1. REPORT DATE
2005

2. REPORT TYPE

3. DATES COVERED
00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
First Record of Culex (Culex) Coronator in Louisiana, USA

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Walter Reed Army Institute of Research, Department of Entomology, Silver Spring, MD, 20910

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 3

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
FIRST RECORD OF CULEX (CULEX) CORONATOR IN LOUISIANA, USA

MUSTAPHA DEBBOUN,1,3 DENNIS D. KUHR,1 LEOPOLDO M. RUEDA2 AND JAMES E. PECOR1

ABSTRACT. The 1st confirmed record of Culex coronator for Louisiana was made at Fort Polk, LA, from carbon dioxide–baited light trap and gravid trap collections performed from April to October 2004. In addition to the new record, 17 mosquito species in 5 genera (Aedes, Anopheles, Coquillettidia, Culex, and Psorophora) were collected. Collection-site and species distribution data are included.

KEY WORDS Culex coronator, Louisiana, mosquitoes, Culicidae, Diptera

We report a new state record of mosquito species, Culex (Culex) coronator Dyar and Knab from Fort Polk, LA. This is one of 18 mosquito species collected from Centers for Disease Control and Prevention (CDC) light traps baited with carbon dioxide and a CDC gravid trap (John Hock Co., Gainesville, FL), from various sites in Fort Polk from April to October 2004.

Culex coronator has a wide geographic distribution, including Central and South America (Argentina, Belize, Bolivia, Brazil, Colombia, Costa Rica, El Salvador, French Guiana, Guatemala, Honduras, Nicaragua, Panama, Paraguay, Peru, Suriname, Trinidad and Tobago, and Venezuela) and the USA (Arizona, New Mexico, and Texas) (Darsie and Ward 2004, Walter Reed Biosystematics Unit 2001). Carpenter (1970) discounted the report of S. O. Hill, B. J. Smittle, and F. M. Philips in 1958 about the presence of this species in Louisiana (reference not available but cited by Carpenter [1970]). Our paper confirms the existence of this species in that state.

This species colonizes a wide variety of container, ground pool, and stream-associated habitats throughout its range. It has been collected in permanent and temporary sources of water, in the shade or in the sun, and in sylvatic and domestic habitats (Carpenter and LaCasse 1955; Horsfall 1972; Pecor et al. 2002; Debboun, unpublished data). On April 29, 2004, the Entomological Sciences Division (ESD) of the U.S. Army Center for Health Promotion and Preventive Medicine–South (USACHPPM-South) received the adult specimens from Fort Polk, LA, as part of the USACHPPM-South West Nile Virus Surveillance Program. The 1st specimens were collected on April 21, 2004, at trap site no. 43 in Fort Polk (Fig. 1) by the U.S. Army Preventive Medicine Services personnel using a CDC light trap baited with carbon dioxide and sent to USACHPPM-South for identification and assay processing. These specimens were then sent to the Walter Reed Biosystematics Unit, Smithsonian Institution, for confirmation and were identified by J.E.P. and L.M.R. as Cx. coronator (Bram 1967, Darsie and Ward 2004). The classification used in this paper follows that of Knight and Stone (1977). Eight additional collections of Cx. coronator were made during 2004. A total of 18 species in 5 genera were collected from May to October 2004. The collected associated species were Aedes (Stegomyia) albopictus (Skuse), Anopheles (Anopheles) crucians Wiedemann, An. (Ano.) punctipennis (Say), An. (Ano.) quadrimaculatus Say, Coquillettidia perturbans (Walker), Cx. (Melanoconion) erraticus (Dyar and Knab), Cx. (Cax.) nigripalpus Theobald, Cx. (Cax.) quinquefasciatus Say, Cx. (Cax.) salinarius Coquillett, Aedes (Ochlerotatus) atlanticus Dyar and Knab, Cx. (Cax.) thibaulti Dyar and Knab, Ae. (Och.) canadensis canadensis (Theobald), Ae. (Och.) sticticus (Meigen), Psorophora (Janthinosoma) ferox (Von Humboldt), and Ps. (Grabhamia) columbiae (Dyar and Knab).

Twenty-three female specimens of Cx. coronator were collected in 2004, with 22 females from the CDC light traps and 1 from the CDC gravid trap (site no. 45, 31°02.29′N, 93°13.90′E). The descriptions of the trap sites in Fort Polk are as follows, with the date of collection and number of female Cx. coronator collected given in parentheses. Trap site no. 3 (31°02.08′N, 93°12.79′E, August 26, 2004, 10 females) was inside a tree line, across the street from the barracks, building no. 2300 and adjacent to an old beaver pond on Mississippi Avenue. Trap site no. 37 (31°02.42′N, 93°13.48′E, May 19, 2004, 1 female and on August 24, 2004, 7 females) was in the backyard of a housing quarters (no. 5116) overlooking a primarily dry, low area with a manhole cover approximately 30 feet away.
Aitken et al. (1969) also reported St. Louis encephalitis virus isolation from wild-collected female Cx. coronator in Trinidad. It is 1 of the 60 species found positive for West Nile virus (WNV) in mosquito pools in the USA from 1999 to 2004 (Centers for Disease Control and Prevention 2005).

Sample specimens of Cx. coronator and other associated species from CDC light traps and gravid traps collected from Fort Polk sites from May through October were all processed by the ESD, USACHPPM-South, assayed, and found negative for WNV and eastern equine encephalitis virus.

We thank Lenoir Ross of U.S. Army Preventive Medicine Services at Fort Polk for setting up the traps, collecting the adult mosquito specimens, and providing trap site descriptions, and Erin Stanwix, Jeffri Humphries, and Laura Frick for initial identification and laboratory assistance. Special thanks to Daniel Strickman and Richard Wilkerson for reviewing the manuscript and providing suggestions and advice. The opinions and assertions contained herein are those of the authors and are not to be construed as official or reflecting the views of the Department of Defense.

REFERENCES CITED

