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Abstract: It has long been known that branch points cause degradation in
adaptive optic performance. Here, we begin a study on the aggregate nature
of branch points, specifically beginning the process to relate branch points
measured in the pupil to the upstream turbulence that created them. As such,
we study not only the wave as measured in the telescope’s pupil, but also the
wave in the intervening region between the turbulence layer and the pupil
with this paper’s focus on the intervening region. We show that for optical
waves propagating in atmospheric turbulence upstream of the pupil, branch
points are created infinitesimally close together in pairs of opposite polarity.
Branch points are shown to be enduring features of the propagating wave
and their branch cuts are shown to evolve smoothly in time. It is postulated
that atmospherically created branch point pairs separate as they propagate,
and that they carry both the velocity of, and distance to, the turbulence layer
that created them. Subsequent papers will demonstrate this to be true.
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1. Introduction

As zeros of analytic functions, branch points are a well known and much studied in complex
analysis [1]. The character zero in amplitude is accompanied by a 2π circulation in the phase
and a choice of the principal domain which establishes the branch cut. It has been found that
under the right conditions electromagnetic fields contain branch points, a monochromatic wave
originating as a point source then propagating through atmospheric turbulence being one such
example. It has been found that branch points pose a difficult problem for adaptive optics [2].

While the necessary and sufficient conditions for branch point formation are not known,
generally branch points begin to form when the (5/6)th distance (propagation) moment of the
atmospheric structure function exceeds 0.1 [3]. Hence, the distance to the onset of branch point
formation varies depending on the atmospheric strength. The propagation is important; without
it, atmospheric branch points would not form. Here, we are interested in how the propagation
affects the creation and evolution of branch points.

Because we are interested in astronomical imaging, we restrict ourselves to the paraxial
propagation region with the axis defined by the optic axis of the astronomical telescope. The
main mirror of the telescope defines a plane orthogonal to the direction of propagation; we call
this ‘the pupil plane’. A wave is said to be ‘in the pupil’ if it is evaluated at this plane. The
pupil plane is the area of interest for the astronomical community since this is the part of the
wave that forms the image. While ultimately we are solely interested in the wave in the pupil,
the intervening region between the turbulence and the pupil is the main concern here. Also, as
is well known, the propagtion the propagation is described by the Fresnel integral.

By the nature of the telescope in astronomical imaging, the optic axis is aligned with the
direction of propagation. As such, we define ẑ to be the direction of propagation. The pupil
becomes a two dimensional x− y slice of the three dimensional propagating wave. Later in
this study, we will consider a sequence of these transverse planes along the z axis as the wave
propagates from the turbulent region to the pupil.

Once in the pupil, the wave is conditioned using adaptive optics (AO). A conventional AO
sytem only correct the phase. It does so by subdividing the telescope’s pupil into a hexagonal
array of subapertures. Within each subaperture, a phase gradient measurement is made via a
Shack-Hartmann wavefront sensor, and a deformable mirror actuator is placed at the corner of
each subaperture. The gradient measurements are stitched together using a least square recon-
structor. It has been shown that the least square reconstructor does not measure branch points;
however, other reconstructors do [4] and we assume that one of these is used.

Previous studies in conventional adaptive optics solely considered branch points in the pupil
plane, a single transverse slice of the propagating wave. Such a restriction comes about naturally
from the nature of the wavefront sensor measurement; by its construction a wavefront sensor
measures in a single transverse slice, always conjugate to the deformable mirror and sometimes
conjugate to the pupil. In this frame, the branch points are assumed to be independent, although
after the frame is reconstructed, branch cuts are placed between branch points typically using
a minimum distance metric [5]. Here, we consider propagation prior the reaching the pupil and
enumerate on how this formation impacts the pupil plane wavefront sensor measurement.
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The ultimate goal of this study is to extend the state-of-the-art of adaptive optics such that it
can compensate for atmospheric turbulence even when branch points are present. In this paper
we demonstrate a narrow but crucial result: atmospherically created branch points must appear
in pairs of opposite polarity and at the instant they appear, they have infinitesimal separation.
In the later papers in the series, we will expand on this results with the eventual demonstration
that a distribution of branch points measured in the pupil plane of a telescope can be used to
estimate the three dimensional turbulence that created that distribution.

Although this initial demonstration is done under the assumptions of Kolmogorov turbulence
and Taylor’s frozen flow hypothesis, these restrictions are not severe. Assuming Kolmogorov
turbulence is a weak assumption since almost all atmospheric turbulence is described by it [6].
Assuming frozen flow merely places an upper bound on sampling rate since any continuous
function will appear linear when sampled fast enough. Later papers will relax this assumption
and allow for evolving turbulence. In passing, it is important to note that we are not interested
in lasers or cavity generated waves. Also, since we assume that the wave originates as a point
source, speckle is also not an issue.

To this end, after a short background, we present in Section 3 the basis of the problem.
In Section 4, we demonstrate a means to mathematically capture the notion of causality in the
propagation apropos to creation of branch points. Following which, Section 5 demonstrates that
upstream of the pupil, atmospherically created branch points are created in pairs infinitesimally
close together and having opposite polarity. The latter part of Section 5 discusses both propa-
gation of creation pairs and creation of large numbers of branch points in the pupil. Sections 6
and 7 discuss how branch cuts evolve in distance and how choice of the branch cut affects the
principal domain. Next, in Section 8, we speculate on the nature of the proof to include that the
branch points must have both the velocity and distance to the turbulence layer encoded in their
statistics. Finally Section 9 wraps up the work.

2. Background

There has been effort in the adaptive optics community both to measure branch points and to un-
wrap the phase in the presence of branch points [2,4,7–12]. Unwrapping the phase is of funda-
mental importance because AO wavefront sensors eith measure gradient (e.g. Shack-Hartmann)
or modulo 2π phase (e.g. Self-referenced Interferometer) the deformable mirrors which correct
the atmospheric disturbance are continuous face sheet devices and can only correct continuous
phase. Even with this unwrapping, Fried and Vaughn [2] demonstrated that there is ambiguity
in assigning a continuous phase function with a scalar field due to the presence of branch points.
These works make the implicit assumption that branch points are independent entities, i.e. they
appear singely and can be treated as such.

In his seminal paper, Fried [7] demonstrated that the gradient of the phase is composed of
the gradient of a smooth function (the scalar potential) and the curl of a discontinuous function
(the vector potential) shown to be the Hertz potential. There has been work following Fried’s
foundational work [4, 8, 9, 11] and one [10] which demonstrated that the direction of the phase
map (gradient) plays a role in the setting of branch points. For most of AO history, circulation
in the phase, formerly called ‘slope discrepancy’, was caused only by noise. This is because
in near-zenith imaging, the phase is irrotational, that is, there are no branch points. Brennan
[13] demonstrated that slope space has as a basis the slope discrepancy subspace and the least
squares subspace. In the regime in which we work, slope discrepancy consists of both noise
and branch points.
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3. Problem Formulation

Assume there is a monochromatic point source beyond the atmosphere such that z < 0. Prop-
agate it as an expanding spherical wave until it reaches the atmosphere at zatm, i.e. 0 ≤ zatm ≤
zpupil where it encounters the atmosphere. The finite extent of the atmospheric acts as an apodiz-
ing element giving the wave finite support, Ωatm. Immediately prior to zatm, the wave has con-
stant amplitude and a spherical phase, φsph(zatm). At the atmospheric layer, as the beam prop-
agates through the atmosphere’s varying index of refraction, n(ratm), the phase of the beam
takes phase kratm with λ the wavelength of the light, and ratm the coordinates transverse to the
direction of propagation. The phase in the plane zatm is then

φzatm =
2π

λ
n(ratm)+φshp

yielding for th wave at zatm

f (ratm,zatm) = A(ratm,zatm)eiφzatm (1)

with A(ratm,zatm) constant. The wave propagates from zatm until it reaches the pupil at zpupil
where it is measured.

The wave for any plane z > zatm is given by the Fresnel propagator,

f (r,z) =
eikz

iλ z
ei k

2z |r|
2
∫

Ωatm

f (ratm,zatm)ei k
2z |ratm|2ei k

z ratm·rdratm, (2)

where λ the wavelength of the light, k = 2π

λ
the wavenumber, Ωatm the aperture through

which the wave passes at plane zatm, z the coordinate location along the direction of propa-
gation, r = (x,y) are the coordinates transverse to the direction of propagation, ratm the trans-
verse coordinates at the atmospheric interaction, f (r,0) the field at the turbulence layer, and
f (r,z) the field a distance z downrange from the turbulence layer. As is well known from
the Plancherel Theorem and the Riemann-Lebesgue Lemma, under these conditions at each
z, f (r,z) ∈ C∞(R2) almost everywhere [14], i.e. f is an element of the set of continuously
differentiable functions on R2 except on sets of measure zero.

As the wave continues to propagate, it reaches the pupil at z = zpupil and is measured by an
adaptive optics wavefront sensor on a telescope. This measurement is as discussed in [7] and
the associated difficulties in estimating φzpupil from these measurements as discussing in [2]. At
zpupil, the telescope both apertures the wave, applying the finite support Ωzpupil , and also removes
the spherical component, φsph(zpupil), of the wave. The wave can then be written

f (r,zpupil) = ΩzpupilA(r,zpupil)e
iφzpupil (3)

with A(r,zpupil) non-constant, φzpupil the phase in the pupil after removal of the spherical focus
term by the telescope, and

Ωzpupil =
{

1 r≤ D
0 r > D

where D is the diameter of the telescope. Our interest here is in determining how φzpupil came to
be, and this is determined by the intervening propagation.

So following Fried [7,11], in any transverse plane along z with zatm ≤ z≤ zpupil, let w(x,y) :=
f (r,z) be the scalar function representing an optical field in plane z. A scalar function can be
assumed because, although it makes calculation easier, it does not affect the results. Let u(x,y)
and v(x,y) be the real and imaginary parts of w(x.y), respectively, with

w(x,y) = u(x,y)+ iv(x,y). (4)
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The amplitude, A(x,y), and phase, φ(x,y), of this field are given by

A(x,y) =
√

u2(x,y)+ v2(x,y), (5)

φ(x,y) = arg(w(x,y))+2πκ, (6)

where on physical grounds φ is a continuous function [11] and this implies κ = κ(x,y) with κ

consisting entirely of two-dimensional step functions of height 2π . Since w(x,y) := f (r,z) ∈
C∞(R2) almost everywhere, w(x,y) is continuously differentiable over regions that do not in-
clude the discontinuities inherently defined by κ . In this way, we can write

w(x,y) = A(x,y)eiφ(x,y) ∈C2(R2\B) (7)

with the notation C2(R2\B) denoting the set of continuously differentiable functions on R2

except on the set of points given by set B which is the set of coordinates along which the branch
cuts reside. Both A(x,y) and φ(x,y) are continuously differentiable on C2(R2\B).

It was shown by Fried [7] that phase found in adaptive optics caused by atmospheric turbu-
lence is given by is a smooth component and a discontinuous component due to branch points
and can be written

φpupil = φlms +φhid (8)

where φpupil is the phase of the wave in the pupil, φlms is the smooth component, and φhid is the
discontinuous component due to branch points. The branch point component is given by

φhid(r) = Im

{
log

[
ΠK

k=1(x− xk)+ i(y− yk)
ΠK′

l=1(x− x′l)+ i(y− y′l)

]}
(9)

with (xk,yk) the coordinates of branch points with positive polarity, (x′l ,y
′
l) the coordinates of

branch points with negative polarity, K the number of branch points with positive polarity, and
K′ the number of branch points with negative polarity.

From the theory of analytic functions, a branch point at (xp,yp) is equivalent to both a zero
in the amplitude, w(xp,yp) = 0, and a circulation in phase. The circulation in phase is given by∫

C′
d~l′ ·~∇φ (x′,y′) =±2π (10)

for C′ a closed curve encircling the one branch point at (xp,yp). and ~∇φ the gradient operator
acting on φ . There are many ways of writing Equation 10, but the form chosen here mimics
how the branch points are measured by an AO system’s wavefront sensor. Also, for discussional
clarity, we call sign

(∫
C′ d~l′ ·~∇φ (x′,y′) =±2π

)
the polarity of the branch point. Also, it is well

known that the zeros of an analytic function are isolated and so the set of all branch points in
w(x,y) are also isolated. It could be said, in a one sentence description, that this paper is about
how zeros of the analytic wave are created and evolve.

As is well known [1], mappings with branch points are multi-valued and in order to create
a single valued function, a principal domain must be chosen. Choosing a principal domain
establishes the location of the branch cut, and hence the set B. Along the branch cut, a 2π

discontinuity exists. Typically in complex analysis, the branch cut (and hence B) can be chosen
arbitrarily, and when calculating residues, it is chosen to minimize the difficulty in integration.
Here, we will show that this cannot be done, i.e. that the location of the branch cut (and hence
the principal domain) is determined by the physical system; this will be clarified in Section 7.

To establish notation, for branch point p, let Bp = {(x,y)c}c∈branch cut of P be the set of coor-
dinate values along which the branch cut lies. Define B(x,y;z) to mean “at each propagation
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distance z, B(x,y;z) = {(x,y)c}c∈all branch cuts is the set of coordinates of all branch cuts in the
plane transverse to z”. For a wave propagating in z, no apriori restrictions are placed on varya-
tions in B although it will be demonstrated later that B is greatly constrained by causality.

Finally, in order to study the regions where branch points form, we use uniform convergence
of a sequence of functions. Uniform convergence is covered in standard textbooks, for instance
Rudin [15]. Heuristically, uniform convergence occurs when a sequence of functions, fn, con-
verges to a function simultaneously at all coordinate values. Precisely, given a sequence of
functions { fn}n=1,2,3,... on a set R2. { fn}n=1,2,3,... converges uniformly on R2 if for every ε > 0,
∃N s.t. n > N⇒ | fn(x)− f (x)| ≤ ε , ∀x ∈ R2. Here for ease of discussion:

A wave is said to propagate uniformly if and only if { fn}→ f uniformly.

Uniform propagation is equivalent to enforcing causality, i.e. to preventing a wave from chang-
ing instantaneously across all space when propagating from cross sectional plane z to cross
sectional plane z + ε where ε is an arbitrarily small distance. Interestingly, we will show that
after interaction with a turbulence layer, propagation is uniform, and this by itself is sufficient
to make statements about how branch points appear in the pupil.

4. Fresnel Propagation is Uniform

Say there is a monochromatic wave propagating along ẑ and say the telescope pupil exists
at plane zpupil. We study the behavior of waves as they move forward in z. So, create a se-
quence in z, labeled zn, such that {zn} is monotonically increasing and zn → zpupil as n→ ∞.
Let w(x,y) = f (x,y,zpupil) be the two dimensional scalar function representing a cross section
of the traveling wave in the pupil. Then create a set of two dimensional functions of transverse
planes approaching plane zpupil in steps of 1

n by using f (x,y,zn) with

zn := zpupil−
1
n

n ∈ Z, (11)

and to preclude the un-physical occurrence of propagating back in time, assume without loss
of generality that z > 1. Note in passing that the choice of {zn} is arbitrary as long as zn is
monotonically increasing with n and zn→ zpupil. Then, let

fn := f (x,y,zn) (12)

and create a set { fn}.
First, assume that the first branch points form after the pupil, i.e. for z ≤ zpupil there are no

branch points. (This restriction will be lifted in a subsequent Section 5.) Hence, φhid = 0 and

φhid = 0 ⇒

 φAO = φlms

B(x,y;z < zpupil) = ∅
(13)

with ∅ denoting the null set.
It must be shown that the sequence { fn} is such that fn → f (r,z) uniformly. Using results

from functional analysis, this is easy, if opaque. Following [14, Ch. IX], given L (Rn) the
Schwartz space of C∞ functions of rapid decrease, L (Rn) is a Fréchet space and hence is
complete, and further the Fourier transform is a linear bicontinuous bijection from L (Rn)
onto L (Rn). Since cos() ∈ C∞(Rn) and sin() ∈ C∞(Rn) with || · ||∞ < 1, given a function,
g ∈L (Rn), multiplication by either the sine or cosine also yields a function in L (Rn). Hence,
the Fresnel transform given by Equation 2 is also a linear bicontinuous bijection from L (R2)
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onto L (R2). So, given a function, f ∈L (R2), there exists a sequence { fn} with fn ∈L (R2)
such that fn→ f . Since the Fresnel transform is linear, choosing fn as in Equation 12 with zn as
in Equation 11 yields the desired result, f → fn uniformly [14]. A more lucid demonstration,
which only uses properties of the Fresnel integral, is given in Appendix A.

This shows that when no branch points are present, fn→ f (r,z) uniformly on R2\∅. More-
over, since analytic functions are unique and given Equation 7, this implies that both the am-
plitude and phase propagate uniformly, i.e. create sets {An} and {φn} with An = A(x,y,zn)
and φn = φ(x,y,zn) and zn = zpupil − 1

n as before. Then given that fn → f (r,z) uniformly ,
An(r)→ A(r) uniformly and φn(r)→ φ(r) uniformly.

This is the crux of the matter; the rest that is presented here follows easily from this result.
Interestingly, this by itself is sufficient to make statements about how branch points appear in
the pupil; how this is so is shown in the subsequent sections.

5. Paired Branch Points and Separation

To prove that branch points are only created infinitesimally close together in pairs of opposite
polarity, first, in Section 5.2, it is shown that pairs of branch points of opposite polarity can be
created without violating causality but only when created infinitesimally close together, while
in Section 5.3 demonstrates this is false for odd numbers of branch points.

5.1. Arbitrary Non-trivial Branch Point Phase

We will demonstrate that paired branch points can occur, but only when created infinitesimally
close together.

So, suppose we have a wave propagating in the ẑ direction such that, prior to the plane
zpupil, the wave does not contain branch points. Suppose further that in plane zpupil an arbitrary
distribution of branch points appear, i.e. for z < zpupil, φhid = 0 and for z ≥ zpupil, φhid 6= 0 for
which

φhid(z < zpupil) 6= 0 ⇒


φzpupil = φlms

B(x,y;z < zpupil) 6= {}
(14)

and

φhid(z≥ zpupil) 6= 0 ⇒


φzpupil = φlms +φhid

B(x,y;z < zpupil) 6= {}
(15)

Let f (x,y,z) denote the wave prior to plane z and create the sequence { fn} with fn =
f (x,y,zn) as before by using the sequence zn = zpupil− 1

n . Let f (x,y,zpupil) denote the wave
in the pupil. Let w(x,y) = f (x,y,zpupil) be the two dimensional scalar function representing a
cross section of the traveling wave in the pupil, and as was shown by Fried,

w(x,y) = A(x,y)eı(φlms(x,y)+φhid(x,y) (16)

For the general case of an arbitrary distribution of branch points in plane zpupil, φ hid is given
by

φhid(r) = Im

{
log

[
ΠK

k=1(x− xk)+ i(y− yk)
ΠK′

l=1(x− x′l)+ i(y− y′l)

]}
and this is obviously non-trivial in the general case. But since z < zpupil, for each φn, φ n

hid(z) =
0. It is immediately obvious that in the general case that each of the φn only contain least
square phase. So φn 9 φzpupil since φhid 6= 0. Therefore, fn 9 f (x,y,zpupil). So, an arbitrary
distribution of branch points cannot be created in the propagation from plane z to plane z + ε

with ε arbitrarily small.
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5.2. Atmospherically Created Branch Points Can Appear in Pairs

But consider a very specific case: suppose that in plane zpupil two branch points with opposite
polarity are created a distance d apart. Suppose without loss of generality that the two branch
points are located at (0,0) and (0,d). Let Φ(x,y) be the phase of a single branch point. Then
the phase of a branch point pair is

Φ(x,y+d)−Φ(x,y) = atan
y+d

x
− atan

y
x

which for the special case of d < x and d < y =⇒ y(y+d)
x2 > 0, gives

Φ(x,y+d)−Φ(x,y) = atan
dx

x2 + y2 + yd
. (17)

Then it is trivial to show that in this regime

lim
d→0

(Φ(x,y+d)−Φ(x,y)) = lim
d→0

dx
x2 + y2 + yd

− 1
3

(
dx

x2 + y2 + yd

)3

+ · · ·

= lim
d→0

d

{
x

x2 + y2 + yd
− d2

3

(
x

x2 + y2 + yd

)3

+ · · ·

}
→ 0 as d→ 0. (18)

So pairs of branch points can be created at zpupil such that φhid ≈ 0, but Equation 18 omits the
region when x < d or y < d, i.e. this is not sufficient to demonstrate uniform propagation but it
is evocative.

To remedy this, consider that the mapping atan() is smooth except along the branch cut;
smoothness implies that the derivative exists and is finite. So again consider the two branch
points. As is typically done in AO, the two branch points will be connect with a branch cut. The
phase of the first branch point is atan( y

x ) with principal domain [0,2π]; this places the branch
cut along the points {(x,y}= ([0,∞],0). The phase of the second branch point is atan( y+d

x ) with
principal domain [−π,π]; this places the branch cut along the points {(x,y}= ([−∞,d],0). So
with atan( y

x )− atan( y+d
x ), the branch cuts cancel outside {(x,y} = ([0,d],0), yielding the line

B(x,y;zpupil) = {[0,d],0}.
Since atan() is smooth,

(
atan( y

x )
)′ exists except along the branch cuts. So, as is given by

elementary calculus,

atan(
y+d

x
)− atan(

y
x
) = d atan

(y
x

)′
+O(d2) (19)

which in-turn implies ∣∣∣∣atan(
y+d

x
)− atan(

y
x
)
∣∣∣∣< d C +O(d2) (20)

where C =
∣∣∣lim sup

(
arctac( y

x )
)′∣∣∣ and x,y ∈ R/B, and O(·) is “on the order of” Hence,

given ε, ∃D≤ ε

4C
s.t. ∀d < D,

∣∣∣∣atan(
y+d

x
)− atan(

y
x
)
∣∣∣∣< ε

4
∀x,y ∈ R2/B.

There may be question about choice of the principal domain. Recall, for some argument (x,y)∈
R2, atan( y

x ) = θ +n2π . In mod2π algebra, θ +n2π = θ , so choice of the principal domain does
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not change θ merely the location of the 2π discontinuity and the preceeding argument goes
through unchanged. The restriction to separation in the vertical axis is unimportant, and all
orientations can be easily obtained via rotation of coordinates.

So, for a pair of branch points of opposite polarity, when their separation is small enough,∣∣ fn− f (x,y,zpupil)
∣∣ (21)

=
∣∣ f (r,zn)− f (r,zpupil)

∣∣ (22)

=
∣∣∣ f (r,zn)−A(r,zpupil)eıΦlms(r,zpupil)+Φhid(r,zpupil)

∣∣∣ (23)

=
∣∣∣ f (r,zn)−A(r,zpupil)eıΦlms(r,zpupil) +A(r,zpupil)eıΦlms(r,zpupil)−A(r,zpupil)eıΦlms(r,zpupil)+Φhid(r,zpupil)

∣∣∣
(24)

<
∣∣∣ f (r,zn)−A(r,zpupil)eıΦlms(r,zpupil) |+|A(r,zpupil)eıΦlms(r,zpupil)−A(r,zpupil)eıΦlms(r,zpupil)+Φhid(r,zpupil)

∣∣∣
(25)

<
ε

4
+
∣∣A(r,zpupil)

∣∣ ∣∣∣1− eiΦhid(r,zpupil)
∣∣∣ (26)

Then examaning the last term∣∣A(r,zpupil)
∣∣ ∣∣∣1− eiΦhid(r,zpupil)

∣∣∣= ∣∣A(r,zpupil)
∣∣ ∣∣1− cos(Φhid(r,zpupil))− isin(Φhid(r,zpupil))

∣∣
(27)

<
∣∣A(r,zpupil)

∣∣ ∣∣1− cos(Φhid(r,zpupil))
∣∣+ ∣∣i0+ isin(Φhid(r,zpupil))

∣∣
(28)

then let d < D where D is given as above and D << 1

<
∣∣A(r,zpupil)

∣∣ |1−1−dC|+
∣∣0+(dC)2∣∣ (29)

=
∣∣A(r,zpupil)

∣∣ |dC|+
∣∣(dC)2∣∣ (30)

<
ε

4
+

ε2

16
< ε ∀d < D and ∀x,y ∈ R2/B (31)

where D <
[∣∣A(r,zpupil)

∣∣ C
]−1 ∈ R2/B. [ Recall, that the zeros of w(x,y) are isolated and they

exist at the endpoints of B ]. Then∣∣ fn− f (x,y,zpupil)
∣∣< ε

4
+

ε

4
+
(

ε

4

)2
< ε (32)

So,

given ε,∃D and N s.t. ∀n > N and d < D,
∣∣ fn− f (x,y,zpupil)

∣∣< ε ∀x,y ∈ R/B

that is
fn→ f (x,y,zpupil) uniformly

but only in the very special case when two branch points of opposite polarity are separated by
d, arbitrarily small.

That is, if a wave propagates through turbulence and a pair of branch points of opposite
polarity spaced infinitesimally close together does not violate causality.
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5.3. Atmospherically Created Branch Points Cannot Appear Singly

Next, consider the case of a wave that is branch point free prior to the pupil but contains a single
branch point in the pupil. Specifically, suppose we have a wave propagating in the ẑ direction
such that, prior to the plane zpupil, the wave does not contain branch points, and in plane zpupil
a single branch point appears. Suppose further, without loss of generality, that the branch point
is created at x = y = 0. Then for z < zpupil

φhid = 0 ⇒

 φAO = φlms

B(x,y;z < zpupil) 6= ∅
(33)

and for z≥ zpupil

φhid = atan
(y

x

)
⇒

 φAO = φlms + atan
( y

x

)
B(x,y;z < zpupil) 6= ∅

(34)

Then, as before, let

fn := f (r,z− 1
n
) = An(r)eıΦn(r)

with Φn(r) ∈ φlms(r). As before,

φn 9 φlms(x,y)+ atan
(y

x

)
which implies

fn 9 f (x,y,zpupil).

So a single branch point cannot occur without violating causality.
This is easily extended to show that any odd number of branch points cannot occur.

5.4. Arbitrary numbers of Branch Points

Given a wave with a creation pair, suppose the wave propagates further and additional branch
points begin to form. Following the same type of proof as in Sections 4 and 5, it can be shown
that the second onset of branch point formation also occurs in pairs of opposite polarity with
infinitesimal separation. In this way, the pupil can be fully populated with branch points.

5.5. Propagation with a Creation Pair

For completeness, it must be shown that once created, a creation pair can propagate uniformly.
The proof is identical to that in Section 4, with the exception that B(x,y;z) is no longer the

null set, i.e. it contains the branch cuts associated with the creation pairs.

5.6. Section Summary

Given a wave that is branch-point-free prior to plane z. A branch point pair can be created at
z + ε where ε is arbitrarily small as long as their separation is infinitely small and the branch
points are of opposite polarity.

We call this a creation pair.
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6. Evolution of the Branch Cuts

Suppose a single creation pair has formed and there is additional propagation with no further
branch point formation. Following the same type of proof as in Section 4, it can be shown that
fn → f uniformly requires that Bn → B uniformly where Bn ∈ {B(x,y;zn)} with zn := 1

n as
before. Note, although B is changing with increasing z, this B is not a wave and hence is not
propagating; we say here for discussional purposes that B is evolving.

So, not surprisingly then, the branch cuts evolve uniformly as the wave moves in z. Uniform
evolution of B means that B is a smooth function of z which implies that branch points are a
persistent feature of the propagating wave. This stands in direct contradiction to standard prac-
tice in adaptive optics where typically branch cuts are assigned via a frame-to-frame minimum
distance metric [5]. In short, we have shown that the branch cuts evolve smoothly in z and hence
in time since they travel with the wave.

Also, see Appendix B for a stronger statement on the condition on B.

7. Creation Pairs, Branch Cuts, and Principal Domains

Each branch point has a branch cut. Since we have shown that branch points appear in pairs of
opposite polarity, we would expect that the branch cut lies along the branch point pair. This is
in keeping with the observation in [2] that branch cuts lie along minima in intensity.

The principal domain of each branch point is then chosen so that the branch cut lies along the
direction to the other branch point. Therefore, since choosing the line along which the branch
cut resides is equivalent to a choice of principal domain, (1) each branch point in the creation
pair has a principal domain different than the other by π , and (2) each creation pair, depending
on its orientation, has a different base interval for its principal domain.

8. Discussion

We have proven that when created by atmospheric turbulence, branch points must be created in
pairs of opposite ‘polarity’ with infinitesimal separation. Yet in real systems, they are observed
with physically measurable separation.

Based on this evidence, three interesting implications presents themselves. First, the creation
pairs will have the velocity of the turbulence layer that created them. An experimental demon-
stration confirming this observation will be presented in the second paper in this series.

Second, since we have shown that branch points must be created in pairs infinitesimally close
together, yet they are observed to have finite separations in wavefront sensor data, they must
drift apart as the wave propagates. The forth paper in this series will prove this to be true and
also determine the magnitude of this drift component.

Thirdly, it appears that the separation of the paired branch points yields (stochastically) the
distance to the turbulence layer which caused their creation. That is, given a turbulence layer
which generates an ensemble of pairs of branch points some distance later, the distance to the
turbulence layer can be obtained from the mean separation between the paired branch points.
Again an experimental demonstration will be presented in the fourth paper of this series.

9. Summary

Here we have begun a study on the aggregate behavior of branch points and have shown a nar-
row but crucial result: atmospherically created branch points are created infinitesimally close
together in pairs of opposite polarity and drift apart as they propagate. This proves that atmo-
spherically created plane branch points measured in the pupil of a telescope contain information
about the turbulence layer that created them. Furthermore, we have shown that branch cuts are
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also a persistant feature of the wave and that they evolve uniformly much as the wave does
while propagating.

In short, we have taken the first step in demonstrating that branch points have a rich aggregate
behavior previously unmentioned in the literature.
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A. Appendix - Enumertion of the Derivation demonstrating Uniform Propagation

It must be shown that the sequence { fn} is such that fn→ f (r,z) uniformly. To do so it must
first be shown that f (r,z), outside some radius, R, is arbitrarily close to zero, i.e. given ε >
0,∃R > 0 s.t. ∀|r0|> R, | f (r0,z)|< ε. So consider

f (r,z) =
eikz

iλ z
ei k

2z |r|
2
∫

Ω

f (r0,0)ei k
2z |r0|2ei k

z r0·rdr0, (35)

and let
I(r,z) :=

∫
Ω

f (r0,0)ei k
2z |r0|2ei k

z r0·rdr0.

It suffices to show that ∀|r|> R, |I(r,z)|< ε.
First note that r0 is bounded since Ω is compact in R2. Then, since r is unbounded,

∃R s.t. ∀|r|> R s.t. f (r0,0) and ei k
2z |r0|2 vary slowly w.r.t

k
z
|r0 · r|. (36)

Therefore to good approximation, both f (r0,0) and ei k
2z |r0|2 can be taken out of the integral.

Hence,

|I(r,z)| ≈
∣∣∣∣ f (r0,0)ei k

2z |r0|2
∫

Ω

ei k
z r0·rdr0

∣∣∣∣ (37)

≈

∣∣∣∣∣ f (r0,0)ei k
2z |r0|2 z

ik|r|

∫
Ω(θ(ρ))

ei k
z |r|ρ cos(θ)dθ

]
Ω(ρ)

∣∣∣∣∣ (38)

.
1
|r|

∣∣∣∣∣ f (r0,0)
z
k

∫
Ω(θ(ρ))

ei k
z |r|ρ cos(θ)dθ

]
Ω(ρ)

∣∣∣∣∣ (39)

(40)

where Ω is integrated in cylindrical coordinates (ρ,θ) =⇒ r0 · r = ρ|r|cos(θ), Ω(ρ) is the
boundary of Ω in the ρ coordinate, Ω(θ(ρ)) is the remaining boundary of Ω over θ , and ]Ω(ρ)
evaluates the expression along the ρ boundary. Then note in the last expression that since f has
compact support, and since z and k are fixed, and since

∫
Ω(θ(ρ)) e(·) < +∞, | · | < +∞ Hence,

letting C := | · |,

|I(r,z)|. C
|r|

(41)

=⇒ | f (r,z)|. 1
|r|

C
λ z

(42)

=⇒ given ε > 0,∃R > 0 s.t. ∀|r|> R, | f (r,z)|< 1
4

ε. (43)
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Then, it suffices to show that given ε > 0,∃N > 0 s.t. ∀r ∈ R2 and n > N, | f (r,z− 1
n )−

f (r,z)|< ε . So consider,

| fn− f (r,z)|=
∣∣∣eikz

iλ z
ei k

2z |r|
2
I(r,z)− eik(z− 1

n )

iλ (z− 1
n )

e
i k

2(z− 1
n )
|r|2

I(r,z)
∣∣∣

≤ 1
λ (z− 1

n )

∣∣∣I(r,z)− I(r,z− 1
n
)− 1

nz
eik 1

n e
−i k

2 |r|
2 1

n
1

z(z− 1
n ) I(r,z)

∣∣∣ (44)

and using the triangle inequality and since 0 < z−1 < z− 1
n

,

≤ 1
λ (z−1)

∣∣∣I(r,z)− I(r,z− 1
n
)
∣∣∣+1

n

∣∣∣ I(r,z)
z

∣∣∣
and since I(r,z)

z is bounded, ∃M s.t. ∀n > M,

1
n

1
λ (z− 1

n )

∣∣∣ I(r,z)
z

∣∣∣< 1
2

ε. (45)

Therefore,

for z > 1 and ∀n > M, | f (r,z− 1
n
)− f (r,z)|< 1

λ (z−1)

∣∣∣I(r,z)− I(r,z− 1
n
)
∣∣∣+1

2
ε (46)

Now consider two cases, |r|> R and |r| ≤ R with R chosen as in Equation 36.

Case 1: |r|> R

| f (r,z− 1
n
)− f (r,z)|< 1

λ (z−1)

∣∣∣I(r,z)− I(r,z− 1
n
)
∣∣∣+1

2
ε

<
1

λ (z−1)
|I(r,z)|+ |I(r,z− 1

n
)|+ 1

2
ε

<
1
|r|

(C1 +C2)
λ (z−1)

+
1
2

ε (47)

where C1 and C2 are as given in Equation 42. Then letting R := C1+C2
λ (z−1) ,

=⇒ for z > 1 and ∀n > M, given ε > 0,∃R s.t. ∀|r|> R, | f (r,z− 1
n
)− f (r,z)|< ε

Case1

Case 2: n > M and |r| ≤ R

|I(r,z)− I(r,z− 1
n
)|

=
∣∣∣∫

Ω

f (r0,0)ei k
2z |r0|2ei k

z r0·rdr0−
∫

Ω

f (r0,0)ei k
2(z−1/n) |r0|2ei k

(z−1/n) r0·rdr0

∣∣∣
=
∣∣∣∫

Ω

dr0 f (r0,0)ei k
2(z−1/n) |r0|2ei k

(z−1/n) r0·r
(

ei k
2

1
n

1
z(z+1/n) |r0|2eikr0·r 1

n
1

z(z+1/n) −1
)∣∣∣

<
∫

Ω

dr0

∣∣∣ f (r0,0)
∣∣∣∣∣∣(e

α+β

n −1
)∣∣∣ (48)
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where

α := i
k
2

1
z(z+1/n)

|r0|2 and β := ikr0 · r
1

z(z+1/n)
. (49)

Then,

|I(r,z)− I(r,z− 1
n
)|

=
∫

Ω

dr0

∣∣∣ f (r0,0)
∣∣∣∣∣∣ 1

1!

(
α +β

n

)1

+
1
2!

(
α +β

n

)2

+
1
3!

(
α +β

n

)3

+ · · ·
∣∣∣

≤
∫

Ω

dr0

∣∣∣ f (r0,0)
∣∣∣1
n

(
1
1!
|α +β |1 +

1
2!
|α +β |2 +

1
3!
|α +β |3 + · · ·

)
<

1
n

∫
Ω

dr0

∣∣∣ f (r0,0)
∣∣∣(e|α+β |−1

)
(50)

but |r| ≤ R and r0 ∈Ω =⇒ α,β < +∞ =⇒
∫

Ω
(·) < +∞. So letting C3 :=

∫
Ω
(·) < +∞,

=⇒ |I(r,z)− I(r,z− 1
n
)|< 1

n
C3 (51)

=⇒ | f (r,z− 1
n
)− f (r,z)|< 1

n
C3

1
λ (z−1)

+
1
2

ε (52)

and since ∃N > 2 1
ε

C3
λ z =⇒ ∃N > 0, s.t. ∀n > N, | f (r,z− 1

n )− f (r,z)|< 1
2 ε + 1

2 ε then letting
P := max(N,M)

=⇒ given ε > 0,∃P > 0 s.t. ∀|r|< R and n > P =⇒ | f (r,z− 1
n
)− f (r,z)|< ε (53)

Case2

So, we have shown that fn→ f (r,z) uniformly on R2\B for both |r|> R and for |r| ≤ R. There-
fore, free space Fresnel propagation is uniform. Moreover, since analytic functions are unique
and given Equation 7, this implies that both the amplitude and phase propagate uniformly, i.e.
create sets {An} and {φn} with An = A(x,y,zn) and φn = φ(x,y,zn) and zn = zpupil− 1

n as before.
Then given that fn→ f (r,z) uniformly , An(r)→ A(r) uniformly and Φn(r)→Φ(r) uniformly.

B. Appendix - Constraint on the Evolution of B

The further stronger statement can be made: the newly created branch point pair induces both
real and imaginary parts to the wave. Initially, the imaginary part is zero and the real part is
one. As the wave propagates past zpupil, the imaginary and real parts of the branch point phase
uniformly evolve away from zero. This can be seen explicitly if d is taken away from zero like

dm :=
1
m

with m ∈ Z s.t.
1
M

< D.
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Then let {Φ(m)
hid (r,zpupil)} be a sequence created using the dm and from Equations 28 and 29,∣∣∣1− eiΦhid(r,zpupil)

∣∣∣< ∣∣1− cos(Φhid(r,zpupil))
∣∣+ ∣∣i0+ isin(Φhid(r,zpupil))

∣∣
< |0−dC|+

∣∣i0− i(dC)2∣∣
=
∣∣∣∣0− C

m

∣∣∣∣+
∣∣∣∣∣i0− i

(
C
m

)2
∣∣∣∣∣

Since C is a constant, ∃M s.t. ∀m > M,C/m < ε/2

<
ε

2
+

ε2

4
< ε ∀m > M and ∀x,y ∈ R2/B (54)

So,
given ε, ∃M such that ∀m > M,

∣∣1− cos(Φhid(r,zpupil))
∣∣< ε ∀x,y ∈ R

and
given ε, ∃M such that ∀m > M,

∣∣i0− isin(Φhid(r,zpupil))
∣∣< ε ∀x,y ∈ R

as was to be shown.

15



 

 DISTRIBUTION LIST 
 
 
 DTIC/OCP 
8725 John J. Kingman Rd, Suite 0944  
Ft Belvoir, VA 22060-6218    1cy 
 
AFRL/RVIL 
Kirtland AFB, NM 87117-5776    2 cy 
 
Darryl Sanchez 
Official Record Copy 
AFRL/RDSA       1cy 
 

 

 


	ADP681C.tmp
	Technical Paper




