I. ABSTRACT

HPCs (high-performance computers) utilize multiple (e.g. hundreds or thousands of) processors to compute very large problems quickly by distributing the computation across many processors in parallel. This liberates problem conceptualization from the memory/storage constraints of a single desktop workstation. Unfortunately, the complexity of programming HPCs is off-putting for new users. Furthermore, most DoD users work from a Windows PC so that learning Unix well enough to parallel program is itself an obstacle. What is needed is a workflow by which simplifies the programming task in a familiar environment while leveraging the computational power of HPCs.

VISION (Sanner, 2002) is a freely available, Python-based, drag-and-drop visual programming environment that programming for drawing flowcharts that encapsulate the underlying programming complexity. This means that computations are strung together by dropping and connecting computational boxes on a canvas instead of writing source code files. This is important for productivity since productivity is dominated by the time spent programming versus the time spent analyzing results.

As a Python-based package, it is possible to embed parallel computing features from the open source iPython package into VISION to enable both visual programming and parallel execution on remote HPCs. This paper discusses the prototype we built at SSC-SD for a visual parallel programming workflow based on VISION and iPython for parallel computing using a Linux cluster as a backend and a Windows XP workstation as the front-end.

II. INTRODUCTION

Productivity in scientific computing is dominated by the time spent coding versus the time spent reflecting on computed results. Insight is driven by how quickly intuition can be vetted -- how fast a hunch can be tested while pursuing a particular line of thought. Parallel computing accelerates computing, but is notoriously
User Friendly High Productivity Computational Workflows Using The Vision/Hpc Prototype

Ohio Supercomputer Center Columbus, OH 43212

complex and daunting for non-specialists.

Further, in a team research setting, a few individuals may have the requisite parallel programming skills and are relied upon by others for these tasks. This is a bottleneck and a deterrent to investigating new ideas. On the other hand, this prototype breaks tasks down into manageable computational units which others can easily manipulate while coincidently freeing up the team members who have parallel programming skills since they can focus on maintaining smaller computational units instead of the entire computation.

Thus, improving scientific productivity by facilitating parallel programming in a familiar Windows PC environment for both specialists and non-specialists was the main motivation for the VISION/HPC prototype. The basic idea is to run VISION on the user’s Windows workstation and have the embedded parallel tasks execute on a remote backend. The key advantage is that the graphic intensive GUI runs on the local workstation (and is not served pixel-by-pixel through a slow network connection) and the intensive computation runs on the remote cluster (not overloading the local workstation). In the following, we describe in detail how this was accomplished and examine a case-study that shows how the VISION/HPC workflow operates in practice.

III. Prototype Components

A. VISION

VISION is a freely available Python-based visual computing environment from the Scripps Research Institute in San Diego. It is part of a biomolecular visualization toolkit distributed by the Institute. It is entirely Python-based and all of the source code is available. VISION reduces programming tasks to dropping and connecting computing “nodes” onto a flowchart. Fig. 1 shows a VISION network that accomplishes a signal filtering and visualization task.

Since VISION is entirely written in Python, it is compatible with all other Python modules. In particular, it works with the Scientific Python (SciPy) module, which includes a wide variety of scientific computing codes (e.g. matrix factorizations, data-fitting, statistical estimators). Furthermore, VISION comes with several libraries (i.e. sets of nodes) focused on specific categories (e.g. image processing).

There are two mechanisms for adding customized nodes to VISION. One can build nodes graphically by starting with the "generic" node available in the standard library. Alternatively, one can write Python scripts with input/output interfaces represented as interconnection "ports". Once these codes are developed, they become drag-and-drop usable in the flowchart.

Once a node is developed, VISION provides a text-editor interface for altering a node’s internal code and other properties via the context menu (see Fig. 2). This makes it easy to quickly change the underlying computation and see immediate results. This is a very important feature for a visual programming environment and is unique to VISION; other environments require everything to be created visually, whereas VISION allows both visual programming and embedded text-based editing. This means that legacy codes do not have to be built visually, but can be pulled in through the text-editor and selectively exposed to the visual environment by choosing the input/output ports.

B. iPython

So far, we have discussed VISION as a tool for simplifying the construction of computing tasks, but not the parallel computing functions. That part is handled by iPython (Pérez, 2007) which is an open source Python-based development environment for interactive parallel computing as opposed to batch-based parallel computing. This means that, given an HPC configured for interactive use, users can move data between nodes, assign computing tasks, and monitor completion interactively. Fig. 3 shows an example of an iPython session where Python statements are interactively executed on remote processors.

Fig. 3: Shows a sample iPython session where Python statements are interactively executed on remote processors.
specific commands are executed all available nodes. This
means no more waiting for results to be computed, stored,
and then loaded since these are immediately in the same
iPython workspace.

Further, iPython’s parallel computing mechanisms
can be used directly from a standard Python script, which
thus allows it to be embedded into the VISION
framework. Variables can be defined and shared between
nodes using iPython. Thus, iPython has two modes of
operation – interactive and embedded – and both are
usable from within VISION, although we will only be
using the embedded mode for this prototype1.

C. Workflow Design

Given the mutual compatibility and open-design
philosophy of Python embodied in VISION and iPython,
the prototype was designed to call iPython commands
from within VISION. It is important to understand which
Python packages are going to be run on the backend
packages, which are available on both Windows PCs and
Unix/Linux platforms.

D. Platforms

VISION and iPython were installed on the Windows
XP workstation. SciPy and iPython and all subordinate
dependencies were installed on the Linux cluster backend.

E. Case Study: Array Processing Beampattern

As a case study, we implemented an array processing
beamforming problem. The problem is to compute the
electromagnetic antenna pattern generated by sources at
different arrival angles given certain array configurations.
Depending on the level of detail and the size of the array,
these patterns can be extremely computationally
intensive. Fig. 4 shows the essential code used to setup
the backend computations using iPython.

1 Future develop plans include the ability to work in either mode,
which would be useful for debugging.
a unit vector at a position on the sphere shown. The arrival angle of the source is selected on the unit sphere by dragging the arrow. The act of dragging the point shown on the widget provides a tactile connection to the problem and is important for intuition building. The resulting coordinates are input to the BeamPattern node and the DialInt node tells the BeamPattern node how many pieces into which the problem should be divided so that it can be distributed over the same number of processors.

We used the chooseHost node (see Fig. 5) to switch the backend between two different SSC-SD clusters (Lynx, Seahawk) to demonstrate the flexibility of this approach. Once the host is chosen, the VISION/HPC flowchart executes the computation on that host.

Fig. 7 shows the remainder of the embedded code in the BeamPattern node, which includes the division of the computational task across a given number of processors. This is accomplished using the gather/scatter mechanism that is built into iPython. The next block merely pulls the various sub-pieces from the different processors and assembles the final graph shown in the next figure.

The graph in Fig. 8 shows the computed beampattern. The horizontal white lines delineate the computational stripes that have been computed on different processors based on the value of the DialInt node. This result is synthesized and presented on the Windows PC, so no high-bandwidth graphics were transmitted. In fact, only the commands to create the data shown in each of the three pieces was transmitted.

IV. SUMMARY

We have established a Windows-to-HPC computational workflow to enhance productivity using the freely available VISION visual computing environment in connection with the parallel computing features of the iPython package. We examined the performance of this workflow using an array processing beamforming case study. The workflow prototype was designed so that the graphically intensive GUI ran on the local Windows PC workstation and the intensive computations ran on the remote Linux cluster. The reduced data product was returned to the local workstation and rendered there, thus saving the slow pixel-by-pixel transmission of the graphic through the computer network.

V. BIBLIOGRAPHY

Fig. 8: The resulting beam pattern is shown. The three horizontal stripes indicate that three processors on the Linux cluster were used for the computation. The prototype distributes the computation across the three selected processors and reassembles the result on the local workstation. Note that the graphic is rendered on the local workstation and not transmitted pixel-by-pixel through the network connection (which would be slow).