumbers before they stabilize. The structure of the eigenmodes in

the far field depends strongly on the meridional wavenumber and the growth rate. In

general, the weaker the growth rate, the shorter in the zonal direction are the radiated

waves and the larger the amplitude envelope decay scale.

In Fig. 2-4 a typical example of a far field solution is shown. The radiating

wave has a meridional wavelength of 2π/m ≈ 18 current widths, zonal wavelength of

2π/kr ≈ 5 current widths and envelope decay scale 1/ki ≈ 90 current widths. For

example, if the parameter β = 0.5 is representative of a 100km wide current with

speed 40cms−1, then the radiated wave has zonal wavelength of 500km, envelope

decay scale of 9000km and a growth rate approximatively (2.5years)−1.

Eastern boundary current

In order to satisfy the condition of a vanishing perturbation at infinity, a western

boundary current selects solutions in the far field that have positive zonal group

velocity while for an eastern boundary current, the solutions have negative zonal
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group velocity. This difference has a strong effect on the stability properties of the

current.

The short wave end of the explored range of meridional wavenumbers is similar

for the western and eastern configurations. There is a single unstable eigenvalue

(dot-dashed black line in Fig. 2-2) that asymptotes to c = 0.5 + i0.5 when m →

+∞. Looking back at equation (2.3), one can see that in this limit the term β/im

responsible for the asymmetries in the propagation properties between east and west

is not important. When the meridional wavenumber is decreased however, differences

appear. The meridional phase speed cr of the mode decreases, unlike for the western

boundary current case. When the mode finally stabilizes at the critical wavenumber

m∗ = 0.080, its meridional phase speed is equal to minus one, i.e it is opposite to the

basic state current.

In addition to this mode, there are also other unstable eigenvalues (a representative

is shown in Fig. 2-2 with a dot-dashed gray line). Again, due to the trend of ci to

decrease to zero while cr goes to 1, when the meridional wavenumber is increased, it

is thought that these eigenvalues originate in their short wave limit from the singular

point c = 1 but because of the singularity, the limit cannot be reached numerically.

The meridional phase speed for these modes decreases when m gets smaller and

becomes cr = −1, i.e. opposite to the basic state current, when the modes stabilize

(see Fig. 2-2a). Their growth rates are zero in both extremes and reach a maximum

somewhere in between (see Fig. 2-2b). There are infinitely many eigenvalues (not

only the one shown on the figures) with similar behavior that reach their maximum

growth rate at smaller and smaller values of m. A major difference from the western

boundary current is that the accumulation point for these eigenvalues is m = 0 rather

than m finite. In other words, there is no long meridional wave cut-off for the linear

stability of an eastern boundary current.

Concerning the radiating nature of the instabilities, the logarithm of the ratio

|kr|/|ki|, where k is the zonal wavenumber in the far field, is plotted in Fig. 2-3b as a

function of the meridional wavenumber. Since for all eastern boundary current modes
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the meridional phase speed changes sign (it goes from being positive to -1 when m is

decreased, see Fig. 2-2a), so does the real part of the zonal wavenumber in the far field.

This corresponds to the minima of the dashed curves in Fig. 2-3b, where the far field

solution is characterized with kr ≈ 0. The solution has a radiating wave structure, as

indicated by the positive values for log(|kr|/|ki|), to the left of the minimum (for all

modes) and to the right of the minimum (for all but the leading unstable mode).

The long meridional wave end corresponds to a radiating instability, as for the

western boundary current, since both ki and the growth rate vanish. However, in

this limit kr ≈ 10−4 or smaller depending on the mode, which leads to radiating

waves with extremely long zonal wavelengths on the order of ten thousand current

widths or more. Unlike for the western boundary current, there is an infinite number

of eigenmodes with radiating wave structure toward the short meridional wave end.

For all modes but the most unstable one, for values of the meridional wavenumber

to the right of the minimum, the far field solution is characterized by |kr| � |ki|

(positive values for log(|kr|/|ki|)) while the growth rate is very weak, which is an

indication of an eigenmode with horizontally radiating structure. In general, the

smaller the meridional wavenumber, the stronger the growth rate and the greater the

zonal wavelength of the radiated wave with typical values between 20-2000 current

widths.

An example of a far field solution on the short meridional wave side of the min-

imum is shown on Fig. 2-4. The radiated wave has a meridional wavelength of

2π/m ≈ 18 current widths, zonal wavelength of 2π/kr ≈ 90 current widths and

envelope decay scale 1/ki ≈ 1000 current widths. The solution has been chosen to

have exactly the same growth rate as the solution for the western boundary discussed

before. For the same growth rate, its longer envelope decay scale is due to the greater

zonal group velocity: cxg = −3.69 for the eastern compared to cxg = 0.29 for the west-

ern boundary current, where the group velocity cxg is given in units of the current

velocity V∗. This is consistent with the analysis in Section 2.2.2 that the radiated

waves from the eastern side are characterized with longer zonal wavelengths and a
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slower amplitude envelop decay due to the greater zonal group velocities than their

western boundary counterpart.

As a final remark, in this barotropic model the only energy source for the growing

instabilities is associated with the jump in the basic state velocity. Thus, the radiating

waves are considered the result of a Kelvin-Helmholtz type instability of the flow.

2.3 The baroclinic case

In this section the problem of the linear stability of a purely baroclinic meridional

current adjacent to a motionless far field is examined using a 2-layer QG model. The

introduction of vertical structure leads to a model able to represent more realistic pro-

cesses. Specifically, the mean flow instabilities can be either of the Kelvin-Helmholtz

type, as in the barotropic case presented in Section 2.2, or baroclinic instabilities

because of the presence of vertical shear.

2.3.1 Formulation

For the 2-layer case, the basic state profile is again piecewise constant as sketched in

Fig. 2-1, except that now the flow is chosen to be purely baroclinic

V1,2 =

 ±VS
2

, |x| < x0

0 , |x| > x0

. (2.11)

Without loss of generality, the vertical shear VS is chosen to be positive. The per-

turbation streamfunctions for each layer ψn(x, y, t) are once more decomposed into

normal modes, ψn(x, y, t) = Re{φn(x) eim(y−ct)}, where the amplitudes φn(x) satisfy

the linearized quasi-geostrophic potential vorticity equation

(Vn − c)
[
φ
′′

n −m2φn + (−1)nFn(φ1 − φ2)

]
+
Q̄n,y

im
φ′n − Q̄n,x φn = 0. (2.12)
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Here,
{
Q̄n,x, Q̄n,y

}
is the potential vorticity gradient of the basic state given by

Q̄n,x =
d2Vn
dx2

+ (−1)nFn(V1 − V2) , Q̄n,y = β. (2.13)

All variables above are non-dimensionalized using as scales the vertical shear

VS and the Rossby deformation radius Ld =
√

2g′H1H2/f 2
0 (H1 +H2). The non-

dimensional parameters that appear in equations (2.12) and (2.13) are the scaled

planetary vorticity gradient β = β0L
2
d/VS and the parameters Fn which are function

of the layer depths, Fn = 2H1H2/Hn(H1 +H2) with F = F1 +F2 = 2. Similar to the

barotropic case, the jump conditions (2.5), as well as the no-normal flow condition

on the solid wall are applied to each layer. The method of finding the eigenvalues is

essentially the same except for a larger problem size. More details on the method of

solution are given in Appendix A.2.

The analysis from the barotropic case regarding how to identify the radiating

instabilities is helpful for the 2-layer model as well, although the situation is a little

more complex. In the 2-layer model, for given choice of parameters β, F1/F2 and

meridional wavenumber m, the solution in the far field is a superposition of two

waves with complex zonal wavenumbers kbt and kbc, related to the frequency ω = cm

by the barotropic and baroclinic Rossby wave dispersion relations, respectively

cm = − βkbt
k2
bt +m2

, cm = − βkbc
k2
bc +m2 + F

. (2.14)

For both the barotropic and baroclinic part of the far field solution, an analysis

similar to that in Section 2.2.2 can be made. In particular, for an eigenvalue c

satisfying the problem, there are two possible values for each of the wavenumbers kbt

and kbc that have opposite signed imaginary parts and zonal group velocities. The

solution for a western boundary current has positive zonal group velocity while for an

eastern boundary current it has negative zonal group velocity, so that in both cases

we have a vanishing perturbation at infinity. A solution qualifies as a radiating wave

if in the limit of becoming neutrally stable, the imaginary part of kbt or of both kbt
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and kbc go to zero. The physical explanation behind this is the following. Since the

phase speed range of barotropic Rossby waves (|cr| < β/2m2) is wider than that of

baroclinic Rossby waves ( |cr| < β/2m
√
m2 + F ), it may happen so that a solution

has a radiating barotropic part but non-radiating baroclinic part. If however, the

phase speed c lies within the range of the free baroclinic Rossby waves, then we have

a solution that is a radiating wave and could have both barotropic and baroclinic

components.

2.3.2 Energetics

In the 2-layer QG model the energy for the growing instabilities, be they radiating

or not, can come from two sources – Kelvin-Helmholtz type instability or baroclinic

instability. In order to determine in what proportions these two sources contribute,

one needs to consider the energy balance.

The energy equation can be derived by multiplying equation (2.12) by the complex

conjugate amplitude φ∗n weighted by the layer depth dn = Hn/H and summing over

the two layers. After several manipulations and using the fact that dVn/dx is zero for

the piecewise constant velocity profile used here, one can write the final result as

2mciE = mF0(V1 − V2)Im{φ1φ
∗
2}+

dS

dx
, (2.15)

where E =
F0

2
|φ1−φ2|2 +

2∑
n=1

dn
2

(|φ′n|2 +m2|φn|2) is the total (potential plus kinetic)

wave energy of the system with F0 = d1F1 = d2F2. The quantity S is a flux term

defined as

S =
2∑

n=1

β

2
dn|φn|2 − dnIm

{
m(Vn − c)φ∗n

dφn
dx

}
. (2.16)

The energy flux S is zero at the solid wall and at infinity and undergoes a jump,

proportional to the jump in the basic state velocity, at the point where the velocity

profile is discontinuous. Integrating equation (2.15) over the whole domain – from

the wall to infinity for a western boundary current or from minus infinity to the wall
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for an eastern boundary current – leads to the following energy balance

0 <

∫
2mciE dx =

∫ x0

−x0

mF0(V1 − V2)Im{φ1φ
∗
2} dx︸ ︷︷ ︸

BC

+ ∆
[
S
]︸ ︷︷ ︸

BT

. (2.17)

For a linearly unstable, growing mode, the terms on the right-hand side have to

sum to a positive number. Term BC is the contribution from baroclinic instability

where perturbations grow feeding on the potential energy of the basic state flow,

proportional to the vertical shear (V1 − V2). Term BT is the contribution from the

flux term which for ci 6= 0 is non-zero only because there is a jump in the basic state

velocity profile at x = +x0 for a western boundary current or at x = −x0 for an eastern

boundary current. This is interpreted as a Kelvin-Helmholtz type of instability that

arises in the presence of discontinuous velocity profiles. In the barotropic model, the

only source for growing perturbations is term BT , while in the 2-layer model terms

BC and BT can combine in different ways and lead to growth.

2.3.3 Results

The baroclinic problem is characterized by three non-dimensional parameters which

are β, F1/F2 or the ratio of the layer depths, and the non-dimensional width of

the current 2x0/Ld. In this section, results from calculations made with specific

values of these parameters are shown. The layer depths are taken to be equal which

translates into F1 = F2 = 1, the width of the current is set to 10 deformation

radii and β = β0L
2
d/VS = 0.5. As before, when solving the stability problem, the

main objectives are to find the unstable eigenvalues, follow them as a function of the

meridional wavenumber m and determine whether they are radiating.

Before going into more details about the results, some general observations can

be made that hold for both the western and eastern boundary current configurations.

An examination of the problem solution shows that the unstable eigenvalues, if there

are such, have real parts situated between −0.5 < cr < 0.5, the non-dimensional
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lower and upper layer basic state velocity. In other words, the semi-circle theorem

seems to apply although it can not be proved for the meridional case (Walker and

Pedlosky, 2002). Furthermore, with the equal layer depth assumption, the stability

problem has the following symmetry property. If c = cr + ici is an eigenvalue of

the problem, with corresponding eigenvectors {φ1(x), φ2(x)}, then c̃ = −cr + ici is

also an eigenvalue, with corresponding eigenvectors {φ∗2(x), φ∗1(x)}. Thus, there are

two possibilities for the unstable eigenmodes: either they have a non-zero real phase

speed, in which case they come in pairs c = ±cr + ici, or they have a zero real phase

speed c = 0 + ici. The last ones are not of interest for radiating instabilities since

cr = 0 implies Re{kbt, kbc} = 0, i.e no waves in the far field.

Western boundary current

In the short wave end of the explored range of meridional wavenumbers, there is a

single pair of unstable eigenvalues that asymptotes to c = ±0.25 + i0.25 as m→ +∞

(black solid line in Fig. 2-5a, b). Again, as in the barotropic case, the lack of short

wave cut-off is related to the choice of piecewise constant basic state profile with

infinitely thin region of horizontal shear.

In addition to the leading pair, there are other pairs of unstable eigenvalues (two

representatives are shown in Fig. 2-5a, b with gray solid lines). They originate from

eigenvalues with zero real part (gray dashed lines in Fig. 2-5a, b) that collide and

split into two unstable eigenvalues with non-zero real parts. When the meridional

wavenumber is decreased, for all unstable pairs, the meridional phase speed cr goes

to ±0.5, the upper and lower layer velocities, while the growth rate decreases. It was

not possible to reach exactly the zero growth rate limit since the points c = ±0.5

are singular and it is very difficult to track eigenvalues in their vicinity. It is thought

however that the modes stabilize when their meridional phase speed reaches the upper

or lower layer velocity because of the decreasing trend for ci. There is an infinite

number of unstable pairs that originate from zero meridional phase speed modes at

smaller and smaller meridional wavenumbers. Their accumulation point is however
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Figure 2-5: For the baroclinic western boundary current configuration with β = 0.5
and F1 = F2 = 1, meridional phase speed (a), growth rate (b) and logarithm of the
ratio |kr|/|ki| for the barotropic (c) and baroclinic (d) part of the far field solution
as a function of the meridional wavenumber. In each panel the first 10 unstable
eigenvalues are shown using black solid lines for the leading unstable pair, gray solid
lines - next unstable pairs, gray dashed lines - eigenvalues with cr = 0 (non-radiating).

some finite critical wavenumber below which there are no more unstable modes. Thus,

similarly to the barotropic western boundary current, there is a long meridional wave

cut-off for the linear stability of a purely baroclinic western boundary current.

Concerning the radiating nature of the instabilities, the logarithm of the ra-

tios |kbtr |/|kbti | and |kbcr |/|kbci |, where kbt and kbc are the zonal wavenumbers for the

barotropic and baroclinic part of the far field solution, are plotted as a function of the

meridional wavenumber in Fig. 2-5c, d respectively. These plots show only the modes

with non-zero meridional phase speed which are the only ones that can possibly have
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wave structure in the far field. Although it was not possible to reach exactly the limit

ci = 0, there is an indication that for for both the barotropic and the baroclinic part

of the solution the long wave end of the explored range of meridional wavenumbers

is radiating since |kr| � |ki| while mci → 0. This is especially true for the pairs of

modes that destabilize at smaller meridional wavenumbers and not so much for the

leading pair of unstable modes. Note that, although the eigenmodes with radiating

structure in the far field are found toward the long wave end of the explored range

of meridional wavenumbers (m < 0.75), the corresponding meridional wavelength of

the disturbances is actually not so large – it is only a couple of deformation radii.

Finally, it is worth noticing that the stability picture, where pairs of unstable

modes originate from modes with zero meridional phase speed and stabilize when they

reach the basic state velocities, is very similar to what is occurring in a meridional

flow confined in a channel, the configuration studied in detail in Walker and Pedlosky

(2002) and Pedlosky (2002). The reason for the instability in this case is identified

as being the destabilization of Rossby normal modes by the vertical shear. The

resemblance to the channel case suggests that despite the addition of a motionless

far field on one side of the meridional flow, the same physical mechanism for the

instability may be in play.

Eastern boundary current

The eigenvalue analysis of an eastern boundary current is qualitatively similar for

the most part to the western counterpart. In the short wave end of the explored

range of meridional wavenumbers, there is a single unstable pair that asymptotes

to c = ±0.25 + i0.25 (black solid line in Fig. 2-6a, b). Additional pairs of unstable

eigenvalues appear from splitting of zero meridional phase speed eigenvalues (two

representatives are shown in Fig. 2-6a, b with gray solid line). When the wavenumber

is decreased, the meridional phase speed for all unstable pairs goes toward cr = ±0.5,

the upper and lower basic state velocities, where the modes are thought to stabilize

although the exact zero growth rate limit cannot be reached computationally. This
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Figure 2-6: For the baroclinic eastern boundary current configuration with β = 0.5
and F1 = F2 = 1, meridional phase speed (a), growth rate (b) and logarithm of the
ratio |kr|/|ki| for the barotropic (c) and baroclinic (d) part of the far field solution
as a function of the meridional wavenumber. In each panel the first 14 unstable
eigenvalues are shown using black solid lines for the leading unstable pair, gray solid
lines - next unstable pairs, gray dashed lines - eigenvalues with cr = 0 (non-radiating)
and black dot-dashed lines - weakly unstable pairs, present in the eastern case only.

again bears similarities to the instability of a meridional channel flow studied in

Walker and Pedlosky (2002).

There are also some differences from the western case. First of all, there is a range

of meridional wavenumbers over which the additional pairs are the most unstable

modes with growth rates almost as twice as large as the leading pair. Another differ-

ence is that there is a whole group of weakly unstable eigenmodes, not present in the

western case (two such pairs, the most unstable ones, are shown in Fig. 2-6a, b with a

black dot-dashed lines). These weakly unstable modes are characterized with merid-
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ional phase speeds that decrease from cr = ±0.5 toward cr = 0 when the meridional

wavenumber is decreased. These modes seem to be at the origin of the zero merid-

ional phase speed modes (gray dashed line in Fig. 2-6a, b) – when a pair of weakly

unstable modes reaches cr = 0, they collide and a single unstable eigenvalue with

cr = 0 appears. As we will see later, the energetics for these weakly unstable modes

is also different, which suggests that a different mechanism for the instability is at

play. Finally, similar to the barotropic case, the accumulation point for the infinite

number of unstable modes is m = 0 so that there is no long meridional wave cut-off

for the linear stability of a purely baroclinic eastern boundary current.

Concerning the presence of radiating waves, the logarithm of the ratios |kbtr |/|kbti |

and |kbcr |/|kbci | are plotted for all non-zero meridional phase speed modes in Fig. 2-6c, d

respectively. In a comparable way to the western case, it is the long wave end of the

explored range of meridional wavenumbers that seems to be radiating since |kr| � |ki|

while mci → 0 for both the barotropic and the baroclinic part. Exceptions are the

weak growth rate eigenmodes that exist in the eastern case only. For these modes,

neither their short or their long wave limit is radiating even though the eigenvectors

have a radiating wave structure in the far field (positive values for log(|kbtr |/|kbti |) and

log(|kbcr |/|kbci |)) for some range of meridional wavenumbers in between.

Radiating solutions

Example of radiating wave solutions for the western and eastern configurations are

shown in Fig. 2-7.

First of all as could be expected, waves from the western side are characterized

with smaller zonal wavelengths and faster amplitude decay away from the current

compared to the eastern case. For the western boundary current solution, the radiated

barotropic and baroclinic waves have comparable zonal wavelengths on the order of

2-3 deformation radii and an envelope decay scale on the order of 1-2 deformation

radii. For the eastern boundary current solution, the baroclinic wave is of zonal

length 2π/kbcr ≈ 10 deformation radii while the barotropic wave is much longer,

37



5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

zonal distance, x

Energy sources:
  BC = 0.364
  BT =−0.041

Western BC

−300 −250 −200 −150 −100 −50 −5
−0.5

−0.25

0

0.25

0.5

zonal distance, x

Energy sources:
  BC = 0.040
  BT = 0.096

Eastern BC

m cr mci kbt kbc
Western BC 0.486 −0.326 2.1× 10−2 3.021 + i0.419 2.168 + i0.715
Eastern BC 0.390 −0.324 2.1× 10−2 0.039− i0.007 0.630− i0.154

Figure 2-7: Structure of a radiating wave for the western and eastern boundary
current for the baroclinic case. Only the real part of the solution in the far field φ(x)
is plotted as a function of x. Solid line - barotropic part, dashed line - baroclinic part
of the solution.

2π/kbtr ≈ 160 deformation radii. Since the envelope decay scale for the baroclinic

part is much shorter compared to that for the barotropic part however (6 compared

to 140 deformation radii), the solution far away from the current is predominantly

barotropic.

Second, a peculiarity about the horizontal structure of the far field solution is

brought to light if one looks at the meridional wavelength of the radiated waves. For

both the eastern and the western case solutions, the meridional wavelength of the

waves is on the order of 2π/m ≈ 15 deformation radii while their zonal wavelengths

are significantly different. We find that waves radiated from the eastern side tend to

be asymmetric, in the sense that they are much longer in the zonal direction than in

the meridional. This leads to velocity field with zonal component much larger than

the meridional component which would make the radiating waves appear, as they

propagate in the far field, more like zonal jets than localized wave packets or eddies.

Energetics

An inspection of the energy balance for the unstable eigenmodes can give some insight

into the processes responsible for the instability.
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For the leading pair (black solid lines in Fig. 2-5 and 2-6), especially in the short

wave end of the explored range of meridional wavenumbers, the most important energy

source is term BT or Kelvin-Helmholtz type instability related to the jump in the

basic state velocity profile. This holds for both the western and eastern boundary

current setups and supports the idea that the lack of short wave cut-off is due to the

choice of discontinuous velocity profile.

Concerning the other pairs of unstable eigenmodes (solid gray lines in Fig. 2-5 and

2-6), there is a significant difference between the western and eastern configurations.

For the western case, the dominant energy source is term BC or the baroclinic insta-

bility while term BT , related to the jump in the basic state velocity, is negligible (see

the western solution in Fig. 2-7). For the eastern case, both terms BC and BT are

positive and contribute in comparable amounts (see the eastern solution in Fig. 2-7).

The fact that in both configurations, the baroclinic conversion term BC is important

for the pairs of eigenmodes originating from splitting of modes with zero real part

eigenvalues further supports the connection to the meridional channel flow instability

due to the destabilization of Rossby normal modes by the vertical shear, as discussed

in Walker and Pedlosky (2002) and Pedlosky (2002).

Finally, for the weak growth rates eigenmodes that exist only in the eastern con-

figuration (black dot-dashed lines in Fig. 2-6), the baroclinic conversion term BT is

negative, while term BC related to the jump in the mean velocity is positive and

slightly bigger in magnitude, so that we have a growth overall. Thus, these modes

are the result of a baroclinic type of instability and are different from all the other

radiating modes which are generated by a mixed barotropic-baroclinic instability of

the basic state flow.

One can use also the energy balance to get some indications about the potential

effect of the radiating modes on the current. The solutions shown in Fig. 2-7 have

been plotted with mode amplitude chosen so that the perturbation velocities within

the boundary current region be of the same order as the basic state current itself.

Although one would not expect a linear stability analysis to hold at such large ampli-
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tudes, this is a reasonable assumption for regions of unstable oceanic currents where

the meanders lead to perturbations of the same order as the mean, and is done in or-

der to get realistic magnitude for the energy fluxes. Given the total energy contained

in the basic state Ē =
∫ x0

−x0
(V 2

1 + V 2
2 + V 2

S x
2)/2 dx, one can use then the fluxes BC

and BT to find the time needed to utilize all of the basic state energy toward growing

perturbations. Note that in the framework of the linear stability analysis performed

here, the flow is not actually evolving in time. The basic state velocity profile is con-

stantly supplied with energy from some external forcing (wind for example) so that

it is fixed in time. The depletion time scale defined above is thus only a hypothetical

quantity helpful in judging the effect of the radiating modes on the current while no

actual time evolution computations are performed.

The depletion time scales found using the fluxes for the specific solutions in Fig. 2-

7 are on the order of 50-70 time units. Those are comparable to the growth time

scale which is 1/mci ≈ 48 time units. If the non-dimensional parameter β = 0.5 is

representative of a current with deformation radius Ld = 60km and vertical shear

VS = 15cm/s, then the depletion times are on the annual scale which implies a minor

effect on the current.

2.4 Discussion and conclusions

In this paper we have performed a linear stability analysis of a meridional boundary

current adjacent to a motionless far field. The current is idealized as a piecewise

constant linear profile as in Fantini and Tung (1987), which allows the stability prob-

lem to be reduced to a non-linear algebraic equation that can be solved numerically.

We are interested in a special type of instability of this system. When the phase

speed and wavenumber of the disturbances within the unstable region are such that

they match those of the freely propagating Rossby waves in the far field, temporally

growing radiating waves with amplitude envelopes that decay slowly with distance

from the source may appear. These are called radiating instabilities. The existence
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of radiating instabilities is of interest because, even if the radiating modes are not

the most unstable modes, they are the only ones that reach the neutral far field. By

transporting perturbation energy away, they have the ability to affect the circulation

far from the locally unstable region where the perturbations are generated.

We have considered two different cases of a basic state flow: a purely barotropic

and a purely baroclinic meridional velocity profile since it was determined that the

stability of a more general flow, that is still piecewise constant but has both barotropic

and baroclinic components, is a mix of the behavior of the purely barotropic and

purely baroclinic cases.

The first major conclusion of this paper is that unlike zonal currents, for which

special circumstances are needed such as baroclinic or westward component of the

basic state flow (Talley, 1983a,b), unstable meridional currents are generally char-

acterized by eigenmodes that have horizontally radiating structure. The radiating

modes are not necessarily the most unstable ones but there are usually several of

them for a given set of parameters. In the 2-layer case, the radiating solutions have

both barotropic and baroclinic components.

A second major conclusion of this paper concerns the differences in the stability

properties of western and eastern meridional boundary currents. For instance, it was

found that western boundary currents are linearly stable to perturbations with merid-

ional wavenumbers below some critical value while there is no such long meridional

wave cut-off for the linear stability of eastern boundary currents. What is at the base

of these differences is the requirement that the zonal group velocity of the radiated

waves be away from the locally unstable region. Consequently, western boundary cur-

rents radiate short Rossby waves (kr > m), that have small eastward group velocity

and rapidly decaying amplitude envelope away from the current. Eastern boundary

currents on the other hand, radiate long Rossby waves (kr < m), that have large west-

ward group velocity and slowly decaying amplitude envelope away from the current.

It was determined that not only do radiating waves from the eastern side penetrate

further into the far field region, but there is a greater number of them and they can
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be found over a wider range of meridional wavenumbers.

Another peculiarity of the eastern boundary current radiating waves is that they

tend to have an asymmetrical horizontal structure with zonal wavelength several

times larger than the meridional wavelength. This leads to a velocity field with zonal

component much larger than the meridional component which would make appear

the radiating waves, as they propagate in the far field, more like zonal jets than

localized wave packets or eddies. Circulation in the form of multiple zonal jets has

been observed in the real ocean (Maximenko et al., 2005). In particular, the eastern

parts of all basins at mid-latitudes contain signatures of quasi-steady zonal striations

with meridional scale on the order of 200−300km and extending zonally for thousands

of kilometers (Maximenko and Niiler, 2006). The origin of these jets is not yet fully

understood. The present study suggests the possibility that the observed zonal jets

may be related to radiating instabilities of eastern boundary currents.

We have looked also at the energy balance which gives some insight into the

sources for the instabilities. In the barotropic model, the only energy source is a

Kelvin-Helmholtz type of instability due to the discontinuous velocity profile. In the

2-layer case, a second possible energy source is baroclinic instability because of the

presence of vertical shear. There are some differences between the energy balance

for the western and eastern case. However, the fact that the baroclinic conversion

term contributes significantly to the energy balance for all unstable modes except the

leading one, for both eastern and western boundary currents, suggests a connection

to the meridional channel flow instability studied in Walker and Pedlosky (2002).

As a final word, although the model used in this study is very idealized, it leads to

some interesting conclusions concerning the differences between eastern and western

meridional boundary currents and the characteristics of the radiating waves which

are worth pursuing using more realistic models.
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Chapter 3

Part 2: A two-layer QG model for

a thermally-forced ocean

3.1 Introduction

The ocean circulation is forced at the surface by both wind stress and large scale

buoyancy fluxes resulting from heat and freshwater exchange with the atmosphere.

The direct effects of the wind and buoyancy forcing are strongest down to a depth of

roughly 1 km leading to a circulation that is vigorous in the upper ocean and much

more sluggish in the abyssal ocean. What makes the problem of determining the

ocean circulation a complex one, is its intrinsic nonlinearity. It is advective dynamics

that determine to a large extent the horizontal and vertical structure of the density

field which in turn, through the effects of buoyancy and rotation, shapes the motion

field (Pedlosky, 1998).

Quasi-geostrophic (QG) layer models with only wind forcing have been used as a

simple framework to study the mid-latitude ocean circulation. In these models, the

mean vertical stratification is prescribed by specifying a certain number of isopycnal

layers. Within each layer the motion is vertically uniform and quasi-geostrophic with

the vertical excursions of the density interfaces constrained to be small compared

to the layer depth. Commonly, the circulation in QG models is assumed adiabatic
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so that the amount of water contained between any two isopycnal surfaces remains

unchanged with time. The adiabatic assumption signifies also that in absence of

dissipation, the potential vorticity of the fluid parcels in the deep layers not directly

exposed to the wind stress is conserved, which poses a substantial constraint on the

fluid motion.

Despite their simplicity, barotropic and multi-layer QG models forced by a sim-

ple sinusoidal Ekman pumping velocity are able to reproduce several aspects of the

complex temporal and spatial behavior of the subtropical/subpolar gyre system and

the free mid-latitude jet. Consequently, QG models have been proven very useful in

isolating and understanding several basic processes that are active in the real ocean.

Some examples of such processes are eddy-driven flows (Holland, 1978; Holland and

Rhines, 1980), western boundary layer and recirculation dynamics (Cessi et al., 1987;

Lozier and Riser, 1989; Berloff and McWilliams, 1999b), free jet dynamics (Jayne

and Hogg, 1999), the role of eddies and friction in controlling the mean circulation

(Fox-Kemper, 2003), and numerous others. There is also an extensive literature on

the internal variability of the wind-driven circulation based on QG models. Internal

variability is defined as the variability that results under steady forcing conditions

due to the nonlinearity of the dynamics. Because of their simplicity and symmetry

properties, QG models have been extremely convenient for identifying some basic

mechanisms that can then be traced back to more complex models, and eventually

to the real ocean. Phenomena such as multiple steady states (Dijkstra and Katsman,

1997; Simonnet, 2005), transition to complex time-dependent behavior (Primeau,

1998; Simonnet and Dijkstra, 2002), and different mechanisms for low-frequency vari-

ability (McCalpin and Haidvogel, 1996; Berloff and McWilliams, 1999a; Ghil et al.,

2002; Nauw et al., 2004) are among the many topics explored.

QG models of different complexity have been used in these studies – from barotropic,

to reduced gravity, to multi-layer models, but as already mentioned, in all of these

studies the assumption is usually made that the ocean dynamics are adiabatic, i.e.

that there is no exchange of water between the different density layers. In reality
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however, the ocean is subject to surface buoyancy fluxes that modify the density of

the water column affecting thus the horizontal and vertical structure of the density

field which in turn alters the velocity field. Another consequence of the presence of

cross-isopycnal fluxes is that it breaks down the potential vorticity conservation, a

property on which wind-driven theories rely heavily. For a wind-only driven adia-

batic ocean where potential vorticity is conserved the characteristics, designating the

curves along which information flows, and the streamlines designating the fluid flow

paths coincide, a fact exploited by Rhines and Young (1982) to derive a theory for the

vertical structure of the circulation. In the presence of buoyancy flux however, the

PV is not conserved so that characteristics and streamlines depart from each other

and it is not possible anymore to associate each streamline with a single value of

potential vorticity.

There have been a number of studies based on simple conceptual models of the

large-scale ocean circulation forced by buoyancy fluxes. Luyten and Stommel (1986)

consider a 2-layer planetary geostrophy model where the interfacial mass flux is pre-

scribed as function of the position, analogous to the way one specifies the Ekman

pumping velocity. They determine that depending on where the characteristics origi-

nate there are two regimes of flow, the direct and the indirect cells, that differ by the

sign of the vertical velocity relative to that of the interfacial flux. Pedlosky (1998)

notes that the problem of nonadiabatic motion is closely related to the problem of

cross-gyre flow since both involve the question of information propagation in a gyre.

For a double-gyre system, the presence of nonadiabatic dynamics on the intergyre

boundary determines the degree to which the two gyres can communicate (Schopp,

1993).

There have been also a number of studies of the wind- and thermally-forced ocean

circulation based on 2-level models (Davey, 1983; Huang, 1993). In these models the

temperature within each level can vary horizontally. The thermal forcing is repre-

sented as restoring of the surface temperature to a specified profile. Davey (1983)

examines the thermally-only forced circulation on a mid-latitude beta-plane. He
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presents several analytical solutions for the large-scale baroclinic response to a ther-

mal forcing underlying the importance of Kelvin and long internal Rossby waves in

establishing the circulation. In Huang (1993) a 2-level wind- and buoyancy-forced

model is presented that can be viewed as a generalization of the classical Stommel

and Arons abyssal flow theory, in the sense that the vertical velocity driving the deep

circulation is determined from internal dynamics rather than externally specified.

The purpose of the work presented in the remaining portion of this thesis is to

examine the properties of the circulation in a simple 2-layer QG ocean contained in

a closed basin, where unlike most ocean QG layer models, the circulation is driven

by large-scale thermal forcing, and not by wind stress. Throughout this thesis it is

assumed that the density of the fluid is entirely determined by its temperature, in

which case density and buoyancy are equivalent to temperature. The 2-layer model

is meant to crudely represent the warm upper waters separated from the cold abyssal

waters by the ocean thermocline. Alternatively, one can think of the 2-layer model

as representing the upper and lower thermocline. The presence of thermal forcing

signifies that nonadiabatic processes such as vertical mixing are represented that

allow for fluid parcels to cross from one density layer to the other. In other words,

a non-zero cross-isopycnal velocity is allowed and is assumed to be the only driving

force for the circulation. A crucial part of the model is thus the definition of the

cross-isopycnal flux.

For the purpose of this study, the cross-isopycnal velocity is parameterized as

restoring of the interface displacement to some prescribed equilibrium height pro-

file. The cross-isopycnal velocity is determined thus from internal dynamics and not

imposed externally as in Luyten and Stommel (1986). This is the same parameteriza-

tion as the one used commonly in atmospheric QG models to represent the diabatic

effects due to radiative heating (Held, 2000). In the oceanic context, the chosen pa-

rameterization implies that the changes in the surface temperature, resulting from

the exchange of heat with the atmosphere, are transmitted down the water column

to the thermocline by vertical mixing or other processes, leading to water property
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transformation and fluid parcel exchange between the upper and abyssal ocean. In

this sense, the parameterization of the cross-isopicnal velocity bears some similar-

ity to the Haney restoring thermal condition used in numerous GCMs, where the

ocean mixed layer temperature is relaxed to some prescribed apparent atmospheric

temperature (Haney, 1971). However, in our QG model it is the thermocline displace-

ment or equivalently the vertically averaged temperature, and not the mixed layer

temperature, that is restored to a prescribed equilibrium state.

A QG model with similar relaxation parameterization of the cross-isopycnal veloc-

ity has been previously examined. In Pedlosky and Spall (2005), the thermally-driven

circulation on a β-plane basin is analyzed, where the applied buoyancy forcing con-

sists not only of a vertical mixing parameterized as relaxation of the interface to a

prescribed height, but also of lateral diffusion of layer thickness, representative of

unresolved eddy fluxes of thickness. It is found that when processes that produce

lateral diffusion of buoyancy are included, the largest vertical motions occur in a very

narrow boundary layer next to the western wall. This confirms previous ideas that

large-scale buoyancy forcing can lead to intense narrow regions of vertical motion next

to the walls. In Pedlosky (2006), the same thermally-driven circulation is examined

but for a switch-on and periodic thermal forcing. It is shown that the establishment

of the circulation as well as its adjustment to changing forcing occurs through the

excitation of low-frequency, weakly-damped baroclinic Rossby waves. Depending on

the spatial structure of the thermal forcing, one or several Rossby waves are needed in

order to reach a new equilibrium. The low-frequency, weakly-damped Rossby waves

are known to be an essential ingredient of the variability of wind-driven gyres as well

(Spydell and Cessi, 2003). It is worth noticing that in both these studies (Pedlosky

and Spall, 2005; Pedlosky, 2006), a thermally-driven model with linear dynamics is

considered, where the advection of relative vorticity and interface fluxes is neglected.
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3.2 Goal

In the following chapters, the circulation in a two-layer QG model confined in a

closed β-plane basin is analyzed, where the sole forcing driving the circulation is a

cross-isopycnal flux. We have thus completely ignored the wind stress in order to

concentrate on the large-scale ocean circulation driven by heating and cooling, which

in our model lead to mixing at the thermocline. The new contribution of the work

presented in the second part of this thesis is that we consider a model with nonlinear

dynamics, where the advection of relative and stretching vorticity is included. Our

goal is to study the properties of the thermally-forced circulation when the role of the

nonlinear terms, as measured by the Reynolds number, is increased. We are interested

in describing and understanding the time-mean large-scale ocean circulation driven

by diapicnal fluxes at the thermocline as well as its modes of variability.

In the remainder of this chapter the model equations and relevant nondimen-

sional parameters are described in detail. Subsequently, two different regimes of the

thermally-forced circulation are examined. Chapter 4 investigates the steady-state

thermally-forced circulation, where the forcing is weak enough so that no instabilities

occur and the circulation reaches a steady state. Chapter 5 investigates the time-

dependent, strongly nonlinear regime of the thermally-forced circulation. Finally,

Chapter 6 deals with some questions raised from the time-dependent regime analysis.

3.3 Definition of the model

The simplest layered model that captures the effect of stratification is a two-layer

model meant to roughly represent the warm upper ocean separated from the cold

abyssal ocean by the thermocline. We consider thus a two-layer model where the two

layers are described by densities ρ1 and ρ2 and resting depths H1 and H2, respectively

(Figure 3-1A). The ocean is contained in a square basin of size L on the β-plane, where
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the background planetary vorticity is expanded about the mid-latitude as

f = f0 + β0

(
y − L

2

)
, y ∈ [0, L]. (3.1)

We assume that the fluid motion within each layer is governed by quasi-geostrophic

dynamics which signifies that the motion departs only slightly from the linear geostrophic

balance, or in other words the limit of small Rossby number is considered. The small-

ness of the Rossby number implies also that the vertical excursions of the interface

between the two layers, representative of the ocean thermocline, are constrained to

be small (order Rossby number) compared to the layer thickness (Pedlosky, 1998). In

particular, layer outcropping is not allowed.

We consider initially the most general case where the ocean is forced at the surface

by both wind stress and thermal relaxation forcing. The wind forcing is incorporated

in the traditional way as an Ekman pumping velocity we acting on the upper layer,

where we = curl(~τ)/ρ0f0, ~τ being the wind stress field. The thermal forcing leads to

a cross-isopycnal velocity noted w∗, whose parameterization is described in the next

section.

The motivation for the choice of this idealized framework is twofold. On the one

hand, the model retains just enough dynamics so that a crude representation of the

large-scale thermal forcing acting on the ocean can be considered. On the other hand,

the model is simple enough and computationally efficient so that integration for long

times at high resolution is realizable and practicable.

3.3.1 The thermal forcing

We are interested in a situation where sources of heating and cooling are present so

that water can be exchanged between the two density layers. This translates into a

cross-isopycnal velocity noted w∗. When w∗ is locally positive, water from the lower

cold layer is transformed into warm upper layer water, or in other words the water

column is heated. Inversely, when w∗ is locally negative, water from the upper warm
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A)

H1

H2
2 cold

1 warm

B)

w  < 0*cooling

w  > 0*warming
h(x,y)

Figure 3-1: A) The upward interface displacement in a 2-layer QG model is repre-
sentative of the vertically averaged thermal field – for example, η positive means a
cold anomaly. B) The cross-isopycnal velocity w∗ is parameterized as relaxation of
the interface η toward an externally specified height h(x, y) on a timescale γ.

layer is transformed into cold lower layer water, or in other words the water column

is cooled.

There is not an easy recipe, as with the wind forcing, that allows us to prescribe

the spatial distribution of w∗ for the ocean, which is in general the result of turbulent

processes depending on the local stratification and velocity field. For the purpose of

this study, the cross-isopycnal velocity is parameterized as relaxation of the interface

displacement η toward some externally specified profile h(x, y) on a timescale γ (Held,

2000; Pedlosky and Spall, 2005),

w∗ =
1

γ

(
η − h(x, y)

)
. (3.2)

Here, η stands for the upward displacement of the interface from its rest position and

can be expressed in terms of the upper and lower layer streamfunctions ψ1 and ψ2 as

η = −f0

g′
(ψ1 − ψ2), (3.3)

where f0 is the Coriolis parameter and g′ = g∆ρ/ρ0, the reduced gravity. The inter-

face displacement is proportional thus to the baroclinic part of the circulation, which

can also be interpreted as the vertically averaged temperature field (Figure 3-1A).

The parameterization for w∗ is therefore nothing else but a relaxation of the ver-
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tically averaged temperature toward some externally specified profile (Figure 3-1B).

Hence, the chosen parameterization for the cross-isopycnal velocity w∗ can be thought

of in the oceanic context as a rough representation of the vertical mixing processes

that tend to restore the ocean temperature toward an equilibrium state set by the

atmosphere (Pedlosky and Spall, 2005; Pedlosky, 2006). For layered atmospheric QG

models, the same definition for w∗ is used in order to represent the radiative heat-

ing of the atmosphere (Held, 2000). In this case, h stands instead for the radiative

equilibrium temperature determined by the solar radiation.

In general, one can include in the definition (3.2) for w∗ a diffusion of the interface

κ∇2η modeling the effect of the unresolved small scales, where κ is the thermal

diffusivity. Taking into account this term leads to the formation of very thin boundary

layers that alter the spatial distribution of the vertical motion in a basin subject to

surface cooling (Pedlosky and Spall, 2005). For all calculations presented in this thesis

however, we will not include this part of the cross-isopycnal flux, i.e we will use κ = 0.

This choice was made since, unlike Pedlosky and Spall (2005) who consider a linear

QG model, we are using a model with nonlinear dynamics, so the aim is to resolve

the effect of the eddies instead of relying on a parameterization.

3.3.2 The model equations

The equations governing the fluid motion in a 2-layer QG model in the most general

case when both wind and thermal forcing is applied are (Pedlosky, 1998)

∂

∂t
(∇2ψ1) + J(ψ1,∇2ψ1 + β0y) =

f0

H1

we −
f0

H1

wi + ν∇2(∇2ψ1), (3.4)

∂

∂t
(∇2ψ2) + J(ψ2,∇2ψ2 + β0y) =

f0

H2

wi + ν∇2(∇2ψ2)− r∇2ψ2, (3.5)

∂η

∂t
+ J(ψn, η) = wi − w∗, (3.6)

w∗ =
1

γ
(η − h(x, y)) , (3.7)

η = −f0

g′
(ψ1 − ψ2), (3.8)
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where by definition the Jacobian J(a, b) = (∂a/∂x)(∂b/∂y)− (∂a/∂y)(∂b/∂x).

We have made the choice to write the equations in a form such that the vertical

velocity at the interface between the two layers wi appears explicitly. There are

thus three unknowns: the geostrophic streamfunctions ψ1 and ψ2, describing the

horizontal motion field by layers, and the vertical velocity wi, describing the vertical

circulation. The first three equations of the system are interpreted as the equations

governing the evolution of respectively the relative vorticity for the two layers and the

interface displacement η. Given that η can also be viewed as the vertically averaged

temperature field, the third equation represents as well the heat balance of the system.

It states that the vertical velocity at the interface between the two layers wi is equal

to the local rate of change of the interface η plus the cross-isopycnal flux w∗ resulting

from nonadiabatic processes.

Two dissipative mechanisms are included in the model. First of all, we have the

eddy viscosity ν. It represents lateral diffusion of relative vorticity and is meant to

parameterize the effect of the unresolved small scales on the resolved scales. It tends

to damp selectively the smallest resolved scales and plays thus the role of a numerical

closure for the model. Second, we have included a Rayleigh damping coefficient r. It

is active only in the lower layer and is meant to represent the effect of bottom stress.

It can be shown that in the absence of advection the Rayleigh drag is largely scale

insensitive and damps almost equally all spatial scales∗. In the presence of nonlinear

advection, the Rayleigh drag damps the most the largest scales. Unless otherwise

specified, the dissipation coefficients are considered spatially uniform.

One can rewrite the system of equations (3.4, 3.5, 3.6) in a form where the vertical

velocity wi is eliminated. This leads to the following system for the evolution of the

potential vorticity Qn by layers,

∗ More on the spatial scales damped selectively by the different dissipative mechanisms is given
in Appendix B.
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∂Q1

∂t
+ J(ψ1, Q1) =

f0

H1

we −
f0

H1

w∗ + ν∇2
(
∇2ψ1

)
, (3.9)

∂Q2

∂t
+ J(ψ2, Q2) =

f0

H2

w∗ + ν∇2
(
∇2ψ2

)
− r∇2ψ2, (3.10)

w∗ = − f0

g′γ

(
ψ1 − ψ2 +

g′

f0

h(x, y)

)
, (3.11)

Qn = β0y +∇2ψn + (−1)n
f 2

0

g′Hn

(ψ1 − ψ2). (3.12)

Here, Qn is the quasi-geostrophic potential vorticity for the layers equal to the com-

bination of planetary vorticity, relative vorticity and vortex stretching of the water

column. It can be seen that because of the presence of cross-isopycnal flux, the PV

of the lower layer is not conserved in the inviscid limit (Pedlosky, 1998).

3.3.3 Boundary conditions and mass conservation

The model is assumed to be contained in a closed, flat-bottom, square basin of size L.

No-normal flow and no-slip conditions are applied at all walls which translates into

ψn = cn(t), ∇ψn · n̂ = 0 on the walls. (3.13)

The no-normal flow condition requires that the streamfunction of each layer is con-

stant along the boundary of the basin, however the constants could depend on time.

The no-slip condition constrains the tangent component of the velocity to vanish at

the walls. It also implies that the normal derivative of the interface displacement at

the wall ∇η · n̂ is zero, i.e that there is no heat flux through the boundaries (when

κ = 0).

The values of the streamfunctions at the walls are determined from the additional

condition of mass conservation. In order for mass to be conserved, the vertical velocity

wi at the interface between the two layers has to integrate to zero over the area of

the basin. By definition, the vertical velocity is equal to the sum of the local rate of
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change of the interface displacement η and the cross-isopycnal velocity w∗

wi =
∂η

∂t
+ J(ψn, η) + w∗, (3.14)

where ψn is the streamfunction of either layer since J(ψ1, η) = J(ψ2, η). Mass con-

servation translates thus into the following constraint on the interface displacement

∫∫
wi(x, y, t) dxdy = 0 ⇐⇒

∫∫
∂η

∂t
+

1

γ
(η − h) dxdy = 0, (3.15)

which can be rewritten in terms of the streamfunctions as

∂

∂t

∫∫
(ψ1 − ψ2) dxdy = −1

γ

∫∫ (
ψ1 − ψ2 +

g′

f0

h(x, y)

)
dxdy. (3.16)

Suppose that at a given time t = t0, the distribution of cold and warm layer in

the model ocean is such that
∫∫

(ψ1 − ψ2) dxdy = M0 and that the specified target

interface displacement h is time invariant. Then, the mass conservation implies that

at any later time

∫∫
(ψ1 − ψ2) dxdy = M0e

− t−t0
γ −

[
1− e−

t−t0
γ

] ∫∫ g′

f0

h(x, y) dxdy. (3.17)

What this equation expresses is the fact that for times much longer than the restoring

timescale γ, the basin average of the temperature departure from the rest state con-

verges toward the basin average of the externally specified temperature profile toward

which the temperature is relaxed. For example, if the specified profile h(x, y) is such

that it integrates to a negative number over the area of the basin, this implies that

net heating is applied to the system, since overall the interface between the two layers

is pushed down. As a result, the mean vertical temperature integrated over the basin

or equivalently the volume of the upper warm layer would increase.

In the special case when the ocean is initially at rest, i.e η(x, y, t = 0) = 0, and

there is no net heating or cooling, i.e
∫∫
h(x, y) dxdy = 0, the mass conservation
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condition reduces to what is usually used in wind-only driven models

∫∫
(ψ1 − ψ2) dxdy = 0 at all times. (3.18)

3.4 Additional comments on the model

3.4.1 Equations by vertical modes

Some insights about the dynamics of the 2-layer QG model with thermal forcing can

be gained if the equations are rewritten by vertical modes instead of by layers.

By definition, the barotropic and baroclinic streamfunctions φ and τ are given in

terms of the layer streamfunctions ψ1 and ψ2 by

φ =
H1

H
ψ1 +

H2

H
ψ2, τ = ψ1 − ψ2, (3.19)

where H = H1 + H2 is the full depth of the ocean. Using this definition, the poten-

tial vorticity equations by layers (3.9) and (3.10) can be transformed into potential

vorticity equations by vertical modes (Salmon, 1998)

∂Qφ

∂t
+ J(φ,Qφ) +

H1H2

H2
J(τ,Qτ ) (3.20)

=
f0

H
we + ν∇4φ− rH2

H
∇2

(
φ− H1

H
τ

)
,

∂Qτ

∂t
+ J(φ,Qτ ) + J

(
τ,Qφ +

H2 −H1

H
Qτ

)
(3.21)

=
f0

H1

we +
1

γR2
d

(
τ +

g′

f0

h(x, y)

)
+ ν∇4τ + r∇2

(
φ− H1

H
τ

)
,

where the potential vorticity (PV) by vertical modes Qφ and Qτ is given by

Qφ = β0y +∇2φ, Qτ = ∇2τ − τ

R2
d

, (3.22)

and R2
d = g′H1H2/(f

2
0H) is the internal Rossby deformation radius.
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The major observation that can be made from the examination of the PV equa-

tions by vertical modes is that the thermal forcing drives directly only the verti-

cally varying part of the circulation, unlike the wind stress that generates both a

barotropic and a baroclinic response. Hence, for a thermally-only driven circulation

a barotropic response can be generated only through the coupling to the baroclinic

part of the circulation. The coupling between τ and φ occurs either through the non-

linear term J(τ,Qτ ), where advection of baroclinic PV by the baroclinic flow changes

the barotropic PV, or through the bottom friction term. Note that the majority of

the calculations performed in this thesis are done in a parameter regime where the

bottom friction plays only a minor role in the local PV balance, its main purpose

being to damp the barotropic basin modes that are sometimes excited. Thus, the

barotropic circulation generated by the bottom friction coupling to the baroclinic

flow is negligible, and it is mainly the nonlinear advective coupling that matters.

When analyzing a wind-only driven multi-layer model, it is useful to think about

it as having a top layer directly driven by the wind stress, and deep layers that

are set in motion only under certain conditions by way of parameterized or resolved

eddies (Rhines and Young, 1982) or through ventilation (Pedlosky, 1998). We have

seen on the other hand that for a thermally-only driven ocean, it is the baroclinic,

vertically varying part of the circulation that is directly forced. We expect thus a

purely baroclinic circulation in the linear regime with barotropic circulation being

generated only when nonlinearities come into play. In order to underline this feature

of the thermally-driven circulation, we have carried several of the analyses in the next

chapters by vertical modes, and not by layers which is the traditional way.

3.4.2 Nondimensional equations

In order to determine a group of nondimensional parameters controlling the behavior

of the wind- and thermally-forced system, it is necessary to write the equations in a

nondimensional form. If L is the basin length scale and U a typical horizontal velocity

scale, then the following nondimensional variables can be introduced, where we have
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made the choice to use a time scale based on the barotropic Rossby wave frequency

(x, y)dim = L(x, y), (ψ1, ψ2)dim = UL(ψ1, ψ2), tdim =
1

β0L
t. (3.23)

Note that the variables t, x, y and ψn stand now for the nondimensionalized quantities.

Let also rewrite the forcing terms as

curl(~τ) =
τ0

L
Fw(x, y), h(x, y) = h0FT (x, y), (3.24)

where τ0 and h0 are typical forcing amplitudes (wind stress and interface height), while

the nondimensional functions Fw(x, y) and FT (x, y) define their spatial variation.

The PV equations by vertical modes become then in nondimensional form

∂qφ
∂t

+ δ2
I

[
J(φ, qφ) + δ(1− δ)J(τ, qτ )

]
+
∂φ

∂x
= δUwFw (3.25)

+ δ3
M∇4φ− δS(1− δ)∇2

(
φ− δτ

)
,

∂qτ
∂t

+ δ2
I

[
J(φ, qτ ) + J(τ, qφ) + (1− 2δ)J(τ, qτ )

]
+
∂τ

∂x
= UwFw (3.26)

+
1

δT

(
τ + UTFT

)
+ δ3

M∇4τ + δS∇2
(
φ− δτ

)
,

qφ = ∇2φ, (3.27)

qτ = ∇2τ − Fτ. (3.28)

The equations are supplemented with the no normal flow and no-slip boundary condi-

tions φ = 0, τ = c(t) and∇φ·n̂ = ∇τ ·n̂ = 0 on the walls, and the nondimensionalized

mass conservation which is, in its most general form,

∂

∂t

∫∫
τ dxdy = − 1

FδT

∫∫
(τ + UTFT ) dxdy. (3.29)

A set of eight nondimensional parameters characterize the system. First, we have
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a number of parameters describing the geometry and forcing:

F =

(
L

Rd

)2

, δ =
H1

H
, Uw =

1

U

(
τ0

ρ0β0H1L

)
, UT =

1

U

(
g′h0

f0L

)
.

The rotational Froude number F measures the ratio of the basin size to the internal

Rossby deformation radius Rd, or equivalently the importance of vortex stretching to

inertia. The parameter δ is a geometrical parameter equal to the ratio of the upper

layer rest depth to the full ocean depth. The parameters Uw and UT represent the

nondimensionalized horizontal velocity scales associated with the wind and thermal

forcing, respectively. Depending on whether the circulation is wind or thermally

driven, one of these parameters is used to define the typical velocity scale U of the

flow: U = τ0/ρ0β0H1L for wind-driven ocean, or U = g′h0/f0L for thermally-driven

ocean. If both wind and thermal forcing are applied, then one can use the wind-

derived velocity scale U with the nondimensional parameter UT representing in this

case the ratio of the thermally to the wind driven part of the circulation.

There are also several parameters associated with characteristic length scales of

the system:

δI =
1

L

(
U

β0

) 1
2

, δM =
1

L

(
ν

β0

) 1
3

, δS =
1

L

(
r

β0

)
, δT =

1

L

(
γβ0R

2
d

)
.

Here, δI is the inertial boundary layer width, δM the Munk boundary layer width, and

δS the Stommel boundary layer width, measuring respectively the relative importance

of the nonlinear advection, lateral dissipation and bottom damping of relative vor-

ticity to the advection of planetary vorticity∗. Finally, δT is the thermal lengthscale

indicative of the strength of the thermal relaxation. What this lengthscale actually

represents is the ratio of the distance travelled by the long internal Rossby waves with

speed cR = β0R
2
d during the relaxation timescale γ, to the basin scale L. More on

the choice of the thermal forcing parameters, including the restoring time scale, are

∗It is sometimes useful to refer to the dimensional boundary layer widths which will be denoted
by a tilde with δ̃I , δ̃M , δ̃S and δ̃T , and are simply equal to the respective non-dimensional version
multiplied by the length scale L.
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given in the next section.

The behavior of the wind- and thermally-forced system is controlled therefore by

a set of 7 nondimensional parameters. For the scope of this thesis, the dependence of

the circulation on only a small number of these parameters is examined. The central

focus is put on the dependence of the resulting circulation on the inertial boundary

layer width, or in other words the changes that occur in the time-mean circulation and

its variability when the role played by the nonlinearities increases. The importance

of the bottom drag is also examined, while some other effects are completely ignored.

For example, the majority of the results in this thesis concern a thermally-only forced

ocean, thus Uw = 0. More details on the specific parameter values are given when

the different calculations are presented.

3.4.3 Choice of the thermal relaxation forcing

The thermal relaxation profile

The function FT (x, y), that specifies the spatial variation of the target height to-

ward which the interface is relaxed, can be thought as the equilibrium temperature

distribution toward which the vertically integrated ocean temperature is restored by

vertical mixing processes.

In all the cases that are discussed in this thesis, the thermal forcing is chosen so

that it integrates to zero over the basin. That means that if the upper water column

is squeezed at some location, then it is expanded at some other, so that overall the

amount of warm and cold water in the system remains the same as initially specified

by the rest depths H1 and H2. In other words, no net heating/cooling is applied to

the system. This guarantees, among other things, that an equilibrium can be reached.

If on the other hand the thermal forcing is such that
∫∫
FT dxdy ≶ 0, then net

heating/cooling is exerted. The system will respond to this forcing by adjusting the

amount of warm and cold water specified initially. This will modify the rest depths

H1 and H2, until
∫∫
FT dxdy = 0 respective to the ”new” rest depths. Thus, in general
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Figure 3-2: The spatial structure of the profile toward which the interface is relaxed.
FT (x, y) is chosen uniform in the zonal direction and with a sine dependence on
latitude, corresponding to warming in the southern half and cooling in the northern
half of the basin. There is no net heat flux applied to the system.

applying a thermal forcing with net heating/cooling is equivalent to applying a no

net heat flux thermal forcing, but for some different rest depths H1 and H2, given of

course that the specified amount of heating/cooling is physically meaningful, i.e. it

does not deplete any of the layers for example.

Finally, there is also the special case where FT (x, y) = 0, which means that the

interface is relaxed toward the rest depth. In this case, a circulation will result only if

wind forcing is also applied. The ”thermal forcing” acts then as an interfacial friction

– it tends to flatten the isopycnals and damps the circulation.

All calculations performed in this thesis are done with a target interface displace-

ment FT (y) that is taken uniform in the zonal direction and antisymmetric with

respect to the mid-latitude, as shown in Figure 3-2. The variation with latitude is

given by a sine function and is such that the southern half of the basin is warmed

while the northern half is cooled. This is meant to roughly represent the large-scale

thermal forcing acting on the subtropical and subpolar gyres in the real ocean.

The particular choice of a sine profile was made for the following reason. While the
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circulation in the interior of the basin is qualitatively very similar no matter what the

exact form of the target profile is, as long as it corresponds to the same general pattern

of heating in the south and cooling in the north, having a non-zero thermal forcing

at the northern and southern boundaries forces strong zonal boundary layers where

the meridional velocity is brought to zero. We have chosen thus to bring the thermal

forcing to zero at the northern and southern boundaries by using a sine function for

FT (y) in order to emphasize on the interior dynamics of a thermally-forced ocean. The

same sine target profile for the thermal forcing is used for all calculations analyzed in

this thesis, with only its amplitude varied between the different calculations.

The thermal relaxation timescale

One way to justify the choice of the relaxation timescale γ is using the thermal

lengthscale δT , defined as the ratio of the relaxation timescale γ to the time TR =

L/β0R
2
d needed for a long internal Rossby wave to cross the basin. Long internal

Rossby waves play a central role in the establishment of the vertical structure of the

circulation. They are messengers carrying the signal of the blocking action of the

eastern boundary (Pedlosky, 1998). A strong enough eastward barotropic flow can

arrest their westward propagation creating regions of closed geostrophic contours and

homogenized potential vorticity isolated from the eastern wall (Rhines and Young,

1982). The transit time TR is thus an important internal timescale of the problem.

Adding a large-scale thermal forcing parameterized as relaxation of the interface

displacement tames the propagation of internal Rossby waves on the interface between

the two layers. Two limits can be envisioned:

i) For timescales γ short compared to TR, the Rossby waves are strongly affected

by the interface relaxation and cannot reach too far away from the eastern

boundary, failing thus to propagate information all the way across the basin.

This is the limit of strong relaxation and corresponds to δT � 1.

ii) For timescales γ long compared to TR, the Rossby waves are able to cross
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the basin without being damped by the interface relaxation. Information is

propagated in this case from the eastern boundary all the way to the western

wall in the absence of advection. This is the limit of weak relaxation and

corresponds to δT ' 1.

Another way to interpret the relaxation timescale γ is by making a connection to

a corresponding heat flux. The presence of cross-isopycnal flux is directly related to

the presence of internal sources of heating and cooling in the fluid. In particular, it

can be shown that for a continuously stratified fluid with no diffusivity and a linear

equation of state, where z indicates the height of a surface of constant density and w

the vertical velocity, the cross-isopycnal flux w∗ is equal to (Pedlosky, 1998)

w∗ = w −
[
∂z

∂t
+ ~u · ∇z

]
=

αQ

Hcp(−∂ρ/∂z)
. (3.30)

Here, α is the thermal expansion coefficient, cp the specific heat at constant pressure,

and Q the heat added locally to the fluid. Given the definition (3.2) of the parame-

terized cross-isopycnal velocity used in our 2-layer QG model, a relationship between

the heat flux Q and the relaxation time scale γ can be deduced

γ =
cp∆ρh0

αQ
. (3.31)

Note however, than the heat flux Q here is an internal heat flux applied at the

thermocline separating the upper warm ocean and the cold abyssal ocean. It is not

clear what represents a typical or reasonable value for this heat flux or neither how

it can be related to the surface heat flux, which a measurable quantity.

Therefore, within this thesis we have chosen the values for the relaxation time

scale γ by comparing it to the Rossby wave transit time TR. In particular, only the

case of weak relaxation when the Rossby waves are weakly damped and are able to

carry information all the way across the basin is examined. This signifies that the

thermal lengthscale is on the order of the basin or larger, i.e δT = γ/TR ' 1. The case

with δT < 1 is also interesting but because of the large number of nondimensional
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Figure 3-3: Scaling for the vertically-varying part of the circulation determined from a
linear baroclinic potential vorticity balance for the cases of a) wind-forced circulation
with interface restoring to rest, b) thermally-only forced circulation, and c) combined
wind- and thermally-forced circulation. In all three cases Uw = 1.

parameters affecting the system behavior, this case was left for a future study.

Circulation scaling in the linear limit

In order to further illustrate how the different parameters defining the relaxation

thermal forcing affect the resulting circulation, a simple scaling argument for the

horizontal velocity scale is presented.

Consider the steady linear inviscid equation for the baroclinic circulation where

the vorticity input by wind and thermal forcing is balanced by advection of planetary

vorticity
∂τ

∂x
= UwFw(y) +

UT
δT
FT (y) +

τ

δT
. (3.32)

Its solution is

τ(x, y) =
(
δTUwFw(y) + UTFT (y)

)(
e
x−1
δT − 1

)
, (3.33)

which leads to the following scaling for the baroclinic streamfucntion

τ ∼ (δTUw + UT )
(

1− e−
1
δT

)
. (3.34)
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Three different cases can be considered. If UT = 0, the circulation is forced by

wind stress while the interface between the layers is restored to its rest position. In

this case, strong restoring (small δT ) damps the circulation, while in the limit of weak

restoring (large δT ), the purely wind-driven case is recovered. If the velocity scale for

the problem U is chosen to be the one determined from the wind stress, i.e. Uw = 1,

then in the limit δT →∞, τ approaches 1 as shown in Figure 3-3a.

If instead, Uw = 0 and UT is different than zero, then the circulation is thermally-

only forced. In this case, increasing UT , while keeping the same relaxation δT , leads

to a stronger circulation (Figure 3-3b). On the other hand, keeping the same UT but

considering a weaker relaxation by increasing δT , leads to a weaker circulation.

Finally, the scaling for the combined wind- and thermally-forced circulation is a

superposition of the wind-only and thermally-only forced cases (Figure 3-3c). For

the same restoring timescale δT , increasing UT leads to a more thermally dominated

circulation. For the same UT , increasing δT , i.e. imposing weaker relaxation, leads to

a wind dominated circulation.

The calculations presented in this thesis are done with δT chosen between 1 and

1.5. This was previously described as weak relaxation in the sense that the restoring

timescale γ is long enough, so that a long internal Rossby wave can cross the basin

without being damped by the relaxation. The scaling argument presented here shows

that δT = 1.5 is small enough so that if wind forcing was included, both the wind and

the thermal forcing will contribute in significant amounts to the circulation.

3.4.4 Numerics

The 2-layer QG model used for the time-stepping simulations performed in this thesis

is a modification of a model written by P. Berloff and used in numerous studies, e.g.

(Berloff and McWilliams, 1999a; Berloff and Meacham, 1998). The major changes

made to the code include the implementation of the thermal forcing and the subse-

quent modification of the mass conservation constraint to its more general form (3.29)

in the presence of heating/cooling.
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The method of solving the equations is essentially the same as outlined in Hol-

land (1978). The equations are discretized using 2nd order finite differences with an

Arakawa Jacobian for the advective terms Arakawa (1997). A 2nd order leap-frog

scheme is used for the time stepping of the vorticity with averaging between the

time steps for numerical stability. A direct fast sine transform algorithm is used to

solve the elliptic problems that provide the streamfunction from the relative vortic-

ity. After each time step the mass conservation condition is applied to the baroclinic

streamfunction. The no-slip boundary conditions are implemented using a 2nd order

scheme (Verron and Blayo, 1996; Jensen, 1959). An uniform grid is used with suf-

ficient resolution so that the frictional boundary layers are resolved by at least one

cell.
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Chapter 4

Thermally-forced ocean in the

steady regime

In this chapter the focus is on the thermally-forced circulation when the final state

reached by the system is a steady equilibrium. It is demonstrated that although in

the linear limit the thermal forcing drives a purely baroclinic circulation, when the

nonlinear advection of relative vorticity becomes important a vertically integrated

circulation is generated through the nonlinear coupling to the baroclinic flow. It is

discussed how the circulation, vorticity and heat balance change with the Reynolds

number. The results from the steady regime are used later as a reference for analyzing

the time-dependent, strongly nonlinear, thermally-forced circulation.

4.1 Model setup

The values of the model parameters used in the steady regime calculations are given

in Table 4.1.

All the simulations in this chapter are done in a relatively small square basin

with width L = 1024 km but the circulation behavior is similar in larger size basins.

The model is forced with a thermal forcing that has a target height h(x, y) with a

sine dependence on latitude, corresponding to warming over the southern half-basin
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Dimensional parameters Nondimensional parameters
Lx, Ly 1024 km δ 0.17
H1 500m F 1200

H2 2500m δ̃M (δM) 21.33 km (0.021)

f0 1× 10−4 s−1 δ̃S (δS) 0.05 km (5× 10−5)

β0 2× 10−11 m−1s−1 δ̃T (δT ) 1440 km (1.406)
ρ0 1000 kgm−3

Rd 30 km
g′ 0.02ms−2

ν 194m2s−1 Grid and resolution
r 1× 10−9 s−1 grid 257× 257
γ 2.5 years ∆x 4 km

Table 4.1: Values of the parameters used in the steady regime calculations. The left
column defines the dimensional parameters. The right column gives the values of the
nondimensional parameters and the grid resolution.

and cooling over the northern half-basin with no net heat flux into the system. The

relaxation timescale γ = 2.5 years is slightly longer than the time needed for a long

internal Rossby wave to cross the basin TR = L/β0R
2
d ≈ 1.8 years, which leads to a

thermal lengthscale δT > 1 or, as discussed in the previous chapter, a case of weak

thermal relaxation.

An eddy viscosity ν = 194m2s−1 is applied that corresponds to a Munk boundary

layer width δ̃M = 21 km. Given that a grid resolution ∆x = 4 km is used, the

boundary layer is well resolved. The Stommel boundary layer on the other hand

is three orders of magnitude smaller, corresponding to a bottom friction decay rate

r = 10−9s−1, or equivalently to a frictional spin-down timescale 1/r ≈ 32 years.

Thus, we are considering the regime where δS � δM , implying a circulation closed

through a Munk western boundary layer, either linear or nonlinear depending on how

important the inertial terms are.

It is the amplitude of the thermal forcing that determines the size of the inertial

terms. A series of three different values for the amplitude of the target interface

displacement are used. Those values, as well as the corresponding inertial boundary
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h0 2m 50m 120m
U 0.04 cms−1 0.98 cms−1 2.34 cms−1

δ̃I (δI) 4.5 km (0.004) 22.1 km (0.022) 34.2 km (0.033)
Re = δ2

I/δ
3
M 2.1 51.7 123.5

Table 4.2: Values for the amplitude of the interface displacement used in the steady
regime calculations. Given are also the corresponding values of the velocity scale U ,
the inertial boundary layer width δI , and the Reynolds number Re. The velocity
scale is chosen so that UT = 1, i.e. U = g′h0/f0L.

layer widths, are given in Table 4.2. The inertial boundary layer δ̃I is varied from

4.5 km, which is several times smaller than the Munk layer, to 34.2 km, which is

larger than the Munk layer. The goal is to span a range of regimes where the inertial

terms become more and more important, as reflected by the increasing values for the

Reynolds number, Re = δ2
I/δ

3
M = UL/ν.

For all simulations we are using a time-stepping model where the final state to

be analyzed is obtained after 60 years of integration starting from a rest state. As a

reminder, in all cases examined in this chapter the final state reached by the system is

a steady equilibrium. Thus, although the nonlinear terms become more important as

the forcing amplitude is increased, they do not lead to instability and time-dependence

of the circulation for the range of Reynolds numbers considered here. For reference,

the circulation for a forcing amplitude h0 = 132m or Re = 136.2 is time-dependent.

The question of the destabilization of a thermally-forced circulation will be addressed

in Chapter 6.

4.2 Overview of the circulation

Before looking at the circulation patterns as the Reynolds number is varied, it is useful

to explore the linear limit of the vorticity equations governing the system dynamics.

In the limit of weak forcing, the inertial boundary layer width is small and the non-

linear advection terms in the vorticity equations (3.25) and (3.26) can be neglected.
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Given also that we are dealing with a steady, thermally-only forced ocean with no

vorticity input from wind stress, the potential vorticity balance in the interior of the

basin reduces to

∂φ

∂x
= 0 ⇒ φ(x, y) = 0, (4.1)

∂τ

∂x
=
τ + UTFT (y)

δT
≡ −Fw∗ ⇒ τ(x, y) = UTFT (y)

(
e
x−1
δT − 1

)
. (4.2)

The linear PV balance for the vertically integrated circulation given by Eq.(4.1) is

simple. Since there is no barotropic vorticity input from external forcing, there is no

resulting barotropic circulation. Indeed, for the most weakly forced case where h0 =

2m and δ̃I = 4.6 km shown in Figure 4-1(A), it can be seen that there is practically

no barotropic circulation except for a very weak flow in the western boundary layer

(maxφ = 0.0031 compared to max τ = 1.0834). The reason for this flow is the weak,

but not negligible contribution from the nonlinear advective terms in the boundary

layer.

The linear PV balance for the baroclinic circulation in the interior of the basin

given by Eq.(4.2) is also simple. It represents a balance between the input of baroclinic

vorticity by the relaxation thermal forcing and the baroclinic advection of background

planetary vorticity (Pedlosky and Spall, 2005). For example, in the northern half of

the basin where FT (y) is positive, the water column is cooled which raises the interface

between the two layers. This leads to vortex squeezing or a positive vorticity input

for the upper layer, and a vortex stretching or negative vorticity input for the lower

layer. To compensate for that, the fluid moves north in the upper layer, and south in

the lower layer, toward higher/lower planetary vorticity, respectively. The opposite

happens in the southern gyre, where warming is applied. When no cross-boundary

flow is allowed, a double gyre baroclinic circulation develops, as shown in Figure 4-

1(D), where the southern gyre rotates clockwise and the northern gyre, anti-clockwise

for the upper layer. The linear thermally-forced circulation is thus similar to the linear

circulation resulting from a typical mid-latitude wind stress with the one difference
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δ̃I = 4.5 km δ̃I = 22.1 km δ̃I = 34.2 km

(τ̃ (lin) = 0.02× 104 m2

s ) (τ̃ (lin) = 0.55× 104 m2

s ) (τ̃ (lin) = 1.32× 104 m2

s )

Figure 4-1: Circulation in the steady regime as a function of the inertial boundary
layer thickness. Panels A-B-C, barotropic streamfunction, and panels D-E-F baro-
clinic streamfunction, for the case respectively of δ̃I = 4.5, 22.1 and 34.2 km. In
each case, the solutions are scaled with the maximum linear baroclinic streamfunc-

tion τ̃ (lin) = g′h0

f0
(1 − e−

1
δT ). The contour interval for the barotropic streamfunction

is 0.0005, 0.01 and 0.02, respectively. The contour interval for the baroclinic stream-
function is 0.1. Regions of negative values are shaded.

that there is no barotropic component.

The maximum baroclinic streamfunction in the linear limit, τ (lin) = UT (1−e−
1
δT ),

depends on both the amplitude of the thermal forcing through UT , and the restoring

timescale through δT , with the later especially important in the weak restoring limit

when δT & 1. The dimensional version of the maximum linear transport τ̃ (lin) =

τ (lin)UL is used throughout the thesis as a scale when plotting both the barotropic
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and baroclinic components of the circulation. Values in excess of one for the baroclinic

circulation in the interior of the basin indicate nonlinearly driven flow.

When the amplitude of the forcing is increased, the inertial boundary layer grows.

For an amplitude of the target interface h0 = 50m, the inertial boundary layer is

δ̃I = 22.1 km, which is comparable to the Munk boundary layer, δ̃M = 21.3 km.

For an amplitude of the target interface h0 = 120m, the inertial boundary layer

is δ̃I = 34.2 km and exceeds the Munk boundary layer. The increased importance

of the nonlinear advection leads to changes in the flow pattern. It can be seen in

Figure 4-1(B-C, E-F) that in the western part of the basin inertial recirculation gyres

form. They are on the sub-basin scale, increase in size as δI gets larger, and have both

barotropic and baroclinic component. The magnitude of the baroclinic circulation for

the most strongly forced case surpasses one, i.e. the maximum linear value, indicating

substantial role played by the nonlinearities. The magnitude of the barotropic flow

increases with increasing Reynolds number but remains at least an order weaker than

that of the baroclinic flow. The appearance of recirculation gyres as the circulation

becomes inertially dominated is common in wind-driven gyres as well.

Next, the potential vorticity balances for the thermally-forced circulation are an-

alyzed. Specific questions of interest are:

1. What drives barotropic circulation in the nonlinear steady regime?

2. What is the baroclinic vorticity balance and what drives the recirculations?

3. What is the heat budget for the system?

4. Are there any substantial differences from the wind-driven case?

4.3 Dynamics of the barotropic circulation

Because of the lack of barotropic vorticity input by the thermal relaxation forcing,

there is no interior vertically integrated circulation in the linear limit for a thermally-

only forced ocean. However, it was determined that when the nonlinear advection of
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relative vorticity becomes important, a vertically integrated circulation is generated.

Examining the potential vorticity balance for the barotropic vertical mode can help

identify what drives this circulation.

When the inertial boundary layer thickness becomes comparable to that of the

Munk layer, the vertically integrated circulation is governed by the steady, non-linear

vorticity equation, obtained from Eq.(3.25) by eliminating the time-dependence

δ2
I

[
J(φ,∇2φ) + δ(1− δ)J(τ,∇2τ)

]
+
∂φ

∂x
= δ3

M∇4φ− δS(1− δ)∇2(φ− δτ). (4.3)

A convenient way to interpret this equation is to note that every single term in it

represents a divergence of a vorticity flux (Fox-Kemper, 2003). More specifically, the

equation can be rewritten as,

0 = ∇·
[
− φ x̂︸︷︷︸

plane-
tary

− δ2
I uφ∇2 φ︸ ︷︷ ︸
barotropic-
barotropic

− δ2
Iδ(1− δ) uτ∇2τ︸ ︷︷ ︸

baroclinic-
baroclinic

+ δ3
M∇(∇2φ)− δS(1− δ)∇(φ− δτ)︸ ︷︷ ︸

frictional

]
,

(4.4)

where uφ and uτ are the barotropic and baroclinic velocity fields, defined in terms of

the streamfunction as uψ = (−∂ψ/∂y, ∂ψ/∂x) with ψ = φ, τ , respectively.

Furthermore, it is helpful to integrate the vorticity equation over a region Cφ

enclosed by a barotropic streamline. Using the divergence theorem allows us then

to transform the vorticity flux divergences into vorticity fluxes across the bound-

ing streamline. Because the barotropic velocity is by definition aligned with the

barotropic streamlines, there is no contribution from the planetary vorticity and the

barotropic-barotropic advective terms to the cross-streamline flux. The following

budget is thus obtained

0 =

∮
∂Cφ

[
− δ2

Iδ(1− δ) uτ∇2τ + δ3
M∇(∇2φ)− δS(1− δ)∇(φ− δτ)

]
· n̂ dl. (4.5)

In the absence of wind stress, there is no input of barotropic vorticity from external

forcing and all the different fluxes accomplish is to redistribute vorticity within the
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region Cφ. In particular, the cross-streamline fluxes due to the baroclinic-baroclinic

advection and the friction have to balance out.

In Figure 4-2, the barotropic vorticity budget has been diagnosed for a series

of regions with progressively larger area lying in the northern recirculation gyre for

the most strongly forced case with h0 = 120m or δ̃I = 34.2 km. This is the steady

circulation distinguished with the largest recirculations and strongest barotropic flow.

As shown in the Figure, the northern recirculation is characterized with positive

barotropic relative vorticity. The vorticity budget is essentially the same no matter

which bounding streamline is chosen. It shows that barotropic vorticity is carried

into the region by the baroclinic-baroclinic advective term, and carried out mostly

by lateral friction, and to much smaller almost negligible extent by bottom friction.

Hence, the barotropic recirculations are driven by the coupling to the baroclinic,

directly thermally-forced part of the circulation.

The strongest barotropic circulation is expected in the regions where the strongest

cross-streamline baroclinic-baroclinic advective flux occurs. From the integrated vor-

ticity budget given by Eq.(4.5) it is clear that two conditions need to be met in order

to have a large integrated baroclinic-baroclinic flux. First, there should be a large

amount of baroclinic vorticity to be advected. Second, the barotropic and baroclinic

streamlines should not be aligned, i.e uτ · uφ 6= 0 so that there is a cross-streamline

flux.

In Figure 4-3 the baroclinic vorticity, ∇2τ , and the divergence of the baroclinic-

baroclinic vorticity flux, −∇ · (uτ∇2τ) are plotted for the three cases δ̃I = 4.5, 22.1

and 34.2 km corresponding to h0 = 2, 50 and 120m, respectively. Only the western

side of the northern half-basin is shown in order to emphasize the western boundary

layer and the recirculation gyre, if present. Similar dynamics occur in the southern-

half basin, except for some sign reversals.

As expected, the western boundary layer is characterized with large amount of

baroclinic relative vorticity. It is negative right next to the wall because of the no-slip

boundary condition, while it is positive in the outer edge of the western boundary
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Figure 4-2: Barotropic potential vorticity budget for the case with δ̃I = 34.2 km
(h0 = 120m) integrated over a series of regions enclosed by barotropic streamlines.
Panel A), barotropic relative vorticity field scaled with the maximum planetary vor-
ticity. Overlaid are contours of the barotropic streamfunction delimiting the regions
of integration, φ

|minφ| ∈ [−0.95,−0.05]. Panel B), integral of the vorticity flux diver-
gence by unit area for the different regions. All terms for the integrated budget are as
indicated in Eq.(4.5). The bottom friction contribution is very small in all integrals.

layer. In the linear case corresponding to the weakest forcing, the maximum baroclinic

relative vorticity and the maximum baroclinic streamfunction are both situated at

the central latitude of the northern gyre. The baroclinic-baroclinic advective flux is

then such that it drives a weak, order δ2
I , barotropic circulation in the boundary layer.

The circulation is antisymmetric with respect to the central latitude of the northern

gyre and consists of a clockwise cell in the northwest corner and an anti-clockwise

cell toward the mid-latitude.
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Figure 4-3: Barotropic vorticity budget in the western boundary layer and recircula-
tion region in the northern half-basin for the case with h0 = 2, 50 and 120m. Panels
a-b-c, baroclinic relative vorticity scaled with the maximum planetary vorticity. Pan-
els d-e-f, baroclinic-baroclinic vorticity flux divergence (sign as in Eq.(4.4)). Overlaid
are select streamlines for the baroclinic flow in black, and the barotropic flow in gray.

When the ocean is forced stronger and δI increases, the circulation looses its

symmetry properties. Because the advection of relative vorticity in the boundary layer

becomes significant, the region of large positive relative vorticity and the maximum

of the streamfunction both shift toward the mid-latitude. A baroclinic recirculation

gyre filled with positive baroclinic relative vorticity forms. Consequently, the spatial

distribution of the divergence of the baroclinic-baroclinic advective flux, which is

the driving force for the barotropic flow, changes. Nevertheless, the same two cell
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barotropic circulation as in the linear limit is generated with the one big difference that

for larger δI the anti-clockwise cell situated toward the mid-latitude is much larger

and stronger than the clockwise cell in the northwest corner. Thus, the existence of

the barotropic recirculation gyres is directly related to the formation of baroclinic

recirculation gyres.

4.4 Dynamics of the baroclinic circulation

Similarly to the barotropic vorticity balance, the steady, non-linear vorticity equation

for the baroclinic vertical mode can be written in a flux divergence form as,

∇ ·
[

τ x̂︸︷︷︸
planetary

+ δ2
I uφ(∇2τ − Fτ) + δ2

I uτ∇2φ︸ ︷︷ ︸
barotropic-baroclinic

+ δ2
I (1− 2δ) uτ∇2τ︸ ︷︷ ︸
baroclinic-baroclinic

(4.6)

− δ3
M∇(∇2τ)− δS∇(φ− δτ)︸ ︷︷ ︸

frictional

]
=

τ + UTFT (y)

δT
.︸ ︷︷ ︸

thermal forcing ≡−Fw∗

The main difference from the barotropic equation is the presence of the thermal

relaxation forcing that acts as an external source of baroclinic vorticity. Another

difference is the form of the advective terms. In the baroclinic balance, ”mixed”

terms are present that describe the advection of the baroclinic potential vorticity

qτ = ∇2τ−Fτ by the barotropic velocity field uφ, and the advection of the barotropic

potential vorticity qφ = ∇2φ by the baroclinic velocity field uτ . Both these terms

are called barotropic-baroclinic vorticity flux. There is also a contribution from the

baroclinic-baroclinic vorticity flux, uτqτ . This term is non-zero only if δ 6= 1/2, i.e.

when the two density layers are of different depths.

When integrated over a region Cτ enclosed by a baroclinic streamline, the vorticity

equation (4.6) leads to to the following budget for the baroclinic vorticity

0 = −
∮
∂Cτ

[
δ2
I uφ∇2τ−δ3

M∇(∇2τ)−δS(1−δ)∇(φ−δτ)
]
·n̂ dl+

∫∫
Cτ

τ + UTFT (y)

δT
dA.

(4.7)
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Use was made of the fact that all advective fluxes by the baroclinic velocity do not

contribute to the the cross-streamline flux. What the integrated budget shows is that

the barotropic advection of baroclinic relative vorticity and the frictional fluxes in and

out of the region have to balance the input of vorticity by the thermal relaxation forc-

ing. Because the cross-isopycnal velocity that drives the circulation is not externally

specified by geographical location but depends on the solution itself, the amount and

even sign of vorticity input depend on the solution as well. This is different from the

case of a wind-driven circulation, where the Ekman pumping velocity is prescribed.

The integrated baroclinic vorticity budget for the case with strongest thermal

forcing featuring the largest recirculations, is shown in Figure 4-4. The integration

is done over a series of regions bounded by baroclinic streamlines encompassing pro-

gressively larger portions of the northern gyre. The vorticity fluxes resulting from

advection, lateral diffusion and thermal forcing as described in Eq.(4.7), but divided

in addition by the area of the region of integration, are plotted. The bottom frictional

flux has been omitted since it was found that it is several orders of magnitude smaller

than any of the other fluxes. The same analysis, except for some sign reversals, holds

for the southern gyre.

The interior of the northern gyre is characterized with positive baroclinic potential

vorticity qτ = ∇2τ − Fτ , with a thin band of negative relative vorticity present next

to the walls because of the no-slip boundary condition (Figure 4-4(A)). The positive

interior baroclinic vorticity is dominated by the positive vortex stretching component

due to the cooling of the water column. From the vorticity budget integrated over the

largest region containing nearly the entire northern half-basin, it can be seen that the

thermal relaxation forcing is indeed the source of positive vorticity for the northern

gyre. However, as progressively smaller in area regions are considered, the flux by

unit area due to the thermal forcing decreases, and even changes sign in the center of

the recirculation. Thus, although in general the northern half-basin is cooled with the

thermal forcing acting as a source of positive vorticity, the center of the recirculation

is actually warmed and negative vorticity is put into the system.
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Figure 4-4: Baroclinic potential vorticity budget for the case with δ̃I = 34.2 km (h0 =
120m) integrated over a series of regions enclosed by baroclinic streamlines. Panel
A), baroclinic potential vorticity field (relative plus vortex stretching) scaled with the
maximum planetary vorticity. Overlaid are contours of the baroclinic streamfunction
delimiting the regions of integration, τ

|min τ | ∈ [−0.98,−0.01]. Panel B), integral of
the vorticity flux divergence by unit area for the different regions. All terms for the
integrated budget are as indicated in Eq.(4.7). The bottom friction contribution has
been omitted since it is negligible.

The barotropic-baroclinic advective flux uφ∇2τ across all interior streamlines is

negative. This means that positive baroclinic vorticity is carried out of the regions by

the barotropic flow and is eventually deposited next to walls where it is dissipated by

lateral friction. For the outer most streamline containing nearly the entire northern

half-basin, the barotropic-baroclinic flux is close to zero. This is partially due to the

no-slip and no-normal flow conditions at the walls, but it indicates also that there is
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Figure 4-5: Baroclinic vorticity budget for the case with δ̃I = 35.6 km (h0 = 120m).
All vorticity flux divergences are plotted with a sign convention as in Eq.(4.6). Se-
lected baroclinic streamlines are overlaid on top for reference.

no advective inter-gyre flux of baroclinic vorticity.

Finally, concerning the lateral friction, its role for the half-basin as a whole is to

flux out the vorticity put into the system by the thermal forcing. Indeed, the vorticity

budget integrated over the largest region shows a balance between the input of positive

baroclinic vorticity by the thermal forcing and its dissipation by lateral friction. For

most of the interior regions however, the lateral frictional flux is actually positive,

meaning that baroclinic vorticity is carried into the regions in amounts similar to

those deposited by the thermal forcing. In the center of the recirculation, the lateral

diffusion is the only positive term.

In Figure 4-5 the spatial distribution of the different baroclinic vorticity flux diver-

gences as described in Eq.(4.6) is shown. The imbalance, not plotted, is on the order

of 10−7 (small compared to 1, the order of the largest flux divergence). In the eastern

part of the basin the linear balance between input of vorticity by the thermal forcing
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and advection of planetary vorticity by the baroclinic flow holds. In the middle part

of the basin and in the western boundary layer it is rather a balance between the ad-

vection of planetary vorticity, the baroclinic-baroclinic flux and the lateral diffusion

of vorticity, with the barotropic-baroclinic advective flux important in the western

boundary layer as well. In these regions the thermal forcing plays only a secondary

role, while the bottom friction contribution is in general weak over the whole basin.

Note that although the planetary advection and the baroclinic-baroclinic terms are

very significant locally, they do not participate in the cross-streamline vorticity flux

in the integrated vorticity budget. Finally, it can be seen that indeed the thermal

relaxation forcing changes sign around the region of the recirculation gyres, leading to

weak warming within the northern recirculation and weak cooling within the southern

recirculation.

4.5 Heat budget of the circulation

The interface displacement η, which in nondimensional units is just equal to the

opposite of the baroclinic streamfunction −τ , represents also the vertically averaged

temperature field. Hence, the equation for the evolution of the interface displacement

can be viewed as the heat budget of the system. In nondimensional form this equation

is∗

∂η

∂t
+ δ2

IJ(φ, η) = wi − w∗ +
1

Pr
δ3
M∇2η,

= wi −
1

FδT

(
η − UTFT (y)

)
+

1

Pr
δ3
M∇2η. (4.8)

What the heat budget expresses is that the rate of change of temperature following

a fluid parcel advected by the barotropic flow is due to the vertical advection and

mixing, the last one being represented through the cross-isopycnal flux resulting in

water exchange between the density layers. In general, there is also a contribution

∗ For reference, the interface displacement η is scaled with the vertical scale D = ULf0/g
′, while

the vertical and cross-isopycnal velocities wi and w∗ with D/(β0L)−1.
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from the lateral diffusion of heat by the unresolved eddy processes. However, for

all calculations here we have set the Prandtl number Pr = ν/κ to infinity. Equation

(4.8) was previously used to define the vertical velocity wi at the interface between the

two layers when the mass conservation condition (3.29) was discussed. Describing the

heat budget of the system is therefore equivalent to describing the spatial structure

of the resulting vertical velocity wi. For a steady circulation, the vertical velocity

is simply equal to the cross-isopycnal flux w∗ plus a contribution from the lateral

advection of interface δ2
IJ(φ, η).

4.5.1 The cross-isopycnal flux

One of the advantages of using a large-scale thermal forcing parameterized as re-

laxation of the interface is that it leads to a cross-isopycnal flux determined from

internal dynamics, and not externally prescribed. The applied thermal forcing was

chosen such that at least initially, when the ocean is at rest, the northern half-basin is

cooled while the southern half-basin is warmed. However, because the cross-isopycnal

flux depends on the solutions itself, this does not signify that in the final steady equi-

librium reached by the system the sign of the cross-isopycnal flux remains the same

as specified initially.

In Figure 4-6 the cross-isopycnal flux w∗ = (η−UTFT )/FδT is plotted for the series

of three steady calculations with progressively larger inertial boundary layer thickness.

In the linear limit, the entire northern/southern half-basin is cooled/warmed. For the

stronger forced cases however regions with opposite signed cross-isopycnal velocity

form in each gyre. They are situated approximatively within the baroclinic recircula-

tions, although not perfectly aligned with them (see Figure 4-5(D) for δ̃I = 34.2 km).

Next, we will demonstrate that the location where the thermal forcing changes sign

can be identified if the baroclinic vorticity equation is examined using the method of

the characteristics.

Suppose that the barotropic circulation φ is known. Then, neglecting the advec-

tion of relative vorticity, which is a reasonable simplification for the interior large-scale
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ocean circulation, the baroclinic vorticity equation (3.26) reduces to

J(τ, y + δ2
IFφ︸ ︷︷ ︸

φ̂(x,y)

) = UwFw(y) +
1

δT
(τ + UTFT (y)) + diss. (4.9)

The contours of the function φ̂ are the characteristics of the partial differential equa-

tion (4.9), also called geostrophic contours (Rhines and Young, 1982). They represent

the curves along which information about the blocking action of the eastern wall is

propagated westward in the basin by the long internal Rossby waves. The expression

for the geostrophic contours φ̂, can be rewritten also as

φ̂ = y + δ2
IFφ = y + Ωφ (4.10)

where Ω = U/β0R
2
d is the inverse of the nondimensionalized long internal Rossby wave

speed. The form of the geostrophic contours is set thus by the barotropic circulation.

Strong enough eastward barotropic flow can arrest the westward propagating Rossby

waves and create regions of geostrophic contours isolated from the eastern wall.

In the case of a wind-only driven ocean, the barotropic circulation, and hence the

geostrophic contours, are determined from the wind stress and can be easily computed

using Sverdrup balance. Because the potential vorticity of the lower, not-directly

forced layer is conserved, the baroclinic streamfunction determined from Eq.(4.9) is

such that it cancels the barotropic transport and adds up to no motion in the lower

layer on blocked geostrophic contours (Rhines and Young, 1982; Spydell and Cessi,

2003). If on the other hand a cross-isopycnal flux is included, then the potential

vorticity conservation constraint is removed and motion in the lower layer on blocked

geostrophic contours is allowed. Luyten and Stommel (1986) describe this situation

as circulation ”steered by wind and driven by buoyancy”.

For a thermally-only forced ocean, when the advection of relative vorticity is ne-

glected all together, there is no barotropic circulation. Consequently, the geostrophic

contours coincide with latitude lines. However, we have seen that because of the non-
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linear coupling between the baroclinic and barotropic flow a weak, but not insignif-

icant, barotropic circulation can be generated. We can thus define the geostrophic

contours taking into account the barotropic flow driven by the advection of baroclinic

relative vorticity by the baroclinic flow, while neglecting again all nonlinear terms

involving the relative vorticity in the baroclinic, directly forced component of the

circulation.

In Figure 4-6 the geostrophic contours for the steady, thermally-forced circulation

determined in such a way are overlaid on top of the corresponding cross-isopycnal

velocity w∗. For the most weakly forced case, the geostrophic contours are basically

latitude lines. There are no recirculation gyres and no sign reversal of the cross-

isopycnal flux. For the most strongly forced case however, the barotropic circulation

driven by the nonlinear coupling is strong enough, so that it is able to arrest the

westward propagation of Rossby waves. Regions with closed geostrophic contours

isolated from the eastern wall form. The limits of these regions match very closely

the location of the opposite signed cross-isopycnal velocity in each half-basin.

Therefore, although for a thermally-only forced ocean, the barotropic circulation

is determined from nonlinear dynamics and needs to be computed numerically, the

geostrophic contours, depending on their geometry (blocked or isolated), separate

flow with different behavior, similarly to what is occurring in the wind-driven case.

4.5.2 The vertical velocity

The vertical velocity wi at the interface between the two density layers and its de-

composition into local vertical motion of the interface and cross-isopycnal flux are

shown in Figure 4-7 for the series of three steady calculations with progressively

larger inertial boundary layer thickness.

The cross-isopycnal flux w∗ represents the part of the vertical velocity that is

associated with density transformation as the fluid crosses between the two isopycnal

layers due to the presence of sources of heating and cooling. In the previous section

we discussed how the geometry of the geostrophic contours can affect the spatial
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Figure 4-6: Cross-isopycnal flux w∗ = (η − UTFT (y))/FδT (in color) and geostrophic
contours φ̂ = y+Ωφ with Ω = U/β0R

2
d (in black lines) for the steady regime thermally-

forced circulation with δ̃I = 4.5, 22.1 and 34.2 km (h0 = 2, 50 and 120m).

distribution of heating and cooling over the basin. In addition, we can note that

the stronger is the thermal forcing, the larger is the magnitude of the cross-isopycnal

velocity. At a given latitude, the largest cooling/warming occurs at the walls. Because

the interface displacement is constant along the basin boundary, and since we choose

a zonally uniform target height FT (y), the departure between the two at the wall

depends only on latitude. Consequently, the cross-isopycnal velocity w∗ takes the

same value on the eastern and western side of the basin, at a given latitude.

The vertical velocity wi has also an adiabatic component due to the local vertical

motion of the interface, where no density transformation is involved. In the steady

regime, the rate of change of the interface is given by the horizontal advection of

interface by the barotropic flow. This term is largest in the regions where the interface

slopes are the strongest, i.e the western boundary layer and the recirculations. When

the inertial boundary layer thickness is increased, so does the magnitude of the local

vertical motion of the interface.

In the linear limit when the nonlinear advective terms are negligible, the vertical

velocity wi is dominated by the cross-isopycnal flux w∗. However, as the circulation

becomes more nonlinear the vertical velocity wi becomes strongly affected by the
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A) δ̃I = 4.5 km B) δ̃I = 22.1 km C) δ̃I = 34.2 km

Figure 4-7: Vertical velocity for the steady regime thermally-forced circulation for the
case A), δ̃I = 4.5 km, B), δ̃I = 22.1 km, and C), δ̃I = 34.2 km. First row: the cross-
isopycnal velocity w∗ = (η−UTFT )/FδT . Selected baroclinic streamlines are overlaid
in black. Second row: the horizontal advection contribution δ2

I uφ · ∇η. Overlaid are
selected barotropic streamlines in gray, and contours of η in black. Third row: the net
vertical velocity at the interface wi = w∗+ δ2

I uφ · ∇η. Selected baroclinic streamlines
are overlaid in black. All velocities are in 10−4cms−1.

adiabatic component due to the horizontal advection of interface. In general, the

northern half-basin is characterized with cooling and downward motion, while the

southern half-basin with warming and upward motion. Patches of opposite signed

vertical velocities are present in the recirculations and in the southwest and northwest

basin corners where steep interface slopes are present. The strongest vertical velocities
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occur next to the western wall and are mostly due to the local vertical motion of the

interface. Because of the mass conservation constraint, the spatial pattern for wi in

all cases is such that it integrates to zero over the basin area.

4.6 Summary

The goal of this chapter was to examine the steady regime circulation when a thermal

only forcing is applied to a 2-layer QG ocean. For all calculations analyzed in this

chapter the Reynolds number was kept low, so that no instabilities occur and the

circulation remains steady. The following major conclusions were drawn:

(1) Because the thermal relaxation forcing is applied at the interface between the

two isopycnal layers, it projects only on the baroclinic vertical mode of the

circulation. Consequently, in the linear limit a typical half-basin warming /

half-basin cooling thermal forcing drives a purely baroclinic double-gyre flow

(Pedlosky and Spall, 2005). In this sense the thermal forcing is different from

the wind forcing, that induces both a baroclinic and a barotropic response.

(2) A vertically integrated circulation, that is not directly thermally-forced, can

be generated in a thermally-only forced ocean through the nonlinear coupling

between the barotropic and baroclinic flow. More specifically, the advection of

baroclinic relative vorticity by the baroclinic flow acts as a source of barotropic

vorticity driving thus a vertically integrated circulation. The barotropic circu-

lation in the steady regime is generally weak, since its source is proportional to

the inertial boundary layer thickness δ2
I . It is in the form of recirculation gyres

that expand and strengthen when δI is increased.

(3) In the presence of thermal forcing, the vertical velocity at the interface between

the two layers is composed of the local vertical motion of the interface and the

cross-isopycnal flux. The cross-isopycnal flux, being parameterized as relaxation

of the interface, is determined from internal dynamics. Its spatial distribution
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is affected by the geometry of the geostrophic contours, determined by the

nonlinearly driven barotropic flow. In the linear limit the vertical velocity is

dominated by the cross-isopycnal flux, but when δI is increased it is rather the

lateral advection of interface that sets the regions of strongest vertical motions.
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Chapter 5

Thermally-forced ocean in the

time-dependent regime

In this chapter the focus is on the time-mean circulation and variability of a strongly

nonlinear thermally-forced ocean. It is found that the circulation is characterized by

a large range of temporal and spatial scales of variability, including large-scale, fast,

barotropic basin modes. It is demonstrated that the presence of strong basin modes

plays a major role in shaping the circulation. They drive a time-mean basin-scale

barotropic flow, not present in the steady regime. They are directly responsible for

some of the baroclinic flow variability and interfere with the inertial recirculations.

Although the particular case of a thermally-forced ocean is examined, all conclusions

about the effect of the basin modes are relevant to any other systems that exhibit

variability in the form of barotropic normal modes, no matter how they are excited.

In other words, we are expecting that the same type of behavior can be found in a

wind-driven ocean, if barotropic basin modes are excited. Examples of such systems

are marginal seas and semi-enclosed by bathymetry basins such as the Mascarene

basin (Warren et al., 2002) and the Argentine basin (Fu et al., 2001; Weijer et al.,

2007a), where barotropic basin modes have been observed.

One question that will not be addressed here but in Chapter 6, is the origin of the

basin mode variability in a thermally-forced ocean.
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5.1 Model setup

The configuration considered for the time-dependent calculations is slightly different

from the one used for the steady regime calculations. The major similarities and

differences between the two model setups are summarized next, with the full set of

parameters used in the time-dependent calculations listed in Table 5.1.

As for the steady calculations, the ocean is driven by a thermal forcing that

corresponds to heating in the southern half-basin and cooling in the northern half-

basin. The amplitude of the target height however is larger than in Chapter 4, which

leads to a highly nonlinear regime of circulation, characterized with inertial boundary

layer δ̃I = 70 km several times larger than the Munk boundary layer δ̃M = 13 km.

The circulation is computed in larger basin with L = 3840 km, so that it is

closer in dimensions to a realistic ocean basin like the North Atlantic, for example.

Similarly, a larger internal deformation radius Rd = 55 km is used. This leads to

faster propagating internal Rossby waves with a transit time across the basin on the

order of 2 years. Consequently, the relaxation timescale γ has been adjusted, so that

again we have a thermal boundary layer δT on the order of one, signifying that the

internal Rossby waves are only weakly damped by the interface relaxation.

A small value for the eddy viscosity is applied in order to obtain a high Reynolds

number regime, where at least part of the eddy processes are explicitly resolved by

the model and need not to be parameterized. The Munk boundary layer width for

the choice of eddy viscosity ν = 40m2s−1 is on the order of the grid resolution

(δ̃M = 13 km, while ∆x = 15 km). Thus, the frictional boundary layer is at best

marginally resolved. This may have the consequence that the effective Reynolds

number for the calculations is actually smaller than the one specified in Table 5.1,

due to discretization errors leading to additional numerical diffusion.

A set of two different values for the bottom drag are used in order to illustrate

some interesting features of the circulation. Note that although the two values differ

by a factor of 100, in both cases the bottom friction is too weak for the Stommel
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Dimensional parameters Nondimensional parameters
Lx, Ly 3840 km δ 0.17
H1 500m F 4900

H2 2500m δ̃M (δM) 12.6 km (0.003)

f0 0.83× 10−4 s−1 δ̃S (δS) 0.05− 5 km (10−5 − 10−3)

β0 2× 10−11m−1s−1 δ̃T (δT ) 3805 km (0.99)

ρ0 1000 kgm−3 δ̃I(δI) 70.9 km (0.02)
Rd 55 km Re 9640
g′ 0.05ms−2

ν 40m2s−1

r 10−9 − 10−7 s−1 Grid and resolution
γ 1.99 years grid 257× 257
h0 640m ∆x 15 km

Table 5.1: Values of the parameters used in the time-dependent calculations. The
left column defines the dimensional parameters. The right column gives the values of
the nondimensional parameters and the grid resolution.

boundary layer to be resolved (δ̃S = 0.05− 5 km, while ∆x = 15 km).

All simulations are started from an ocean at rest and integrated initially for 40-50

years – a time interval large compared to the restoring timescale, so that the system

reaches statistical equilibrium. After the circulation is established, the system is

integrated for an additional number of years and the output saved, so that different

analyses can be carried out.

5.2 Overview of the circulation

In this section an initial overview diagnosing different features of the time-mean cir-

culation and its variability is presented.

5.2.1 Time-mean circulation

The barotropic and baroclinic components of circulation averaged in time over a

period of 120 years are shown in Figure 5-1. As already mentioned, two values for the
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Weak bottom drag Strong bottom drag

Figure 5-1: Time-mean circulation for: A) and C), the weak bottom friction case
with r = 10−9s−1; B) and D), the strong bottom friction case with r = 10−7s−1.
The top row is the time-mean barotropic streamfunction, the bottom row, the time-
mean baroclinic streamfunction. The streamfunction is scaled by the maximum linear

baroclinic streamfunction τ (lin) = g′h0

f0
(1 − e

− 1
δT ) = 0.25 × 106m2s−1. The contour

interval on all plots is 0.05. Negative values are shaded.

bottom drag differing by a factor of 100 are used. For the weak bottom friction case, r

is equal to 10−9s−1, which corresponds to a frictional spin-down time 1/r ≈ 32 years

or a Stommel boundary layer width δ̃S = 0.05 km. For the strong bottom friction

case, r is equal to 10−7s−1, with a frictional spin-down time 1/r ≈ 120 days or

δ̃S = 5 km. Although in both cases the Stommel frictional layer is not resolved by
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the grid resolution, there are some significant differences in the resulting circulation.

The most striking difference is that for the weak bottom friction case there is a

substantial time-mean barotropic circulation. It consists of a 4-gyre basin-scale flow,

plus in addition recirculations next to the western boundary. There is no such 4-gyre

flow in the steady regime nor when stronger bottom friction is applied. This indicates

that 1) the mechanism responsible for driving the time-mean barotropic circulation

relies on the time-dependence of the flow, and that 2) it is very sensitive to the level

of bottom friction in the system.

The size and strength of the inertial recirculations is also sensitive to the applied

bottom drag. It can be seen that the recirculations extend much further east into the

domain and are slightly stronger in the large bottom friction case. The fact that the

circulation is more vigorous when the bottom drag is larger is counterintuitive, given

that bottom friction is supposed to damp the barotropic flow.

The time-mean baroclinic circulation is sensitive to the magnitude of the bottom

drag as well. The amplitude of the baroclinic streamfunction is greater for the larger

bottom friction case. This could be rationalized given that by definition the bottom

friction damps selectively the lower layer circulation only. Thus, applying a stronger

bottom drag should make the flow more baroclinic.

The weak and strong bottom friction baroclinic circulations differ not only by

their maximum streamfunction, but also by the east-west structure of the flow. The

strong bottom friction circulation is western intensified and has a well defined free

jet at mid-latitude, that penetrates zonally almost half-way into the basin. The weak

bottom friction circulation on the other hand seems more inertially dominated – it is

less western intensified, with the minimum/maximum of the streamfunction occurring

almost one third east into the basin, and is characterized with a lack of well defined

free jet in the time-mean. There are no recirculation in the time-mean baroclinic flow

in either case.
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Weak bottom drag

Strong bottom drag

Figure 5-2: Power density spectrum with a 95% confidence interval of the instanta-
neous barotropic and baroclinic streamfunctions for: A), the weak bottom friction
case with r = 10−9s−1; B), the strong bottom friction case with r = 10−7s−1. The
period, in days, for the largest spectral peaks is indicated.

5.2.2 Temporal variability

The magnitude of bottom friction applied to the system affects not only the time-

mean circulation, but also the variability of the flow.

A spatial average over the basin area is a convenient way to define a measure of the

instantaneous circulation. However, because of the constraint of mass conservation

and because of the high degree of anti-symmetry of the flow with respect to the
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midlatitude, such basin average is subject to a high degree of cancellation. Instead, as

a measure of the instantaneous circulation the instantaneous streamfunction averaged

over 100 randomly chosen grid points within the domain is taken (for all power density

plots the same 100 points are considered).

Time series of the instantaneous barotropic and baroclinic streamfunctions are

collected for a time interval of 27 years, subsampled every day. The power density

spectra of the barotropic and baroclinic streamfunction are plotted in Figure 5-2 as

function of the frequency expressed in days, for both the weak and strong bottom

friction cases. By definition, the area under the power spectrum is representative

for the variance of the corresponding time series. Comparing the weak and strong

bottom friction cases shows that, as it could be anticipated, both the barotropic and

baroclinic variability of the system, are damped by the bottom friction.

In addition to making the flow more laminar, the bottom friction also affects

the nature of its variability. In the weak bottom friction case, the barotropic flow

spectrum is dominated by distinct high-frequencies peaks, with periods ranging from

several days to over a month. The baroclinic flow variability is weaker than that of

the barotropic flow, as indicated by the lower laying power spectrum. Distinct peaks

at periods closely matching those of the barotropic flow are present, implying a direct

relationship between the barotropic and baroclinic flow variability. In the strong

bottom friction case on the other hand, the high-frequency peaks in the barotropic

spectrum are still present but with much smaller amplitude, while they are completely

absent from the baroclinic spectrum.

In order to help identify the process leading to the observed high-frequency spec-

tral peaks for the barotropic streamfunction, a statistical tool, the Hilbert empirical

orthogonal functions (HEOF), is used. The HEOF analysis is a variation of the em-

pirical orthogonal function (EOF) analysis, which is used to describe the spatial and

temporal variability of a gridded data series in terms of orthogonal functions or sta-

tistical modes (von Storch and Zwiers, 1999). The technique is normally considered

successful when most of the variance of the data field can be explained by the first
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few orthogonal functions, which spatial patterns need then to be related to possible

dynamical mechanisms. The EOF analysis strength is in identifying standing os-

cillations, while the HEOF analysis is a modification that makes it appropriate for

detecting propagating oscillations. A brief overview of the basic principles of the

HEOF analysis technique is given in Appendix C.

The HEOF analysis is done using a 20-year calculation, where the instantaneous

barotropic streamfunction is subsampled every 2 days on a coarse 65×65 grid, giving

a resolution of ∆x = 60 km. The subsampling is done in order to limit the size of the

covariance matrix used in the analysis. The first 10 eigenvectors, corresponding to

the 10 largest eigenvalues in decreasing order, are then computed, using the Matlab

singular value decomposition function. It has been verified a posteriori that sufficient

time and spatial resolution has been kept in order to resolve the processes of interest.

The eigenvalues of the covariance matrix, expressed in terms of percentage of

explained total variance are shown in Figure 5-3, for the weak and strong bottom

friction cases. For the weak bottom friction case, the first mode explains close to 70%

Figure 5-3: Eigenvalues expressed in terms of percentage of explained total variance
for the first 10 HEOF modes of the barotropic circulation for the weak (r = 10−9s−1)
and strong (r = 10−7s−1) bottom friction cases. The sum Σ of the total variance
explained by the first 10 HEOFs is given in parentheses.
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of the total variance. It is also very well separated from the next modes, the second

one explaining less than 15% of the variance. Overall, the first 10 modes together

account for a little over 95% of the total variance. All this indicates that 1) the

variability of the system projects well on only a couple of statistical modes, and that

2) there is one very dominant, well separated mode that accounts for the majority

of the barotropic variability. For the strong bottom friction case on the other hand,

the leading mode describes only 9% of the variance, with the first 10 modes together,

less than half of the total variance. Therefore, in this case the HEOF analysis is

not successful in identifying a small number of statistical modes on which the system

variability projects.

The statistical modes identified by the HEOF analysis represent a set of empir-

ically obtained orthogonal functions on which a given, one hopes large, amount of

the system variability projects. However, there are no requirements that these modes

correspond directly to any physical process or have any dynamical meaning. It is a

necessary next step in the analysis to try to explain the statistical modes and, ideally,

relate them to dynamical mechanisms for the variability.

The leading HEOF mode, explaining 65.5% of the weak bottom friction barotropic

variability, is shown in Figure 5-4. For reference, the real and imaginary part of the

mode’s spatial pattern, representing the oscillation at different phases, are plotted

in panels d) and e) of the figure. Alternatively, the same spatial pattern can be

expressed in terms of a spatial amplitude S(x, y) and a spatial phase θ(x, y)∗, shown

in panels a) and b). The spatial amplitude function for the leading mode is spatially

inhomogeneous – it possesses two maxima of variability, one in each gyre. The spatial

phase function indicates that, at any given time, there is a phase difference of π

between the oscillation in the northern and southern gyre, or in other words, the

oscillation is in opposite phases in the two gyres. Also, the spatial phase increases

linearly westward which is indicative of a westward phase propagation at a constant

speed. Finally, the power spectrum of the principal component (either its real or

∗The exact definitions and interpretation of S(x, y) and θ(x, y) are described in Appendix C.
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Figure 5-4: First HEOF mode of the barotropic streamfunction in the weak bottom
friction case (r = 10−9s−1) explaining 65.2% of the total variability: a-b, spatial am-
plitude and phase; c, power spectrum of the real (or imaginary) part of the principal
component with period in days indicated for the major peaks; d-e, real and imaginary
part of the HEOF showing the oscillation at different phases.

imaginary part) shows only one distinct peak situated at 13.5 days, implying a single

frequency oscillation. All these findings – a high-frequency, westward propagating

oscillation, that at any given time is in opposite phases in the southern and northern

half-basin, are suggestive of a barotropic Rossby basin mode. This will be confirmed

in the next section.

For the strong bottom friction case, the leading HEOF explaining 8.5% of the

total variance is plotted in Figure 5-5. The spatial pattern of the mode is signifi-

cantly different from the one in the weak bottom friction case. Although again the

spatial amplitude contains some basin-scale structure, the majority of the variability

is concentrated along the midlatitude jet. The pattern is reminiscent of a standing

wave with alternating highs and lows along the jet, describing variability associated

with meandering of the jet. The spectrum of the principal component reveals several

frequencies with periods ranging from 8 days to up to a month, suggesting a variabil-
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Figure 5-5: First HEOF mode of the barotropic streamfunction in the strong bottom
friction case (r = 10−7s−1) explaining 8.5% of the total variance.

ity that is more complex than a single propagating oscillation, as in the weak bottom

friction case.

5.2.3 Barotropic Rossby basin modes

The barotropic Rossby basin modes are free oscillatory modes of the circulation in

a closed basin (Pedlosky, 1987). They are obtained as solutions of the inviscid and

unforced linear barotropic potential vorticity equation

∂

∂t
∇2φ+

∂φ

∂x
= 0, (5.1)

with the boundary condition φ = 0 on the walls. The solutions of this equation for a

square basin of width one take the form

φnm(x, y, t) = cos

(
σnmt+

x

2σnm

)
sin(nπx) sin(mπy), n,m = 1, 2, . . . (5.2)
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Period [days] n = 1 2 3 4

m = 1 8.41 13.30 18.81 24.53
2 16.83 21.45 26.61
3 25.24 29.75
4 33.66

Table 5.2: Period in days for the lowest order barotropic Rossby basin modes in
a square basin with size L = 3840 km and planetary vorticity gradient β0 = 2 ×
10−11m−1s−1. By definition, T dim = 4π2 (n2 +m2)

1
2 /Lβ0.

Here, n and m are respectively the zonal and meridional wavenumbers, and σnm, the

frequency of the mode satisfying the dispersion relation (non-dimensional form)

σnm = − 1

2π (n2 +m2)
1
2

. (5.3)

Depending on the wavenumbers, each mode has a certain number of fixed nodes,

associated with the sine envelope functions, and a certain number of moving nodes,

associated with the cosine carrier wave. The nodes are the locations where the stream-

function is zero and separate cells of opposite direction circulation. What the spatial

amplitude function from the HEOF analysis detects, is the number of fixed cells of

motion, equal exactly to the wavenumbers n and m. For example, the rank 1 HEOF

in Figure 5-4 has the structure of a n = 1, m = 2 or 1× 2 basin mode.

The carrier wave is characterized with phase speed c = −2σ2
nm, i.e. always west-

ward. Thus, the direction of phase propagation found from the spatial phase function

for the rank 1 HEOF in Figure 5-4 is also consistent with that of a basin mode.

Finally, from the frequency a period for each mode can be defined, which in

dimensional units is

T dim =
1

β0L

2π

|σnm|
=

4π2

Lβ0

(
n2 +m2

) 1
2 . (5.4)

The periods of the lowest order barotropic Rossby basin modes in a square basin with

width L = 3840 km, are given for reference in Table 5.2. In particular, the theoretical
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Figure 5-6: Second HEOF of the barotropic streamfunction in the weak bottom
friction case (r = 10−9s−1) explaining 14.0% of the total variance.

Figure 5-7: Third HEOF mode of the barotropic streamfunction in the weak bottom
friction case (r = 10−9s−1) explaining 7.8% of the total variance.

period for a 1× 2 basin mode is T = 13.3 days, which closely matches the one found

from the power spectrum of the principal component for the rank 1 HEOF in Figure

5-4. Therefore, we can conclude with a large degree of certainty that the majority

(65.2%) of the barotropic variability in the weak bottom friction case is explained by

a resonance of 1× 2 barotropic Rossby basin mode.
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The next two HEOF modes for the weak bottom friction case are shown in Fig-

ures 5-6 and 5-7, respectively. They both have the spatial pattern of Rossby basin

modes – more specifically, a 1 × 1 and a 1 × 3 basin mode. Both oscillations are

characterized with westward phase propagation, again consistent with the direction

of phase propagation for a basin mode. However, unlike the leading HEOF, none

of these statistical modes manages to isolate a single basin mode. As evident from

the multiple spectral peaks of the corresponding principal components spectra, both

HEOFs represent rather a mix of different basin modes, with one in particular being

dominant.

Concerning the strong bottom friction case, although the HEOF analysis did not

extract any variability in the form of basin modes, high-frequency spectral peaks

consistent with the period of Rossby basin modes were identified in the barotropic

streamfunction power density in Figure 5-2. However, if the barotropic streamfunc-

tion is filtered around each of these frequencies prior to performing the HEOF anal-

ysis, then the corresponding Rossby basin mode is identified as the leading pattern

explaining the variability of the filtered data series. Therefore, even when stronger

bottom drag is applied the basin modes are present, but their amplitude is strongly

attenuated and they do not dominate the system variability.

The question of whether barotropic basin mode variability is relevant for the real

ocean circulation does not have a definitive answer. One reason for that is that the

basin modes are very challenging to observe. Because of their fast timescales, small

amplitudes and large spatial scales they are difficult to detect in global altimetry

data sets so that even their existence is under question. There have been nevertheless

some recent direct observations of oscillations identified as barotropic basin modes.

Usually, these observations come from closed or semi-enclosed by bathymetry basins

characterized with strong overall level of variability.

Probably the region in the World Ocean where barotropic basin modes have been

identified with the greatest degree of certainty is the Argentine basin in the South

Atlantic ocean. This is a region characterized with very high degree of sea surface
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height variability. Part of it is due to the intense eddy and frontal activity resulting

from confluent currents, part of it has been identified in several measurements coming

from altimetry (Fu et al., 2001), current meters (Weatherly, 1993) and pressure gauges

(Hughes et al., 2007), as a barotropic oscillation with a 20-30 days period. Most re-

cently, different statistical techniques applied to a decade of weekly SSH maps suggests

that actually multiple basin modes are present in the Argentine basin (Weijer et al.,

2007a). Matching the real ocean basin oscillations with their theoretical counterpart

is challenging since they are highly distorted by the bottom bathymetry. However,

using numerical simulations it can be shown that at least some of the modes of vari-

ability identified be the statistical analysis are consistent with low-order barotropic

basin modes (Weijer et al., 2007b).

Oscillations identified as barotropic Rossby basin modes have also been found

in the Mascarene basin in the Indian Ocean. A signal with westward propagation

and a period around 60 days has been isolated from an array of current meters

(Warren et al., 2002). In a related work (Weijer, 2008), the normal modes of a

motionless barotropic shallow water model with realistic bathymetry are computed.

Several modes with monthly to bimonthly timescales are identified, which supports

the current meter measurement interpretation as resonantly excited Rossby basin

modes.

Barotropic Rossby basin modes are considered to be an important part as well

of the circulation in semi-enclosed seas. For example, the Black Sea, being a nearly

closed basin, features favorable conditions for the excitations of resonant oscillations.

Although specific direct observations of basin modes are not available, indications for

basin oscillations are present in the Black Sea literature. Several studies using nu-

merical model address this topic. Stanev and Rachev (1999) and Stanev and Staneva

(2000) investigate the existence of basin modes and examine their impact on the

Black Sea circulation using an eddy-resolving model with realistic bathymetry and

forcing. It is found that basin modes are an important part of the system variabil-

ity, especially in the Black Sea interior, and are responsible for enhanced baroclinic
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variability, modified eddy field and tracer dispersion, and could lead to transitions

between different quasi-steady states of the circulation.

5.2.4 Main questions

The analysis carried so far on the strongly nonlinear thermally-forced circulation

allowed us to conclude that variability in the form of barotropic Rossby basin modes

is produced. Several characteristics of the circulation have been identified that seem

to be directly related to the extent to which the system variability is dominated by

the basin modes:

1. For weak bottom friction or strong basin modes, the time-mean barotropic circu-

lation consists of a basin-scale 4-gyre flow, plus in addition small and relatively

weak recirculations near the western wall.

2. For strong bottom friction or weak basin modes, the time-mean barotropic

circulation consists of strong and large in zonal extent inertial recirculations.

There is no basin-scale time-mean barotropic circulation.

3. The time-mean baroclinic circulation consists of a double-gyre flow with no

inertial recirculations. Its variability in the weak bottom friction limit shows

spectral peaks at the frequencies of the Rossby basin modes that dominate the

barotropic variability.

In the remainder of this chapter, more detailed analysis will be carried out in

order to explain the findings listed above. In particular, emphasis will be put on the

following aspects:

(a) Mean flow driven by the basin modes (Section 5.3).

(b) Baroclinic variability driven by the basin modes (Section 5.4).

(c) Basin mode effect on the inertial recirculations (Section 5.5).

(d) Heat budget of the system in the time-dependent regime (Section 5.6).
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5.3 Rectification of mean flow by the basin modes

The hypothesis that we want to verify in this section is that the multiple gyre time-

mean barotropic circulation diagnosed in the weak bottom friction case is driven by

the basin modes.

5.3.1 Mean flow driven by the basin modes

Let us assume a circulation that is barotropic and governed by inviscid dynamics.

Let the circulation be described at leading order by a n ×m basin mode plus some

small amplitude perturbation flow,

φ(x, y, t) = φ(0)(x, y, t) + εφ(1)(x, y, t), ε� 1, (5.5)

where

φ(0)(x, y, t) = Anm cos

(
σnmt+

x

2σnm

)
sin(nπx) sin(mπy), (5.6)

with σnm = −1/(2π
√
n2 +m2) and Anm designating the amplitude of the basin mode.

The circulation at leading order satisfies the unforced and inviscid linear vorticity

equation
∂

∂t
∇2φ(0) +

∂φ(0)

∂x
= 0. (5.7)

In writing this equation we have assumed that δ2
I ≈ ε, so that the nonlinear advection

of relative vorticity δ2
IJ(φ(0),∇2φ(0)) is omitted and does not affect the dynamics at

this order. Instead, it serves as forcing for the next order circulation φ(1)(x, y, t)

∂

∂t
∇2φ(1) +

∂φ(1)

∂x
= −δ

2
I

ε
J(φ(0),∇2φ(0)). (5.8)

Furthermore, if this equation is averaged over the period of the basin mode, the

following relationship for the rectified flow is obtained

∂

∂x
φ(1) = −δ

2
I

ε
J(φ(0),∇2φ(0)). (5.9)
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Figure 5-8: Illustration of mean flow driven by a 1× 2, 1× 1 and 1× 3 Rossby basin
mode: a-c, the time-mean Jacobian −J(φ(0),∇2φ(0)) driving the circulation; d-e, the

rectified time-mean circulation φ(1). Each plotted field is scaled by its maximum
value. The contour interval is 0.1.

Thus, although the basin mode flow itself averages to zero over one period, because

of the nonlinear dynamics its momentum flux is non-zero, and is consequently able

to drive a time-mean flow. This topic has been previously discussed in the context of

wind-driven circulation resulting from time-dependent wind stress (Pedlosky, 1965).

In Figure 5-8(a-d) the time-averaged Jacobian and corresponding rectified time-

mean circulation as described by Eq.(5.8) are shown for the case of a 1×2 Rossby basin

mode. This mode has been identified as explaining 65% of the barotropic circulation

variability in the weak bottom friction case. The 1×2 mode drives a mean circulation

consisting of 4 gyres with alternating flow direction. This circulation bears similarity

to the time-mean barotropic circulation diagnosed in the case of weak bottom friction

(Figure 5-1(A)). One difference is that the basin mode rectified flow does not feature

the western boundary current flow, nor the inertial recirculations. Also, the 1 × 2

basin mode drives gyres that are identical in size and strength, while for the time-
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mean barotropic circulation in Figure 5-1(A) the two outer gyres are stronger and

smaller in meridional extent compared to the two inner gyres.

One reason for that asymmetry could be that other basin modes contribute to

the barotropic variability of the system. In Figure 5-8 the flow rectified by the 1× 1

and 1 × 3 basin modes is shown as well. These two modes have been identified

as explaining respectively an additional 14% and 8% of the barotropic circulation

variability in the weak bottom friction case. It can be seen that the 1×1 mode drives

a 2-gyre flow, while 1× 3 mode, a 6-gyre flow. If added to the 4-gyre flow driven the

most dominant 1× 2 mode, the effect of the 1× 1 and the 1× 3 mode rectified flow

will be to distort the otherwise symmetrical 4-gyre pattern. It can be inferred from

Figure 5-8, that the momentum flux from the 1× 1 basin mode will tend to intensify

and expand meridionally the outer gyres, while the momentum flux from the 1 × 3

basin mode will tend to intensify and contract meridionally the outer gyres. Thus,

the resulting net time-mean circulation when several basin modes act together will

be less symmetrical.

5.3.2 Mean flow driven by an oscillating patch of wind stress

In the analysis in the previous section, it was assumed that there is a leading order

flow in the form of a Rossby basin mode without specifying how it was excited. Also,

all frictional forces were neglected. Another approach to the same problem would be

to apply a forcing that selectively excites and sustains against dissipation a specific

basin mode. For completeness, this approach is considered in this section.

The forcing of choice is an oscillating wind stress. The wind stress is limited to

a square patch with area equal to a quarter of the total basin area, centered in the

middle of the basin (Figure 5-9). Forcing on a global scale is not necessary in order

to excite basin resonances. However, in order to excite selectively a specific Rossby

basin mode, the period of the oscillating Ekman velocity should be close to the one

of the basin mode. The following form for the Ekman pumping velocity within the
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Figure 5-9: Spatial structure of the Ekman pumping velocity for the oscillating wind
forcing. The spatial distribution of the forcing remains unchanged, while its amplitude
oscillates sinusoidally in time with period Tf .

wind patch was chosen,

Fw(x, y, t) = sin

(
2πt

Tf

)
sin

[
2π

(
x− 1

4

)]
sin

[
4π

(
y − 1

4

)]
, x, y ∈

[
1

4
,

3

4

]
.

(5.10)

Outside the patch, the Ekman pumping amplitude is set to zero, while within the

patch Uw = 1, i.e. the velocity scale U is set by the wind stress. We are using U =

τ0/ρ0β0H1 = 0.05ms−1, which corresponds to a wind stress magnitude of 0.15Nm−2.

The period of the applied forcing is either Tf = 13.00 days or Tf = 13.25 days, both

close to the theoretical period of the 1× 2 basin mode, T1×2 = 13.30 days.

With this choice for the Ekman pumping velocity, there is no net vorticity input

into the basin from the wind forcing. At any given time, the Ekman pumping velocity

over the wind patch averages to zero. Also, at any given location, the Ekman pumping

velocity over one forcing period averages to zero as well. However, because of the

excitation of basin resonances a time-mean circulation is generated.

The power density spectra of the instantaneous barotropic and baroclinic stream-

functions sampled every day over a 27-year period after the initial spin-up are shown
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Forcing period

Tf = 13.00 days

Forcing period

Tf = 13.25 days

Figure 5-10: Power density spectrum with a 95% confidence interval of the instanta-
neous barotropic and baroclinic streamfunctions for the oscillating wind forcing with
period: A), Tf = 13.00 days; B), Tf = 13.25 days. The period, in days, for the largest
spectral peaks is indicated. The dotted line indicates the frequency of the forcing.

in Figure 5-10. For the oscillating forcing with period Tf = 13.00 days, the major

spectral peak for both the barotropic and baroclinic streamfunctions is at the forcing

frequency, with some harmonics present as well. From the leading HEOF for the

barotropic streamfunction plotted in Figure 5-11 it can be seen that 100% of the

barotropic variability is explained by a 1 × 2 Rossby basin mode. Thus indeed, the

oscillating wind forcing excites selectively the 1 × 2 basin mode. Since the entire
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Figure 5-11: Leading HEOF mode of the barotropic streamfunction for the oscillating
wind forcing with period Tf = 13.00 days.

Figure 5-12: Time-mean circulation for the oscillating wind forcing with period
Tf = 13.00 days: A) barotropic streamfunction (contour interval 0.005); B) baroclinic
streamfunction (contour interval 0.0025). The streamfunction is scaled with the max-

imum linear baroclinic streamfunction τ (lin) = δTUE(1−e−
1
δT )UL = 0.12×106m2s−1.

variability is accounted for by a single basin mode, it can be concluded that the

circulation, although time-dependent because of the oscillating forcing, is otherwise

laminar – there are no instabilities or nonlinear interactions between different modes.

The resulting time-mean circulation by vertical modes is shown in Figure 5-12.

The circulation is predominantly barotropic and consists of the familiar 4-gyre flow.
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Figure 5-13: Leading HEOF mode of the barotropic streamfunction for the oscillating
wind forcing with period Tf = 13.25 days.

Figure 5-14: Time-mean circulation for the oscillating wind forcing with period
Tf = 13.25 days: A) barotropic streamfunction (contour interval 0.005); B) baroclinic
streamfunction (contour interval 0.0025). The streamfunction is scaled with the max-

imum linear baroclinic streamfunction τ (lin) = δTUw(1−e−
1
δT )UL = 0.12×106m2s−1.

Since the circulation is driven by the resonating 1×2 basin mode, it extends outside of

the directly wind-forced region. There is no western boundary layer and no inertial

recirculations. The gyres driven by the oscillating wind patch appear identical in

strength and size. As already mentioned, this can be due to the fact that a single

basin mode, and not a combination of several basin modes is excited as in the strongly
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nonlinear thermally-forced ocean.

For comparison, the circulation driven by an oscillating wind forcing with the same

amplitude, but with a slightly longer period Tf = 13.25 days, is examined as well.

Since the period of the forcing is closer to the theoretical basin mode period T1×2 =

13.30 days, the system is closer to resonance leading to larger velocities fluctuations.

The resulting flow is not laminar anymore. This is evident from the overall greater

level of variance of the flow, as seen in the power density spectrum in Figure 5-

10(B). Also, although the major spectral peak for both the barotropic and baroclinic

flow is again at the forcing frequency, there are several other, non-harmonic peaks.

Their periods are suggestive of basin modes, other than the 1 × 2, being excited as

well. Indeed, the HEOF analysis reveals that only 84% of the barotropic variability

is explained by the 1 × 2 basin mode (Figure 5-13). The second HEOF mode (not

shown) accounts for 7% of the variance and has the spatial structure and propagating

properties of a 2 × 4 Rossby basin mode. Nevertheless, the resulting time-mean

barotropic circulation still bears the familiar form of a 4-gyre flow, although it is

strongly distorted (Figure 5-14). Possible causes for that could be the non-linear

interactions between the different basin modes or also eddy-driven flow.

5.4 Baroclinic variability driven by the basin modes

It was determined that in the weak bottom friction case, when the system variability is

dominated by barotropic Rossby basin modes, there are distinct peaks in the spectrum

of the baroclinic streamfunction at frequencies close to those of the basin modes.

In this section, we want to verify the hypothesis that these peaks correspond to

variability of the baroclinic flow directly driven by the basin modes.

The most important statistical modes of baroclinic variability in the weak bottom

friction case are diagnosed from a 20-year calculation. The instantaneous baroclinic

streamfunction is subsampled, as for the barotropic HEOF analysis, every 2 days on

a coarse 65 × 65 grid, giving a resolution of ∆x = 60 km. The two most important
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Figure 5-15: First HEOF mode of the baroclinic streamfunction in the weak bottom
friction case (r = 10−9s−1) explaining 14.3% of the total variance.

Figure 5-16: Second HEOF mode of the baroclinic streamfunction in the weak bottom
friction case (r = 10−9s−1) explaining 8.1% of the total variance.

statistical modes explaining a little over 22% of the system variability are shown in

Figures 5-15 and 5-16.

The majority of the variability, especially for the leading mode, is concentrated

along the midlatitude jet with the real and imaginary part of the HEOF showing
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alternating lows and highs, indicative of meandering of the jet. The timescales asso-

ciated with the variability are rather short – the spectra of the principal components

(either the real or imaginary part) contain several peaks, all corresponding to periods

less than 20 days, consistent with the timescales for low-order basin modes. Further

confirming a possible link to the basin modes is the fact that the baroclinic variabil-

ity displays basin-scale structure, especially the part explained by the 2nd HEOF.

Also, the spatial phase for both HEOFs shows a general westward direction of phase

propagation, similar to the one for the Rossby basin modes.

In order to separate the possible contributions from the basin modes, the instan-

taneous baroclinic streamfunction is filtered around the frequencies of the two major

peaks evident in the power density spectrum of the baroclinic streamfunction (Figure

5-2(A)). The periods corresponding to these two peaks, 13 and 18 days, closely match

the periods of the two most dominant basin modes, the 1 × 2 and the 1 × 3 mode,

respectively. A HEOF analysis of the filtered baroclinic streamfunction is then per-

formed with the results shown in Figures 5-17(A) and 5-19(A), respectively. In each

case, a single mode explains over 60% of the variance of the filtered data, with the

next one (not shown), less than 15%. The fact that the variability of the filtered baro-

clinic flow is accounted for in its majority by a single statistical mode is encouraging

for finding a simple dynamical explanation for its origin. It is worth pointing out that

the HEOF explaining the variability of the baroclinic flow filtered around the period

of the most important 1 × 2 basin mode is very similar to the 2nd HEOF mode of

the full, unfiltered data. The HEOF explaining the variability of the baroclinic flow

filtered around the period of the second most important 1×3 basin mode, is basically

the same as the 1st HEOF mode of the unfiltered data. This is consistent with the

idea that the high-frequency part of the baroclinic variability is directly forced by the

dominant basin modes.

In order to confirm that idea, it is helpful to examine an expansion of the governing

equations. Suppose that at leading order the circulation is composed of a time-mean

baroclinic flow τ(x, y) and a barotropic flow in the form of a basin mode φnm(x, y, t),

114



so that

φ(x, y, t) = φnm(x, y, t), (5.11)

τ(x, y, t) = τ(x, y) + ετ ′(x, y, t), ε� 1. (5.12)

What we want to establish is the spatial and temporal structure of the baroclinic

perturbation flow τ ′(x, y, t) driven by the presence of a basin mode.

When considering the interior large-scale ocean circulation, the relative vortic-

ity contribution to the potential vorticity can be neglected. This means that the

barotropic potential vorticity is simply equal to the background planetary vorticity,

while the baroclinic potential vorticity is represented by the vortex stretching, and is

thus proportional to the interface displacement η = −τ . This leads to the following

simplification of equation (3.26), governing the baroclinic potential vorticity evolution

∂

∂t
(−Fτ) + δ2

IJ(φ,−Fτ) +
∂τ

∂x
=
τ + UTFT (y)

δT
+ δ3

M∇4τ + δS∇2(φ− δτ). (5.13)

If we assume that the nonlinear terms are small so that δ2
I ≈ ε, the leading order

baroclinic circulation τ(x, y) satisfies a linear vorticity balance between advection of

planetary vorticity, thermal forcing input and dissipation of relative vorticity

∂τ

∂x
=

1

δT

(
τ + UTFT (y)

)
︸ ︷︷ ︸

Thermal forcing

+ δ3
M∇4τ + δS∇2(−δτ)︸ ︷︷ ︸

Dissipation

. (5.14)

The inertial advective terms involving the leading order circulation missing in this

equation, appear instead as forcing for the perturbation flow τ ′, so that

∂

∂t
(−Fτ ′) +

∂τ ′

∂x
= −δ

2
I

ε
J(φnm,−Fτ)︸ ︷︷ ︸

Basin mode forcing

+
τ ′

δT
+ δ3

M∇4τ ′ + δS∇2(
1

ε
φnm − δτ ′)︸ ︷︷ ︸

Interfacial friction, Dissipation

. (5.15)

The perturbation flow is driven thus by the momentum flux coming from the advection

of the mean baroclinic vorticity by the basin mode. Note that the thermal forcing
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appears in the perturbation equation as restoring toward the no motion state (h = 0),

which has the effect of an additional dissipation in the form of interfacial friction.

From all the terms involved in the perturbation equation above there are two that

dominate the dynamics, which leads to the following simplified balance

∂

∂t
(−Fτ ′) = −δ

2
I

ε
J(φnm,−Fτ). (5.16)

Therefore, it is the basin modes that drive the perturbation baroclinic flow by advect-

ing the background baroclinic potential vorticity, set by the mean interface displace-

ment. They force thus directly baroclinic variability on the same short timescales as

their periods

This statement can be tested using the time-mean interface displacement obtained

in the weak bottom friction case. Although in this case the time-mean circulation

τ(x, y) does not satisfy the linear balance given by Eq.(5.14), it can be thought as

satisfying a modified balance, where an additional residual forcing F is included ac-

counting for all the neglected effects of eddy and mean fluxes. With this additional

adjustment in mind, all the derivations for the basin mode driven perturbation baro-

clinic flow still hold.

The spatial amplitude and phase from the HEOF analysis of the perturbation

baroclinic circulation τ ′(x, y, t), resulting from advecting the mean interface displace-

ment shown in Figure 5-1(C) by either the 1× 2 or 1× 3 basin mode, are shown re-

spectively in Figures 5-17(B) and 5-19(B). Both are basically the same as the spatial

amplitude and phase from the HEOF analysis of the filtered baroclinic streamfunc-

tion around the respective mode frequency (Figures 5-17(A) and 5-19(A)). Therefore,

the high-frequency baroclinic variability in the weak bottom friction case is indeed

directly forced by the basin modes dominating the system variability.

Concerning the spatial structure of the basin-mode driven variability, it is char-

acterized with large spatial scales. Figures 5-18 and 5-20 illustrate the tendency

term −J(φnm, τ) for the baroclinic variability forced respectively by the 1 × 2 and
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I) Filtered baroclinic HEOF II) Perturbation flow

Figure 5-17: I) First HEOF mode of the baroclinic streamfunction in the weak bottom
friction case (r = 10−9s−2) filtered around the period of the most dominant 1 × 2
barotropic basin mode, T1×2 = 13.30 days. II) Spatial amplitude and phase function
for the baroclinic perturbation circulation driven by the basin mode.

Figure 5-18: Tendency terms and corresponding effect on the mean baroclinic circula-
tion induced by the 1× 2 barotropic basin mode. The amplitude of the perturbation
is set to match that of the perturbation baroclinic streamfunction filtered around the
frequency of the 1× 2 basin mode.

1× 3 basin mode, plotted at 4 different times, t = 0, T
4
, T

2
, 3T

4
during the correspond-

ing basin mode period T . The tendency terms illustrate how the mean interface

displacement τ(x, y) is advected by the respective basin mode. In addition, the re-
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I) Filtered baroclinic HEOF II) Perturbation flow

Figure 5-19: A) First HEOF mode of the baroclinic streamfunction in the weak bot-
tom friction case (r = 10−9s−2) filtered around the period of the 2nd most dominant
1 × 3 barotropic basin mode, T1×3 = 18.60 days. B) Spatial amplitude and phase
function for the baroclinic perturbation circulation driven by the basin mode.

Figure 5-20: Tendency terms and corresponding effect on the mean baroclinic circula-
tion induced by the 1× 3 barotropic basin mode. The amplitude of the perturbation
is set to match that of the perturbation baroclinic streamfunction filtered around the
frequency of the 1× 3 basin mode.

sulting perturbation flow τ ′(x, y, t) is added to the time-mean flow τ(x, y), with an

amplitude set to match approximatively that of the filtered baroclinic streamfunction

around the corresponding basin mode period. It can be seen that the 1 × 2 basin
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mode drives variability consisting of large-scale gyre undulations, where the centers

of the gyres undergo north-south and east-west excursions, while the mid-latitude jet

changes its zonal extension and intensity. The 1× 3 basin mode drives on the other

hand variability consisting also of large-scale gyre undulations, but associated mainly

with meandering of the midlatitude jet.

5.5 Basin modes and the recirculations

In the calculations analyzed so far, two different values for the bottom friction dif-

fering by a factor of 100 were used. It was determined that when the weak bottom

friction is applied and the basin modes are less damped out, the recirculations are

smaller and slightly weaker than when the large bottom drag is applied. One possible

explanation for this behavior is that the basin modes have an adverse effect on the

inertial recirculations.

The goal of this section is to verify this hypothesis. On the one hand we will

establish the relationship between the strength of the recirculations and the applied

bottom drag, which on its turn controls the degree to which the system variability

is dominated by basin modes. We will also examine the vorticity balance for the

recirculation gyres in order to assess the effect of the basin modes.

5.5.1 Dependence of the inertial recirculations on bottom

friction – spatially uniform case

In order to obtain a better picture of how the recirculations depend on the intensity

of the basin modes, it could be helpful to explore a larger range of bottom friction

coefficients, in addition to the two values considered so far.

A series of eleven 30-year long calculations (after spin-up) were carried out where

a spatially uniform bottom friction coefficient, varied from r = 5 × 10−6s−1 to r =

1 × 10−11s−1, was applied. All other parameters, including the amplitude of the

thermal forcing, the interface relaxation timescale and the eddy viscosity, were held
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Figure 5-21: Power density spectra of the instantaneous barotropic streamfunction
for a series of calculations, where a spatially uniform bottom friction with magnitude
varying from r = 5× 10−6s−1 to r = 1× 10−11s−1 is applied. The period, in days, for
the major spectral peaks is indicated.

the same. It is only for the two cases with largest bottom friction r = 1−5×10−6s−1

that the corresponding Stommel boundary layer is larger than the Munk boundary

layer and is thus expected to play an active role in the boundary dynamics. For all

other cases, the Stommel layer is much smaller than the Munk layer and is essentially

not resolved by the grid. In terms of frictional spin-down timescales, the range covered

is from approximatively 2 days for the largest bottom friction, to over 3000 years for

the smallest bottom friction.

The power density spectra of the instantaneous barotropic streamfunction for

the series of eleven calculations are plotted in Figure 5-21. Increasing the bottom

friction has the effect of decreasing the overall barotropic variability in the system,

as indicated by the progressively lower laying spectra. In addition, the stronger

the applied bottom drag, the smaller the amount of variance contained in the high-

frequency peaks. From all the spectral peaks present, three have been identified by
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HEOF analysis as being due to the resonance of barotropic Rossby basin modes.

The 8.4 days peak corresponds to the gravest and fastest 1 × 1 basin mode. The

13.2 and 18.5 days peaks result mainly from the presence of a 1× 2 and 1× 3 basin

mode respectively, although other basin modes with different spatial structure but the

same or nearly the same periods might contribute as well. The basin mode peaks are

present in all calculations, but the two using the largest bottom friction coefficients.

There is an indication that, as the bottom friction is increased it is the gravest and

fastest mode that is affected the most, while the higher order modes experience less

damping. This is consistent with the fact the bottom drag in the presence of nonlinear

advection tends to damp most the largest scales.

In addition to the basin mode spectral peaks, there are other high-frequency peaks

present as well, in particular for the calculations with the four weakest bottom friction

coefficients. There is some barotropic variability at periods 5-6 days that are shorter

than that of the gravest basin mode T1×1 = 8.3 days. There is also some barotropic

variability at periods of 43.4 days that is not accounted for by a high order basin

mode. A HEOF analysis of the pass-filtered barotropic streamfunction around this

period, shows that the variability at this timescale is confined to the western boundary

region.

The time-mean barotropic circulation for the series of calculations with varying

bottom drag is shown in Figure 5-22. As the bottom friction coefficient is decreased,

a basin-scale time-mean circulation emerges. For bottom friction smaller than r <

10−9s−1, or equivalently frictional spin-down times larger that 30 years, the time-

mean circulation consists of a 4-gyre flow. This flow is driven, as already discussed,

by the 1× 2 Rossby basin mode that dominates the system variability.

Exploring the wider range of frictional coefficients reveals that for some moderate

values for the frictional coefficient, in particular r = 5− 10× 10−9s−1, or equivalently

frictional spin-down timescale on the order of 3-6 years, the time-mean circulation

consists rather of a 6-gyre flow. Based on the analysis carried earlier on rectification

of mean flow by the basin modes, we can deduce that the 6-gyre time-mean circulation
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Figure 5-22: Time-mean barotropic circulation for a series of calculations, where a
spatially uniform bottom friction with magnitude varying from r = 5 × 10−6s−1 to
r = 1 × 10−11s−1 is applied. The streamfunction is scaled by the maximum linear

baroclinic streamfunction τ (lin) = g′h0

f0
(1 − e

− 1
δT ) = 0.25 × 106m2s−1. The contour

interval on all plots is 0.05.

is driven by the 1×3 Rossby basin mode (see Figure 5-8). That suggests that at these

moderate values for the bottom friction it is the higher order 1× 3 basin mode that

dominates the system variability, instead of the 1 × 2 basin mode. This conclusion

is consistent with our earlier findings from the power spectra that the higher order

basin modes are less damped by the bottom friction.

Finally, it can be seen that the circulation saturates in the limit of weak bot-

tom friction. Although the frictional coefficient is changed by two orders of magni-

tude from r = 10−9s−1 to r = 10−11s−1, or equivalently for the frictional spin-down

timescale from 30 to 3000 years, the time-mean circulation pattern and maximum

122



transports barely change.

Varying the value of the bottom friction coefficient has a major effect not only on

the basin-scale time-mean barotropic circulation, but also on the inertial recircula-

tions. As a guideline for the size of the recirculations, the streamline where the value

of the time-mean barotropic streamfunction decreases to half of its maximum value

is chosen. This is a rather tight estimate, but has the advantage that it can be used

for all calculations considered here, including the weak bottom friction cases, where

the recirculations and the interior flow become on the same order and are difficult

to separate. When applying this definition, recirculation gyres can be isolated in all

calculations, but the one using the largest bottom friction coefficient.

In Figure 5-23 some characteristics of the recirculations such as strength, measured

by the maximum/minimum of the streamfunction, zonal extent and position of the

center are plotted as a function of the bottom friction coefficient. For reference, the

corresponding frictional spin-down timescale 1/r is indicated as well. As the bottom

friction is decreased from the largest value used here, the strength of the recirculations

and their zonal extent increase. This is an anticipated behavior given that the bottom

drag acts to damp the barotropic component of the circulation. Thus, the smaller the

amount of bottom friction in the system, the stronger is expected to be the resulting

time-mean barotropic circulation.

However, both the strength and zonal extent of the recirculation gyres reach a

maximum around r = 5× 10−8s−1, or equivalently for frictional spin-down timescale

of approximatively 230 days. After that, despite the fact that the bottom friction is

further decreased, the recirculation gyres decrease in strength and size, and eventually

saturate. As seen earlier in this section from examining the power spectra of the

instantaneous barotropic streamfunction (Figure 5-21) and the time-mean barotropic

circulation patterns (Figure 5-22), it is exactly for values of the bottom drag of

r = 5 × 10−8s−1 and smaller that the basin modes start to dominate the system

variability. This supports the idea of a connection between the recirculation gyres

intensity and the basin modes – the more the system variability is dominated by the
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Figure 5-23: Characteristics of the barotropic inertial recirculations for a series of
calculations, where a spatially uniform bottom friction with magnitude varying from
r = 5× 10−6s−1 to r = 1× 10−11s−1 is applied. The bottom friction is also given in
terms of the frictional spin-down timescale 1/r on the top x-axis. The panels show:
a) absolute value of the maximum/minimum time-mean barotropic streamfunction;
b) zonal extent of the recirculation; c) and d) position of the recirculation center
from the western wall and the mid-latitude, respectively. Solid/dashed line is for the
southern/northern recirculation.

basin modes, the less intense and the more spatially confined are the recirculation

gyres.

Finally, it can be seen that the magnitude of the bottom friction affects not only

the strength and size of the recirculation gyres, but also their spatial structure. Plot-

ted in Figure 5-23(c-d) is the position of the center of each recirculation, with the
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center being defined as the location where the time-mean barotropic streamfunction

reaches its maximum/minimum value. As the bottom friction is decreased, the cen-

ters of the recirculations retract toward the western wall and shift away from the

mid-latitude. The result is zonally elongated recirculations, when they are at their

maximum intensity, and much more round-shaped and confined to west recirculations,

when the basin modes start intervening.

5.5.2 Dependence of the inertial recirculations on bottom

friction – spatially variable case

Another way to verify the link between the intensity of the inertial recirculations

and the basin modes is to apply a spatially variable bottom drag. The idea behind

employing a spatially drag coefficient is that it introduces a spatial inhomogeneity in

the model that interferes with the basin modes.

A series of experiments was performed, where the bottom friction coefficient is

uniform in the meridional direction, but varies zonally, switching from r = 10−9s−1

to r = 10−7s−1 from west to east. These are exactly the same values used in the

uniformly weak and uniformly strong bottom friction cases examined in details ini-

tially. The transition between the two values for the bottom drag happens through a

linear increase of the friction coefficient over a distance of 600 km, with the transition

zone being pushed further and further east (Figure 5-24). By subjecting a gradually

smaller portion of the basin to the strong bottom drag, the basin modes are allowed

to become more dominant, while locally the recirculation gyres are exposed to the

same weak bottom friction. These experiments are designed therefore to further test

the hypothesis that it is the basin modes that affect adversely the recirculations, and

not some other local effect.

In Figure 5-24 the resulting time-mean barotropic circulation averaged over 30

years of time integration (after spin-up) is shown. For reference, the frictional coef-

ficient profiles in the zonal direction applied in each case are plotted as well. The
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Figure 5-24: Time-mean barotropic circulation for a series of calculations where spa-
tially varying bottom friction is applied. The bottom friction changes zonally from
r = 10−9s−1 to r = 10−7s−1, as shown on the lower plot of each panel. The per-
centage of basin area subject to the strong bottom friction is indicated in the title.
The streamfunction is scaled by the maximum linear regime baroclinic transport

τ (lin) = g′h0

f0
(1− e−

1
δT ) = 0.25× 106m2s−1. The contour interval on all plots is 0.05.

transition zone between the weak and strong bottom friction regions is pushed gradu-

ally east – it starts for the different cases at 600, 1200, 1800 and 2400 km respectively

from the western wall (the size of the square basin is L = 3840 km). On the plots,

it is the percentage of the basin area subject to the uniformly strong bottom drag

that is indicated in order to differentiate between the cases. Also for completeness,

the time-mean circulation for the uniformly weak and uniformly strong bottom cases
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are added as well as limit cases. The power density spectra of the instantaneous

barotropic streamfunction for all cases is given in Figure 5-25, while a summary of

some characteristics of the recirculations, such as strength and zonal extent and, are

plotted in Figure 5-26.

As smaller portion of the domain is subject to the strong bottom friction, the basin

modes become more dominant, as illustrated by the larger magnitude high-frequency

spectral peaks (Figure 5-25). Simultaneously with that, the size of the recirculation

gyres in the time-mean circulation decreases (Figure 5-26(b)). The zonal extent of the

recirculations seems unrelated to the spatial structure of the applied bottom friction,

in the sense that it does not seem to be determined by the position of the transition

zone (Figure 5-24). This confirms the idea that it is the presence of basin modes that

affects adversely the recirculation gyres, and not the local damping by bottom drag.

Figure 5-25: Power density spectra of the instantaneous barotropic streamfunction
for a series of calculations, where a spatially varying bottom friction is applied. The
bottom friction changes zonally from r = 10−9s−1 to r = 10−7s−1, with the percentage
of basin area subject to the strong bottom friction used in the legend. The period, in
days, for the major spectral peaks is indicated.
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Concerning the strength of the recirculation gyres as measured by the mini-

mum/maximum of the the time-mean barotropic streamfunction, the picture is a

little more complex. In general, as a larger part of the basin becomes subject to the

strong bottom drag that damps the basin modes, the strength of the recirculation

gyres increases, in accord with the hypothesis that the basin modes have a negative

effect on them (Figure 5-26(a)). However, it can be seen also that the recirculations

are actually slightly stronger when a thin band of weak bottom friction is present next

to the western wall, compared to the case when uniformly strong bottom friction is

applied everywhere. Although, the basin modes are more damped in the later case,

this does not translate into more intense recirculations. This implies that, at least in

what concerns the strength of the inertial recirculations, local processes taking place

next to the western wall matter as well, and it is not simply a consequence of the

importance of the basin modes.

Figure 5-26: Characteristics of the barotropic inertial recirculations for a series of
calculations, where a spatially varying bottom friction is applied. The bottom friction
changes zonally from r = 10−9s−1 to r = 10−7s−1, with the percentage of basin
area subject to the strong bottom friction used as the x-axis. The panels show:
a) absolute value of the maximum/minimum time-mean barotropic streamfunction;
b) zonal extent of the recirculation. Solid/dashed line is for the southern/northern
recirculation.
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Finally, there are also some changes in the basin-scale time-mean circulation. As

gradually smaller portion of the basin is subject to the strong bottom friction and

the basin modes become more intense, a large-scale time-mean barotropic circulation

emerges (Figure 5-24). The circulation is confined to the part of the basin exposed

to the weak bottom friction and is of the form of a 6- and 4-gyre flow, with the outer

gyres situated right next to southern and northern walls being the strongest. The

time-mean flow is driven by the basin modes, as shown in the analysis on rectification

carried previously.

5.5.3 Driving mechanism for the inertial recirculation gyres

In order to determine what is the driving mechanism for the inertial recirculations,

similar tools as in the steady regime, such as local and integrated vorticity budgets of

the barotropic vorticity, are used. However, when considering the vorticity budget of

a time-dependent circulation, the additional contributions from the eddy fluxes need

to be included.

Vorticity budget in the time-dependent regime

Let introduce the following decomposition into mean and eddy part for a given generic

variable ψ(x, y, t) in the time-dependent regime,

ψ =
1

∆T

∫ t+∆T

t

ψ(x, y, t) dt, ψ′ = ψ − ψ. (5.17)

The mean part ψ represents the long time-mean equilibrium reached by the system,

where all variability on timescales shorter than ∆T has been averaged out, and only

variability on timescales longer than ∆T remains. The eddy part ψ′ represents the

perturbations from the long time-mean equilibrium. For the calculations considered

here, this can include both mesoscale eddy variability and basin mode variability.

Applying the time-averaging operation to the barotropic potential vorticity equa-
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tion (3.25), leads to the following balance for the time-mean barotropic vorticity

∂

∂t
∇2φ︸ ︷︷ ︸

time residue

= −
[
∂φ

∂x
+ δ2

I

(
J(φ, qφ) + δ(1− δ)J(τ, qτ )

)]
︸ ︷︷ ︸

total Jacobian, Jφ

+ δ3
M∇4φ︸ ︷︷ ︸

lateral dissipation

− δS(1− δ)∇2(φ− δ τ)︸ ︷︷ ︸
bottom friction

. (5.18)

On the left-hand side of the equation is the residual time rate of change of the

vorticity, occurring on timescales long compared to the averaging interval. This term

is expected to be approximatively zero, if the averaging is taken over a sufficiently

long time interval, so that the system is close to a statistically steady equilibrium.

In this case, at each point in the basin a local balance between bottom friction,

lateral dissipation and advection, marked as Jφ, is expected. The total Jacobian Jφ,

the only term containing nonlinearity, can be further decomposed into several parts

– advection of planetary vorticity, mean Jacobian and eddy Jacobian, the last two

being defined using respectively the mean and eddy streamfunction

Jφ =
∂φ

∂x︸︷︷︸
planetary

+ δ2
I

[
J(φ,∇2φ) + δ(1− δ)J(τ ,∇2τ)

]
︸ ︷︷ ︸

mean Jacobian

(mean fluxes divergence)

+ δ2
I

[
J(φ′,∇2φ′) + δ(1− δ)J(τ ′,∇2τ ′)

]
︸ ︷︷ ︸

eddy Jacobian

(eddy flux divergence)

. (5.19)

Each of the Jacobian terms represents a divergence of a vorticity flux. For example,

J(φ,∇2φ) and J(φ′,∇2φ′) stand for the divergence of respectively the mean flux of

mean barotropic vorticity and the eddy flux of eddy barotropic vorticity, i.e.

J(φ,∇2φ) = ∇ · (uφ∇2φ) and J(φ′,∇2φ′) = ∇ · (u′φ∇2φ′). (5.20)

Similarly to what was done in the steady regime, the entire time-averaged barotropic
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equation (5.18) can be written in a flux divergence form (Fox-Kemper, 2003) and in-

tegrated over a region Cφ enclosed by a time-mean barotropic streamline. Assuming

statistically steady equilibrium and excluding all contributions from fluxes propor-

tional to the mean barotropic velocity, the integrated barotropic vorticity budget

becomes

∮
Cφ

[
− δ2

Iδ(1− δ) uτ∇2τ − δ2
I u′φ∇2φ′ − δ2

Iδ(1− δ) u′τ∇2τ ′ (5.21)

+δ3
M∇(∇2φ)− δS(1− δ)∇(φ− δ τ)

]
· n̂ dl = 0.

Because the circulation is generated from a thermal-only forcing, barotropic po-

tential vorticity is neither added or removed from the system, but merely rearranged.

This is accomplished by 1) the mean advection by the baroclinic flow, 2) the eddy

fluxes (barotropic or baroclinic), and 3) the frictional fluxes due to lateral or bot-

tom friction. Therefore, for each area enclosed by a mean barotropic streamline the

cross-streamline fluxes resulting from these terms have to balance out.

If the special case of the streamline coinciding with the basin boundary is consid-

ered, then the integral condition (5.21) reduces to

∮
C

δ3
M∇(∇2φ) · n̂ dl = 0. (5.22)

Because of the no-normal flow and the no-slip conditions, both the mean and eddy

vorticity fluxes vanish at the walls. Thus, the role of all advective fluxes, mean or eddy,

when no-slip conditions are applied is limited to redistribution of the vorticity within

the basin. In addition, due to the lack of barotropic vorticity input from external

forcing for a thermally-forced ocean, there is no net frictional vorticity flux through

the basin boundaries either. This is very different from a single gyre wind-driven

circulation, where there is a net barotropic vorticity input from external forcing.

Then, vorticity needs to be transported by different means from the interior, where

it is added by the wind, to the boundaries, where it can be removed by the lateral
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friction (Fox-Kemper, 2003).

Next, the barotropic vorticity budget is examined for the cases of weak and strong

bottom friction with the goal in mind to assess the effect of the basin modes on the

inertial recirculations. For the purpose of these calculations, a time-average over 120

years is considered and a statistically steady equilibrium budget is expected.

Strong bottom friction case – barotropic vorticity budget

In Figure 5-27 the local barotropic vorticity budget for the strong bottom friction

case is plotted. All terms are shown with exactly the same sign convention as in

equation (5.18). It can be seen that the main vorticity balance in the basin is between

convergences and divergences of vorticity flux due to advection (−Jφ) and bottom

friction. The lateral diffusion contributes as well, mainly within the western boundary

layer and along the mid-latitude jet, but is otherwise weak in the remaining of the

basin. The time residue is orders of magnitude smaller than all the other terms,

consistent with a system close to a statistically steady state.

In Figure 5-28 the total Jacobian is decomposed into planetary vorticity advection

and mean and eddy flux convergences∗. The convergence of the planetary vorticity flux

−φx̂ is aligned with the mean meridional barotropic velocity vφ. Because there is no

large-scale time-mean barotropic circulation, this term is confined to the recirculations

and the western boundary layer. The mean and eddy fluxes both include contributions

from the baroclinic and barotropic components of the circulation. Although not shown

here, both these terms are dominated by the advection by the barotropic velocity of

the barotropic relative vorticity ∇ · (uφ∇2φ) (either mean or eddy). For the mean

vorticity flux only, the baroclinic advection of baroclinic vorticity, ∇·(uτ∇2τ) matters

as well, but mostly in the western boundary layer. All vorticity flux divergences due

to the advective terms, either mean or eddy, are concentrated mostly in the western

boundary layer and the recirculations.

∗Note that all these terms are plotted with a sign opposite to that in equation (5.19), since it is
−Jφ that appears in the barotropic vorticity budget (5.18).
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Figure 5-27: Barotropic potential vorticity budget for the case with strong bottom
friction (r = 10−7s−1). All terms are as indicated in Eq. (5.18). The missing panel C
is the thermal forcing. Selected contours of the time-mean barotropic streamfunction
are overlaid in black.

Figure 5-28: Decomposition of the total barotropic Jacobian −Jφ, given in panel B)
above, into: a), planetary vorticity advection, −∇ · (φx̂); b) mean Jacobian or mean
vorticity flux convergence, −∇ · (uφ∇2φ+ δ(1− δ)uτ∇2τ); c) eddy Jacobian or eddy

vorticity flux convergence, −∇ · (u′φ∇2φ′ + δ(1− δ)u′τ∇2τ ′).

In order to determine the cross-streamline vorticity fluxes, the barotropic vorticity

equation is integrated over a series of regions bounded by mean barotropic streamlines

all laying in the northern recirculation gyre. Each next streamline encloses a larger

area region, starting from the recirculation center and expanding toward the outer
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Figure 5-29: Barotropic potential vorticity budget for the case with strong bottom
friction (r = 10−7s−1), integrated over a series of regions enclosed by mean barotropic
streamlines. Panel A), mean barotropic relative vorticity field, scaled with the maxi-
mum planetary vorticity. Overlaid are contours of the mean barotropic streamfunc-

tion, delimiting the regions of integration, φ

|min(φ)| ∈ [−0.05,−0.95]. Panel B), integral

of the vorticity flux divergence by unit area. The different terms are as indicated in
Eq. (5.21).

edge, as shown in Figure 5-29. In order to be able to compare the fluxes out of

these regions, the integrals of the vorticity flux divergences from equation (5.21)

have been divided by the area of the region, i.e the flux by unit area is plotted. In

addition, in Table 5.3 the details of the integrated vorticity balance over the region

enclosed by the streamline, where φ is equal to half of its minimum value, are given.

Since the northern anticlockwise recirculation is characterized with positive mean
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Term Integral S Integral W Integral W
(recirc.) (recirc.) (interior)

Mean flux, −J(τ ,∇2τ) 100.00 100.00 100.00

Eddy flux, −J(φ′,∇2φ′) -74.56 -130.96 202.62

Eddy flux, −J(τ ′,∇2τ ′) 25.46 16.46 -300.21
Thermal forcing 0.00 0.00 0.00
Lateral friction -1.87 -0.82 -13.41
Bottom friction -60.84 -0.47 -18.48

Imbalance -11.80 -15.79 -29.48
(due to planetary) -8.82 -16.69 6.51

(due to time residue) -0.17 -0.06 -32.68

Dimensional −J(τ ,∇2τ)
1554.90 815.24 3.87

in units cm2s−2

Table 5.3: Barotropic potential vorticity balance integrated over the region enclosed
by the mean barotropic streamline, where φ is equal to half of its minimum value.
The region of integration lays either in the northern recirculation gyre (recirc.) or
in the interior gyre (interior), if present. S, stands for the case with strong bottom
friction (r = 10−7s−1), W, for the case with weak bottom friction (r = 10−9s−1). All
terms are as indicated in Eq.(5.21). The integral of the mean flux divergence is scaled
to 100, with the actual value given in the last row.

relative vorticity (Figure 5-29(A)), positive values of the integrated flux divergence

are interpreted as flux into the region, while negative values as flux out of the region.

From the results listed in Table 5.3 it can be seen that the largest cross-streamline

flux into the recirculation is due to the mean baroclinic advection, uτ∇2τ . The

magnitude of this term has been scaled to 100 for easier comparison later with the

weak bottom friction case, with the actual value of the flux given as well for reference.

Therefore, the recirculations are driven by the mean and eddy baroclinic fluxes, while

the barotropic eddy flux, lateral diffusion and bottom drag all export vorticity out of

the recirculations and act thus to damp them. It can be seen that the imbalance for

the integrated vorticity budget is not insignificant. It is mostly due to the planetary

vorticity advection integral. In general, this term should integrate to zero, but since

a discretized version of the region enclosed by the streamline is used, an error is

introduced.
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When the integrated vorticity budget is computed for a series of regions, covering

progressively larger portion of the northern recirculation, it can be seen that the

relative contributions of the different cross-streamline vorticity fluxes change (Figure

5-29). For the recirculation as a whole, it is the mean baroclinic flux uτ∇2τ that acts

to strengthen the circulation, while all the other terms, including the eddy baroclinic

flux u′τ∇2τ ′, act to damp it. Toward the center of the recirculation however, it is

rather the eddy baroclinic flux u′τ∇2τ ′ that is the largest positive term, while the

contribution from the mean baroclinic flux uτ∇2τ becomes almost negligible. Also,

toward the center of the recirculation it is the bottom drag that takes over the role

of main damping mechanism, while the contribution from the barotropic eddy flux

u′φ∇2φ′ decreases significantly.

Weak bottom friction case – barotropic vorticity budget

The same kind of analysis of the time-mean barotropic vorticity balance is carried

for the case with weak bottom friction, for which it was determined that the system

variability is dominated by barotropic basin modes.

In Figure 5-30, the different contributions to the time-averaged barotropic vorticity

budget given by Eq.(5.18), are plotted. Because the bottom friction decay rate is a

factor of 100 weaker, the bottom friction contribution to the local balance is extremely

small. Also, unlike the strong bottom friction case, the time residue term seems

to be larger overall. The main balance in the basin is between convergences and

divergences of vorticity flux due to advection (−Jφ) and lateral dissipation. However,

both these terms are extremely small as well. A decomposition of the total Jacobian

−Jφ, indicates that the actual vorticity balance in the weak bottom friction case is

between planetary vorticity advection and eddy flux divergence, where the eddy flux

divergence is dominated by the barotropic part, −∇ · (u′φ∇2φ′) (not shown here).

This is essentially the same vorticity balance that was used to illustrate how the

basin modes drive a time-mean circulation. It can just be speculated that in this

case the barotropic eddy fluxes responsible for driving the circulation are due to the
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Figure 5-30: Barotropic potential vorticity budget for the case with weak bottom
friction (r = 10−9s−1). All terms are as indicated in Eq. (5.18). The missing panel C
is the thermal forcing. Selected contours of the time-mean barotropic streamfunction
are overlaid in black.

Figure 5-31: Decomposition of the total barotropic Jacobian −Jφ, given in panel B)
above, into: a), planetary vorticity advection, −∇ · (φx̂); b) mean Jacobian or mean
vorticity flux convergence, −∇ · (uφ∇2φ+ δ(1− δ)uτ∇2τ); c) eddy Jacobian or eddy

vorticity flux convergence, −∇ · (u′φ∇2φ′ + δ(1− δ)u′τ∇2τ ′).

basin mode variability, and not to smaller scale barotropic variability. Therefore, in

the basin interior the dynamics are dominated by the rectification of mean flow by

the basin modes.

Again, the integral of the divergence of the different vorticity fluxes is computed for
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Figure 5-32: Barotropic potential vorticity budget for the case with weak bottom fric-
tion (r = 10−9s−1), integrated over a series of regions enclosed by mean barotropic
streamlines. Panel A), mean barotropic relative vorticity field scaled with the maxi-
mum planetary vorticity. Overlaid are contours of the mean barotropic streamfunc-

tion, delimiting the regions of integration, φ

|min(φ)| ∈ [−0.35,−0.95]. Panel B), integral

of the vorticity flux divergence by unit area. The different terms are as indicated in
Eq. (5.21).

a series of regions enclosed by mean barotropic streamlines, all lying in the northern

half-basin. Because in the weak bottom friction case, an interior circulation is driven

as well, there are two groups of regions of integration – one laying in the northern

recirculation (Figure 5-32), and one situated in the the northern interior gyre (Figure

5-33). Similarly to the strong bottom friction case, the vorticity flux by unit area is

plotted in the figures. In Table 5.3 the details of the integrated vorticity balance over
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Figure 5-33: Barotropic potential vorticity budget for the case with weak bottom fric-
tion (r = 10−9s−1), integrated over a series of regions enclosed by mean barotropic
streamlines. Panel A), mean barotropic relative vorticity field scaled with the maxi-
mum planetary vorticity. Overlaid are contours of the mean barotropic streamfunc-

tion, delimiting the regions of integration, φ

|min(φ)| ∈ [−0.38,−0.58]. Panel B), integral

of the vorticity flux divergence by unit area. The different terms are as indicated in
Eq. (5.21).

the regions (recirculation and interior), bounded by the streamline where φ is equal

to half of its minimum value, are given.

In the recirculation, the cross-streamline vorticity fluxes are similar to what was

occurring in the strong bottom friction case. Vorticity is fluxed into the recirculation

by the mean baroclinic advection term, uτ∇2τ , and the eddy baroclinic advection

term, u′τ∇2τ ′ (Figure 5-32). The one big difference is that in the case of weak bottom
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friction, both the lateral diffusion and bottom drag fluxes are very small, close to

negligible. Instead, it is the barotropic eddy flux, u′φ∇2φ′, that takes care of removing

vorticity out of the recirculation. Also, unlike for the strong bottom friction case, it

is the vorticity flux due to residual time-dependence, that accounts for most of the

imbalance (Table 5.3). This suggests that the system is not close to a statistically

steady state, even when a time-average over 120 years is used. The likely reason for

that is the fact that the system variability is dominated by a number of periodic basin

modes. Therefore, a long time-averaging does not necessarily guarantee a statistically

steady equilibrium.

The integrated barotropic vorticity budget explains the relationship between bot-

tom drag and recirculation size that we have observed. A priori, one would expect

that weak bottom friction favors the recirculations, since less vorticity is exported

across the mean streamlines. Thus, the weaker the applied bottom drag, the stronger

and larger should be the recirculations. However, we have seen that under a certain

threshold decreasing the bottom drag actually leads to smaller and slightly weaker

recirculations. The reason for this behavior is that when the bottom friction is de-

creased, the system variability become dominated by the basin modes. Thus, although

the frictional damping becomes very small, the barotropic eddy flux across the mean

streamlines increases and over-compensates for it. Overall, the barotropic eddies are

so efficient in removing vorticity out of the recirculations, that they actually shrink

in size.

What this analysis leaves unanswered is how exactly the barotropic eddy fluxes

accomplish that. As already mentioned, the barotropic eddy part of the circulation

includes different spatial scales – the Rossby basin mode variability, as well as smaller

scale variability. In the basin interior, in all likelihood the barotropic eddy flux is due

to the basin mode variability, since it has been demonstrated that the 4-gyre interior

flow is driven by the flux resulting for the dominating basin mode. In the region

next to the western wall however, the barotropic eddy flux could be due to either the

basin modes or smaller scale variability. It is not clear which part acts to increase
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the export of vorticity and consequently to shrink the recirculations.

Concerning the integrated vorticity balance for the interior circulation generated

in the weak bottom friction case, it is again the mean baroclinic flux uτ∇2τ , that has

been scaled to 100 for easier comparison with the other cases in Table 5.3. However,

it can be seen that the barotropic eddy flux u′φ∇2φ′ contributes almost twice as much

in driving the interior gyre. This is expected, given that the interior 4-gyre circulation

is rectified by the basin modes. In general, the integrated vorticity budget over the

series of interior regions shows that the circulation is driven mainly by the barotropic

eddy flux and damped the baroclinic eddy fluxes. Note that the values for the fluxes

in the interior gyres are an order of magnitude smaller than in the recirculations.

5.5.4 Summary of basin modes and recirculations

To summarize, the goal of the analysis carried in this section was to understand the

dynamics of the inertial recirculations, with the more specific question in mind to

determine the role played by the basin modes. The following major conclusions were

reached:

• By varying the decay rate due to bottom drag, it was established that the

basin modes have a strong effect on the inertial recirculations. The weaker the

applied bottom friction, the more the system variability is dominated by the

basin modes and the smaller and weaker are the recirculations.

• It was shown that in the case of a thermally-only forced ocean, where there is

no barotropic vorticity input from external forcing, the recirculations are driven

by the mean baroclinic vorticity flux uτ∇2τ , and damped out by the barotropic

eddy flux u′φ∇2φ′ and the bottom friction. This is similar to the steady regime,

except that in the latter case, since there is no eddy circulation, the bottom

drag solely is responsible for damping the recirculations.

• Decreasing the bottom friction in the system increases the variability at all

spatial scales, and leads to an increase of the barotropic eddy fluxes u′φ∇2φ′.
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This is due to a large degree to the fact that the system variability becomes

dominated by barotropic basin modes. However, especially near the western

wall, it is possible that the basin modes play only an indirect role by leading to

an increased barotropic variability on smaller spatial scales.

• In the weak bottom friction limit, the barotropic eddy fluxes are responsible for

driving a time-mean 4-gyre circulation in the basin interior. For the recircula-

tions, although the frictional vorticity fluxes become inefficient in transporting

vorticity across the mean streamlines, the barotropic eddy fluxes take over that

role and are responsible for shrinking the recirculations.

5.6 Heat budget in the time-dependent regime

In this section the time-averaged heat budget of the system is examined in order to

determine the effect, if any, of the presence of significant basin mode variability.

Because the circulation is time-dependent, there is an additional contribution to

the time-averaged heat budget coming from eddy fluxes. More specifically, the time-

mean vertical velocity wi at the interface between the two layers is given by

wi = δ2
IJ(φ, η) + w∗ (5.23)

= δ2
I uφ · ∇η + δ2

I u′φ · ∇η′ +
1

FδT
(η − UTFT (y)).

Because the time-averaging is assumed to be over a sufficiently long time period

so that a statistically steady equilibrium is reached, the local time rate of change

of the interface ∂η̄/∂t is omitted. The time-mean vertical velocity wi consists thus

of contributions from the mean and eddy advection of interface and the time-mean

cross-isopycnal velocity w∗, representing non-adiabatic processes allowing for water

properties transformation.

In Figures 5-34 and 5-35, the time-mean vertical velocity and its decomposition

into different contributions are plotted for the cases of strong (r = 10−7s−1) and
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Figure 5-34: Time-mean vertical velocity in the case of a thermally-only forced ocean
with strong bottom friction (r = 10−7s−1). Shown are: a) the cross-isopycnal velocity
w∗ = (η − UTFT )/FδT ; b) the mean horizontal advection contribution δ2

I uφ · ∇η; c)
the eddy horizontal advection contribution δ2

I u′φ · ∇η′; d) the net time-mean vertical
velocity at the interface wi. Overlaid in gray on panel a) are select geostrophic
contours φ̂ = y+ Ωφ, and in black on panels b-d) select mean barotropic streamlines.

Figure 5-35: Time-mean vertical velocity in the case of a thermally-only forced ocean
with weak bottom friction (r = 10−9s−1). Shown are: a) the cross-isopycnal velocity
w∗ = (η − UTFT )/FδT ; b) the mean horizontal advection contribution δ2

I uφ · ∇η; c)
the eddy horizontal advection contribution δ2

I u′φ · ∇η′; d) the net time-mean vertical
velocity at the interface wi. Overlaid in gray on panel a) are select geostrophic
contours φ̂ = y+ Ωφ, and in black on panels b-d) select mean barotropic streamlines.

weak (r = 10−9s−1) bottom friction. Although in both cases the resulting circulation

is time-dependent, only for the weak bottom drag scenario the system variability is

dominated by resonating Rossby basin modes.

The time-mean cross-isopycnal velocity for both values of the bottom drag has the
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general pattern of cooling in the northern half-basin and warming in the southern half-

basin. At each latitude, the strongest cooling/heating happens next to the eastern

and western walls. In the strong bottom friction case, there is a reversal of the

sign of the cross-isopycnal velocity at mid-latitude in the the western side of the

basin. There is a slight warming within the northern recirculation gyre, and slight

cooling within the southern recirculation gyre, while no such feature is evident in the

weak bottom drag scenario. This can be explained by the connection that has been

established to the geometry of the geostrophic contours. In the strong bottom drag

case, the time-mean barotropic circulation is characterized with intense recirculations

with horizontal velocities large enough to arrest the westward propagation of the

internal Rossby waves. So, similarly to the steady regime, regions of closed geostrophic

contours isolated from the eastern wall form, where the cross-isopycnal velocity is of

opposite sign. In the weak bottom drag case, the presence of intense basin modes leads

to weaker and smaller recirculations. Although again closed geostrophic contours

form, this happens very close to the walls in the western boundary layer, or next

to the zonal walls. This may be the reason why, although some closed geostrophic

contours are present, there is no sign reversal for the cross-isopycnal velocity in this

case.

The part of the vertical velocity associated with the local vertical motion of the

interface has both a mean and eddy component. Both are several times larger than

the cross-isopycnal velocity and are confined to the regions of strong interface slopes

and large flow variability. The mean advection is important mostly in the western

boundary layer and at the eastern edge of the recirculations, similarly to the nonlinear

steady regime calculations. In the weak bottom friction case, where a 4-gyre vertically

integrated circulation is driven by the basin modes, there is also some basin scale

structure. The eddy advective contribution is on the same order as the mean, and

is also significant mostly in the western boundary layer and in the recirculations.

There is a strong eddy advective vertical velocity in the zonal boundary layers next

to northern and southern walls.
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Overall, the spatial pattern of the time-mean vertical velocity is dominated by the

advective adiabatic contributions from the mean and the eddy advection of interface,

with the strongest vertical motion occurring in the western boundary layer. This

bears similarity to the vertical velocity in the nonlinear steady calculations, where

again the advective terms were taking over the cross-isopycnal velocity.

5.7 Summary

The goal of this chapter was to examine the strongly nonlinear time-dependent cir-

culation, when a thermal-only forcing is applied to a 2-layer QG ocean. It was deter-

mined that in the weak bottom friction limit the system variability is dominated by

barotropic basin modes. Thus, a large part of the analysis carried in this chapter was

targeted at determining the effect of the basin modes on the time-mean circulation

and its variability, with the results applying to any other systems where resonance of

basin modes is excited. The following major conclusions were reached:

(1) In the time-dependent strongly nonlinear regime, when typical half-basin cool-

ing / half-basin warming thermal forcing is applied, a significant time-mean

barotropic circulation results, that is on the same order as the directly thermally-

forced baroclinic part of the circulation. The spatial structure of the vertically

integrated circulation is in the form of recirculations in the western part of the

basin, plus in some cases a basin-scale multiple gyre flow. The barotropic recir-

culations are driven by the mean and eddy flux of baroclinic relative vorticity,

while the barotropic eddy flux and bottom drag damp the recirculations.

(3) The time variability of the flow is characterized with the resonance of high-

frequency barotropic Rossby basin modes with periods, for the basin size con-

sidered here, ranging from several days to up to a month. The basin modes

become especially dominant if low bottom drag is used. The most important

basin mode for the particular case studied here was identified as a low-order

basin mode with a 1× 2 horizontal structure and a period of 13.3 days.
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(4) The degree to which the system variability is dominated by the basin modes has

a strong effect on the time-mean circulation and its variability. In particular,

the following properties of the circulation were directly related to the presence

of intense basin modes:

(a) The basin modes drive a time-mean vertically integrated circulation in the

form of multiple gyres. Although a basin mode itself has a zero time-

mean, because of the nonlinearity of the governing dynamics a non-zero

time-mean momentum flux results, and a time-mean circulation is driven.

(b) The basin modes force baroclinic flow variability on short timescales similar

to their periods. The variability is due to the advection of the mean inter-

face displacement by the basin modes and is in the form of high-frequency

gyre undulations and jet meandering.

(c) The presence of basin modes interferes with the size and strength of the

inertial recirculations – the more intense are the basin modes, the weaker

and smaller are the recirculations. This is due to the fact that stronger

basin modes are associated with larger barotropic eddy fluxes out of the

recirculation, and thus more effective damping.

(5) The spatial distribution of the time-mean vertical velocity at the interface be-

tween the two density layers is dominated in the time-dependent regime by

the mean and eddy components due to the advection of the interface by the

barotropic flow. The strongest vertical motions happen thus in the regions of

steepest interface slopes and largest flow variability, i.e the boundary layers and

the recirculations.

146



Chapter 6

Onset of time-dependence in a

thermally-forced ocean

So far in this thesis we have examined the circulation in a 2-layer thermally-forced

QG ocean in both the weakly nonlinear steady regime (Chapter 4), and the strongly

nonlinear time-dependent regime (Chapter 5). The results presented in this chapter

can be seen as a continuation of the study of the low Reynolds number circulation,

with the focus put on examining how the thermally-forced double-gyre flow becomes

linearly unstable and time-dependence arises.

It is shown that for some choice of parameters the thermally-forced circulation

becomes unstable to perturbations that have a basin-scale spatial structure with

timescales and phase propagation characteristics similar to those of barotropic Rossby

basin modes. For other choice of parameters, the flow becomes unstable instead to

perturbations that are spatially localized and characterized by longer inter-monthly

timescales. It is argued that the difference in the destabilizing perturbations is due to

the difference in the geometry of the geostrophic contours. Comparisons are drawn

to the wind-driven double-gyre flow, where similar dependence can be uncovered.
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6.1 Introduction

There is a very large literature on the problem of the internal variability of the wind-

driven circulation. By internal variability we mean the variability that arises under

steady forcing conditions because of the nonlinear dynamics. Understanding the

internal modes of variability of the ocean circulation is important because of the role

they may play in setting the low-frequency ocean variability and its effect on climate.

One little piece of this problem is to determine how temporal variability arises in a

model of the ocean circulation when the Reynolds number is increased. Of particular

interest for us is the study by Dijkstra and Katsman (1997), where the initial bifurca-

tions of the wind-driven double-gyre flow in a 2-layer QG model are examined. They

show that when the lateral viscosity of the model is decreased below a critical thresh-

old, the circulation transitions from steady to oscillatory behavior due to baroclinic

instabilities. The temporal variability consists of meandering and local and temporal

weakening and strengthening of the midlatitude jet at inter-monthly timescales. We

will use the results by Dijkstra and Katsman (1997) as a base for comparison when

examining the stability of the thermally-forced double-gyre circulation.

Determining the stationary solutions and first few perturbations to which a cir-

culation becomes unstable is an interesting problem in itself, but it can also provide

clues for the system behavior in the strongly nonlinear regime. Although the stable

equilibria found at low Reynolds numbers may become unstable at larger Reynolds

numbers, they may still be able to influence the system time-dependent behavior

(Primeau, 1998).

Our goal in this chapter is to compute the linear stability of a thermally-forced

2-layer QG ocean, a problem not studied until now, in order to determine how time-

dependence appears. We are interested in finding the temporal and spatial scales of

the variability, as well as the instability processes responsible for it. It is possible that

some of the results may shed light on the reason why the variability of the thermally-

forced circulation in the strongly nonlinear regime, that we studied in Chapter 5, was
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dominated by barotropic Rossby basin modes.

The presentation of this chapter is organized as follows. In Section 6.2 the sta-

bility problem is formulated and some tools for analyzing and understanding the

solutions are presented. In Section 6.3 we examine the stability properties and onset

of time-dependence in a thermally-forced ocean, while in Section 6.4 the stability of

an equivalent wind-forced configuration is considered. Some final conclusions and

remarks are given in Section 6.5.

6.2 Problem formulation and approach

6.2.1 Nondimensional parameters and governing equations

When describing the wind- and thermally-forced QG model in Chapter 3, we de-

termined that the behavior of the flow is controlled by a set of 7 nondimensional

parameters, once a velocity scale U set by either the wind stress or the thermal forc-

ing is chosen. For all stability calculations performed in this chapter we have reduced

the number of nondimensional parameters to 6, by eliminating the bottom friction,

since this parameter has been judged nonessential when determining the stability of

a circulation closed through a Munk boundary layer. If the circulation was closed

instead through a Stommel boundary layer or if values for δS were considered such

that the equilibrium state of the system is affected (Primeau, 1998; Simonnet, 2005),

then one can not exclude the bottom friction from the stability analysis. However,

all calculations presented in this thesis were limited to the regime δS � δM , with the

bottom friction used exclusively as a way to damp the barotropic basin modes and

control the degree to which they dominate the system variability. Its role in setting

the steady regime solutions was shown to be nearly negligible, and thus we have de-

cided to all together eliminate the bottom friction from the model when performing

stability analyses.

For all stability calculations in this chapter we have used a slightly different nondi-

mensionalization of the QG equations. This does not introduce any new physics to

149



the problem, but has the advantage of making the comparisons with previous re-

sults about the stability of wind-driven flows more straightforward. The nondimen-

sional QG potential vorticity equations by density layers when an advective timescale

T = L/U is used for the nondimensionalization, instead of the barotropic frequency

T = 1/β0L, are written below

∂

∂t

(
∇2ψ1 − F1(ψ1 − ψ2)

)
+ J

(
ψ1,∇2ψ1 − F1(ψ1 − ψ2)

)
+ β

∂ψ1

∂x
(6.1)

= UwFw(y)− F1w∗ +
1

Re
∇4ψ1

∂

∂t

(
∇2ψ2 + F2(ψ1 − ψ2)

)
+ J

(
ψ2,∇2ψ2 + F2(ψ1 − ψ2)

)
+ β

∂ψ2

∂x
(6.2)

= F2w∗ +
1

Re
∇4ψ2

w∗ = − 1

ΩδT
(ψ1 − ψ2 + UTFT (y)) (6.3)

The following set of nondimensional parameters appear in the equations

δ12 =
H1

H2

, Ω ≡ F

β
=

U

β0R2
d

, β =
β0L

2

U
, Re =

UL

ν
, δT =

γβ0R
2
d

L
, (6.4)

UT =
g′h0

Uf0L
, Uw =

τ0L

U2ρ0H1

.

where the notations F1 = (H2/H)F = βΩ/(1 + δ12) and F2 = (H1/H)F = δ12F1 have

been used for shorter writing.

This is an equivalent group of nondimensional parameters to the ones described in

Chapter 3 that can be obtained by simple rearrangement∗. The ratio δ12 of the upper

to the lower layer depth is used instead of the ratio δ = H1/H, and the Reynolds

number instead of the Munk boundary layer δM as a measure of the importance

of lateral friction. Also, two new nondimensional parameters are introduced. The

∗For reference, the nondimensional parameters as derived in Chapter 3 when the barotropic
frequency 1/β0L is used for a timescale are reproduced below

δ =
H1

H
, F =

L2

R2
d

, δI =
U

β0L2
, δM =

ν

β0L3
, δT =

γβ0R
2
d

L
, UT =

g′h0

Uf0L
, Uw =

τ0
Uρ0β0H1L

.
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nondimensional β parameter is simply equal to the inverse of the square inertial

boundary layer, and thus similarly to δI measures the relative importance of the

nonlinear advection of relative vorticity to the planetary vorticity advection. The

parameter Ω is equal to the ratio of the flow speed to that of a long internal Rossby

wave and has been brought in instead of the Froude number F = L2/R2
d. We have seen

previously this parameter in the definition of the geostrophic contours φ̂ = y + Ωφ.

There is an extra 7th parameter present in the list of nondimensional parameters

because of the undetermined velocity scale U . For the case of a wind-driven ocean, the

velocity scale is usually chosen assuming a linear Sverdrup vorticity balance, which

implies Uw = β and a velocity scale set by the wind stress, U = τ0/β0ρ0H1L. In

the wind-only forced case, the circulation is controlled thus by a set of 4 parameters:

δ12,Ω, β and Re. In the more general case of a wind- and thermally-forced ocean,

there are two additional parameters, δT and UT , that describe the thermal relaxation

forcing. If the same wind-derived velocity scale U is kept, then the parameter UT

represents the ratio of the thermally-driven to the wind-driven baroclinic horizontal

velocity, as determined from a linear vorticity balance (see discussion in Chapter 3).

Finally, in the special case of a thermally-only forced ocean, Uw = 0 and the velocity

scale is set rather by the thermal forcing. In this case the circulation is controlled by

a set of 5 parameters: δ12,Ω, β, δT and Re. However, even in this case it is useful to

define an ”equivalent” wind stress, in the sense that it generates a circulation with

the same speed U as the one driven by the thermal forcing alone. This provide us

with a way to judge the strength of the applied thermal forcing, as well as to compare

wind-driven and thermally-driven flows.

For all stability calculations presented in this chapter we will use the Reynolds

number as a control parameter. This signifies that for all other parameters held fixed

(δ12,Ω, β, δT and UT specified) we will vary the Reynolds number until the threshold

for linear stability of the circulation is determined. In addition, we will explore the

dependence on the Ω parameter of the properties of the destabilizing perturbations

in terms of their spatial structure, time periods and energy budgets.
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6.2.2 Stability analysis of an equilibrium solution

Suppose that Ψ1(x, y) and Ψ2(x, y) are the streamfunctions by density layers for an

equilibrium solution (or stationary solution) of the governing equations (6.1)-(6.2),

and let Q1 and Q2 designate the potential vorticities associated with this solution

Q1 = βy +∇2Ψ1 − F1(Ψ1 −Ψ2), Q2 = βy +∇2Ψ2 + F2(Ψ1 −Ψ2). (6.5)

The stability of the equilibrium state {Ψ1,Ψ2} can be determined if a perturbation

{ψ′1, ψ′2} is added to the solution and its time-evolution examined, where {ψ′1, ψ′2} is

of the form

ψ′n(x, y, t) = Real
(
ψ̂n(x, y)eσt

)
= Real

(
ψ̂n(x, y)e(σr+iσi)t

)
, n = 1, 2. (6.6)

The complex amplitudes ψ̂n(x, y) describe the spatial structure of the perturbation

flow, while the growth rate σ, its temporal structure. The real part of the growth

rate σ expresses whether the perturbation grows or decays in time and is indicative

therefore for whether the equilibrium solution {Ψ1,Ψ2} is stable or unstable to the

perturbation {ψ′1, ψ′2}. The imaginary part of the growth rate σ distinguishes between

oscillating perturbations with σi 6= 0 and stationary perturbations with σi = 0. If a

flow becomes unstable to an oscillating perturbation, then temporal variability with

period T = 2π/σi arises. Instability to a stationary perturbation on the other hand

leads to multiple equilibrium solutions but no temporal variability.

For as long as the amplitude of the perturbation remains small, i.e. for times

t � 1/|σr|, its evolution is described by the perturbation QG potential vorticity

equations, linearized around the equilibrium state {Ψ1,Ψ2},
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(
σ +

∂Ψ1

∂x

∂

∂y
− ∂Ψ1

∂y

∂

∂x

)(
∇2ψ̂1 − F1(ψ̂1 − ψ̂2)

)
+ J(ψ̂1, Q1) (6.7)

= d2
β

δT
(ψ̂1 − ψ̂2) +

1

Re
∇4ψ̂1,(

σ +
∂Ψ2

∂x

∂

∂y
− ∂Ψ2

∂y

∂

∂x

)(
∇2ψ̂2 + F2(ψ̂1 − ψ̂2)

)
+ J(ψ̂2, Q2) (6.8)

= −d1
β

δT
(ψ̂1 − ψ̂2) +

1

Re
∇4ψ̂2,

with the boundary conditions ψ̂n = ∇ψ̂n · n̂ = 0 applied on all walls. In the equations

above, the notation dn = Hn/H is used.

The perturbation equations reveal a slight difference between the wind and the

thermal forcing – while part of the thermal relaxation forcing consisting of restoring of

the perturbation interface to zero is present, the wind stress is absent all together. In

general, a characteristic of the perturbation equations is that the external forces that

drive the equilibrium solution do not appear in them. They influence the perturbation

evolution only indirectly, by setting the background potential vorticity gradients and

providing the energy on which the perturbations could eventually grow. The thermal

relaxation forcing is special in the sense that it is determined from internal dynamics,

and not prescribed externally like the wind stress. It influences thus the perturbation

dynamics. Nonetheless, it acts only as an additional damping and does not drive the

perturbation flow.

From a mathematical point of view, equations (6.7) and (6.8) when discretized

form a generalized eigenvalue problem of the form Aψ̂ = σBψ̂. The possible dif-

ferent perturbation amplitudes ψ̂ = {ψ̂1, ψ̂2} are given by the set of eigenvectors of

this problem, while their growth rates σ, by the corresponding eigenvalues. When

solving the eigenvalue problem we are interested in finding only the most unstable

eigenmodes, i.e the ones with the largest real growth rates. The threshold of linear

stability of the circulation to a given perturbation is given by the value of the control

parameter (the Reynolds number) for which its eigenvalue crosses the real axis. In
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the calculations presented next, our goal is to determine the first few perturbations to

which the flow becomes unstable and to examine their spatial and temporal structure.

Note that because of the symmetry properties of the QG equations, the solutions

of the perturbations equations (6.7) and (6.8) come in pairs. If {ψ̂1, ψ̂2} is a solution

for a growth rate σ = σr + iσi, then {ψ̂∗2, ψ̂∗1} is a solution as well, but for a growth

rate σ∗ = σr − iσi, where the star denotes complex conjugation. Thus, the oscil-

latory perturbation solutions come in pairs leading to an eigenvalue spectrum that

is symmetric with respect to the imaginary axis. When examining the oscillatory

perturbations it is enough therefore to find only one of them.

6.2.3 Perturbation energy equations

A useful tool for analyzing the destabilizing perturbations that can give us an insight

into their origin is the perturbation energy budget. The total perturbation energy

integrated over the whole basin is given in terms of the complex amplitudes ψ̂n by

(Pedlosky, 1987)

E =
1

2

∫∫
d1|∇ψ̂1|2 + d2|∇ψ̂2|2 + d1d2F |ψ̂1 − ψ̂2|2. (6.9)

The perturbation energy is equal to the sum of the kinetic energy by density layers and

the potential energy associated with the interface displacement for the perturbation

flow.

An equation for the evolution of the perturbation energy averaged over one os-

cillation period can be obtained if the perturbation equations (6.7) and (6.8) are

multiplied by respectively d1ψ̂
∗
1 and d2ψ̂

∗
2, added together and integrated over the

area of the basin. The final result after performing these operations is given below,

with a more detailed derivation provided in Appendix D,
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σrE =

∫∫
d1ψ̂

∗
1J(Ψ1,∇2ψ̂1)︸ ︷︷ ︸
BT1

+

∫∫
d2ψ̂

∗
2J(Ψ2,∇2ψ̂2)︸ ︷︷ ︸
BT2

(6.10)

+

∫∫
d1d2F

[
ψ̂∗1J(Ψ1, ψ̂2 − ψ̂1) + ψ̂∗2J(Ψ2, ψ̂1 − ψ̂2)

]
︸ ︷︷ ︸

BC

+

∫∫
d1ψ̂

∗
1J(ψ̂1, Q1) + d2ψ̂

∗
2J(ψ̂2, Q2)

−
∫∫

d1d2
β

δT
|ψ̂1 − ψ̂2|2 +

d1

Re
ψ̂∗1∇4ψ̂1 +

d2

Re
ψ̂∗2∇4ψ̂2︸ ︷︷ ︸

dissipation

.

When writing this equation, it is understood that the real part of the right-hand side

is taken.

For an unstable perturbation, the growth rate σr and thus the rate of change of

the perturbation energy σrE over an oscillation period are positive, with the different

sources and sinks sustaining the growth listed in the right-hand side of the equation.

The first three integrals, denoted by BTn and BC, are associated with the advection

by the equilibrium flow Ψn of the perturbation relative and stretching vorticities for

the two density layers. They represent the possible sources of perturbation energy and

correspond respectively to barotropic and baroclinic type of instability of the flow.

The next integral involving the advection by the perturbation flow of the equilibrium

potential vorticity Qn vanishes because of the no-normal flow boundary conditions

and thus does not contribute to the perturbation energy budget. Finally, there is

also a sink of perturbation energy due to the lateral diffusion of relative vorticity

and eventually, in the case of a thermally-forced ocean, due to the relaxation of the

interface.

By applying the divergence theorem and using the boundary conditions it can be

shown that the source terms BTn and BC can be rewritten equivalently as
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BTn =

∫∫
dnψ̂

∗
nJ(Ψn,∇2ψ̂n) (6.11)

=

∫∫
dn
∂ψ̂∗n
∂xi

∂ψ̂n
∂xj

∂Un,j
∂xi

=

∫∫
dn

∣∣∣∣∣∂ψ̂n∂x

∣∣∣∣∣
2
∂Un
∂x

+
∂ψ̂∗n
∂x

∂ψ̂n
∂y

(
∂Vn
∂x

+
∂Un
∂y

)
+

∣∣∣∣∣∂ψ̂n∂y
∣∣∣∣∣
2
∂Vn
∂y

 ,
BC =

∫∫
d1d2F

[
ψ̂∗1J(Ψ1, ψ̂2 − ψ̂1) + ψ̂∗2J(Ψ2, ψ̂1 − ψ̂2)

]
(6.12)

=

∫∫
d1d2Fψ̂

∗
1J(Ψ1 −Ψ2, ψ̂2)

=

∫∫
d1d2F

[
ψ̂∗1
∂ψ̂2

∂x
(U1 − U2) + ψ̂∗1

∂ψ̂2

∂y
(V1 − V2)

]
,

where Un = −∂Ψn/∂y and Vn = ∂Ψn/∂x represent the equilibrium state velocities.

The barotropic energy conversion term is proportional thus to the horizontal shear

of the equilibrium velocity while the baroclinic conversion term, to the vertical shear.

Determining which one of these conversion terms is positive for a specific perturbation,

allows us to qualify the instability mechanism responsible for the growth as either

barotropic, baroclinic or mixed barotropic-baroclinic.

6.2.4 Numerical methods

For all calculations presented in this chapter the QG equations are solved using a con-

tinuation code as in Dijkstra and Katsman (1997). This means that the equilibrium

solutions are determined not through time-stepping but directly using a Newton type

solver and an arc-length continuation algorithm that allows stationary solutions to be

followed when a control parameter is varied. The stability of the equilibrium solution

is then computed by solving the generalized eigenvalue problem defined by equations

(6.7) and (6.8). The details of the numerical methods used in the continuation code

can be found in Dijkstra et al. (1995).

The equations are solved on a non-equidistant grid with size 65× 65, as shown in
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Figure 6-1: a): Stretched grid used in the continuation code. b) and c): Grid resolu-
tion in the meridional and the zonal directions for a square basin of size L = 1000 km.

Figure 6-1. The stretched grid is advantageous since it provides finer resolution in the

parts of the basin where strong solution gradients are expected, while simultaneously

it limits the size of the discretized problem. For a square basin of width L = 1000 km

the zonal resolution varies from 2.4 km in the western boundary layer to 32.4 km in

the eastern part of the basin. The meridional resolution is 13.6 km at midlatitude

and increases to 17.4 km next to the southern and northern walls.

For all calculations, the variation of the forcing term with latitude, be it thermal

FT (y) or wind Fw(y), is described by a sine function, FT (y) = Fw(y) = − sin(2πy).

6.3 Stability of a thermally-forced double-gyre flow

One of the main goals of this chapter is to examine the onset of time-dependence in a

thermally-forced ocean. In order to do that we have chosen a model configuration very

similar to the one used in Chapter 4, where the steady thermally-forced circulation

was analyzed. The values of all dimensional and nondimensional parameters used in

the stability calculations are listed in Table 6.1. The one difference from the Chapter

4 configuration is that although an ocean of the same total depth H = 3000m is
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considered, the upper layer is taken slightly deeper, H1 = 860m instead of H1 =

500m. This is done in order to have a value for the ratio δ12 = H1/H2 that matches

the one used in Dijkstra and Katsman (1997) for comparison with their results.

We have performed calculations for two different values of the Ω parameter or

equivalently the Froude number F . Varying the Ω parameter can be thought as vary-

ing the stratification of the ocean while keeping all other nondimensional parameters

the same. Decreasing the stratification leads to smaller internal deformation radius

and slower propagating long Rossby waves. This translates into a larger value for the

Ω parameter, which is equal to the ratio of the flow speed to that of the long internal

Rossby waves, Ω = U/β0R
2
d.

In Figure 6-2 the barotropic circulation overlaid with the geostrophic contours

φ̂ = y+Ωφ is plotted for the two values Ω = 1.2 and Ω = 0.3. In both cases, the same

low Reynolds number Re = 12 is used resulting into a viscous, steady circulation. As

expected for a thermally-forced ocean, the magnitude of the barotropic flow is very

weak with its spatial pattern nearly identical for both values of the Ω parameter.

What changes between the two calculations more significantly is the geometry of the

geostrophic contours. For Ω = 1.2 the Rossby waves are slow enough, so that even

the weak barotropic flow generated in a thermally-forced ocean manages to disturb

their propagation, as evident from the distorted geostrophic contours in the western

side of the basin. For Ω = 0.3 the Rossby waves are too fast and the geostrophic

contours are nearly latitude lines.

Although the circulation in the low Reynolds limit looks similar for both values

of Ω, its stability properties are quite different. In order to determine the threshold

for instability we have followed the equilibrium solution for each value of Ω as the

Reynolds number is increased. In Figure 6-3 the maximum of the baroclinic stream-

function, which is used as a norm of the solution, is plotted as a function of the

Reynolds number. Because in a thermally-forced ocean both layers are in motion,

the advection of stretching vorticity and thus the value of the Ω parameter matters

for determining the equilibrium solution. It can be seen that for a given Reynolds
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L 1000 km f0 1× 10−4 s−1

Dimensional H1 860m β0 2× 10−11m−1s−1

parameters H2 2140m U 0.02ms−1

ρ0 1000 kgm−3

Nondimensional
parameters

δ12 = 0.4 UT = 2
β = 1000 δT = 1

(Uw = 0)

g′, [ms−2] h0, [m] γ, [years] Ω (F )
Rd = 28.8km 1.3× 10−2 294.0 1.90 1.2 (1200)
Rd = 57.7km 5.4× 10−2 73.7 0.48 0.3 (300)

Table 6.1: Dimensional and nondimensional parameters used for the thermally-forced
stability calculations. Two different values of the internal deformation radius are
applied, leading to two different values for the Ω parameter, or alternatively the
Froude number F . The Reynolds number is not specified, since it is used as a control
parameter.

A) B)

Figure 6-2: Barotropic circulation in gray and geostrophic contours φ̂ = y + Ωφ in
black for a thermally-forced ocean with A) Ω = 1.2 (Rd = 28.8 km), and B) Ω = 0.3
(Rd = 57.7 km). In both cases, Re = 12 is used and the resulting circulation is steady.

number, the larger the value of Ω, the smaller is the maximum of the baroclinic

streamfunction. Only in the very low Reynolds number limit, when the nonlinear

advective terms are negligible, is the circulation independent of Ω.

The threshold for instability of the circulation is determined by the point H1

where the first pair of eigenvalues crosses the real axis (Figure 6-3). This happens
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Figure 6-3: Maximum of the baroclinic streamfunction as a function of the Reynolds
number for Ω = 1.2 and Ω = 0.3 in the case of a thermally-forced ocean. Filled
symbols indicate stable equilibrium states, for which all eigenvalues have negative
real parts. Empty symbols indicate unstable equilibrium states, for which there is at
least one eigenvalue with positive real part. The approximative Reynolds numbers at
which an eigenvalue crosses the real axis are shown in triangles and denoted by Hn,
which stands for an instability to an oscillating perturbation (Hopf bifurcation).

at approximatively ReH1 = 15 for the case with Ω = 1.2 (or Rd = 28.8 km) and at

ReH1 = 73 for the case with Ω = 0.3 (or Rd = 57.7 km). Thus, not surprisingly,

the strongly stratified ocean is more stable. In Figure 6-4 the equilibrium solution at

the critical Reynolds number ReH1 , where the flow becomes unstable, is plotted by

vertical modes. The magnitude of both the barotropic and baroclinic streamfunction

are larger for Ω = 0.3 than for Ω = 1.2, given that in the former case the circulation

becomes unstable at a much larger Reynolds number. For the case with Ω = 1.2 the

solution features small barotropic recirculations, which however are strong enough so

that to distort the geostrophic contours and create a small region of closed geostrophic

contours in the western part of the basin. For the case with Ω = 0.3, again a region
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A) B)

Figure 6-4: Barotropic and baroclinic streamfunction for a thermally-forced ocean at
the critical Reynolds number, where the flow becomes unstable for the case with A)
Ω = 1.2 (Rd = 28.8 km), and B) Ω = 0.3 (Rd = 57.7 km). Overlaid in gray on top of
the barotropic streamfunction are the geostrophic contours φ̂ = y+ Ωφ. The value of
the critical Reynolds number is indicated in each plot.

of closed geostrophic contours is present, due to the fact that the solution is more

nonlinear (ReH1 = 73) and the barotropic recirculations are stronger in magnitude.

For both values of the Ω parameter the first two perturbations to which the circu-

lation becomes unstable are oscillating perturbations and are marked with the points

H1 and H2 in Figure 6-3. The properties of the temporal variability that arises be-

cause of these oscillating perturbations are quite different for the two values of Ω and

are analyzed next.
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A B C

Figure 6-5: Equilibrium solution (A) and first two destabilizing perturbations (B and
C) for the case of a thermally-forced ocean with Ω = 1.2. The perturbations are
plotted at time t = 0. Their periods are TH1 ≈ 9months and TH2 ≈ 5months.

6.3.1 Onset of time-dependence for Ω = 1.2

For Ω = 1.2 or the weakly stratified ocean with Rd = 28.8 km, the oscillating per-

turbations H1 and H2 have a localized spatial structure and inter-monthly periods of

respectively TH1 ≈ 9months and TH2 ≈ 5months.

In Figure 6-5 the perturbation streamfunctions at time t = 0 are plotted by density

layers, together with the equilibrium solution at the critical Reynolds number ReH1 ,

where the flow becomes unstable. The equilibrium solution at the critical Reynolds

number for the second perturbation ReH2 is not plotted, since the flow changes little

between ReH1 and ReH2 . Because the perturbations H1 and H2 are oscillating, more

details about their temporal variability are shown in Figures 6-6 and 6-7, where the

perturbation flow is plotted at four different phases during the oscillation. Note

that the amplitude of the perturbation flow is arbitrary. When plotting, we have

made the choice to scale the complex eigenvector so that the maximum of the layer

1 streamfunction at time t = 0 be one, i.e max
(
Real(ψ̂1(x, y, ))

)
= 1.

The first destabilizing perturbation occurring at ReH1 = 15.1 is symmetric in the
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Figure 6-6: Perturbation H1 (TH1 ≈ 9months) for the thermally-forced ocean with
Ω = 1.2 plotted at 4 phases during the oscillation. The contour interval is 0.15 for
both layers.

Figure 6-7: Perturbation H2 (TH2 ≈ 5months) for the thermally-forced ocean with
Ω = 1.2 plotted at 4 phases during the oscillation. The contour interval is 0.15 for
both layers.

meridional direction and aligned with the midlatitude zonal jet. It consists of alter-

nating lows and highs that propagate westward. The mode has a zonal wavelength

of approximatively 300 km. A perturbation with similar structure has been shown
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Perturbation energy budget
Thermal, Ω = 1.2 Thermal, Ω = 0.3
H1 H2 H1 H2

BT1+BT2 -43.37 -1.02 -2.15 30.95 27.57
BC 428.46 109.20 463.51 28.24 18.54

P-REL =
∫∫

dnψ̂
∗
nJ(ψ̂n,∇2Ψn) 0.73 -0.02 -0.08 1.15 1.49

P-STR =
∫∫

αnψ̂
∗
nJ(ψ̂n,Ψ1 −Ψ2) 8.25 -0.15 -0.67 0.31 0.25

P-BETA =
∫∫

dnψ̂
∗
nJ(ψ̂n, βy) 4.16 0.67 2.82 2.42 1.45

DISS =
∫∫

dn
Re

ψ̂∗n∇4ψ̂n -360.55 -103.98 -446.99 -58.52 -46.20

REST =
∫∫

d1d2
β

δT
|ψ̂1 − ψ̂2|2 -36.67 -3.70 -15.43 -3.55 -2.09

σrE 1.00 1.00 1.00 1.00 1.00

Table 6.2: Perturbation energy budget integrated over the basin for the case of a
thermally-forced ocean. All integrals are as described in Eq.(6.10) with summation
over the two layers assumed, when applicable. The short notation αn = (−1)nd1d2F
is used in the definition of the P-STR term. Since the amplitude of the perturbation
is arbitrary, all terms have been rescaled so that σrE = 1. The three integrals P-REL,
P-STR, P-BETA are zero because of the no-normal flow boundary conditions. The
source terms sustaining the growth are shown in bold.

to be the first unstable eigenmode in the case of a wind-driven double-gyre flow as

well, except that in the wind-driven case the mode propagates eastward (Dijkstra and

Katsman, 1997). When added to the equilibrium solution, the mode causes the free

zonal jet to meander. The period of the temporal variability is TH1 ≈ 9months.

At the point H2, not one but actually two pairs of eigenvalues cross the real axis.

Since their corresponding eigenvectors have very similar spatial structures and nearly

identical periods, only one is shown in Figures 6-5 and 6-7. These oscillating pertur-

bations are confined to the zonal boundary layers along the southern and northern

walls. They consist of cells of opposite direction motion propagating westward. The

zonal wavelength of the perturbations is again on the order of 300 km. When added

to the equilibrium solution, they lead to oscillation of the zonal boundary layers with

period TH2 ≈ 5months.

Examining the integrated energy budget for these perturbations can help us iden-
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A B C

Figure 6-8: Equilibrium solution (A) and first two destabilizing perturbations (B and
C) for the case of a thermally-forced ocean with Ω = 0.3. The perturbations are
plotted at time t = 0. Their periods are TH1 ≈ 54.0 days and TH2 ≈ 53.6 days.

tify the instability process responsible for their growth. The details of the integrated

perturbation energy budget are shown in Table 6.2. For all modes, from the two pos-

sible perturbation energy sources only the baroclinic conversion term integrated over

the basin is positive, while the barotropic conversion term as well as the dissipation

are both negative. Thus, in the case of Ω = 1.2 or the weakly stratified ocean with

Rd = 28.8 km, the oscillating perturbations are generated by a baroclinic instability

of the flow.

6.3.2 Onset of time-dependence for Ω = 0.3

Different type of temporal variability appears in the case of a thermally-forced ocean

with Ω = 0.3, or the strongly stratified ocean with Rd = 57.7 km. In this case, the

oscillating perturbations H1 and H2 have a basin-scale spatial structure and shorter

periods of respectively TH1 ≈ 54.0 days and TH2 ≈ 53.6 days, i.e slightly less than 2

months.

In Figure 6-8, the first two oscillating perturbations at time t = 0, together with
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Figure 6-9: Perturbation H1 (TH1 ≈ 54.0 days) for the thermally-forced ocean with
Ω = 0.3 plotted at 4 phases during the oscillation. The contour interval is 0.15 for
both vertical modes.

Figure 6-10: Perturbation H2 (TH2 ≈ 53.6 days) for the thermally-forced ocean with
Ω = 0.3 plotted at 4 phases during the oscillation. The contour interval is 0.15 for
both vertical modes.

the equilibrium solution at the critical Reynolds number ReH1 are plotted. Both

points H1 and H2 correspond in this case to the crossing of the real axis by a single

pair of eigenvalues. In order to underline the different nature of the temporal vari-

166



ability generated by these eigenmodes, we have plotted in Figures 6-9 and 6-10 the

perturbation flow by vertical modes, and not by density layers, at 4 different phases

during the oscillation. For both eigenmodes, the barotropic part of the perturbation

flow bears similarity to a barotropic Rossby basin mode. If the complex eigenvector

is plotted instead in the form of a spatial phase and a spatial amplitude (not shown

here), it can be seen that the perturbations have a clear westward phase propagation

and a spatial amplitude consistent with a 1× 2 and a 2× 1 Rossby basin mode, for

the H1 and H2 perturbation, respectively. The theoretical period for a 1× 2 or 2× 1

Rossby basin mode in a basin of size L = 1000 km and planetary vorticity gradient

β0 = 2× 10−111/ms is

T12 =
4π2

β0L

√
n2 +m2 ≈ 51.2 days,

which is close to the period of the two perturbations.

Therefore, in the case with Ω = 0.3 the thermally-forced double-gyre flow becomes

unstable to perturbations that are similar to barotropic Rossby basin modes. They

are not exactly basin modes since their periods do not quite match those of the

theoretical basin modes and the pattern of variability is somewhat distorted in the

western part of the basin where the advective terms become important. The baroclinic

part of the variability in Figures 6-9 and 6-10 represents simply the advection by the

corresponding barotropic perturbation flow of the equilibrium interface height. This is

similar to what was found in the strongly nonlinear regime of circulation characterized

by large amplitude basin modes presented in the previous chapter.

There are some distinct differences concerning the source of the instability as well.

The details of the integrated perturbation energy budget for the case with Ω = 0.3

is shown in Table 6.2. Unlike the case with Ω = 1.2, both the barotropic and the

baroclinic energy conversion terms integrated over the basin are positive. Thus, in

the case of Ω = 0.3 or the strongly stratified ocean with Rd = 57.7 km, the oscillating

perturbations arise because of a mixed barotropic-baroclinic instability of the flow.
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6.3.3 Hypothesis

The stability analysis of the thermally-forced double-gyre flow showed that the type

of temporal variability that arises and the instability that leads to it, depend on the

value of the Ω parameter, where Ω is equal to the ratio of the flow speed U to the

speed of a long internal Rossby wave β0R
2
d. When all other parameter are fixed, for

large values of Ω the most unstable perturbations have a spatially localized structure,

inter-monthly periods and are generated by a baroclinic instability of the equilibrium

state. For small values of Ω, on the other hand, the destabilizing perturbations are due

to a mixed barotropic-baroclinic instability and resemble closely barotropic Rossby

basin modes – they are characterized with a basin-scale spatial structure, westward

phase propagation and monthly periods. A result that we did not show here, is that

even below the critical Reynolds number when the circulation is linearly stable, there

is again the same distinction between the most unstable eigenmodes as a function

of Ω. For large values of Ω, the least stable eigenmode (i.e that decays the slowest)

is again a localized, baroclinic type of perturbation, while for small values of Ω, the

least stable eigenmode is a basin mode.

The hypothesis that we would like to put forward is that the type of variability

that appears, or in other words the criterium that determines what is a large and what

is a small value for Ω, is the geometry of the geostrophic contours, φ̂ = y+ Ωφ in the

limit of small Reynolds number. The larger the value for Ω, the easier it is to get a

region of closed geostrophic contours, isolated from the eastern wall. Our hypothesis

is that when such a region of closed geostrophic contours is present, the onset of

time-dependence happens through modes that are spatially localized, either to the

zonal jet region or to the zonal boundary layers. If on the other hand the geostrophic

contours are blocked and only slightly distorted, then the temporal variability that

arises resembles barotropic Rossby basin modes. From the calculations performed so

far, it seems that it is enough to determine the geometry of geostrophic contour in

the nearly linear limit (not at the critical Reynolds number) in order to be able to

predict the type of time-dependence to appear in the system.
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In order to test this hypothesis, we will examine next the onset of time-dependence

in a wind-driven double-gyre circulation.

6.4 Stability of a wind-forced double-gyre flow

Because in a thermally-forced ocean the barotropic circulation is generated through

the nonlinear coupling to the baroclinic circulation, and there is no barotropic cir-

culation at all in the linear limit, it is difficult to predict a priori for what values of

Ω closed geostrophic contours are expected. In order to test our hypothesis that the

type of temporal variability that arises in a system depends on the geometry of the

geostrophic contours we will examine in this section the onset of time-dependence in

a wind-forced double-gyre flow. It is not expected that the type of forcing that drives

the equilibrium state changes the general stability properties of the circulation. We

anticipate thus to find a similar dependence on Ω of the instabilities that occurs in

terms of their spatial characteristics, oscillation periods and energy sources, as the

one determined for the thermally-forced double-gyre flow. The stability of the wind-

driven double-gyre circulation has been examined previously on several occasions

(Dijkstra and Katsman, 1997; Nauw et al., 2004; Primeau, 1998; Simonnet, 2005). In

particular, Dijkstra and Katsman (1997) study the onset of temporal variability in

a 2-layer wind-driven QG model identical to ours. However, the specific question of

how the circulation stability depends on the Ω parameter, or equivalently the Froude

number F , has not been fully examined in any of the previous studies.

6.4.1 Model setup

When the ocean is driven by wind forcing, we can determine the barotropic circulation

in the low Reynolds number limit from a simple Sverdrup balance

β
∂φ

∂x
=
H1

H
UwFw(y). (6.13)
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L 1000 km f0 1× 10−4 s−1

Dimensional H1 860m β0 2× 10−11m−1s−1

parameters H2 2140m U 0.02ms−1

ρ0 1000 kgm−3 τ0 0.344Nm−2

Nondimensional
parameters

δ12 = 0.4 UT = 0
β = 1000 δT = 0

(Uw = β)

g′, [ms−2] Ω (F )
Rd = 28.8km 1.3× 10−2 1.2 (1200)
Rd = 57.7km 5.4× 10−2 0.3 (300)

Table 6.3: Dimensional and nondimensional parameters used for the wind-forced
stability calculations. Two different values of the internal deformation radius are
applied, leading to two different values for the Ω parameter, or alternatively the
Froude number F . The Reynolds number is not specified, since it is used as a control
parameter.

A) B)

Figure 6-11: Barotropic circulation in gray and geostrophic contours φ̂ = y + Ωφ
in black for a wind-forced ocean with A) Ω = 1.2 (Rd = 28.8 km), and B) Ω = 0.3
(Rd = 57.7 km). In both cases, Re = 12 is used and the resulting circulation is steady.

Based on this linear estimate for the vertically integrated circulation φ, it is pos-

sible to determine a critical value for the parameter Ω = Ωc, above which closed

geostrophic contours are expected. It can be shown that this value is

Ωc =
1

π

H

H1

=
1 + δ12

πδ12

, (6.14)
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which, for the geometry of our model where δ12 = 0.4, leads to Ωc = 1.1.

Guided by this value, we have chosen to perform stability calculations on two

wind-driven configurations – one with Ω = 1.2 > Ωc, and one with Ω = 0.3 < Ωc.

These are, not by coincidence, the same values as the ones used for the thermally-

forced ocean. Actually, all nondimensional parameters have been kept the same as

in the thermally-foced stability calculations in order to be able to draw comparisons

between the two cases. The full list of parameters used in the wind-driven calculations

are listed in Table 6.3. Note also that the configuration with Ω = 1.2 or F = 1200

corresponds to the set of parameters used in Dijkstra and Katsman (1997). The

only difference from their model setup is the applied boundary conditions – they use

free-slip conditions on the northern and southern walls and no-slip conditions on the

eastern and western walls, while we use no-slip conditions everywhere.

In Figure 6-11 the barotropic streamfunction at Reynolds number Re = 12,

where the circulation is steady for both values of Ω, is plotted and overlaid with the

geostrophic contours, φ̂ = y+ Ωφ. Note that for a wind-driven ocean the equilibrium

solutions are independent of Ω, i.e the barotropic streamfunctions plotted in Figure

6-11 A) and B) are identical. The reason for this is that the wind stress sets in motion

only the upper layer, while the lower layer remains motionless, i.e Ψ2 = 0. Conse-

quently, the advection of stretching vorticity, which is proportional to ΩJ(Ψ1,Ψ2),

is identically zero. Given that this is the only term through which the Ω parameter

participates in the equations, the stationary solutions of a wind-driven model are

independent of the value of Ω. The form of the geostrophic contours however, as well

as the stability of the equilibrium solutions depend on Ω.

In Figure 6-11, it can be seen that for the same barotropic circulation, the

geostrophic contours are all blocked and nearly zonal for Ω = 0.3 (or Rd = 57.7 km)

when the Rossby waves are fast, while there is a distinct region of closed geostrophic

contours for Ω = 1.2 (or Rd = 28.8 km) when the Rossby waves are slow enough so

that their westward propagation can be arrested by the barotropic flow.

In order to determine the threshold for instability of the circulation we have fol-
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Figure 6-12: Maximum of the baroclinic streamfunction as a function of the Reynolds
number for Ω = 1.2 (left) and Ω = 0.3 (right) in the case of a wind-forced ocean. Filled
symbols indicate stable equilibrium states, for which all eigenvalues have negative
real parts. Empty symbols indicate unstable equilibrium states, for which there is at
least one eigenvalue with positive real part. The approximative Reynolds numbers at
which an eigenvalue crosses the real axis are shown either in triangles and denoted by
Hn, which stands for an instability to an oscillating perturbation (Hopf bifurcation),
or in squares and denoted by Pn, which stands for an instability to a stationary
perturbation (Pitchfork bifurcation).

lowed the stationary solutions when the Reynolds number is increased. In Figure

6-12 the norm of the equilibrium solution, as represented by the the maximum of the

baroclinic streamfunction, is plotted as a function of the Reynolds number. In the

wind-driven case, the curves for Ω = 1.2 and Ω = 0.3 are identical but the critical

Reynolds numbers are different. The circulation corresponding to Ω = 1.2, which

can be thought of as the weakly stratified configuration, becomes unstable at a lower

Reynolds number: ReH1 = 19.3 for Ω = 1.2, compared to ReP1 = 30.4 for Ω = 0.3.

In the later case, the circulation becomes actually first unstable to a stationary per-

turbation, denoted by P1. That means that the instability does not lead to temporal
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A) B)

Figure 6-13: Barotropic and baroclinic streamfunction for a wind-forced ocean at
the critical Reynolds number, where the flow becomes unstable for the case with A)
Ω = 1.2 (Rd = 28.8 km), and B) Ω = 0.3 (Rd = 57.7 km). Overlaid in gray on top of
the barotropic streamfunction are the geostrophic contours φ̂ = y+ Ωφ. The value of
the critical Reynolds number is indicated in each plot.

variability but instead multiple stationary solutions are created. The circulation be-

comes unstable to an oscillatory perturbation at a slightly larger Reynolds number,

ReH1 = 33.3.

In Figure 6-13 the pattern of the circulation by vertical modes at the critical

Reynolds number for both values of Ω is plotted. Given that the circulation for

Ω = 0.3 destabilizes at a slightly larger Reynolds number and is thus more nonlinear,

the streamfunction is of larger magnitude and the recirculations, slightly larger in size.

Despite that, a distinct region of closed geostrophic contours is evident for Ω = 1.2,

while they are mostly zonal with only a few closed contours for Ω = 0.3. The closed

contours in the later case form because of the nonlinear advection – they were absent

in the linear limit given that Ω = 0.3 < Ωc (Figure 6-11). Therefore, at least in what
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A B C

Figure 6-14: Equilibrium solution (A) and first two destabilizing perturbations (B
and C) for the case of a wind-forced ocean with Ω = 1.2. The perturbations are
plotted at time t = 0. Their periods are TH1 ≈ 3.8months and TH2 ≈ 6.4months.

concerns the threshold of instability and the geometry of the geostrophic contours

at the critical Reynolds number, the wind-forced circulation behaves similarly to the

thermally-forced one. The one difference that we found so far is the presence of the

stationary instability P1 for the Ω = 1.2 wind-driven case.

What is of further interest to us in order to test our hypothesis is to examine the

properties of the destabilizing oscillatory perturbations.

6.4.2 Onset of time-dependence for Ω = 1.2

The wind-driven case with Ω = 1.2 has been previously studied by Dijkstra and

Katsman (1997). Despite the slight differences in the applied boundary conditions

we essentially reproduce part of their results. In Figure 6-14 the equilibrium solution

at the critical Reynolds number together with the first two destabilizing perturbations

are plotted by density layers. The perturbations are shown only at time t = 0. The

first destabilizing perturbation with critical Reynolds number ReH1 = 19.3 is very

similar to the one determined for the thermally-forced ocean with Ω = 1.2. It is
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Perturbation energy budget
Wind, Ω = 1.2 Wind, Ω = 0.3

H1 H2 H1 H2 P1

BT1+BT2 -1059.13 -7.98 25.20 1.81 351.71
BC 3642.50 43.68 107.97 12.78 -3.75

P-REL =
∫∫

dnψ̂
∗
nJ(ψ̂n,∇2Ψn) -9.79 0.05 0.36 0.05 4.29

P-STR =
∫∫

αnψ̂
∗
nJ(ψ̂n,Ψ1 −Ψ2) -7.90 0.33 0.26 0.02 3.65

P-BETA =
∫∫

dnψ̂
∗
nJ(ψ̂n, βy) 18.42 0.19 2.69 0.22 2.58

DISS =
∫∫

dn
Re

ψ̂∗n∇4ψ̂n -2583.09 -35.28 -135.48 -13.87 -357.47

REST =
∫∫

d1d2
β

δT
|ψ̂1 − ψ̂2|2 – – – – –

σrE 1.00 1.00 1.00 1.00 1.00

Table 6.4: Perturbation energy budget integrated over the basin for the case of a
wind-forced ocean. All integrals are as described in Eq.(6.10) with summation over
the two layers assumed, when applicable. The short notation αn = (−1)nd1d2F is
used in the definition of the P-STR term. Since the amplitude of the perturbation is
arbitrary, all terms have been rescaled so that σrE = 1. The three integrals P-REL,
P-STR, P-BETA are zero because of the no-normal flow boundary conditions. The
source terms sustaining the growth are shown in bold.

confined spatially to the midlatitude jet region and consists of alternating lows and

highs propagating eastward. It causes meandering of the jet with period TH1 =

3.8months.

The second destabilizing perturbation with critical Reynolds number ReH2 = 23.3

is different from the ones found in the thermally-forced ocean. It has however spatially

localized structure and leads to temporal variability at inter-monthly periods, which is

consistent with our hypothesis. The perturbation streamfunction is antisymmetric in

the meridional direction and rotates anticlockwise/clockwise in the northern/southern

half-basin (not shown here). It causes weakening and strengthening of the midlatitude

jet and recirculations with period TH2 = 6.4months.

The integrated perturbation energy budget for both modes is shown in Table 6.4.

We find that for Ω = 1.2, similarly to the thermally-forced case, the first destabilizing

perturbations are generated by a baroclinic instability of the equilibrium circulation.
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A B C

Figure 6-15: Equilibrium solution (A) and first two oscillatory perturbations (B and
C) for the case of a wind-forced ocean with Ω = 0.3. The perturbations are plotted
at time t = 0. Their periods are TH1 ≈ 53.5 days and TH2 ≈ 49.5 days.

6.4.3 Onset of time-dependence for Ω = 0.3

As already noticed, the wind-driven circulation with Ω = 0.3 becomes first unstable at

ReP1 = 30.4 to a stationary perturbation. However, because we are interested in the

onset of time-dependence, we will look more closely at the next two perturbations to

which the flow becomes unstable, which are both oscillatory. Their critical Reynolds

numbers are ReH1 = 33.3 and ReH2 = 38.1, respectively.

In Figure 6-15 the equilibrium solution at the critical Reynolds number is plotted

together with the first two oscillatory perturbations at time t = 0. They both resemble

very much the destabilizing perturbations for the thermally-forced case with Ω = 0.3.

The perturbations H1 and H2 have a basin-scale spatial structure reminiscent of a

1× 2 and a 2× 1 barotropic Rossby basin mode, respectively. Their periods are close

to the theoretical period for a basin mode of this order, T1×2 = 51.2 days. Similarly

to the thermally-forced case, there is some distortion of the basin mode pattern in

the western part of the basin. An integrated perturbation energy budget shows that

both oscillatory modes in the wind-driven case with Ω = 0.3 are generated by a mixed
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Figure 6-16: Streamfunction for the stationary perturbation P1 to which the wind-
forced ocean with Ω = 0.3 becomes linearly unstable at ReP1 = 30.4. Note that the
amplitude in the lower layer is essentially zero.

barotropic-baroclinic instability of the equilibrium state.

For completeness, the stationary perturbation P1 is plotted as well in Figure 6-

16. Because this is a stationary perturbation, it is confined to the upper layer only

(the amplitude in the lower layer is essentially zero). The streamfunction pattern

is symmetric in the meridional direction. This instability causes the antisymmetric

double-gyre flow state to become unstable while two other non-symmetric stable

states are created – one with the jet deflected north, and one with the jet deflected

south (Dijkstra and Katsman, 1997). Unlike all oscillatory perturbations examined

in this chapter, the stationary perturbation is due to a barotropic instability of the

equilibrium state, as can be seen from the integrated energy budget in Table 6.4.

6.5 Discussion and conclusions

Our main goal in this chapter was to perform a linear stability analysis of a thermally-

forced 2-layer QG model in order to determine how the circulation transitions from

steady to time-dependent when the Reynolds number is increased. We observed an

interesting dependence of the type of instabilities that occur on the nondimensional

parameter Ω, defined as the ratio of the flow speed U to the the speed of a long internal
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Rossby wave β0R
2
d. We verified that the same kind of dependence can be found also in

a wind-forced 2-layer QG model, demonstrating that this is not a forcing-dependent

feature.

The stability calculations showed that for large values of the Ω parameter, which

can be thought of as a case of a weakly stratified ocean with a small deformation

radius, temporal variability that is spatially localized and has inter-monthly periods

arises. By spatially localized we mean that the perturbation velocities are confined

to the midlatitude jet and recirculation regions, or eventually to the zonal boundary

layers next to northern and southern walls for a thermally-forced ocean. An energy

analysis showed that in the case of large Ω the perturbations are generated through

baroclinic instabilities of the basis state.

For small values of the Ω parameter, which can be thought of as a case of more

strongly stratified ocean with a larger deformation radius, the circulation becomes

instead unstable to perturbations that bear similarity to barotropic Rossby basin

modes. Variability that has basin-scale spatial structure, westward phase propagation

and monthly periods is generated. For both the wind- and the thermally-forced ocean

we determined that the first two destabilizing oscillatory perturbations resemble the

1×2 and the 2×1 Rossby basin mode, respectively, but it is not clear if this is always

the case. An energy analysis showed that in the case of small Ω the perturbations

are generated through mixed barotropic-baroclinic instabilities of the basic state.

It is not surprising that the type of instability occurring in the model depends on

Ω. In particular, larger values of Ω, if all other nondimensional parameters are fixed,

signifies a smaller internal deformation radius and thus a flow that is more susceptible

to baroclinic type of instabilities, which is essentially what we have observed. The

hypothesis that we propose goes a little further and suggests that the type of tem-

poral variability that arises in the model depends actually on the geometry (blocked

or closed) of the geostrophic contours φ̂, which on their part depend on the Ω pa-

rameter, since by definition φ̂ = y + Ωφ where φ is the barotropic streamfunction.

For configurations with blocked geostrophic contours, spatially localized baroclinic
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variability is preferred, while for configurations with nearly all geostrophic contours

blocked barotropic basin mode-like variability appears instead.

For a wind-forced model by using the linear Sverdrup balance one can derive a crit-

ical value for Ω such that when Ω > Ωc closed geostrophic contours are formed, while

when Ω < Ωc all contours are blocked, at least in the linear limit. For a thermally-

forced model there is no clear way to predict and distinguish between configurations

with closed and blocked geostrophic contours. Following the stationary solution to

a low Reynolds number regime, as with the wind-driven model, is not really helpful

since for a thermally-forced ocean the barotropic circulation vanishes in the linear

limit.

Although all stability calculations presented in this chapter were consistent with

our hypothesis, more calculations needs to be done in order establish if the suggested

link between the geometry of the geostrophic contours and the type of temporal

variability that arises really holds. In particular, it will be useful to trace in the

Ω−Re parameter space the critical curve for onset of a baroclinic type of instability

and onset of a basin mode-like type of instability and verify whether the switch

between the two is related to the closing of the geostrophic contours. It will be useful

also to establish a criterion for a thermally-forced ocean that distinguishes between

configurations with closed and blocked geostrophic contours.

If our hypothesis is true then it can have some interesting implications for the real

ocean. In general, the geostrophic contours are regarded as a guideline in order to

determine where eddy-driven motion in the deep, unventilated layers can be expected.

It is possible however that the geometry of the geostrophic contours may also contain

information about the type of variability to be expected from a system. If a clear,

distinct region of closed geostrophic contours is present, then maybe basin mode-like

variability is not to be expected.
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Chapter 7

Discussion and conclusions

In this thesis we presented work done on two different problems both involving the

stability of large-scale oceanic flows and the importance of non-local effects. We have

used the term ”non-local effects” to designate phenomena such as radiation of waves

or excitation of basin oscillations, generated by a local instability of the flow but that

act to expand the influence of the instability to a much broader region than its origin.

7.1 Radiating instabilities of meridional currents

The first problem concerned the existence of radiating instabilities for meridional

boundary currents. A current is said to be radiatingly unstable if the wavenumbers

and frequencies of the perturbations generated by a local instability of the flow are

such that they match those of the freely propagating Rossby waves in the ocean in-

terior (McIntyre and Weissman, 1978). In this case, Rossby waves are excited by

the local instability that carry energy away from the source (Talley, 1983a; Pierre-

humbert, 1984). We used an idealized two-layer quasi-geostrophic configuration with

piecewise constant velocity profile in order to examine the linear stability of a merid-

ional boundary current on the β-plane adjacent to a vast (semi-infinite) motionless

ocean interior. We were interested, in particular, in comparing the stability of eastern

and western boundary currents, a topic not explored before.
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First of all, our findings made us conclude that meridional currents are generally

characterized by radiating instabilities, confirming what was expected from previous

studies of currents containing a meridional velocity component (Fantini and Tung,

1987; Kamenkovich and Pedlosky, 1996). This is unlike zonal jets for which special

conditions, such as baroclinicity or a westward component of the flow, are needed in

order to have radiating instabilities (Talley, 1983a,b). In addition, we found that there

are some significant differences in the stability properties that make eastern bound-

ary currents more interesting from a radiation point of view. More specifically, an

eastern boundary current has a larger number of radiating modes over a wider range

of wavenumbers compared to a western boundary current. The difference between

the radiation properties of eastern and western boundary currents is due at its root

to the Rossby wave dispersion relation which causes short and long Rossby waves to

propagate energy in different zonal directions. Consequently, when unstable, a west-

ern boundary current radiates short Rossby waves characterized by a weak eastward

group velocity, while an eastern boundary current radiates long Rossby waves charac-

terized by a strong westward group velocity. The latter leads to radiating waves with

amplitude envelopes that decay slowly away from the current and makes unstable

eastern boundary currents better suited to act as a source of eddy energy for the

ocean interior.

Radiation of Rossby waves from the coast of the continents, sometimes referred

to as boundary-driven Rossby waves, is not a new concept. Long baroclinic Rossby

waves are excited in the ocean interior in response to variable wind that propagate

west and reflect into shorter eastward propagating waves (Pedlosky, 1987). Long

baroclinic Rossby waves are generated as well on the eastern boundaries of the oceans

by poleward-propagating coastal Kelvin waves resulting from wind variability in the

equatorial region, providing therefore a tropics-extratropics connection (Jacobs et al.,

1994). Our mechanism for wave radiation is different from the previous discussions of

boundary-driven Rossby waves in that it is in response to a locally unstable boundary

current and not a response to a remote variable wind. Also, our stability analysis
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suggests the radiation from the eastern side of the basins of long barotropic Rossby

waves with periods on the order of 100 days or less, while most model studies and

altimetry analyses concentrate on the propagation of baroclinic Rossby waves which

have longer periods (several months to years), or on barotropic variability but in

the western side of the basins (Fu and Qui, 2002; Pierini, 2005). Because of the

short periods, radiated barotropic Rossby waves may not be well resolved by satellite

altimetry data and thus difficult to find.

A second, unanticipated finding concerned the structure of the waves radiated from

the eastern side of a basin. We found that, in general, an unstable eastern boundary

current radiates waves that are characterized by a barotropic vertical structure and

horizontal wavenumbers such that the zonal wavelength is several times larger than

the meridional wavelength. This translates into a velocity field with zonal component

much larger than the meridional component, which would make the radiating waves

appear more like zonal jets, than localized wave packets or eddies, as they propagate

into the ocean interior. The idealized two-layer baroclinic configuration analyzed in

this thesis can be thought of as representing a baroclinic current confined to the

upper ocean above the thermocline. The majority of the eastern boundary currents

are indeed surface intensified and characterized by a baroclinic structure with deep

undercurrent flowing in the opposite direction to the surface flow, e.g. Leeuwin current

(Smith et al., 1991), California current (Centurioni et al., 2008). The widths of the

currents are usually 100km or more leading to nondimensional parameters close to

those that we used in the stability analysis. We determined that nearly barotropic

(over the upper ocean) radiating waves with meridional wavelength on the order of

couple of hundred of kilometers and zonal wavelengths several times larger are to

be expected. The meridional phase speed of the radiated waves is smaller than that

of the current that generates them so eventually they can be arrested by the mean

interior gyre flow and lead to time-mean nearly zonal jet-like features.

It is intriguing that stationary quasi-zonal jet-like features (called also striations)

have been observed in the eastern parts of the oceans (Maximenko et al., 2005; Cen-
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turioni et al., 2008; Ivanov et al., 2009). Similar quasi-zonal jet-like features can be

found also in numerical simulations with high-resolution models, e.g. (Richards et al.,

2006). In particular, in the Pacific ocean off the coast of California and Chile, the

zonal striations can be identified in variety of time-averaged spatially high-pass fil-

tered data sets such as high-resolution mean dynamic ocean topography, sea surface

height, temperature at 100m depth, depth of the thermocline as represented by the

12oC isotherm (Maximenko et al., 2008). The observed striations have a meridional

wavelength of approximatively 400km and extend offshore for thousands of kilometers.

They retain a coherent vertical structure throughout at least 700m. The striations

are oriented nearly zonally with slight tilt in the direction of the mean interior gyre

flow consistent with the idea of a propagating Rossby wave arrested by mean flow.

There is a debate as to the origin of the zonal striations and even questions about

their existence, since they may be just an artifact of time-averaging in the presence

of propagating mesoscale eddies (Schlax and Chelton, 2008). Our findings raise the

possibility that the observed quasi-zonal striations in the eastern parts of the basins

may be due to radiating instabilities of eastern boundary currents. Unlike other

suggested theories for the generation of zonal jet-like features, e.g. (Kamenkovich

et al., 2009), our mechanism does not rely entirely on nonlinear dynamics. Instead it

suggests that the observed zonal jet-like features are due to the propagation of Rossby

waves arrested by the mean interior flow, i.e. linear dynamics. Because an unstable

boundary current is needed to radiate the Rossby waves, the mechanism relies on the

presence of a meridional, or nearly meridional, boundary current and thus could be

applicable only to the formation of zonal jets in the eastern part of the basins. In

order to determine if this is indeed the case however, more works needs to be done,

in particular to determine how the radiated waves are affected by the mean interior

circulation. All results presented in this thesis were from an idealized configuration

using quasi-geostrophic dynamics, constant Rossby wave speed with latitude, zonally

uniform meridional boundary current and a motionless interior ocean. This simplified

model contains just enough dynamics to show that unstable eastern boundary currents
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possess interesting radiating properties. Simulations with more realistic models will

lead to results more directly comparable with observations.

7.2 Thermally-forced ocean

The second problem treated in this thesis concerned the circulation in a thermally-

forced two-layer QG ocean with nonlinear dynamics. The thermal forcing was intro-

duced in the form of a cross-isopycnal flux, parameterized as relaxation of the interface

displacement toward a specified equilibrium profile, similar to the radiative damping

forcing commonly used in atmospheric layer QG models (Held, 2000). In the oceanic

context, this parameterization can be physically interpreted as a representation of the

vertical mixing processes that transfer the surface heat fluxes down the water column

to the thermocline. We have focused thus on the large-ocean circulation driven by

mixing in the thermocline, while ignoring the wind stress.

The thermal forcing projects only on the baroclinic vertical mode. Consequently,

in the linear limit it drives a purely baroclinic circulation (Luyten and Stommel,

1986; Pedlosky and Spall, 2005). However, we showed that taking into consideration

the nonlinear advection of vorticity generates a barotropic circulation through the

advective coupling to the baroclinic part of the flow. In the steady regime, the

barotropic circulation consists of recirculation gyres in the western part of the basin.

The barotropic circulation is weaker than the directly thermally-forced baroclinic

circulation but it is not negligible. It is strong enough for example to arrest the

westward propagation of long baroclinic Rossby waves and create thus regions of

closed geostrophic contours isolated from the eastern wall.

The real ocean is driven at the surface by both wind stress and large-scale buoy-

ancy forcing. For the upper ocean, the wind stress is the main driving force, while

mixing in the thermocline plays only a secondary role. What our idealized QG model

revealed were some properties of the thermally-forced part of the circulation with

implications for the real ocean circulation. First of all, because in the presence of
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nonlinear advection a barotropic circulation can be driven by a purely baroclinic

forcing, such as the cross-isopycnal flux, for a combined wind- and thermally-forced

ocean the wind stress is probably the major but not the only contributor determining

the vertically integrated circulation. Especially in the regions of the recirculations,

where the nonlinearities are significant, the circulation driven by the cross-isopycnal

flux can be important, Second of all, we analyzed the heat budget of our idealized

thermally-forced ocean. In the classical paper by Munk (1966) a vertical heat budget

for the ocean is assumed, where the vertical velocity wi is entirely diabatic, i.e. a bal-

ance between upwelling and downward heat diffusion is assumed. What our simple

model shows is that the cross-isopycnal flux represents well the vertical velocity wi

only in the linear limit. When nonlinear advection becomes important, nonlinearities

and eddies induce a large adiabatic component that dominates the vertical velocity.

The adiabatic component can be as large compared to the cross-isopycnal flux as to

reverse the sign of the vertical velocity wi. Given that in our idealized QG model,

the effects of eddies and nonlinearities are not realistically represented, one can ex-

pect that in the real ocean the adibatic component of the vertical velocity induced

by eddies and nonlinear advection is as important, if not more. This, suggest that a

simple one dimensional heat budget is not likely to hold, and advection and eddies

should be taken into account.

7.3 Baroclinic vis basin-scale instabilities

One of the advantages of using a simple numerical model is that it makes possible to

apply techniques from the theory of dynamical systems to understand the variability

of the circulation. We thus used a continuation code and linear stability analysis

(Dijkstra, 2005) in order to determine the onset of time-dependence in the thermally-

forced ocean.

Because the thermally-forced circulation is predominantly baroclinic, and only a

weak vertically integrated circulation is produced, we were able to uncover an inter-
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esting, possible link between the type of perturbations that lead to time-dependence

of the circulation and the geometry of the geostrophic contours. Furthermore, we con-

firmed that the same possible connection between temporal variability and geostrophic

contours exists for wind-driven double-gyre flows as well. The geostrophic contours φ̂

are defined as φ̂ = y+Ωφ, where φ is the barotropic streamfunction and Ω = U/β0R
2
d,

a nondimensional parameter equal to the ratio of the flow speed to the speed of long

internal Rossby waves. They represent the curves along which information about

the blocking action of the eastern wall is propagated westward in the basin by the

long internal Rossby waves (Rhines and Young, 1982). For a wind-forced ocean they

coincide with the deep layer streamlines, while this is not true for a thermally-forced

ocean.

We found that for large values of Ω, when a region of closed geostrophic contours

tends to form, the circulation becomes unstable to baroclinic type of instabilities with

inter-monthly timescales and is spatially confined to the midlatitude zonal jet or the

zonal boundary layers next to the southern and northern walls. For small values of

Ω, when the geostrophic contours (especially in the low Reynolds number limit) are

mostly blocked, variability resembling barotropic Rossby basin modes arises instead.

It is characterized by basin-scale spatial structure, shorter monthly periods and is

due to a mixed barotropic-baroclinic variability of the circulation.

More calculations need to be done in order to verify our hypothesis that the type of

temporal variability that arises in a system is related to the geometry of its geostrophic

contours. If true, this can have some interesting implications. For example, if a large

region of homogenized potential vorticity is observed in the deep parts of a basin,

indicative of a region of closed geostrophic contours, then maybe localized, baroclinic-

type of variability should be expected for the circulation instead of basin mode-

like variability. Climatological maps of the large-scale potential vorticity field along

isopycnals for the global ocean show that regions of homogenized potential vorticity

are present in the deep waters of the North Pacific and, possibly, in the bottom waters

of the western North Atlantic and North Pacific (O’Dwyer and Williams, 1997). In
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both these basins, localized baroclinic instabilities associated with meandering and

shifts of the free mid-latitude jet and the associated recirculations are the dominant

mode of variability (Dijkstra, 2005).

7.4 Temporal variability dominated by barotropic

basin modes

Finally, we examined the thermally-forced circulation in the strongly nonlinear regime.

It was determined that in this case the system’s variability is dominated by barotropic

Rossby basin modes, unless they are damped by bottom friction. We treated this

regime of circulation as an example of a system whose temporal variability is de-

scribed to a large degree by barotropic basin modes. In other words, we suggest that

the results from this regime are likely to be applicable in a more general context

where the type of forcing that drives the circulation (wind or thermal) is not impor-

tant, but what matters is rather the excitation of barotropic basin-scale oscillations.

We showed that the presence of strong basin mode variability affects significantly

the circulation – it rectifies a multi-gyre time-mean barotropic circulation, it forces

baroclinic variability on similar timescales to those of the dominant basin modes and

it interferes with the eddy-driven recirculations.

Satellite altimetry is useful for the detection of the barotropic variability of the

oceans. For a basin the size of the Atlantic or the Pacific Ocean however the periods of

the barotropic Rossby basin modes are too short (O(15days) or less) to be resolved by

the altimetry data – the Topex/Poseidon has a 20-day Nyquist period, (Le Traon and

Morrow, 2000). However, barotropic oscillations consistent with Rossby basin modes

have been observed in basins semi-enclosed by bathymetry(Warren et al., 2002; Fu

et al., 2001; Weijer et al., 2007a) and marginal seas (Stanev and Rachev, 1999).

These are all examples of smaller in size basins compared to the full Atlantic or

Pacific Ocean basins. Because the frequency of the barotropic basin modes increases

with the basin size (Pedlosky, 1987), the period of the barotropic Rossby modes in

188



these smaller basins is on the order of 25-50 days. This makes them more suitable for

detecting in altimetry data. Marginal seas and semi-enclosed basins represent thus

examples of places in the world ocean where the connection between mean circulation,

mesoscale variability and high-frequency basin modes is worth exploring further with

more appropriate regional models.

One piece missing from the analysis presented in this thesis concerning the basin

mode-dominated variability, but that it would be useful to provide, is to examine the

Lagrangian dynamics of the circulation. Because the multi-gyre time-mean circula-

tion present in the strongly nonlinear regime results from a wave phenomena (the

basin modes), it is not clear whether the fluid particles will follow the time-mean

streamlines.
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Appendix A

Method of solution for the

radiating instability problem

A.1 The barotropic case

The linear stability equation (2.3) to be solved is a constant coefficient ODE since

the basic state velocity is constant in the two regions, boundary current |x| < x0 and

far field |x| > x0. The solution in the boundary current region, where V is a non-zero

constant, is

φin(x) =
2∑
j=1

Bj e
ikjx, (A.1)

where the zonal wavenumbers kj are the two roots of the 2nd order polynomial

k2(V − c)− β

m
k +m2(V − c) = 0.

The solution in the far field region is a particular case with V = 0 of the boundary

current solution. The two roots of the 2nd order polynomial in this case are

k±bt =
β

2cm

[
−1±

√
1− 4c2m4

β2

]
.

191



Only one of the zonal wavenumbers k±bt is physically consistent for the far field solution.

The minus sign corresponds to barotropic Rossby waves that have positive group

velocity – this is the choice for a western boundary current. The plus sign corresponds

to barotropic Rossby waves that have negative group velocity – this is the choice for

an eastern boundary. Therefore, the solution in the far field region, for the western

and eastern boundary current respectively, is

φout(x) = B3 e
ik∓bt(x∓x0). (A.2)

For given parameter β and meridional wavenumber m, the constants Bj and the

eigenvalue(s) c, which appear in the solutions (A.1) and (A.2) through the expressions

for the zonal wavenumbers, are found by imposing the no-normal flow condition at

the wall and the jump conditions (2.5) on the side with discontinuous velocity. These

conditions translate into the following set of equations, for the western and eastern

case respectively

at x = ∓x0 : φin = 0, (A.3)

at x = ±x0 :
φin

V − c
=
φout

−c
, (A.4)

at x = ±x0 : (V − c) dφ
in

dx
+

β

im
φin = −c dφ

out

dx
+

β

im
φout. (A.5)

It is straightforward to see that, after using the expressions (A.1) and (A.2), the

equations above lead to a homogeneous 3 by 3 system for the unknown constants

{Bj}3
j=1. The eigenvalues c are those values for c that make the determinant of the

homogeneous system zero so that there is a non-trivial solution for the constants Bj.

Once the eigenvalue(s) c are found, if there are such, the solution in all regions can

be reconstructed.
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A.2 The baroclinic case

The linear stability problem (2.12) is solved following the same procedure except that

now we are dealing with 2 layers. The solution in the boundary current region, where

Vn are non-zero constants, is

φin1 (x) =
4∑
j=1

Bj e
ikjx, (A.6)

φin2 (x) =
4∑
j=1

Bj Γj e
ikjx,

where

Γj =
k2
j

F1

+
βkj

m(c− V1)F1

+
m2

F1

+
c− V2

c− V1

.

and the zonal wavenumbers kj are the four roots of the 4th order polynomial

α4k
4 + α3k

3 + α2k
2 + α1k + α0 = 0,

with

α4 = (c− V1)(c− V2),

α3 = (2c− V1 − V2),

α2 =

(
β

m

)2

+ (2m2 + F )α4 + (V1 − V2) γ,

α1 =
β

m

(
m2α3 + γ

)
,

α0 = m2
[
(m2 + F )α4 + (V1 − V2) γ

]
,

γ = F1(c− V2)− F2(c− V1).

In the far field region, where Vn = 0, the 4th order polynomial reduces to the
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barotropic and baroclinic Rossby dispersion relations so that the four roots kj become

k±bt =
β

2cm

[
−1±

√
1− 4c2m4

β2

]
,

k±bc =
β

2cm

[
−1±

√
1− 4c2m2(m2 + F )

β2

]
.

Once more, only one of the signs in the expressions above corresponds to barotropic

and baroclinic Rossby wave with zonal group velocity in the right direction. Thus,

the solution in the far field region, for the western and eastern case respectively, is

φout1 (x) =
1

2
B5 e

ik∓bt(x∓x0) +
F1

F
B6 e

ik∓bc(x∓x0), (A.7)

φout2 (x) =
1

2
B5 e

ik∓bt(x∓x0) − F2

F
B6 e

ik∓bc(x∓x0).

Applying the no-normal flow condition at the wall and the jump conditions (2.5)

for each layer translates into the following set of equations

at x = ∓x0 : φinn = 0 , n = 1, 2, (A.8)

at x = ±x0 :
φinn

Vn − c
=
φoutn

−c
, n = 1, 2, (A.9)

at x = ±x0 : (Vn − c)
dφinn
dx

+
β

im
φinn = −c dφ

out
n

dx
+

β

im
φoutn , n = 1, 2.(A.10)

This leads, after using the expressions (A.6) and (A.7), to a homogeneous 6 by

6 system for the unknown constants {Bj}6
j=1. The eigenvalues c are those values

for c that make the determinant of the homogeneous system zero so that there is a

non-trivial solution for the constants Bj. Once the eigenvalue(s) c are found, if there

are such, the solution in all regions and layers can be reconstructed.
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Appendix B

Friction scales

Three different types of dissipation are included in the 2-layer QG model: lateral

diffusion of relative vorticity, bottom drag and interface damping. A simple analysis

is presented here in order to determine the spatial scales damped selectively by each

type of dissipation.

Let a perturbation flow ψ̃n is added to the circulation driven by the applied forcing

(wind or thermal) as described by Eq.(3.9) and (3.10). If all contributions from the

nonlinear advective terms are neglected, then the evolution of the perturbation flow

is governed by the linearized unforced potential vorticity equations

∂

∂t

(
∇2ψ̃1 − F1(ψ̃1 − ψ̃2)

)
= ν∇2(∇2ψ̃1) +

F1

γ
(ψ̃1 − ψ̃2), (B.1)

∂

∂t

(
∇2ψ̃2 + F2(ψ̃1 − ψ̃2)

)
= ν∇2(∇2ψ̃2)− F2

γ
(ψ̃1 − ψ̃2)− r∇2ψ̃2. (B.2)

The solution of this system of equations is of the form

ψ̃n = Ane
i(kx+ly)eσt, (B.3)

where the wavenumbers k and l define the spatial scale Λ = (k2 + l2)−1/2 of the

perturbation flow, while σ is its decay rate. Replacing Eq.(B.3) into the system

of equations leads to the following expression for the decay rate, relating σ to the
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different frictional coefficients

σ = −ν R2
d

Λ2(Λ2 +R2
d)
− r

H2

H
Λ2 +R2

d

Λ2 +R2
d

− 1

γ

Λ2

Λ2 +R2
d

, (B.4)

where ν is the eddy viscosity, r the bottom drag, and γ the interface relaxation

timescale. In writing the expression above we have used that F1 + F2 = 1/R2
d.

The lateral diffusions damps selectively the smallest scales present in the model,

while the flow on scales much larger than the deformation is essentially unaffected.

The bottom drag is nearly scale insensitive – flow on spatial scales much larger than

the deformation radius are damped slightly less (by a factor of H2/H) than the flow

on spatial scales much smaller than the deformation radius. Finally, the interfacial

relaxation damps selectively the flow on large spatial scales while the smallest scales

are left essentially unaffected.
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Appendix C

Hilbert empirical orthogonal

functions analysis

This is a brief overview of the basic principles and terminology of the Hilbert empirical

orthogonal functions (HEOF) statistical analysis, following closely Terradas et al.

(2004).

Let X(xj, t) be an anomaly scalar field, i.e with the time-mean subtracted, where

xj is a grid position and t, the time. The core of the HEOF analysis consists in finding

the eigenvalues and eigenvectors of the covariance matrix C

Cij = 〈U∗(xi, t)U(xj, t)〉t, (C.1)

where the asterisk denotes complex conjugation, the brackets time averaging and the

complex field U(xj, t) is defined as having real and imaginary parts equal to the scalar

data field and its Hilbert transform, respectively

U(xj, t) = X(xj, t) + iX̂(xj, t). (C.2)

By definition, the Hilbert transform of a data series has Fourier spectral compo-

nents with the same amplitude as the original scalar field, while the phase is advanced
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by π/2. If at a given position xj, the spectral decomposition of X(xj, t) is

X(xj, t) =
∑
ω

aj(ω) cos(ωt) + bj(ω) sin(ωt), (C.3)

then its Hilbert transform X̂(xj, t) is defined as

X̂(xj, t) =
∑
ω

bj(ω) cos(ωt)− aj(ω) sin(ωt). (C.4)

Were the data series described by a single frequency oscillation, the Hilbert trans-

form would be proportional simply to its time derivative. In the general case, the

Hilbert transform provides information, locally in the frequency domain, about the

time rate of change of the scalar field. In the standard EOF analysis, the covariance

matrix Cij is computed using only the scalar field X(xj, t). It is by retaining infor-

mation about the phase of the scalar field, that the HEOF analysis is able to detect

propagating oscillations.

The covariance matrix C defined by Eq.(C.1) is Hermitian by construction and

possesses thus m real and nonnegative eigenvalues λn, with corresponding orthogonal

complex eigenvectors En(xj), n = 1, 2, . . .m. By definition, the nth HEOF mode or

statistical mode consists of a spatial part, the eigenvector En(xj), and a temporal

part, the complex principal component An(t), obtained by projecting the complex

data field U(xj, t) on the eigenvector En(xj) and summing over all locations

An(t) =
∑
j

U(xj, t)En(xj). (C.5)

The original complex field U(xj, t) can be fully reconstructed using the empirically

found statistical modes

U(xj, t) =
m∑
n=1

E∗n(xj)An(t). (C.6)

Each statistical mode product E∗n(xj)An(t) represents an oscillatory component

present in the field. The eigenvalues provide a simple way to quantify how much each
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mode contributes to the total field variance, since

λn∑m
k=1 λk

=
λn

var(X)
, (C.7)

given that
∑m

k=1 λk = Trace(C) = var(X). Normally, the eigenvalues are sorted

out in descending order so that the rank 1 HEOF has the largest eigenvalues, i.e it

explains the largest portion of the field variance, the rank 2 HEOF is the 2nd most

important, and so on.

It is convenient to rewrite the decomposition of the data field U(xj, t) onto the

complex basis functions En(xj) with complex coefficients An(t) given by Eq.(C.6),

using instead real-valued functions

U(xj, t) =
m∑
n=1

Sn(xj)e
−iθn(xj)Rn(t)eiϕn(t), (C.8)

or, for the original data field X(xj, t) which is simply the real part of U(xj, t),

X(xj, t) =
m∑
n=1

Sn(xj)Rn(t) cos [ϕn(t)− θn(xj)] . (C.9)

The four real-valued functions Sn(xj), θn(xj), Rn(t), ϕn(t) describe different as-

pects of the oscillatory components present in the data field and are defined in a

straightforward way in terms of the HEOFs and principal components.

1. Spatial amplitude function Sn(xj),

Sn(xj) = [En(xj)E
∗
n(xj)]

1
2 .

The spatial amplitude may be interpreted in the same way as the spatial pattern

in standard EOF analysis. It represents a measure of the spatial distribution of

variability in the data field X associated with a given statistical mode.
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2. Spatial phase function θn(xj),

θn(xj) = arctan

[
Im(En(xj))

Re(En(xj))

]
.

The spatial phase varies continuously between −π and π. It represents a mea-

sure of the relative phase difference for a given statistical mode among the

various locations where X is defined. Locally, its derivative is equal to the

phase speed of the propagating oscillation.

3. Temporal amplitude function Rn(t),

Rn(t) = [An(t)A∗n(t)]
1
2 .

The temporal amplitude may be interpreted in the same way as the principal

component in standard EOF analysis. It represents a measure of the temporal

variability in the magnitude associated with a given statistical mode.

4. Temporal phase function ϕn(t),

ϕn(t) = arctan

[
Im(An(t))

Re(An(t))

]
.

The temporal phase varies continuously between −π and π. It represents a

measure of the temporal variation of the phase of a given statistical mode asso-

ciated with periodicities in the data field X. Locally, its derivative is equal to

the frequency of the propagating oscillation.

Often, the amplitude and phase functions are more useful for the interpretation

and understanding of the statistical modes than looking directly at the real and

imaginary part of the HEOFs and their principal components.
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Appendix D

Perturbation energy equations

D.1 Derivation of the perturbation energy equa-

tions

One way to write the QG potential vorticity equations for a 2-layer ocean, convenient

when deriving the energy budget, is to separate the equations governing the evolution

of the relative vorticity by density layers from those governing the evolution of the

interface displacement

− ∂

∂t

(
∇2ψ1

)
= J

(
ψ1,∇2ψ1 + βy

)
− UwFw(y) + d2F wi −

1

Re
∇4ψ1, (D.1)

∂

∂t
(ψ1 − ψ2) = −J (ψ1, ψ1 − ψ2)− wi + w∗, (D.2)

− ∂

∂t

(
∇2ψ2

)
= J

(
ψ2,∇2ψ2 + βy

)
− d1F wi −

1

Re
∇4ψ2, (D.3)

∂

∂t
(ψ1 − ψ2) = −J (ψ2, ψ1 − ψ2)− wi + w∗, (D.4)

w∗ = − β

FδT
(ψ1 − ψ2 + UTFT (y)). (D.5)

The second and forth equations above are mathematically identical. Physically, one

can be thought as describing the evolution of the upward interface displacement, while
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the other as describing the evolution of the downward interface displacement. When

written in this form, there are actually three unknown in the QG potential vorticity

equations – the streamfunction for the two density layers ψ1 and ψ2, and the vertical

velocity at the interface wi.

Let decompose the flow into a stationary solution given by {Ψ1,Ψ2,Wi} and a

perturbation flow {ψ′1, ψ′2, w′i}

ψ1 = Ψ1 + ψ′1(x, y, t), ψ2 = Ψ2 + ψ′2(x, y, t), wi = Wi + w′i(x, y, t). (D.6)

Assuming that the amplitude of the perturbation is small, its evolution is governed

by the linearized perturbation QG potential vorticity equations

− ∂

∂t

(
∇2ψ′1

)
= J

(
Ψ1,∇2ψ′1

)
+ J

(
ψ′1,∇2Ψ1 + βy

)
+ d2F w

′
i −

1

Re
∇4ψ′1, (D.7)

∂

∂t
(ψ′1 − ψ′2) = −J (Ψ1, ψ

′
1 − ψ′2)− J (ψ′1,Ψ1 −Ψ2)− w′i −

β

FδT
(ψ′1 − ψ′2), (D.8)

− ∂

∂t

(
∇2ψ′2

)
= J

(
Ψ2,∇2ψ′2

)
+ J

(
ψ′2,∇2Ψ2 + βy

)
− d1F w

′
i −

1

Re
∇4ψ′2, (D.9)

∂

∂t
(ψ′1 − ψ′2) = −J (Ψ2, ψ

′
1 − ψ′2)− J (ψ′2,Ψ1 −Ψ2)− w′i −

β

FδT
(ψ′1 − ψ′2), (D.10)

Multiplying the perturbation relative vorticity equations by the respective pertur-

bation streamfunction weighted by the layer depth dnψ
′
n, leads to an equation for the

perturbation kinetic energy by density layer. Multiplying the perturbation interface

displacement equations by d1d2F (ψ′1 − ψ′2) and adding them together, leads to an

equation for the perturbation potential energy.

The following perturbation energy budget is obtained when the perturbation en-

ergy equations are in addition integrated over the basin area and averaged over some
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time interval

∂

∂t

∫∫
dn
2

(∇ψ′n)2 =

∫∫
dnψ′nJ(Ψn,∇2ψ′n)︸ ︷︷ ︸

BTn

+

∫∫
dnψ′nJ(ψ′n,∇2Ψn + βy)

−
∫∫

(−1)nd1d2F (ψ′nw
′
i)︸ ︷︷ ︸

transfer KE→PE

−
∫∫

dn
Re

ψ′n∇4ψ′n︸ ︷︷ ︸
dissipation

, (D.11)

∂

∂t

∫∫
d1d2F

2
(ψ′1 − ψ′2)2 =

∫∫
d1d2F

2
(ψ′1 − ψ′2) [J(Ψ1, ψ′1 − ψ′2) + J(Ψ2, ψ′1 − ψ′2)]

+

∫∫
d1d2F

2
(ψ′1 − ψ′2) [J(ψ′1,Ψ1 −Ψ2) + J(ψ′2,Ψ1 −Ψ2)]︸ ︷︷ ︸

BC

−
∫∫

d1d2F (ψ′1 − ψ′2)w′i︸ ︷︷ ︸
transfer PE→KE

−
∫∫

d1d2
β

δT
(ψ′1 − ψ′2)2︸ ︷︷ ︸

dissipation

. (D.12)

The two energy conversion terms BTn and BC represent the two pathways through

which the energy of the equilibrium state can be transfered to the perturbation flow

and lead to growth. There are in addition energy exchange terms where perturbation

kinetic and potential energy is transformed. The perturbation kinetic energy is dis-

sipated only through the eddy viscosity, while for the potential energy there is also

damping because of the thermal relaxation. Finally, all integrals that are without

notation can be shown to vanish in the case of no-slip boundary conditions and thus

do not contribute to the energy budget.

The total perturbation energy is equal to the sum of the kinetic energy for the

two layers and the potential energy for the perturbation flow

E =
1

2

∫∫
d1(∇ψ′1)2 + d2(∇ψ′2)2 + d1d2F (ψ′1 − ψ′2)2. (D.13)

An equation for its evolution can be obtained by summing the three integrated

energy equations. This leads to the cancelation of the energy transfer terms. Thus,
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the following net perturbation energy budget is left

∂E

∂t
= BT1 +BT2 +BC −

∫∫ 2∑
n=1

dn
Re

ψ′n∇4ψ′n −
∫∫

d1d2
β

δT
(ψ′1 − ψ′2)2 (D.14)

The total perturbation energy can grow due to the barotropic and/or baroclinic energy

conversion terms and is dissipated by eddy viscosity and by the interface relaxation,

if active.

It can be shown using the divergence theorem, that in the case of no-slip boundary

conditions the barotropic and baroclinic energy conversion terms are proportional to

respectively the horizontal and the vertical equilibrium velocity field gradients

BTn =

∫∫
dnψ′nJ(Ψn,∇2ψ′n) =

∫∫
dn
∂ψ′n
∂xi

∂ψ′n
∂xj

∂Un,j
∂xi

(D.15)

=

∫∫
dn

[(
∂ψ′n
∂x

)2
∂Un
∂x

+
∂ψ′n
∂x

∂ψ′n
∂y

(
∂Vn
∂x

+
∂Un
∂y

)
+

(
∂ψ′n
∂y

)2
∂Vn
∂y

]
,

BC =

∫∫
d1d2F

2
(ψ′1 − ψ′2) [J(ψ′1,Ψ1 −Ψ2) + J(ψ′2,Ψ1 −Ψ2)] (D.16)

=

∫∫
d1d2Fψ′1J(Ψ1 −Ψ2, ψ′2)

=

∫∫
d1d2F

[
ψ′1
∂ψ′2
∂x

(U1 − U2) + ψ′1
∂ψ′2
∂y

(V1 − V2)

]
,

where Un = −∂Ψn/∂y and Vn = ∂Ψn/∂x denote the equilibrium state velocity field.

D.2 Normal mode analysis

When examining the stability of the equilibrium state {Ψ1,Ψ2}, the perturbation flow

is taken of the form

ψ′n(x, y, t) = Real
(
ψ̂n(x, y)ect

)
=
ecrt

2

(
ψ̂ne

icit + ψ̂∗ne
−icit

)
(D.17)

204



where ψ̂n is a complex amplitude describing the spatial structure of the perturbation,

while σ is the growth rate describing its temporal structure.

In this case, after some algebraic manipulations it can be shown that the total

perturbation energy averaged over an oscillation period becomes

E =
1

2

∫∫
d1|∇ψ̂1|2 + d2|∇ψ̂2|2 + d1d2F |ψ̂1 − ψ̂2|2. (D.18)

Essentially the same energy budget holds

σrE = Real

(
BT1 +BT2 +BC −

∫∫ 2∑
n=1

dn
Re

ψ̂∗n∇4ψ̂n −
∫∫

d1d2
β

δT
|ψ̂1 − ψ̂2|2

)
,

(D.19)

where the barotropic and baroclinic conversion terms become

BTn =

∫∫
dnψ̂

∗
nJ(Ψn,∇2ψ̂n) (D.20)

=

∫∫
dn

∣∣∣∣∣∂ψ̂n∂x

∣∣∣∣∣
2
∂Un
∂x

+
∂ψ̂∗n
∂x

∂ψ̂n
∂y

(
∂Vn
∂x

+
∂Un
∂y

)
+

∣∣∣∣∣∂ψ̂n∂y
∣∣∣∣∣
2
∂Vn
∂y

 ,
BC =

∫∫
d1d2Fψ̂

∗
1J(Ψ1 −Ψ2, ψ̂2) (D.21)

=

∫∫
d1d2F

[
ψ̂∗1
∂ψ̂2

∂x
(U1 − U2) + ψ̂∗1

∂ψ̂2

∂y
(V1 − V2)

]
.

The star in all equations above stands for complex conjugation.
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