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1 Problem Statement

The objective of this research grant is to develop a new mathematical formalism for cooper-
ative multiagent system synthesis that is explicitly designed to accommodate sophisticated
social relationships such as negotiation and compromise. To do so, we focus on the founda-
tional assumptions that undergird multiagent decision making, and challenge the adequacy of
the classical assumptions for the design of socially sophisticated artificial multiagent systems.

Classical approaches to multiagent decision making, such as von Neumann-Morgenstern
game theory [19] and social choice theory [1, 4, 10], are founded upon two key assumptions.

• It is assumed that each member of a multiagent system possesses a well-defined total
preference ordering over all of the feasible actions of the collective. Such preference
orderings are categorical in the sense that they are unconditional — once defined, the
preference orderings are immutable and are viewed as the selfish desires of the members
even if, ostensibly, they express some notion of altruism by substituting the preferences
of others for one’s own.

• It is assumed that each member will seek to maximize benefit to itself, regardless of
the effect doing so has on other members.

These two assumptions form the basis of the classical doctrine of individual rationality.
Perhaps the most well-known game-theoretic instantiation of this doctrine is the concept
of Nash equilibria: a state of mutual constrained optimization for all members in the sense
that any member who unilaterally deviates from an equilibrium state will be less satisfied.
Individual rationality is appropriate for competitive social situations, but does not provide a
framework within which sophisticated social relationships can be easily modeled and, hence,
is not well suited as a model for cooperative multiagent systems.

The social choice solution to the multiagent system decision problem is to combine, or ag-
gregate, the utilities of each individual to form a social welfare function to be maximized. As
with the game-theoretic approach, however, classical social choice approaches use categorical
utilities, and do not account for social relationships among the individuals.

We introduce a significant departure from classical approaches to multiagent decision
making. Our approach differs from the classical formulation in three major ways.

1. Conditioning. We relax the assumption that each member of a multiagent system
possesses a total preference ordering over all feasible actions of the collective. We
assume, instead, that members of a multiagent system are able to modulate their
preferences as a function of the preferences of others. To account for this change, we
replace categorical utilities with conditional utilities that are designed to express the
preferences of each individual as a function of the preferences of others, as appropriate.

2. Coherence. We invoke a weak notion of equity by assuming that a minimal condition
for meaningful negotiations to take place is for each member of the system to have a
“seat at the table” in the sense that its interests at least have a chance of being taken
seriously by the group as a whole. Stated more formally, we require the system to
be coherent, meaning that no individual can be categorically subjugated in the sense
that every action that is acceptable to the collective requires the individual to be
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disadvantaged. Such an individual would effectively be disenfranchised, and would
not be in a position to undertake meaningful negotiations. This structure does not
eliminate hierarchical systems; rather, it simply means that, even in master/slave
relationships, the possibility exists (but not the guarantee) that the slave’s preferences
can be acceptable to the master. For a slave to be categorically subjugated, every
action that is good for the master would have to be bad for the slave.

3. Satisficing. We replace the notion of optimization with a concept of being adequate,
or good enough. The terminology we use for this concept is satisficing. This term was
initially introduced by Simon [11–13], who addressed the question of how a decision
maker might choose in the presence of informational or computational limitations.
Simon’s approach is to seek an optimal choice, but to terminate searching and once the
decision maker’s aspiration level has been met. A slightly different notion of satisficing
is to accept the best solution so far obtained, once the cost of continuing to search
exceeds the expected improvement in value were the search to continue. Many other
variations of this concept have appeared in the literature and it is not the intent of this
report to review them in detail. Suffice it to say, however, that all of these approaches
view satisficing as a species of bounded rationality: one settles for a solution that is
deemed to be “good enough,” but which is not necessarily, and usually not, optimal in
any meaningful sense. Satisficing à la Simon is an heuristic approximation to the ideal
of being best (and is only constrained from achieving this ideal by practical limitations).

The concept of satisficing we employ, however, differs from the afore-mentioned notions
in several important ways.

(a) In contrast to satisficing as advanced by Simon and others, it is not heuristic;
rather, it is a concept that is as mathematically formalized and precise as is the
notion of optimization.

(b) It treats being good enough as the ideal (rather than an approximation) — it is
not a species of bounded rationality.

(c) It naturally extends to the multi-agent case, thereby providing a natural frame-
work for multi-agent decision making.

(d) It readily accommodates the extension of interests beyond the self, thereby ac-
commodating more sophisticated social relationships than self-interest affords.

We retain the term “satisfice” because, even though our approach is not heuristic, we
nevertheless seek solutions that are good enough, with the essential difference being
that we provide a non-heuristic and mathematically precise definition of what it means
to be good enough.

While optimization is intrinsically an individual concept (if a group is to optimize, it
must act as an individual), satisficing, as we define it, is a social concept: what is best
for you may be incompatible with what is best for me, but what is good enough for
you can also be good enough for me, provided we each have some flexibility regarding
what we view as good enough.
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To motivate our concept of satisficing, we note that humans often invoke a systematic
approach to decision making that, while still based on quantitative measures of per-
formance, does not correspond to optimization. In the vernacular, the optimization
paradigm corresponds to seeking “the best and only the best” solution. Also common,
however, is the paradigm of “getting your money’s worth,” or ensuring that the ben-
efits are greater than the costs. This notion of being good enough is the satisficing
paradigm that we advocate. A comprehensive introduction to this perspective can be
found in [15].

2 Summary of Results: Negotiations

A multiagent system comprises a collective of agents who must work cohesively to accomplish
some fundamental objective. Typically, however, such systems are mixed-motive, in the
sense that the interests of all individuals will not all coincide perfectly; hence, opportunities
for both cooperation and competition will exist. The major contribution of this study is
the development of a mathematical framework that accommodates both cooperative and
competitive aspects of a multiagent system. In this section we briefly describe the three
main components of our theory (conditioning, coherence, and satisficing) and show how they
are used to define a framework within which to conduct negotiations. Publications arising
from this research are [16, 17], which are included in Appendices A and B, respectively.

2.1 Conditional Utilities

Let {X1, . . . , Xn}, n ≥ 2, denote a group of autonomous decision makers. Let Ai denote a
finite set of feasible actions available to Xi, i = 1, . . . , n, let A = A1 × · · · × An denote the
product action space, and let a = (a1, . . . , an) denote the action profile that obtains when
each Xi instantiates ai ∈ Ai. A categorical utility for Xi is a mapping uXi

: A → R such that
uXi

(a) > uXi
(a′) if Xi strictly prefers a to a′ and uXi

(a) = uXi
(a′) if Xi is indifferent between

a and a′. Classical decision-theoretic approaches,such as von Neumann-Morgenstern game
theory, employ categorical utilities (i.e, they are the payoffs of a game).

A conditional utility differs from a categorical utility in that it is a hypothetical, rather
than a concrete, expression. Before formally defining a conditional utility, we must first
introduce the notion of a commitment. In the interest of clarity, we temporarily restrict our
discussion to a two-agent system (X1, X2). Now suppose, from the point of view of X2 that
X1 views a = (a1, a2) to be its most preferred joint action. We shall call this hypothetical
constraint on X1 a commitment. A commitment, therefore, represents the antecedent of a
hypothetical proposition, the consequent of which is a conditional utility denoted uX2|X1

(·|a).
More generally, for an n-agent system, if Xi is influenced by the pi element sub-collective
{Xi1 , . . . , Xipi

}, then the conditional utility of Xi is of the form uXi|Xi1
,...,Xipi

(ai|ai1 , . . . , aipi
).

In contrast to categorical utilities, a conditional utility expresses Xi’s preferences over A

given the commitments of all other agents that influence it. In the most general case, each
agent would be influenced by every other agent, but it is often the case that agents will be
most heavily influenced by their immediate neighbors. For example, hierarchical organiza-
tions are organized so that superiors influence subordinates. Other multiagent systems are
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organized into small loosely connected clusters. Thus, although a fully connected system is
possible, many interesting multiagent systems are relatively sparsely connected. With this
project we will focus on systems whose influence relationships can be represented graphically
with a directed acyclic graph, or DAG. The vertices of the graph represent the various mem-
bers of the collective, and the edges represent the conditional utilities. Figure 1 illustrates
an influence network for a five-member multiagent system. We see that X1 influences X2,
who in turn influences X3 and X5. X5 is also influenced by X4. Finally, X3 is influenced
by X2 and X5. Since X1 and X4 are root vertices, they possess categorical utilities uX1

and
uX4

(not shown on the graph). It should be noted that, if all utilities were categorical, then
this graph would have no edges — it would consist of n isolated vertices, each possessing a
categorical utility. With this more general model, only the root vertices possess categorical
utilities, all others possess conditional utilities.

X1

uX2|X1

X4

X2

uX5|X2X4

uX3|X2X5

X5

X3

Figure 1: An influence network for a five-member multiagent system.

2.2 Coherence

A collective that possesses the property that none of its members can be categorically subju-
gated is said to be coherent. We have appropriated this term from probability theory, since
the notion of avoiding sure subjugation is completely analogous to the probabilistic notion
of avoiding sure loss. As the Dutch Book Theorem and its converse establish, the only way
for a gambler to avoid a situation of sure loss (his payoff is less than his stake regardless of
the outcome), is for him to place bets in accordance with the axioms of probability. One
of the key results of our investigation is to demonstrate that, similarly, the only way for
a member of a collective to avoid categorical subjugation is for all utilities to possess the
mathematical structure of conditional or marginal mass functions. Under this constraint,
the edges in Figure 1 are conditional mass functions, and the graph therefore possesses the
mathematical structure of a Bayesian network (albeit with different semantics). Convention-
ally, Bayesian networks operate in the epistemological1 domain; that is, involving random
phenomena. To distinguish between the conventional probabilistic application of Bayesian
networks and our praxeological2 application, we shall refer to networks such as is depicted
in Figure 1 as praxeic networks.

1Epistemology relates to the categorization of propositions in terms of knowledge and belief.
2Praxeology relates to the categorization of actions in terms of their effectiveness and efficiency.
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The DAG structure, coupled with the fact that the edges are mass functions, permits
a natural way to aggregate the preference orderings of the individuals to form a group
preference ordering. As is well known from Bayesian network theory, the so-called Markov
condition, which states that nondescendent nonparents of a vertex have no influence on
the vertex, given the state of its parent vertices [2]. Accordingly, just as the multivariate
probability mass function is formed as the product of the conditional and marginal mass
functions of a Bayesian network, the multiagent utility of collective is formed as the product
of the conditional and marginal utilities of the praxeic network. Thus, the multiagent utility
associated with the network illustrated in Figure 1 is

uX1X2X3X4X5
(a1, a2, a3, a4, a5) =

uX1
(a1)uX2|X1

(a2|a1)uX3|X2x5
(a3|a2, a5)uX4

(a4)uX5|X2X4
(a5|a2, a4). (1)

More generally, let pa (Xi) = (Xi1, . . . , Xipi
) denote the pi parents of Xi, and let uXi| pa (Xi)

denote the conditional utility of Xi given its parents. If a vertex has no parents, then the
conditional utility becomes a categorical utility; that is, uXi| pa (Xi)

= uXi
if pa (Xi) = ∅. The

multiagent utility then becomes

uX1···Xn
(a1, . . . , an) =

n
∏

i=1

uXi|pa (Xi)
[ai| cp (Xi)], (2)

where cp (Xi) = {ai1 , . . . , aipi
}.

The probabilistic syntax of the utilities constructed in this way provides a natural way
to link the praxeological and epistemological aspects of a decision problem into a common
unifying framework. To illustrate, let us modify the network in Figure 1 by replacing vertex
X5 with a random variable, θ, as illustrated in Figure 2, where uX3|X2θ is a utility conditioned
on the commitment of X2 and the value that θ assumes and pθ|X2X4

is a probability mass
function conditioned on the commitments of X2 and X4. The resulting multiagent utility is
of the form

uX1X2X3X4θ(a1, a2, a3, a4, ϑ) = uX1
(a1)uX2|X1

(a2|a1)uX3|X2θ(a3|a2, ϑ)uX4
(a4)pθ|X2X4

(ϑ, a2, a4),
(3)

where ϑ is the value assumed by the random variable θ. The expected utility is then obtained
by averaging over the values that θ may assume, yielding

ûX1X2X3X4
(a1, a2, a3, a4) =

∑

ϑ

uX1X2X3X4θ(a1, a2, a3, a4, ϑ). (4)

This result extends to the general n-dimensional case in the obvious way.
The most general formulation of this framework assumes that each individual’s utility

is defined over the product action space A, given the commitments of each of its parents
to action profiles in A, as is presented above. For many applications, however, this full
generality is not necessary, since it is often reasonable to assume that agents’ utilities are
defined with respect to their own actions, given commitments by others to only their own
actions. Thus, we introduce the notion of decoupling.
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X1

uX2|X1

X4

X2

pθ|X2X4

uX3|X2θ

θ

X3

Figure 2: A praxi-epistemic network for a four-member multiagent system.

Definition 1 A multiagent system is conditionally decoupled if the conditional preference

of each agent is a function only of its own actions, given the commitments of its parents to

their own actions.

For a decoupled multiagent system, (3) becomes

uX1X2X3X4θ(a1, a2, a3, a4, ϑ) = uX1
(a1)uX2|X1

(a2|a1)uX3|X2θ(a3|a2, ϑ)uX4
(a4)pθ|X2X4

(ϑ, a2, a4).
(5)

In general, the individual conditional utilities are of the form

uXi|pa (Xi)
[ai| cp (Xi)] = uXi| pa (Xi)

(ai|ai1 , . . . , aipi
) (6)

where the action sub-profile {ai1 , . . . , aipi
} corresponds to the commitments by pa (Xi) =

{Xi1 . . . , Xipi
}, and the multiagent utility is of the form

uX1···Xn
(a1, . . . , an) =

n
∏

i=1

uXi| pa (Xi)
(ai|ai1 , . . . , aipi

), (7)

For the remainder of this report we focus on decoupled systems.

2.3 Satisficing

Even though optimization is often taken as the sine qua non of of formalized decision-making
procedures, humans are often wont to evaluate propositions in terms of the upside versus
the downside, the pluses versus the minuses, the benefits versus the costs, and so forth. One
of the important omissions in the extant literature is a systematic formal treatment of this
mode of evaluating possible choices. An important result of earlier research by the principal
investigator is the introduction of a formalized mathematical treatment of this alternative
mode of decision making. It should be noted that this approach has been inspired by the
work of the philosopher Isaac Levi [6], who proposed a novel way, using the mathematics of
probability theory, to improve one’s knowledge. In [15], the principal investigator applied
Levi’s approach to the praxeological domain and extended it to the multiagent case.

Conventional utilities combine all costs and benefits of taking action into a single function.
One common approach is to define utility as a linear combination of those aspects of taking
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action that relate to the effectiveness (benefits) of taking an action and those aspects that
relate to the inefficiency (costs) of taking the action. In practice, the weights of these two
facets of taking action become tuning parameters to facilitate the design of a system that
provides acceptable performance (at the end of the day, even optimization is subjective).

Many theorists (e.g., [1, 3, 5, 7]) have argued, however, that it is unwise to aggregate con-
flicting interests into a single preference ordering. Some have asserted that in a social setting
individuals have multiple facets, as defined by Steedman and Krause [14], who maintain that
an agent, although an indivisible unit, nevertheless is capable of considering its choices from
different points of view, and that separate utilities may be defined to correspond to each
facet of an individual. A natural way to classify attributes is according to their effectiveness
and efficiency. Each individual may be viewed as being composed of two facets: the selecting

facet, which evaluates actions in terms of effectiveness toward pursuing objectives without
concern for efficiency, and the rejecting facet, who evaluates actions in terms of efficiency
with respect to consuming resources without concern for effectiveness. We shall view these
selecting and rejecting facets as the “atoms” of the system. Notationally, we define Si and
Ri as the selecting and rejecting facets, respectively, of Xi

Accordingly, we define separate utilities for the selecting facet and the rejecting facet.
In accordance with the conditioning and coherence properties, these utilities are conditional
mass functions. Each agent has a unit of selecting utility to apportion among the feasible
actions and a unit of rejecting inutility also to apportion. An n-agent system thus comprises
2n atoms: n selecting facets and n rejecting facets, and the graph of such a system comprises
2n praxeic vertices whose edges are conditional utilities. Figure 3 illustrates a refinement,
in terms of the facets, of the influence relationships originally defined by Figure 2. This
network reveals more explicitly just how the agents influence each other. We see that S1

influences R2, S4 influences θ, and so forth. Also, facets R1 and R4 are not influenced by
any other facets and hence, in addition to S1, S2, and S4, are root nodes.

S1

uR2|S1

R1 S4 S2

uR3|S2

R2

pθ|R2S4

uS3|R2θ

θ R3

S3 R4

Figure 3: A Satisficing network for a four-member multiagent system.

According to the fundamental property of Bayesian networks, we may form the multiagent
utility as the product of all marginal and conditional utilities, yielding

uS1S2S3S4R1R2R3R4θ(a1, a2, a3, a4, a
′
1, a

′
2, a

′
3, a

′
4, ϑ) =

uS1
(a1)uS2

(a2)uS3|R2θ(a3|a
′
2, ϑ)uS4

(a4)

uR1
(a′

1)uR2|S1
(a′

2|a1)uR3|S2
(a′

3|a2)uR4
(a′

4)pθ|S4R2
(ϑ|a4, a

′
2), (8)
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and the expected utility is

ûS1S2S3S4R1R2R3R4
(a1, a2, a3, a4, a

′
1, a

′
2, a

′
3, a

′
4) =

∑

ϑ

uS1S2S3S4R1R2R3R4θ(a1, a2, a3, a4, a
′
1, a

′
2, a

′
3, a

′
4, ϑ). (9)

This expected utility is called the aggregation function. Analogous to the way a joint
probability distribution captures all of the interdependencies among multiple random vari-
ables, the aggregation function captures all of the inter-relationships among the facets of a
multiagent system.

2.4 Negotiation

2.4.1 Optimal Compromise

The three components of conditioning, coherence, and satisficing provide a framework within
which members of multiagent system can negotiate and compromise. The key feature that
enables this ability is that the satisficing approach provides a set of acceptable actions, rather
than a singleton set comprising the optimal action.

For a non-decoupled system, the utilities are functions of the entire action profile, but for
a decoupled system, the utilities are functions of individual actions. With this restriction,
the multiagent utility function becomes

ûS1···SnR1···Rn
(a1, . . . an, a′

1, . . . , a
′
n) =

n
∏

i=1

uSj |pa (Sj)[aj | cp (Sj)]
n

∏

j=1

uRj |pa (Rj)[a
′
j| cp (Rj)], (10)

where cp (Si) and cp (Ri) denote the commitments by pa (Si) and pa (Ri), respectively.
The corresponding joint selectability and rejectability marginals are given by

uS1···Sn
(a1, . . . , an) =

∑

(a′
1,...,a′

n)

uS1···SnR1···Rn
(a1, . . . , an,′1 , . . . , a′

n) (11)

and
uR1···Rn

(a′
1, . . . , a

′
n) =

∑

(a1,...,an)

uS1···SnR1···Rn
(a1, . . . , an, a′

1, . . . , a
′
n). (12)

We may now define a social welfare function as

W (a1, . . . , an) = uS1···Sn
(a1, . . . , an) − qGuR1···Rn

(a1, . . . , an) (13)

where qG ∈ [0, 1] regulates the threshold for rejecting elements of A. Nominally, qG = 1, but
as we shall see, this parameter serves as negotiating parameter. The jointly satisficing set is
the set of action profiles that are jointly satisficing for the system as a whole, and is defined
as

S = {(a1, . . . , an) ∈ A: W (a1, . . . , an) ≥ 0}. (14)

10



This set, however, does not account for the possibility that the elements of S may not be
acceptable to all (or any) of the individuals. Thus, we must also compute the individual sat-
isficing sets. To proceed, we must first compute the selectability and rejectability marginals
as

uSi
(ai) =

∑

¬ai

uS1···Sn
(a1, . . . , an) (15)

and
uRi

(ai) =
∑

¬ai

uR1···Rn
(a1, . . . , an), (16)

respectively, where the notation
∑

¬ai
is the so-called “not sum” notation meaning the sum

is taken over all elements except ai.
We define the individually satisficing sets as

Σi = {ai ∈ Ai: uSi
(ai) − qiuRi

(ai)}, (17)

where qi ∈ [0, 1] is Xi’s individual negotiation index. This set includes all alternatives
that are satisficing, or good enough, for Xi at the given negotiation index. The satisficing

rectangle is the set of all action profiles such that each component is individually satisficing,
and is given by

R = Σ1 × · · · × Σn. (18)

The intersection of the jointly satisficing set and the satisficing rectangle yields the compro-

mise set, comprising the action profiles that are simultaneously good enough for the group
and for each individual.

C = S ∩R. (19)

If C 6= ∅, then we may form a best compromise as

a∗ = arg max
a∈C

W (a). (20)

If C = ∅, then there are no action profiles that are simultaneously good enough for
the group and each individual. However, the satisficing approach provides a natural and
systematic negotiation framework by which each individual may control the degree to which
it is willing to lower its standards in an attempt to reach a compromise. By lowering its
qi-value incrementally, each Xi increases the size of its satisficing set. By specifying the
increment ∆qi that Xi is willing to reduce its standards, each participant can control the
amount of compromise it is willing to offer others. If enough participants are willing to
lower their q-values sufficiently, it is easy to see that, eventually, the consensus set will be
non-empty, and a best compromise can be achieved. Although such negotiations may fail
to reach a compromise that is acceptable to all members, the significant aspect of this type
of negotiation is that no individual is a priori subjugated to the will of the collective in the
sense that there is no possibility for that individual’s preferences to receive consideration.
Thus, every individual can be assured of receiving sufficient benefit, by its own definition,
before agreeing to the compromise.

11



2.4.2 Nash Bargains

A bargaining game is a cooperative game in which each participant possesses a disagreement

point that defines the benefit that is guaranteed to accrue to it if a compromise cannot
be reached. A well-known bargaining concept that offers a clear definition of individual
acceptability is the Nash bargain [8], which permits each participant to make maximal use
of its strategic strength. Let dXi

denote the disagreement point for Xi. The negotiation set,
denoted N , is the subset of action profiles such that every participant achieves at least its
disagreement point. In terms of categorical utilities, the negotiation set is

N =
{

a ∈ A: uXi
(a) ≥ dXi

, i = 1, . . . , n
}

(21)

and the Nash bargain is

aN = arg max
a∈N

n
∏

i=1

[

uXi
(a) − dXi

]

. (22)

The intuitive interpretation of a Nash bargain is that it defines a fair compromise. It enables
each player to take advantage of the strategic strength endowed by its disagreement point.
The higher Xi’s disagreement point, the more action profiles that are unfavorable to it are
eliminated.

The structure of (22) suggests that the optimal group solution can be interpreted as a
Nash bargain with unilateral utilities replaced by conditional utilities and all disagreement
points set to zero. Analogously, therefore, we may define a conditional Nash bargaining

solution. When decisions are made under certainty, the negotiation set is defined as

N =
{

a ∈ A: uXi|pa (Xi)
(a)| cp (Xi) ≥ dXi

, i = 1, . . . , n
}

. (23)

The conditional Nash bargaining solution is

aN = arg max
a∈N

n
∏

i=1

[

uXi| pa (Xi)
[a| cp (Xi)] − dXi

]

. (24)

3 Summary of Results: Attitude Adaptation

An important benefit of the satisficing approach is that cooperation occurs much more readily
than under standard utility-maximization. To examine this phenomenon more closely, we
studied the emergence of cooperation using evolutionary game theory. Evolutionary game
theory [20] studies large populations of players whose reproductive potential is determined by
the payoff gained during play. For infinitely large, well-mixed populations, the evolution of
the population is described by the replicator dynamics [18]. In the simplest case, all players
have the same action space A, and are paired with one other player each “round.” Let xi(t)
be the fraction of the population playing strategy ai ∈ A at time t. Then, the population
shares evolve according to the following system of differential equations:

ẋi(t) =
[

u(ai,x(t)) − u(x(t),x(t))
]

xi(t), ∀i, (25)

where u(ai,x(t)) is the expected utility of playing strategy ai against a player randomly
drawn from the population described by x(t), and u(x(t),x(t)) is the average expected utility.

12



Essentially, a strategy’s population share grows or shrinks if it fares better or worse than
average, respectively. Given appropriate initial conditions, the steady-state of the replicator
dynamics is a Nash equilibrium.

To apply evolutionary dynamics to the satisficing case, we note that players’ conditional
utilities are often expressed in terms of tunable parameters that govern (for example) players’
willingness to cooperate or defer to the preferences of others. We term these parameters
attitudes and study how players might adapt their attitudes in order to increase payoff.
Instead of running the replicator dynamics on players’ actions (as in the classical case),
we run the replicator dynamics on players’ attitudes, allowing us to study the ecological
fitness of exhibiting a particular attitude. This dynamics leads the players to an attitude

equilibrium, a point at which no player can improve its payoff by changing its attitudes.
As a concrete example, we focus on the well-studied Stag Hunt game, which involves two

players. They can catch a stag but cooperating, but each can catch a (much smaller) hare
alone. That is, a player earns maximum payoff if both players cooperate, but risks failure if
it attempts to cooperate while the other does not. Under the standard replicator dynamics,
the population ends up entirely non-cooperative (hunting hare) unless a significant majority
of the population initially hunts stag. So, it is impossible under this framework to evolve a
cooperative population from non-cooperation.

We applied satisficing theory to see if we could do any better. We developed a simple
satisficing model for the Stag Hunt and applied the replicator dynamics to the players’
attitudes. Under the satisficing model, cooperation is significantly easier to achieve than
under the standard model. Indeed, the population evolves toward cooperation even when
only 10% of the initial population hunts stag. This study is detailed in [9], which is included
in Appendix C.
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Rational Coordination Under Risk:
Coherence and the Nash Bargain

Wynn C. Stirling and Matthew S. NoklebyStudent Member, IEEE

Abstract— The design of automated multiagent cooperative
systems can be greatly facilitated by the use of conditional utili-
ties, which provide each individual the capability of modulating
its interests as a function of the interests of others. Perhaps the
weakest possible requirement for meaningful coordination is
that the group be coherent: no individual is required, under
all circumstances, to sacrifice its own welfare to benefit the
group. When the influence relationships among the members
of a group can be expressed via a directed acyclic graph, a
group is coherent if and only if its utilities are conditional
mass functions. This structure permits the performance aspects
to be merged with the random aspects to form a unified
mathematical framework for decision problems under risk. The
resulting solution may be interpreted as the Nash bargaining
solution when the disagreement points of all agents are set to
zero. Coherence is shown to be operationally equivalent to the
concept of symmetry for a cooperative game. The resulting
theory is designed to account for both individual and group-
level preferences.

I. I NTRODUCTION

Many multiagent decision problems require the decision
makers to cooperate to achieve the goals of the collective. A
purely cooperative collective is one in which the interests of
all individuals coincide perfectly. Many collectives, however,
are mixed-motive, and opportunities for both conflict and
cooperation exist. A key question in such cases is the
definition of what it means to be rational. Historically, this
question has been addressed from two distinct points of
view: game theory and social choice theory. Under game
theory, each individual seeks to optimize its own perfor-
mance, whereas in the social choice context, the goal is
to maximize performance of the group as a whole. In the
former case, the value of the individual decisions to the
group is not explicitly considered, and in the latter case,
although the value judgments of the individuals may be used
to define group-level performance, there is no assurance that
the resulting decision will maximize the performance of, or
even be acceptable to, any given individual.

The reconciliation of these two extreme perspectives is
an important theoretical objective, both for human decision
making and for the design of artificial decision-making
entities who must cooperate. An important design principle
for such scenarios is that the agents function according to
a mathematical framework that iscoherent in the sense
that no individual can be categorically subjugated; i.e., is
required in all situations to sacrifice its own welfare to
benefit the group. If an agent were so required, it would not
enjoy even an exiguous sense of equity—it would effectively
be disenfranchised. Coherence is a minimal, yet critical,

property of a collective that is capable of sophisticated social
behaviors such as negotiation, compromise, and altruism.

II. M ODELING FUNDAMENTALS

Let {X1, . . . , Xn}, n ≥ 2, denote a group of autonomous
decision makers. LetAi denote a finite set of feasible actions
available toXi, i = 1, . . . , n, let A = A1×· · ·×An denote
the product action space, and leta = (a1, . . . , an) denote the
action profile that obtains when eachXi instantiatesai ∈ Ai.

Classical multiagent decision theory assumes that each
individual possesses a total preference ordering over all
action profiles. Under this assumption, eachXi possesses a
utility uXi

: A → R such thatuXi
(a) > uXi

(a′) if Xi prefers
a to a

′, anduXi
(a) = uXi

(a′) if Xi is indifferent between
a and a

′. These utility functions are assumed to provide
a complete and immutable description of the valuations of
actions for the collective. Generally, they are provided as
part of the problem statement and, once defined, the logic
used to arrive at these orderings is assumed to be irrelevant
to the actual decision-making enterprise. We will term these
functions categorical utilitiessince they are unconditional
valuations of decision-maker preferences.

The categorical model of preferences, however, restricts
the ability of individuals to modulate their preferences by
giving deference to others under specific situations. For
example, consider a collective that possesses a hierarchical
structure such thatX1 dominatesX2 in some functional
way. In such a case,X2 may need to adjust its preferences
according to the preferences ofX1, but could not do so with
a categorical preference ordering. Instead,X2 would possess
a set of conditional preference orderings, each depending on
the hypothetical assumption ofX1’s preferences. We may
represent this set of conditional preferences by a set of
conditional utilities uX2|X1

such thatuX2|X1
(a2|a1) is the

utility that X2 ascribes toa2 ∈ A2 given the hypothetical
assumption thatX1 is committed to actiona1 ∈ A1.
This hypothetical commitment serves as the antecedent to a
hypothetical proposition whose consequent is the conditional
utility. A hypothetical commitment may take many forms, but
perhaps the most important one, with respect to the social
interaction of the agents, is that, from the perspective ofX2,
X1 considersa1 ∈ A1 to be its most preferred action. Under
this interpretation,X2 is in a position to give deference to
X1 by adjusting its conditional utility in a way that benefits
(or, in a malevolent scenario, injures)X1.

In general, if every agent influences every other agent
(a fully connected group), then every agent’s utility would



be conditioned on every other agent’s hypothesized commit-
ments. It is often the case, however, that individual members
of a group are most strongly influenced by their neighbors
(functionally, spatially, or temporally). For example, hier-
archical groups possess a distinctive “top-down” structure,
where the preferences of subordinate agents are influenced
by their superiors. A hierarchical structure is a special case
of more general “Markovian” structures that are amenable to
graphical analysis. A graphical structure that has been shown
to be effective in many situations is adirected acyclic graph,
or DAG. DAGs provide a convenient and powerful language
with which to encode influence relationships—the most well
known being so-calledBayesian networks, which are used
extensively for the design of artificially intelligent systems
[1–3].

A directed graph is a pairG = (X, E), where X =

(X1, . . . , Xn) is a finite set set ofverticesand E is a set
of directed edgeslinking pairs of vertices. IfXj is directly
influenced byXi, then there is a directed edge, denoted “→”
from Xi to Xj . A path from Xi to Xj is a sequence of
vertices{Xi, Xk1

, Xk2
, . . . , Xj} such thatXi → Xk1

→
Xk2

→ · · · → Xj . We write Xi 7→ Xj if there is a path
from Xi to Xj. If there are no paths such thatXi 7→ Xi for
any i, the graph is said to beacyclic.

If Xi → Xj , thenXi is called aparentof Xj, andXj is
a child of Xi. The set of parents ofXi is denotedpa (Xi) =

{Xij
: Xij

→ Xi, j = 1 . . . , pi}, and the set ofchildrenof Xi

is denotedch (Xi) The descendents ofXi, denotedde (Xi),
is the subset of vertices{Xim

: Xi 7→ Xim
, m = 1 . . . , di}.

A fundamental property of a DAG is theMarkov condi-
tion: nondescendent nonparents of a vertex have no influence
on the vertex, given the hypothesized commitments of its
parent vertices. Supposepa (Xi) = {Xj}. By the Markov
condition, Xi’s utility is therefore a function only of the
pair (xi, xj). In general, supposeXi haspi parents, denoted
pa (Xi) = {Xi1 , . . . , Xipi

}. For any action profilea =

(a1, . . . , an), let ai = (ai1 , . . . , aipi
) denote the sub-profile

of a corresponding topa (Xi). We may then express the
utility of a to Xi as

uXi
(a) = uXi| pa (Xi)

(ai|ai), (1)

the conditional utility ofXi given the action sub-profile of
its parents. Ifpa (Xi) = ∅, then its utility is not influenced
by the commitments of any other agent. Its utility is then
marginaland is of the formuXi

(a1, . . . , an) = uXi
(ai). The

conditional utilities constitute the edges of the DAG.
The conditional and marginal utility structures provide

an important mechanism by which an agent may assess its
preferences. Whereas the general structureuXi

(a1, . . . , an)

requiresXi to specify its preferences over all action profiles
(a1, . . . , an), the conditional approach requiresXi to specify
its preferences only over its own action space, given each
possible action of its parents. Thus, the agent is required to
define its conditional preference ordering with respect only to
the actions of itself for each hypothetical situation regarding
its parents. Although this structure can be generalized, in this
paper we restrict attention to collectives where at least one

agent’s preferences are not conditioned on the commitments
of any other agent.

Example 2.1:Consider a collective involving three agents
with the hierarchical structure illustrated in Figure 1.X1

is the primary agent (in the sense that it’s mission is most
critical to the success of the enterprise);X2 and X3 are
the secondary and tertiary agents, respectively. We observe
that pa (X1) = ∅, pa (X2) = {X1}, and pa (X3) =

{X1, X2}. As a specific illustration, supposeX1’s concern is
the appropriate market sector of a product to be manufactured
(eithera1, the affluent customers, ora′

1
, the less prosperous

consumers). Given the sector,X2’s concern is to decide
which product to manufacture (either widgetsa2, or gizmos
a′
2
. Finally, given the sectors and the product,X3’s concern is

to choose which grade of materials to use (either high quality
a3, or low quality a′

3
). Thus,Ai = {ai, a

′
i}, i = 1, 2, 3.

The product action spaceA = A1 × A2 × A3 contains
eight action profiles. The three agents must cooperate to
achieve maximum productivity and hence must coordinate
their choices. The corresponding utilities areuX1

: A1 → R,
uX2|X1

: A2 ×A1 → R, anduX3|X1X2
: A3 ×A1 ×A2 → R.

The issue facing this group is to use these three utility
structures to formulate a plan that is acceptable individually
as well as for the group.

X1

uX2|X1

X2

uX3|X1X2

X3

Fig. 1. The influence network for a three-agent hierarchy.

The conditional structure permits agents to exhibitcondi-
tional altruism by defining their preference orderings as a
function of the preferences of others. For example, suppose
uX1

(a) � uX1
(a′). X2 could reinforce this strong preference

by settinguX2|X1
a|a) � uX2|X1

(a′|a), thereby deferring to
the preferences ofX1. This type of altruism, however is
not categorical, since, conditioned on, say, a commitment by
X1 to a

′′, X2 need not prefera to a
′. Conditional altruism

thus provides decision makers with a natural vehicle with
which to establish sophisticated social relationships that can
enhance the possibilities for compromise and negotiation. For
example,X2 can use its conditional utility as a parameter
with which to adjust the amount of deference it is willing
to grantX1 to effect a compromise. Conversely,X2 can use
its conditional utility to threaten or punishX1 by reducing
its utility of actions that are beneficial toX1 and, thereby,
reducing the utility of that action to the group (e.g., through
aggregation, as will be discussed shortly).

III. G ROUP-LEVEL RATIONAL DECISIONS

The study of how individual preferences are used to form
a group decision is the central issue of social choice theory
[4–6], and hence is relevant to the study of autonomous
multiagent decision making groups. Social choice theory



has traditionally been applied to human societies, but the
concepts are directly applicable to artificial societies as well,
particularly those that are intended to function cooperatively.
A key issue of this theory is how to aggregate the interests of
individuals to form a group decision in a democratic fashion;
i.e., in a way such that the interests of all individuals are
respected and given equitable consideration.

Informally, a society iscoherentif each member has a
“seat at the table” in the sense that the possibility exists
(although not the guarantee) that, for each of the individuals,
a solution exists that is good for the group and is also
good for that individual. Obviously, most voting schemes are
transparently coherent (assuming each voter’s most preferred
candidate is on the ballot), but when complex influence rela-
tionships exist among the members of a group, establishing
coherence may not be obvious.

To formalize the notion of coherence, let us assume thatXi

is able, after taking into consideration all social, economic,
and political relationships between it and other agents, to
define a utilityuXi

over its action space. We also assume that
the group possesses a group-level utilityuX1,...,Xn

: A → R.
Definition 3.1: Let uXi

denote Xi’s categorical utility,
i = 1, . . . , n, and let uX1,...,Xn

denote the utility of
the groupX = {X1, . . . , Xn}. X is coherent if, given
that uXi

(ai) > uXi
(a′

i), there exists an action sub-profile
(a∗

1
, . . . , a∗

i−1
, a∗

i+1
, . . . , a∗

n) such that

uX1···Xn
(a∗

1
, . . . , a∗

i−1
, ai, a

∗
i+1

, . . . , a∗
n) ≥

uX1···Xn
(a∗

1
, . . . , a∗

i−1
, a′

i, a
∗
i+1

, . . . , a∗
n).

If there does not exist such a sub-profile, thenXi is in
a position ofcategorical subjugation: every action profile
that contains its most preferred action is dominated by
profiles that do not contain its most preferred action. In
terms of voting, incoherence means that, no matter how
the others vote,Xi’s candidate will lose. Effectively,Xi

is disenfranchised. Categorical subjugation is similar to the
notion of suppressionas discussed by [7] and [5].

The question thus becomes: what constraints must be
placed on the utilities to ensure that a condition of categorical
subjugation is impossible? To address this question, let us
turn to an analogous issue. A Dutch book is a gambling
situation such that, no matter what the outcome, the gambler
will be worse off for having taken the gamble—a situation
of sure loss(one’s reward is always less than one’s stake).
To illustrate a Dutch book, SupposeY can take one of
two distinct values:y1 or y2, and letq(y) denote a belief
function1 of y; i.e., q(y) measures the strength of belief that
Y = y.

By convention, we will assume that we have full belief
that exactly one of these values obtains—the disjunction of
y1 and y2 must occur. We further assume that beliefs are
additive, thus,q(y1 ∨ y2) = q(y1) + q(y2) = 1. Now let Z

take on one of two distinct valuesz1 or z2, and letr(y, z)

denote the belief thatY = y andZ = z simultaneously. Let

1We refrain from using the term “probability” here, since we do not
requireq to possess all of the properties of a probability mass function.

us assume thatq(y2) > q(y1), but r(y1, z1) > r(y2, z1) and
r(y1, z2) > r(y2, z2). Suppose you purchase a $1 gamble
Y = y2, and deem a fair purchase price to beq(y2); i.e.,
you pay $q(y2) for the gamble to win $1. Now also suppose
you sell the gamble(y2, z1) ∨ (y2, z2). By additivity of
beliefs, a fair selling price for this bet would ber[(y2, z1)∨
(y2, z2)] = r(y2, z1) + r(y2, z2). However, according to
the above ordering, you must haveq(y2) > 1

2
and, since

r(y2, z1) + r(y2, z2) < r(y1, z1) + r(y1, z2), it follows that
r[(y2, z1)∨(y2, z2)] < 1

2
. After all gambles have been bought

and sold, your net wealth isr[(y2, z1)∨(y2, z2)]−q(y2) < 0.
To overcome this loss, you must make up the difference
once the outcome of the gamble is known. But if neither
y2 nor (y2, z1) ∨ (y2, z2) occur, you win nothing and you
pay nothing; if(y2, z1)∨ (y2, z2) occurs, then, of course,y2

occurs, so you win $1 which you must pay to the buyer of
your gamble. Thus, once the gambles have been bought and
sold, your net wealth is invariant to whatever happens—you
suffer a sure loss.

A belief system is said to becoherentif it is not possible
to construct a Dutch book. The Dutch Book theorem [8, 9]
and its converse [10] state that a belief system is coherent
if and only if it complies with a probability measure that
describes the degrees of belief regarding the propositions
under consideration. The above example does not comply
with the laws of probability theory, sinceq(y2) 6= r(y2, z1)+

r(y2, z2); i.e., marginalization fails.
Mathematically, a condition of categorical subjugation cor-

responds to a condition of sure loss. Therefore, to eliminate
the possibility of categorical subjugation, the utilities must
possess the same syntax as probability mass functions. We
formalize this result as follows.

Let X = {X1, . . . , Xn} be a group of distributed decision-
makers whose influence relationships can be expressed with
a directed acyclic graph. For eachXi, let pa (Xi) =

{Xi1 , . . . , Xipi
} denote thepi parents ofXi, and letAi =

Ai1 × · · · × Aipi
denote thepi-dimensional product of the

action spaces corresponding to the parents ofXi. If Xi has
no parents, thenAi = ∅. For eachXi, uXi| pa (Xi)

(ai|ai)

is the utility that Xi ascribes toai, conditioned onXij

committing toaij
, j = 1, . . . , pi. If Xi has no parents, the

conditional utility is the marginal utility; i.e.,uXi| pa (Xi)
=

uXi
if pa (Xi) = ∅.

Theorem 3.1:Categorical subjugation cannot occur if and
only if the utilitiesuXi| pa (Xi)

are conditional mass functions
defined overAi × Ai; i.e., uXi| pa (Xi)

(ai|ai) ≥ 0 ∀ai ∈ Ai

and
∑

ai∈Ai
uXi| pa (Xi)

(ai|a
′) = 1 ∀a′ ∈ Ai). Furthermore,

the group-level utility of(a1, . . . , an) for the groupX =

{X1, . . . , Xn} is

uX(a) = uX1···Xn
(a1, . . . an) =

n
∏

i=1

uXi| pa (Xi)
(ai|ai), (2)

whereai is the sub-profile ofa corresponding topa (Xi).
Proof: The Dutch Book Theorem and its converse estab-

lish that the utilities must be mass functions. Consequently,
all of the edges of the DAG are utilities that possess the math-
ematical structure of conditional probability mass functions



(albeit with different semantics). Furthermore, the categorical
utilities of each root vertex of the DAG possess the math-
ematical structure of marginal probability mass functions.
Thus, the DAG satisfies all of the conditions of a Bayesian
network, and we may apply the fundamental theorem of
Bayesian networks; namely, that the joint probability mass
function of the random variables associated with the vertices
is the product of the conditional probability mass functions
of all vertices with parents, and the marginal mass functions
of all root vertices [1–3].
The content of this theorem is that the mathematics of
probability theory, which traditionally applies toepiste-
mological situations involving assessments of belief and
knowledge, also applies topraxeologicalsituations involving
assessments of expediency and efficiency. This result means
that the mathematical notions of probability theory, such as
independence, conditioning, marginalization, and so forth,
can be given praxeological, as well as epistemological,
interpretations.

Once the joint utility has been formed by the aggregation
of individual utilities, the group-optimal action profile that
maximizes the group utility is

aG = arg max
a∈A

n
∏

i=1

uXi| pa (Xi)
(ai|ai). (3)

IV. I NDIVIDUALLY RATIONAL SOLUTIONS

Although the social choice-theoretic approach presented
above possesses a weak notion of acceptability for the
individuals (coherence), that does not imply that the group
solution is acceptable to any given individual in terms of
benefit to it. Simply having the opportunity for one’s interests
to be equitably considered by the group does not imply
that one’s interests are adequately represented in the group
decision.

The most well known solution concept of non-cooperative
game theory is Nash equilibria [11]. This solution concept
is a reasonable approach under competitive scenarios, but
when the agents are ostensibly to cooperate, it can lead
to overly pessimistic results. For example, for scenarios
where attempting to cooperate leaves one vulnerable to
exploitation, such as Prisoner’s Dilemma-type games, the
Nash equilibrium leads to the next-worst solution, rather than
the Pareto solution. Particularly when the agents are disposed
to communicate with each other, a more appropriate solution
concept is one that permits some notion of equity or fairness
to guide the decisions.

Cooperative game theory differs from non-cooperative
theory in that players may enter into binding agreements
regarding their behavior. For the players to forge an agree-
ment, however, each must achieve an acceptable degree of
satisfaction. Abargaining gameis a cooperative game in
which each participant possesses adisagreement pointthat
defines the benefit that is guaranteed to accrue to it if a
compromise cannot be reached. The disagreement point,
therefore, is an indication of the strategic strength that is
conferred on the participant as it participates in negotiations:

the higher the disagreement point, the greater bargaining
strength of the participant.

A well-known bargaining solution concept that offers a
clear definition of individual acceptability is the Nash bar-
gain [12], which permits each participant to make maximal
use of its strategic strength. The approach is based on
four fundamental principles: (i) invariance to positive affine
transformations; (ii) Pareto optimality; (iii) independence of
irrelevant alternatives, and (iv) symmetry, which is the notion
that no individual agent can expect that the other agents
will grant it better terms than that individual itself would
be willing to grant, were roles reversed.

Nash showed that these four conditions lead to a unique
solution. LetdXi

denote the disagreement point forXi. The
negotiation set, denotedN , is the subset of action profiles
such that every participant achieves at least its disagreement
point. Although Nash’s theory pertains to categorical utili-
ties, we may adapt the concept to the conditional case by
replacing categorical utilities with conditional utilities. The
negotiation set is defined as

N =
{

a ∈ A: uXi| pa (Xi)
(ai|ai) ≥ dXi

, i = 1, . . . , n
}

.

(4)
Following in the spirit of Nash’s result, the bargaining
solution is

aN = arg max
a∈N

n
∏

i=1

[

uXi| pa (Xi)
(ai|ai) − dXi

]

. (5)

We note that this solution is not, strictly speaking, a Nash
bargain, since the utilities are not categorical. Nevertheless,
the solution still possess the key feature of the Nash bargain;
namely, that each participant takes full advantage of its
strategic strength in that all action profiles that do not
achieve at least its disagreement point are excluded from
consideration.

V. RECONCILING GROUP AND INDIVIDUAL CHOICES

The above discussion demonstrates that, for groups whose
social relationships can be represented by a directed acyclic
graph, the bargaining solution and the coherent group-level
optimal solution possess similar structure, differing mainly
in the introduction of disagreement point for the bargaining
solution concept. With the bargaining approach, the disagree-
ment point is the value that the decision maker can guarantee
for itself, regardless of whether or not a compromise can
be reached. The justification for this approach is that it is
possible for the agent to walk away from negotiations and
go its own way without regard for others. While a go-it-
alone option may be possible for human decision makers,
an automated system that will not cooperate is likely to
be dysfunctional. In fact, it may be necessary that they
reach a compromise solution, regardless of the individual
costs. If such a situation obtains, then the disagreement point
for each agent will be its zero level, in which case the
bargaining solution will coincide with the optimal solution
for the group. This is an interesting result. Why should the
best individual solution in the sense of a fair compromise



for each individual, as expressed by (5), also result in the
best group-level solution, as expressed by (3)? The fact
that there is such a close correspondence suggests that the
notions of symmetry(no individual can expect that others
will grant it better terms than it would be willing to grant,
were roles reversed) andcoherence(no individual interests
can be categorically subjugated to the interests of the group)
are operationally equivalent.

Theorem 5.1:For groups whose social relationships can
be represented by a directed acyclic graph, (a) coherence
implies symmetry, and (b) if symmetry applies and one
individual is categorically subjugated, then all individuals are
categorically subjugated—a condition of mutual categorical
subjugation.

Proof: If coherence holds, then the utilities may be
aggregated as the product of the conditional and marginal
utilities, as given by (2), which, by changing the zero level,
yields the bargain structure

n
∏

i=1

[

uXi| pa (Xi)
(ai|ai) − dXi

]

. (6)

Since the labeling of agents is arbitrary, exchangingXi and
Xj leaves this structure unaffected, hence symmetry holds.

Now supposeXi can be categorically subjugated. By
symmetry, if the roles ofXi andXj , j 6= i, are exchanged
(including the utilities), then the solution is unchanged.
Thus, Xj must be categorically subjugated as well. Since
j is arbitrary, this means that all players are categorically
subjugated.
Mutual categorical subjugation is a pathological condition. It
says thatall agents mustalwayssacrifice their own welfare
to benefit the group. In fact, even if all individuals could
agree that a given action profile were simultaneously best for
all of them, that profile would not be best for the group—
a violation of the Pareto principle. More generally, such a
situation would mean that the interests of the individuals have
only partial influence, at best (and perhaps no influence),
on the interests of the group. Such a pathological situation
would violate the most fundamental premise of social choice
theory: “Democratic theory is based on the premise that the
resolution of a matter of social policy, group choice or col-
lective action should be based on the desires or preferences
of the individuals in the society, group, or collective” [5,
p. 3].

VI. M ULTIAGENT DECISION MAKING UNDER RISK

A decision is made under risk if the utility of actions
is dependent upon random phenomena. When decisions
are made under risk, the classical approach is a two-step
procedure. First, the utilities are defined to correspond with
the decision makers’ preferences; next, the expected value
of the utility is computed. However, since Theorem 3.1
establishes that coherent utilities must possess the mathemat-
ical syntax of probability mass functions, the praxeological
and epistemological aspects of a decision problem may be
merged into a single praxi-epistemic structure. In particular,
we may view the decision-making elements and the random

elements as vertices of apraxeic-epistemic network, whose
edges are conditional mass functions.

Let θ = {θ1, . . . , θm} denotem random variables over the
product sample spaceΘ = Θ1 × · · · × Θm associated with
the decision problem which, when merged withX, forms an
(n+m)-dimensional DAG, called apraxi-epistemic network.
Let ϑi denote the realization ofθi, and letϑ = (ϑ1, . . . , ϑm).
Then the jointpraxi-epistemic utilityis

uXθ(a, ϑ) =
nY

i=1

uXi| pa (Xi)
(ai|ai, ϑi)

mY
j=1

pθj | pa (θj)(ϑj |aj , ϑj),

(7)

wherepθj| pa (θj ) is the conditional probability ofθj given its
parents,ai andϑi correspond to the praxeic and epistemic
parents, respectively, ofXi, and aj and ϑj correspond to
the praxeic and epistemic parents, respectively, ofθj . The
expected utility then becomes the praxeic marginal

uX(a) =
∑

ϑ∈Θ

uXθ(a, ϑ). (8)

Theorem 3.1 establishes that maximizinguX(x) yields the
optimal joint action; i.e.,

aG = arg max
a∈A

uX(a). (9)

Furthermore, under the assumption that no action can be
taken unless all decision makers can agree on a joint action,
the disagreement point for each decision maker is zero, and
(8) constitutes the bargaining solution for the group. Thus,
the group decision can also be viewed as individually optimal
in the sense that each takes full advantage of its strategic
strength.

In addition, this solution also satisfies the coherency
property, as established by the following corollary.

Corollary 6.1: Let themarginalexpected utility ofXi be
given by

uXi
(ai) =

∑

¬ai

uX(a1, . . . , an) i = 1, . . . , n, (10)

where
∑

¬ai
is the so-called “not-sum” notation meaning that

the sum is taken over all elements of(a1, . . . , an) exceptai.
If uXi

(ai) > uXi
(a′

i), then there exists(a∗
1
, . . . , a∗

i−1
,

a∗
i+1

, . . . , a∗
n) such that

uX(a∗
1
, . . . , a∗

i−1
, ai, a

∗
i+1

, . . . a∗
n) ≥

uX(a∗
1
, . . . , a∗

i−1
, ai, a

∗
i+1

, . . . a∗
n).

Proof: SupposeuXi
(ai) > uXi

(a′
i) holds, but there is no

such(a∗
1
, . . . , a∗

i−1
, a∗

i+1
, . . . , a∗

n). Then

uXi
(ai) =

∑

¬ai

uX(a1, . . . , ai, . . . , an) <

∑

¬a′
i

uX(a1, . . . , a
′
i, . . . , an) = uXi

(a′
i), (11)

a contradiction.
Example 6.1:Figure 2 displays a praxi-epistemic network

corresponding to the hierarchal manufacturing scenario with
the network introduced in Example 2.1. The root node of



this DAG is X1, the agent who decides which market sector
to target, and is given by

uX1
(a1) = 0.6 uX1

(a2) = 0.4.

This example also includes a random component,θ, that
characterizes the economic environment of the market sector.
Let us takeΘ = {ϑ, ϑ′}, whereϑ corresponds to a growing
economy andϑ′ corresponds to a shrinking economy. Thus,
the probability of the economic status is conditioned on
the market sector. The corresponding conditional probability
functions are

pθ|X1
(ϑ|a2) = 0.5 pθ|X1

(ϑ′|a2) = 0.5

pθ|X1
(ϑ|a′

2
) = 0.6 pθ|X1

(ϑ′|a′
2
) = 0.4.

The utility of the product to be manufactured depends upon
the market sector and the economic state, and is given as

pX2|X1θ(a2|a1, ϑ) = 0.7 pX2|X1θ(a
′
2
|a1, ϑ) = 0.3

pX2|X1θ(a2|a
′
1
, ϑ) = 0.5 pX2|X1θ(a

′
2
|a′

1
, ϑ) = 0.5

pX2|X1θ(a2|a1, ϑ
′) = 0.4 pX2|X1θ(a

′
2
|a1, ϑ

′) = 0.6

pX2|X1θ(a2|a
′
1
, ϑ′) = 0.2 pX2|X1θ(a

′
2
|a′

1
, ϑ′) = 0.8

Finally, the utility of the grade of materials used in the
manufacture is conditioned on the product and the sector
is given by

pX3|X1X2
(a3|a1, a2) = 0.6 pX3|X1X2

(a′
3
|a1, a2) = 0.4

pX3|X1X2
(a3|a1, a

′
2
) = 0.6 pX3|X1X2

(a′
3
|a1, a

′
2
) = 0.4

pX3|X1X2
(a3|a

′
1
, a2) = 0.3 pX3|X1X2

(a′
3
|a′

1
, a2) = 0.7

pX3|X1X2
(a3|a

′
1
, a′

2
) = 0.2 pX3|X1X2

(a′
3
|a′

1
, a′

2
) = 0.8

The praxi-epistemic utility is

uX1X2X3θ(a1, a2, a3, ϑ) = uX1
(a1)uX2|X1θ(a2|a1, ϑ)

uX3|X1X2
(a3|a1, a2)pθ|X1

(ϑ|a1). (12)

X1

pθ|X1

θ
uX2|X1θ

X2

uX3|X1X2

X3

Fig. 2. The praxi-epistemic network for the hierarchy scenario.

The expected utility is the praxeic marginal

uX1X2X3
(a1, a2, a3) =

∑

ϑ∈Θ

uX1X2X3θ(a1, a2, a3, ϑ). (13)

Straightforward calculations using the above utility values in-
dicates that the optimal solution for the group is(a1, a1, a3),
with a global utility value ofuX1X2x3

(a1, a2, a3) = 0.216.
Upon computing the marginals, we obtain

uX1
(a1) = 0.6

uX2
(a2) = 0.584

uX3
(a3) = 0.4624,

indicating that the best group solution is also best forX1

andX2, but is worst forX3.

VII. C ONCLUSION

This paper provides a new theoretical approach to the
modeling of distributed autonomous decision makers. Po-
tential applications include mobile unmanned robotic sys-
tems such as coordinated UAV surveillance and reconnais-
sance missions, distributed decision making, scheduling and
coordination for manufacturing enterprise automation, and
man/machine decision making scenarios.

Conventional categorical preference orderings are not de-
signed to account for sophisticated social relationships such
as compromise and negotiation, since they do not easily
permit individuals to expand their spheres of interest to
account for the preferences of others. The introduction of
conditional utilities is an important contribution to the theory
of multiagent decision making, since it permits each agent
to express its preferences as a function of the preferences
of others. Individual conditional individual utilities can be
aggregated to form a group utility that incorporates the
social relationships that exist among the individuals, thereby
providing a complete model of the community of decision
makers.

A second contribution is the notion of coherence and the
introduction of a mathematical structure for the utilities that
ensures that no agent can be categorically subjugated. This
structure permits the social relationships between individuals
to be represented by a directed acyclic graph whose edges
are conditional mass functions — a Bayesian network. This
new syntax provides a natural vehicle with which to model
sophisticated social relationships such as altruism.

A third contribution is the merging of the praxeic and
epistemic components of a decision problem into a single
praxi-epistemic utility that accounts for both utility and risk.
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[9] B. de Finetti, “La prévision: ses lois logiques, ses sources subjectives,”
Annales de l’Institut Henri Poincaré, vol. 7, pp. 1–68, 1937, translated
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Abstract The design of robotic systems that are capable
of sophisticated social behavior such as cooperation, com-
promise, negotiation, and altruism, requires more complex
mathematical models than is afforded by the classical mech-
anisms for making value judgments and decisions. A new
concept of multi-agent satisficing, defined in terms of rel-
ative effectiveness and efficiency, is an alternative to clas-
sical optimization-based decision making. Conditional utili-
ties, which take into account the interests of others as well as
the self, represent an alternative to the categorical utilities of
classical decision theory. A multi-agent utility aggregation
structure is developed that avoids the sure subjugation of the
interests of any individual to the interests of the group. By
expressing a society as a directed acyclic graph, Bayesian
network theory is applied to artificial societies. A satisficing
social welfare function accounts for the influence relation-
ships among decision-making agents.

Keywords Multi-agent Systems, Game Theory, Social
Choice Theory, Satisficing, Conditional Preferences,
Coherence

1 Introduction

Multi-stakeholder decision problems arise in many contexts,
including social choice theory, game theory, distributed con-
trol theory, multi-criterion/multi-objective decision theory,
multi-agent systems theory, and social robotics. Although
the particulars of these various contexts can differ widely, to
be rational, each must possess two fundamental attributes:
(a) an ability to make value judgments regarding alterna-
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Young University, Provo, UT 84602, USA, voice: (801) 422-7669, Fax:
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tives, and (b) procedures for using value judgments to make
choices.

The field of social robotics, in particular, provides a rich
environment for the application of decision-making logics
that are able to accommodate sophisticated social behaviors
such as compromise, negotiation, and altruism. Whether a
social robot interfaces with humans, other robots, or both, it
typically resides in a community that involves some notion
of coordination (which may be either cooperative or compet-
itive). In such an environment, value judgments can depend
upon the desires and preferences of others, and procedures
for making choices must take these complex social relation-
ships into account.

This paper provides a mathematical framework within
which to design and synthesize complex decision-making
collectives that are able to accommodate socially complex
decision making. Section 2 provides a brief history of classi-
cal multi-agent decision making and motivates our approach.
Section 3 introduces the key components of the framework
we are proposing, Section 4 introduces new concepts of so-
cial welfare, Section 5 reconciles our theory with classical
approaches, Section 6 describes a special case of what we
termdecoupledsocial systems, and Section 7 offers conclu-
sions.

2 Background

Cooperative robotics is an active research area. Of particu-
lar interest is the development of theories for decentralized
control of multi-robot societies. Swarm-based approaches
have demonstrated the emergence of cooperative behavior
[24, 25]. Potential functions, consisting of constraints and
goals that are imposed upon the system, have been used to
address the mobile robot navigation problem [5]. Shannon
information theory has been applied to the investigation of
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diversity among heterogeneous agents, thereby enabling an
assessment of the ability of the system to perform coopera-
tively [4]. Behavior-based approaches have been applied to
the design of cooperative robotic teams, stressing minimal-
ism, statelessness, and tolerance [53]. The variety displayed
by these various of approaches is a strong indication of the
complexity involved in the design of cooperative multiagent
systems, and is in indication that there is no single approach
that can be universally applied to the design and synthesis
of such systems.

Because of the complexity of multiagent systems, it is
important to review the fundamental principles that are ex-
ploited, either implicitly or explicitly, in their design. Ac-
cordingly, we provide a brief review of classical decision-
theoretic foundations and a discussion of rationality.

2.1 Classical Decision-theoretic Foundations

The multi-stakeholder decision problem originated in the so-
cial sciences context, with foundations laid by Bergson [6],
Samuelson [39], Arrow [1, 2], and others, who assert that
individual values are the fundamental elements of a society.
Arrow has provided what is perhaps the most clear defini-
tion of this concept: “It is assumed that each individual in
the community has a definite ordering of all conceivable so-
cial states, in terms of their desirability to him . . . It is sim-
ply assumed that the individual orders all social states by
whatever standard he deems relevant” [1, p. 17]. Further-
more, Friedman argues that the process by which these pref-
erences are obtained is irrelevant: “The economist has little
to say about the formation of wants; this is the province of
the psychologist. The economist’s task is to trace the con-
sequences of any given set of wants. The legitimacy of any
justification for this abstraction must rest ultimately, in this
case as with any other abstraction, on the light that is shed
and the power to predict that is yielded by the abstraction”
[17, p. 13]. According to the Arrow/Friedman model, each
participant in a multi-agent decision problem comes to the
decision-making activity with pre-defined preference order-
ings, the origins of which are not germane to the decision
problem. Such preference orderings arecategorical. The as-
sumption that each individual possesses a categorical pref-
erence ordering has been adopted almost universally in clas-
sical multi-stakeholder decision-making contexts.

The most common procedure for using value judgments
to make choices is to invoke some notion of optimization
— the sine qua nonof classical decision theory. As put
by Euler, “Since the fabric of the world is the most perfect
and was established by the wisest Creator, nothing happens
in this world in which some reason of maximum or min-
imum would not come to light” (quoted in [35]). What is
optimal in multi-stakeholder settings, however, can depend

upon the point of view. In the classical game-theoretic con-
text, each individual seeks to optimize value to itself, and a
Nash equilibrium is a constrained mutually optimal solution
for all players in the sense that no individual can unilaterally
improve its welfare by changing its decision. On the other
hand, in the social choice context, it is the “organization in-
carnate,” as Raiffa put it [37], who seeks to maximize value
for the group considered as a whole. In the former case, the
value of the individual decisions to the group is not explicitly
considered, and in the latter case, although the value judg-
ments of the individuals are used to define group-level deci-
sions (e.g., a weighted sum of individual valuations), there
is no assurance that the resulting decision will maximize the
value to any individual. In fact, the decision that is best for
the group can be extremely unfavorable to some members
of the group.

2.2 Rationality

The classical approach to decision making in group settings
is the doctrine of individual rationality: the notion that each
individual should act in a way that maximizes its own satis-
faction (without explicit regard for the satisfaction of oth-
ers). This doctrine enjoys a central role in classical deci-
sion theory and game theory. As discussed by Tversky and
Kahneman, “The assumption of [individual] rationality has
a favored position in economics. It is accorded all of the
methodological privileges of a self-evident truth, a reason-
able idealization, a tautology, and a null hypothesis. Each
of these interpretations either puts the hypothesis of ratio-
nal action beyond question or places the burden of proof
squarely on any alternative analysis of belief and choice.
The advantage of the rational model is compounded because
no other theory of judgment and decision can ever match it
in scope, power, and simplicity” [52, p.89].

The uncritical application of individual rationality as a
model for decision making in multi-agent contexts can be
problematic. Arrow has observed that “rationality in appli-
cation is not merely a property of the individual. Its useful
and powerful implications derive from the conjunction of
individual rationality and other basic concepts of neoclassi-
cal theory — equilibrium, competition, and completeness of
markets. . . When these assumptions fail, the very concept of
rationality becomes threatened, because perceptions of oth-
ers and, in particular, their rationality become part of one’s
own rationality” [3, p. 203].

If all agents are indeed focused on, and only on, their
narrow self-interest, then categorical preferences are appro-
priate. Difficulties arise, however, when the sphere of con-
cern of an individual extends beyond its own narrow self-
interest. The only way such an individual can use categorical
preferences to accommodate the preferences of other indi-
viduals is to redefine its values by substituting (at least par-
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tially) the values of the others for its own. Such behavior is a
manifestation ofcategorical altruism, i.e., irrevocably sac-
rificing one’s own welfare in an attempt to benefit another,
thus fundamentally changing the nature of the association.

Considerable research, notably in the field of behavorial
economics [8], has addressed the need for agents to define
their preferences such that they consider social interactions.
Fehr and Schmidt [15] discuss how individual preference or-
derings may be modified to take into account concepts such
as fairness and cooperation by introducing a notion of in-
equity aversion. To account for this attribute, they include,
in addition to a purely selfish component, an inequity aver-
sion component in their utility. Consequently, they rely upon
(re-defined) categorical preference orderings to model social
interactions. All that changes is the definition of the indi-
vidual’s self-interest. This approach, however, has serious
limitations, as acknowledged by Sen: “It is possible to de-
fine a person’s interests in such a way that no matter what
he does he can be seen to be furthering his own interests in
every isolated act of choice . . . no matter whether you are a
single-minded egoist or a raving altruist or a class-conscious
militant, you will appear to be maximizing your own utility
in this enchanted world of definitions” [40, page 19]. Cate-
gorical altruism simulates cooperation, compromise, and al-
truism with a regime that is explicitly designed to character-
ize selfishness, competition, and avarice, and does not offer
a natural and intuitively pleasing framework within which
to express sophisticated and complex social relationships.
While such constructions may serve to explain some forms
of human behavior, it is difficult to see how they can be used
systematically to synthesize complex relationships between
artificial agents.

The foundational assumptions of categorical preferences
for each individual and optimization (either for individuals
or for the group) undergird virtually all of classical formal-
ized decision theory in both individual and group settings.
These assumptions correspond toanalysistools that serve,
with varying success, to explain and predict human behav-
ior, but they are not causal: they do not govern human behav-
ior. On the other hand, models that are used to design a sys-
tem of artificial autonomous decision-making agents must
be causal: they aresynthesistools that will indeed govern
the behavior of the artificial society.

Many social science researchers argue, however, that the
classical foundational assumptions do not provide an ade-
quate model for human behavior (e.g., see [26, 47]). And
if their adequacy to analyze human behavior is questioned,
then we may rightly question their appropriateness as as-
sumptions with which to synthesize the behavior of artifi-
cial societies that are expected to behave in ways that are
can be understood and trusted by humans. As Shubik as ac-
knowledged, “Economic man, operations research man and
the game theory player were all gross simplifications. They

were invented for conceptual simplicity and computational
convenience in models loaded with implicit or explicit as-
sumptions of symmetry, continuity, and fungibility in order
to allow us (especially in a pre-computer world) to utilize
the methods of calculus and analysis. Reality was placed on
a bed of Procrustes to enable us to utilize the mathematical
techniques available [43].”

It is time to make the bed fit its occupant. Particularly in
the context of artificial multi-agent system design and syn-
thesis, a framework is needed to model explicitly the possi-
bly complex value judgments the may exist among the mem-
bers of an artificial society. It is time to account for situations
where the conditions under which preferences are formed
are relevant and cannot be summarily ignored; it is time to
accommodate more complex and flexible criteria for mak-
ing decisions. In other words, it is time to move beyond cat-
egorical preference orderings and optimization as the foun-
dational components of multi-stakeholder decision making.

3 A Social Framework for Cooperative Decision
Making

A social welfare function, as defined by Arrow, is “a pro-
cess or rule which, for each set of individual orderingsR1,
R2, . . . , Rn for alternative social states (one ordering for
each individual), states a corresponding social ordering of
alternative social statesR” [1, p. 23]. Classically, the indi-
vidual orderings (either ordinal or cardinal), are categorical,
in that they account only for the interests of the individuals.
We wish to expand the spheres of interest of the individu-
als to include the interests of others as itself. However, once
we move beyond restricting to individual interests, the no-
tion of optimization becomes problematic. Optimization is
an individual concept: for a group to optimize, it must act
as a single unit, capable of making rational judgments and
choices. Such a structure however, is not consistent with our
assumption that the decision-makers are autonomous.

Our approach is to replace the twin assumptions of op-
timization and categorical preferences with two alternative
concepts: satisficing and conditioning. Our goal is to create
a satisficing social welfare function and individual welfare
functions that can be used to construct compromise solu-
tions that are simultaneously acceptable to the group and
the individuals, thereby removing, or at least reducing, the
wedge that separates classical concepts of group and indi-
vidual interests.

3.1 Satisficing

In a multi-agent setting it is not generally possible to maxi-
mize both individual and group preferences simultaneously.
A potentially more socially accommodating concept is that
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decisions are “good enough.” What is best for you may be
different from what is best for me, but what is good enough
for you may also be good enough for me, provided we have
some flexibility in our respective notions of what it means to
be good enough. The term “satisficing” has been advanced
as a synonym for this alternative to strict optimization.

The first usage of the term “satisficing” in a decision-
theoretic context is attributed to Simon [44–46], who ad-
dressed the question of how a decision maker might make
a choice in the presence of informational or computational
limitations. Simon’s approach is to seek an optimal choice,
but to terminate searching and once the decision maker’s as-
piration level has been met. Put another way, to satisfice is
to accept the best solution so far obtained, once the cost of
continuing to search exceeds the expected improvement in
value were the search to continue. Many other variations of
this concept have appeared in the literature [7, 14, 20, 23, 28,
29, 33, 36, 41, 50, 51, 54–56], and it is not the intent of this
paper to review them in detail. Suffice it to say, however,
that all of these approaches view satisficing as a species of
bounded rationality: one settles for a solution that is deemed
to be “good enough,” but which is not necessarily, and usu-
ally not, optimal in any meaningful sense. Satisficingà la
Simon is an heuristic approximation to the ideal of being
best (and is only constrained from achieving this ideal by
practical limitations)

The concept of satisficing developed herein differs from
the afore-mentioned notion in several important ways. First,
in contrast to satisficing as advanced by Simon and others,
it is not heuristic; rather, it provides a concept of satisficing
that is as mathematically formalized and precise as is the
notion of optimization. Second, it treats the notion of being
good enough as the ideal (rather than an approximation) —
it is nota species of bounded rationality. Third, it extends to
the multi-agent case, thereby providing a natural framework
for multi-agent decision making. Fourth, it readily accom-
modates the extension of interests beyond the self, thereby
accommodating more sophisticated social relationships than
self-interest affords. We retain the term “satisfice” because,
even though our approach is not heuristic, we nevertheless
seek solutions that are good enough, with the essential dif-
ference being that we provide a non-heuristic definition of
what it means to be good enough.

Although it seems eminently reasonable at least to at-
tempt (given sufficient resources) to seek an optimal deci-
sion, humans often invoke a systematic approach to deci-
sion making (even in single-agent decision problems) that,
while still based on quantitative measures of performance,
does not correspond to optimization. In the vernacular, the
optimization paradigm corresponds to seeking “the best and
only the best” solution. Also common, however, is the para-
digm of “getting your money’s worth.” In an intuitively pleas-
ing sense, this latter notion admits an interpretation as being

good enough, and it is this concept that we invoke as the
satisficing paradigm that we develop in this paper. A com-
prehensive introduction to this perspective can be found in
[49].

Many theorists (e.g., [1, 13, 18, 27]) have argued that it is
unwise to aggregate conflicting interests into a single pref-
erence ordering. Some have asserted that in a social set-
ting individuals have multiple facets, as defined by Steed-
man and Krause [48], who maintain that an agent, although
an indivisible unit, nevertheless is capable of considering its
choices from different points of view, and that separate utili-
ties may be defined to correspond to each facet of an individ-
ual. A natural way to classify attributes is according to their
effectiveness and efficiency. Each individual may be viewed
as being composed of two facets: theselecting facet, which
evaluates actions in terms of effectiveness toward pursuing
objectives without concern for efficiency, and therejecting
facet, who evaluates actions in terms of efficiency with re-
spect to consuming resources without concern for effective-
ness. We shall view these selecting and rejecting facets as
the “atoms” of the society,

When formulating a problem under the satisficing frame-
work, it is essential that the selecting and rejecting criteria
not be restatements of each other. The selecting criterion
should correspond to the goals of the problem, and the re-
jecting criterion should correspond to the consumption of
resources. This dual utilities approach is the basis for our
notion of satisficing.

Under the optimization paradigm, all of the performance
measures are combined into a single utility, whereas un-
der the satisficing paradigm, the measures of effectiveness
are encoded separately from the measures of efficiency. Un-
der the optimization paradigm, the alternatives are compared
against each other in order to identify the globally best one.
By contrast, under the satisficing paradigm, the effectiveness
and efficiency attributes are locally compared for each alter-
native separately, and all alternatives for which the effective-
ness measures exceed the efficiency measures are consid-
ered to be satisficing. Thus, whereas the optimization para-
digm is designed to identify a single best alternative, the sat-
isficing paradigm is designed to identify all alternatives that
are good enough. The non-uniqueness attribute is a key fea-
ture of satisficing in a multi-stakeholder environment, since
it is amenable to flexibility on the part of the individuals and
of the group.

To introduce the formalism of satisficing, let us first con-
sider a single agentX , with selecting and rejecting facets
denotedS andR, respectively, and letuS denote the select-
ing utility, or selectability, which measures the progress to-
ward the goal ofX , anduR denotes the rejecting inutility, or
rejectability which measures the consumption of resources
such as cost, exposure to hazard, loss of social reputation,
and so forth.
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Definition 1 LetA denote the set of actions available toX .
An actiona ∈ A is satisficingif uS(a) ≥ quR(a) whereq ∈

[0, 1] regulates the threshold for rejecting elements ofA as
not satisficing. (Nominally,q = 1, but as we shall see,q can
serve as a measure of how willing an agent is to negotiate.)
Thesatisficing setis

Σq = {a ∈ A: uS(a) − quR(a) ≥ 0}. (1)

Satisficing as defined above is expressed in a single-
agent context with categorical utilities. It is easily seen, in
this simple context, thatuS anduR can easily be combined
to form a classical utilityuX(a) = uS(a) − quR(a), which
is amenable to optimization. Optimization, however, is de-
signed to produce a single best solution, whereas, by con-
trast, satisficing is designed to produce a (possibly) non-
singleton set of solutions that are good enough in the sense
that the effectiveness of the action is as least as great as
its inefficiency. In the single-agent context, satisficing rep-
resents a novel approach, but if it is possible to optimize,
then there may be little incentive to seek a satisficing solu-
tion. The real power of the satisficing concept, however, is
manifest in the multi-agent case, as will be further developed
below.

3.2 Conditioning

Let X = (X1, . . . , Xn) denote a collective of autonomous
stake-holders (e.g., agents). More specifically, letS = (S1,

. . . , Sn) denote the collective of selecting facets, and let
R = (R1, . . . , Rn) denote the collective of rejecting facets.
Notationally, we write writeV = SR = (S1, . . . , Sn, R1,

. . . , Rn), a system of2n facets. Since we will be dealing
with the facets, rather than the agents, it is convenient to use
the symbolVi, i = 1, . . . , 2n, to denote either a selecting
facet or a rejecting facet.

Let Ai denote a finite set of alternatives available to
Xi. Of course, ifXi takes actionai ∈ Ai, then that ac-
tion also applies toSi and Ri (split personalities are not
allowed, but this does not mean thatSi and Ri must al-
ways contemplate taking the same action). The product ac-
tion space is denotedA = A1 × · · · × An, and anaction
profilea = (a1, . . . , an) ∈ A denotes the joint action taken
by the collective.

A categorical utility for Vi, denoteduVi
, is a mapping

uVi
: A → R, and provides a total ordering of all action pro-

files forVi. According to the conventional Arrow/Friedman
model, categorical utilities for all participants in the multi-
stakeholder decision problem are defined prior to the decision-
making activity and, furthermore, the mechanisms that dic-
tate the way they are defined are irrelevant. As an alternative,
we introduce the notion of aconditional utility. To develop
this concept, we must first define acommitment.

Definition 2 Let Vi be an arbitrary element ofV, and let
Vj = (Vj1 , . . . , Vjk

) be an arbitraryk-element subset ofV
that does not includeVi. A commitment profile{aj1 , . . . ,ajk

},
aj`

∈ A, is a hypothetical statement byVi that the ac-
tion profile aj`

is the one that is most preferred byVj`
,

` = 1, . . . , k.

Definition 3 A conditional utility for Vi with respect to a
commitment profile{aj1 , . . . ,ajk

}, denoteduVi|Vj
(a|aj1 ,

. . . ,ajk
), is a utility for Vi given thatVj is committed to

{aj1 , . . . ,xjk
}.

Operationally, a conditional utility forVi serves as the con-
sequent of a hypothetical proposition whose antecedent is
a commitment byVj . This expression does not represent
Vi’s actual utility ofa, nor does it imply thatVj`

truly most
prefersa′

j`
. Instead, it means that, if(Vj1 , . . . , Vjk

) were
simultaneously to prefer{a′

j1
, . . . ,a′

jk
} to all other action

profiles, thenVi would define its utility ofa accordingly.
An attractive feature of a conditional utility is that it per-

mits Vi to expressconditional altruism. To illustrate, sup-
poseuVj

(a) � uVj
(a′), that is,Vj were to ascribe much

higher categorical utility toa than toa
′, but Vi were to do

the opposite, ascribing higher utility toa′ than toa, i.e.,
uVi

(a′) ≥ uVi
(a). Vi could give deference toVj by replac-

ing its categorical utilityuVi
with a conditional utilityuVi|Vj

such thatuVi|Vj
(a|a) ≥ uVi|Vj

(a′|a) but uVi|Vj
(a′|a′) =

uVi|Vj
(a|a′) = uVi

(a′), thus deferring toVj if, but only if,
Vj were to favora strongly overa′.

3.3 Social Networks

Conditional preferences provide each individual with the abil-
ity to define its preferences as a function of the hypothetical
preferences of all other subsets of the collective. This feature
represents an important departure from the traditional cate-
gorical definitions of preference and provides the foundation
for the modeling of a complex society that possesses sophis-
ticated social relationships such as altruism (either benev-
olent or malevolent). Conditional preference relations per-
mit the explicit modeling of such relationships, rather than
merely simulating them by redefining categorical preference
orderings. Although conditional preference relations are more
complex than are categorical ones, as noted by Palmer, “Com-
plexity is no argument against a theoretical approach if the
complexity arises not out of the theory itself but out of the
material which any theory ought to handle” [32, p. 176].

Nevertheless, the introduction of conditional utilities in-
creases the complexity of the mathematical model of a col-
lective. At one extreme, all of the members of the collective
would be devoted to narrow self-interest, and all utilities
would be categorical (the classical game-theoretic model).
At the other extreme, each of the members would be influ-
enced by the preferences of every other member, resulting
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in a fully connected collective. Fortunately, however, many
potentially interesting societies are such that the connections
between the members are relatively sparse. Just as with hu-
man societies, it is likely that members will be organized
into relatively small clusters of individuals that are some-
what loosely connected with other clusters. One such model
is a hierarchical structure, where the preferences of superi-
ors influence those of subordinates. Another, more parallel
model, is one where the individuals are grouped into func-
tion, spatial, or temporal neighborhoods. A powerful and
convenient way to represent such relationships is through
graph theory, which provides a means to express directly
the influence relationships that exist among the individuals.
With such a formalism, the vertices of the graph represent
the members of the collective, and the edges represent the
influence flows among them as encoded in the conditional
utilities. For the extreme case where all individuals possess
categorical preferences, the graph would have no edges —
each individual would be expressed by an isolated vertex.
When conditional preferences exist, however, the graph will
have edges, as illustrated in Figure 1.

S1 R2 R3

R1 S4

S2 S3 R4

Fig. 1 A directed acyclic graph

In this paper we concentrate ondirected acyclic graphs,
or DAGs. Formally, a directed graph is a pairG = (V, E),
whereV = (V1, . . . , V2n) is a finite set of vertices andE is
a set ofedgeslinking pairs of vertices. IfVj is directly influ-
enced byVi butVj does not directly influenceVi, then there
is a directed edge, denoted “→” from Vi to Vj . A pathfrom
Vi toVj is a sequence of vertices{Vi, Vk1

, Vk2
, . . . , Vj} such

thatVi → Vk1
→ Vk2

→ · · · → Vj . We writeVi 7→ Vj if
there is a path fromVi to Vj . If there are no paths such that
Vi 7→ Vi for anyi, the graph is said to beacyclic.

If Vi → Vj , thenVi is called aparentof Vj , andVj is
a child of Vi. The set of parents ofVi is denotedpa (Vi) =

{Vij
: Vij

→ Vi, j = 1 . . . , pi}, and the set ofchildren of
Vi is denotedch (Vi). If Vi has no parents, thenpa (Vi) =

∅. The descendents ofVi, denotedde (Vi), is the subset of
vertices{Vim

: Vi 7→ Vim
, m = 1 . . . , di}.

Let cp (Vi) = {vi1 , . . . ,xipi
} denote the commitment

profile forpa (Vi). For eachVi, uVi| pa (Vi)
[x| cp (Vi)] is the

utility that Vi ascribes tox, given thatVij
commits toxij

,

j = 1, . . . , pi. If Vi has no parents, the conditional utility is
the categorical utility; i.e.,uVi| pa (Vi) = uVi

if pa (Vi) = ∅.
Consider the DAG illustrated in Figure 1. By inspection,
pa (S1) = pa (R3) = pa (R4) = ∅, pa (S2) = {R1},
pa (S3) = {S2, S4, R1}, pa (S4) = {R3}, pa (R1) = {R2},
andpa (R2) = {S1}.

A fundamental property of a DAG is theMarkov con-
dition: nondescendent nonparents of a vertex have no influ-
ence on the vertex, given the state of its parent vertices [10].
Consequently, if a society can be represented as a DAG, the
conditional utility of a facet is dependent only upon the com-
mitments of its parents. Thus, for the DAG in Figure 1,R2 is
influenced only by the commitments ofS1, S3 is influenced
by the commitments ofS2, S4, andR1, and so forth. Thus,
conditional utility of R2 is of the formuR2| cp (R2

, where
cp (R2) = {S1}, and the conditional utility ofS3 is of the
form uS3| cp (S3), wherecp (S3) = {S2, S4, R1}. Categorical
utilities are associated with the root nodes,S2, R3, andR4,
since these nodes have no parents.

4 Social Welfare

4.1 Collective Preferences

The central question for a collective of autonomous decision
makers is how they should function as a group. In the classi-
cal non-cooperative game-theoretic formulation, the notion
of a group preference is irrelevant — each individual is com-
mitted to, and only to, its own satisfaction, and the emer-
gence of a coherent notion of group welfare would be strictly
coincidental. As observed by Shubik, “It may be meaning-
ful, in a given setting, to say that group ’chooses’ or ’de-
cides’ something. It is rather less likely to be meaningful
to say that the group ’wants’ or ’prefers’ something” [42,
p. 124]. Social choice theory, on the other hand, focuses on
the aggregation of individual preferences to form a social
welfare function that can be used to define what is best for
the group. Classical social choice theory, however, as de-
veloped by Arrow [1], Debreu [12], Fishburn [16], and oth-
ers, also relies upon categorical preferences, as does multi-
objective decision theory [21]. The main classical result, at-
tributed to Debreu, is that a necessary and sufficient for a
group utility to be defined as the weighted sum of individual
utilities is that the individual utilities must be categorical.

In the presence of conditional preferences, the issue of
social welfare takes on added complexity. For example, the
traditional axioms of social choice theory, such as the in-
dependence of irrelevant alternatives, becomes problematic.
Thus, we must pursue a different course when aggregating
conditional preferences. In the interest of clarity, we begin
our discussion of this concept with the bi-agent case, with
V = (V1, V2). Let us suppose thatV1 possesses a categori-
cal utility uV1

andV2 possesses a conditional utilityuV2|V1
.
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The corresponding DAG is displayed in Figure 4.1. Given
these utilities, the central questions are: (i) Can these two
utilities be combined in a rational way to form a group util-
ity? and, if so, (ii) How should they be combined?

V1 uV2|V1

V2

Fig. 2 A two-agent DAG

To address this issue, we introduce the notion of a joint
commitment. Ajoint commitmentby (V1, V2) is a condition
that, simultaneously,V1 is committed to(a1, a2) ∈ A1×A2

andV2 is committed to(a′
1
, a′

2
) ∈ A1 ×A2. The utility of a

joint commitment would provide a complete description of
the way the collective views all possible consequence pro-
files (one for each decision maker). It would provide infor-
mation regarding the degree of conflict and the possibilities
for compromise, since only one profile can actually be im-
plemented by the collective.

If there were no conflicts, then there would exist a joint
commitment of the form[(a∗

1
, a∗

2
), (a∗

1
, a∗

2
)] that would si-

multaneously maximize benefit toV1 andV2 and, hence, by
the Pareto principle, to the collective. In the presence of con-
flicts, however, joint commitments of the form[(a1, a2)(a1,

a2)], where both commit to the same profile, would repre-
sent a compromise solution. The issue, then, is to define an
acceptable compromise.

To determine the utility of a joint commitment, consider
the following argument. For[(a1, a2), (a

′
1
, a′

2
)] to be a joint

commitment, it is necessary that(a1, a2) be a commitment
byV1. But if (a1, a2) is a commitment byV1, then for(a′

1
, a′

2
)

to be a commitment byV2, (a′
1
, a′

2
) must be a commitment

by V2 given that(a1, a2) is a commitment byV1. Further-
more, if (a1, a2) is not a commitment byV1, then[(a1, a2),

(a′
1
, a′

2
)] is not a joint commitment, regardless of whether or

not (a′
1
, a′

2
) is a commitment byV2. Thus, when consider-

ing the utility of a joint commitment to[(a1, a2), (a
′
1
, a′

2
)],

if the utility of a commitment to(a1, a2) by V1 is considered
first, then the utility of a commitment to(a′

1
, a′

2
) by V2 will

be relevant only if(a1, a2) is a commitment byV1. Conse-
quently, given the utility of a commitment to(a1, a2) by V1

and the conditional utility of a commitment to(a′
1
, a′

2
) by

V2 given that(a1, a2) is a commitment byV1, knowledge of
the categorical utility of a commitment to(a′

1
, a′

2
) by V2 is

not required in order to compute the utility of a joint com-
mitment to [(a1, xa), (a′

1
, a′

2
)]. Thus, the utility of a joint

commitment to[(a1, a2), (a
′
1
, a′

2
)] is a function of the cat-

egorical utility of a commitment to(a1, a2) by V1 and the
conditional utility of a commitment byV2 to (a′

1
, a′

2
) given

that(a1, a2) is a commitment byV1.

Let ûV1V2
denote theutility of a joint commitment. By

the above arguments, this function can be expressed as

ûV1V2
[(a1, a2), (a

′
1
, a′

2
)] =

F [uV1
(a1, a2), uV2|V1

(a′
1
, a′

2
|a1, a2)] (2)

for some functionF , called theaggregation function.

4.2 Aggregation

Obviously, there are many possibilities forF , and to nar-
row the choices, it is necessary to impose some additional
constraints. One reasonable constraint is that the collective
possess at least a weak sense of equity so that a meaning-
ful notion of cooperation can occur. Specifically, we wish to
avoid a condition ofcategorical subjugation. To introduce
this concept, let us restrict interest to the collectiveS1 and
V2. We shall say thatS1 is categorically subjugated to the
collective if every consequence profile that is acceptable to
the collective would requireS1 to sacrifice its performance.
Suppose that

uS1
(a′

1
, a′

2
) > uS1

(a′′
1
, a′′

2
), (3)

but

ûS1V2
[(a′

1
, a′

2
), (a1, a2)] < ûS1V2

[(a′′
1
, a′′

2
), (a1, a2)] (4)

for all (a1, a2) ∈ A1 ×A2. ThenS1 would be categorically
subjugated, sinceS1’s preferred joint action can never be
preferred by the society. Avoiding categorical subjugation
ensures that all participants have a “seat at the table” when
negotiating. Otherwise, the interests of some facets will be
so contrary to the interests of the collective that, no mat-
ter what the collective decides, the interests of the affected
individual facets will be suppressed. Unless the possibility
(although not the guarantee) exists that the interests of the
individual are compatible with the interests of the collective,
the individual will be effectively disenfranchised. Although
categorical subjugation is not always avoided in human so-
cieties (e.g., dictatorships), avoiding categorical subjugation
is an important feature of an artificial society that must ne-
gotiate to reach a compromise.

If categorical subjugation is to be avoided, then there
must exist an action profile(ã1, ã2) such that, if (3) holds,
then

ûS1V2
[(a′

1
, a′

2
), (ã1, ã2)] ≥ ûS1V2

[(a′′
1
, a′′

2
), (ã1, ã2)]. (5)

A similar argument regarding the categorical subjugation of,
say,R1 can be made with the inequalities reversed in (3), (4),
and (5) whenR1 replacesS1.

The question now becomes: what conditions are neces-
sary to impose upon the aggregation functionF to ensure
that categorical subjugation can never occur? To address this
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question, let us turn to an analogous issue. A Dutch book is
a gambling situation such that, no matter what the outcome,
the gambler will be worse off for having taken the gamble
— a situation ofsure loss(one’s reward is always less than
one’s stake). To illustrate a Dutch book, SupposeY can take
one of two distinct values:y1 or y2, and letq(y) denote a be-
lief function ofy; that isq(y) measures the strength of belief
thatY = y. Without loss of generality, we may restrict be-
lief functions to the unit interval; that is,0 ≤ q(y) ≤ 1. (We
refrain from using the term “probability” here, since we do
not requireq to possess all of the properties of a probability
mass function.)

By convention, we will assume that we have full belief
that exactly one of these values obtains, that is, that the dis-
junction ofy1 andy2 must occur, and that beliefs are addi-
tive, thus,

q(y1 ∨ y2) = q(y1) + q(y2) = 1. (6)

Now let Z take on one of two distinct valuesz1 or z2, and
let r(z, y) denote the belief thatZ = z andY = y simulta-
neously. Let us now assume that

q(y2) > q(y1) (7)

r(z1, y2) < r(z1, y1) (8)

r(z2, y2) < r(z2, y1). (9)

The following example illustrates a Dutch book. Suppose
you purchase a $1 gamble thatY = y2, and deem a fair
purchase price to beq(y2); that is, you pay $q(y2) for the
gamble to win $1. Now also suppose you sell the gamble
(z1, y2)∨(z2, y2). By additivity of beliefs, a fair selling price
for this bet would ber[(z1, y2) ∨ (z2, y2)] = r(z1, y2) +

r(z2, y2). However, according to the above ordering, you
must haveq(y2) > 1

2
and, sincer(z1, y2) + r(z2, y2) <

r(z1, y1) + r(z2, y1), it follows thatr[(z1, y2) ∨ (z2, y2)] <
1

2
. After all gambles have been bought and sold, your net

wealth isr[(z1, y2) ∨ (z2, y2)] − q(y2) < 0. To overcome
this loss, you hope to make up the difference once the out-
come of the gamble is known. But if neithery2 nor(z1, y2)∨

(z2, y2) occur, you win nothing and you pay nothing, and if
(z1, y2) ∨ (z2, y2) occurs, then, of course,y2 occurs, so you
win $1 which you must pay to the buyer of your gamble.
Thus, once the gambles have been bought and sold, your net
wealth is invariant to whatever happens — you suffer a sure
loss.

A belief system is said to becoherentif it is not pos-
sible to construct a Dutch book. The Dutch Book Theo-
rem [11, 38] and its converse [22] state that a belief sys-
tem is coherent if and only if it complies with a probabil-
ity measure that describes the degrees of belief regarding
the propositions under consideration. The above example
does not comply with the laws of probability theory, since
q(y2) 6= r(z1, y2) + r(z2, y2); that is, marginalization fails.

The above discussion illustrates the fact that categori-
cal subjugation and sure loss are mathematically equivalent.
Thus, if a multi-agent valuation system is to be coherent,
in that it is not not possible to construct a situation where
categorical subjugation can occur, then the valuation system
must comply with the mathematical structure of probability
theory.

Definition 4 Let uVi
denote a categorical utility forVi. The

collectiveV is coherentif, for eachi ∈ {1, . . . , 2n}, given
thatuVi

(a) > uVi
(a′), there exists a commitment sub-profile

(ã1, . . . , ãi−1, ãi+1, . . . , ã2n) such that

ûV1···V2n
(ã1, . . . , ãi−1,a, ãi+1, . . . , ã2n) ≥

ûV1···V2n
(ã1, . . . , ãi−1,a

′, ãi+1, . . . , ã2n) (10)

if Vi is a selecting facet, with the inequalities reversed ifVi

is a rejecting facet.

LetV be a group of decision making facets whose influ-
ence relationships can be expressed with a directed acyclic
graph. For eachVi, let pa (Vi) = (Vi1 , . . . , Vipi

) denote the
pi parents ofVi, and letApi = A × · · · × A (pi times) de-
note thepi-fold product of the joint action space correspond-
ing to the parents ofVi. If Vi has no parents, thenApi = ∅.
Let cp (Vi) = (ai1 , . . . ,aipi

) denote the commitment pro-
file for pa (Vi). For eachVi, uVi| pa (Vi)

[a| cp (Vi)] is the util-
ity that Vi ascribes toa, given thatVij

commits toaij
, j =

1, . . . , pi. If Vi has no parents, the conditional utility is the
categorical utility; i.e.,uVi| pa (Vi)

= uVi
if pa (Vi) = ∅.

Theorem 1 If a society can be represented as a directed
acyclic graph, categorical subjugation cannot occur if and
only if the utilitiesuVi| pa (Vi) are conditional mass functions.
That is,

uVi| pa (Vi)
[a| cp (Vi)] ≥ 0 ∀x ∈ A (11)

and
∑

a∈A

uVi| pa (Vi)
[a| cp (Xi)] = 1 (12)

for all (ai1 , . . . ,aipi
) ∈ Api). Furthermore, the utility of a

joint commitment to(a1, . . . ,a2n) is

ûV (a1, . . .a2n) =

2n
∏

i=1

uVi| pa (Vi)
[ai| cp (Vi)] (13)

or, more specifically,

ûSR(a1, . . .an,a′
1
, . . . ,a′

n) =

n
∏

i=1

n
∏

j=1

uSi| pa (Si)
[ai| cp (Si)]uRj | pa (Rj)[a

′
j | cp (Rj)],

(14)

whereai is the commitment bySi, i = 1, . . . , n anda
′
j is

the commitment byRj , j = 1, . . . , n.
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Proof: Mathematically (albeit with different seman-
tics), we may viewVi as random variables defined over the
sample spacesVi, i = 1, . . . , 2n. The Dutch Book Theo-
rem and its converse establish that the necessary and suf-
ficient condition to ensure that sure loss (categorical sub-
jugation) cannot occur is thatuVi| pa (Vi)

must correspond
to the conditional probability mass functions ofVi given
cp (Vi). Thus, the categorical utilities of the root vertices
must possesses the mathematical structure of marginal prob-
ability mass function and the conditional utility of non-root
vertices possesses the mathematical structure of conditional
probability mass functions. Consequently, the vertices and
edges of the DAG satisfy all of the conditions of a Bayesian
network, and we may apply the fundamental theorem of
Bayesian networks; namely, that the joint probability mass
function of the random variables associated with the vertices
is the product of the conditional probability mass functions
of all non-root vertices, and the marginal mass functions of
all root vertices [9, 19, 34]. Equation (13) is simply an appli-
cation of the law of compound probability. Thus, coherence
is established.

We will term utilities that comply with Theorem 1prax-
eic utilities. It should be noted that this formulation requires
all utilities to be non-negative and sum to unity. This restric-
tion, however, does not reduce the generality of the theorem,
since utilities can be subjected to positive affine transforma-
tions without affecting the solution.

Equation (14) expresses the values of the selecting and
rejecting facets simultaneously. Since parents of selecting
facets may comprise both selecting and rejecting facets and
similarly for the parents of rejecting facets, this function
contains all of the possibilities for compromise and conflict.
To be useful for decision making, however, it is necessary
to compute the joint selectability for all joint commitments
by the selecting facets, and the joint rejectability for all joint
commitments by the rejecting facets. SinceûSR is a multi-
variate mass function, we may compute thejoint selectabil-
ity and rejectability marginalsas

ûS(a1, . . . ,an) =
∑

a′
1
,...,a′

n

ûSR(a1, . . . ,an,a′
1
, . . .a′

n) (15)

ûR(a′
1
, . . . ,a′

n) =
∑

a1,...,an

ûSR(a1, . . . ,an,a′
1
, . . .a′

n) (16)

Once the joint selectability and rejectability marginals
have been computed, we are in a position to define a sat-
isficing social welfare function. We first observe that, since
only one consequence profile can be implemented, to make
a decision, we must ascribe the same commitment to each
facet, yielding thejoint praxeic selectabilityandjoint prax-
eic rejectability

ũS(a) = ûS(a, . . . ,a) (17)

and

ũR(a) = ûR(a, . . . ,a). (18)

We next definesatisficing social welfare function

W (a) = ũS(a) − qũR(a) (19)

and thejointly satisficing set

Σq = {a: W (a) ≥ 0}. (20)

The parameterq is a measure of caution. Nominally,q = 1,
but asq decreases, the number of consequence profiles that
are rejected decreases. As will subsequently become appar-
ent, another interpretation ofq is as anindex of negotiation,
since loweringq enlarges the satisficing set, thereby increas-
ing the opportunities for reaching a compromise. We will de-
fine all consequence profiles such that the satisficing social
welfare is non-negative as being satisficing.

We may also compute theindividual selectability and
rejectability marginal utilitiesas

ũSi
(ai) =

∑

¬ai

ûS(a1, . . . ,an) (21)

and

ũRi
(ai) =

∑

¬ai

ûR(a1, . . . ,an), (22)

where we have employed the so-callednot-sumnotation;
namely,

∑

¬ai
to mean that the sum is taken over allaj for

j 6= i.
The individual welfare function is

Wi(a) = ũSi
(ai) − qiũRi

(ai) (23)

and theindividually satisficing setis

Σi
qi

= {a: Wi(a) ≥ 0}. (24)

Thecompromise setis the set of all joint actions that are
simultaneously satisficing for the group and for the individ-
uals; that is,

C = Σq ∩ Σ1

q1
∩ · · · ∩ Σn

qn
. (25)

A satisficing set (either for the group or individuals) con-
stitutes the set of consequences for which effectiveness, as
measured by the selectability utility, is at least as great asqi

times the inefficiency, as measured by the rejectability inu-
tility. Rather than focusing on seeking the best and only the
best solution, the satisficing methodology focuses on elimi-
nating bad solutions. Since the satisficing set eliminates all
alternatives whose effectiveness does not exceed their effi-
ciency, it is optimal in the sense that it eliminates the max-
imum number of bad choices. If, in the extreme case, all
but one choice are eliminated, then the satisficing solution
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coincides with the optimal solution. Thus, far from being a
boundedly rational solution, the set of satisficing solutions
possess a well-defined notion of optimality (albeit differ-
ent). Thus, we come to Euler’s conclusion through the “back
door.”

Example 1 The Social Prisoner’s Dilemma. The convention-
al Prisoner’s Dilemma game is designed to characterize be-
havior between two decision makers in an environment were
cooperation leads to better results than does defection but,
if only one attempts to cooperate, that individual becomes
vulnerable to being exploited by the other. Classically, this
game is defined in terms of categorical utilities. LetC and
D denote cooperation and defection, respectively. The cor-
responding categorical utilities are the entries of the payoff
matrix displayed in Figure 1. The joint option(C, C) (next
best for both) is the Pareto optimal solution, while(D, D)

(next worst for both) is the Nash equilibrium solution. No-
tice that the game is symmetrical. The classical assumption
for this game is that there is no social relationship between
the players, and that each is intent on, and only on, maxi-
mizing its own welfare, regardless of the effect doing so has
on the other.

Table 1 The payoff matrix for the conventional Prisoner’s Dilemma
game.

X2

X1 C D

C (3, 3) (1, 4)
D (4, 1) (2, 2)

Now let us add some social context to this problem. Sup-
pose a leader-follower relationship exists between them, with
X1 being the leader andX2 the follower. We shall assume
that X1 follows the conventional structure of maximizing
payoff, butX2 is interested in (a) following the lead ofX1,
(b) resisting exploitation, and (c) not offendingX1 by taking
advantage of the possible propensity forX1 to cooperate.
We shall take the definition of selectability as the same as
with the conventional formulation; namely, to seek to max-
imize payoff. For rejectability, however, we invoke a com-
ponent that is not present in the conventional formulation;
namely, to account for social issues, and assume that the
players have a unit of social resource they may commit to
each outcome. Since the leader has no social commitments,
we take rejectability as the same for each outcome. Accord-
ingly, the categorical selectability and rejectability values
for the leader are provided in Table 2.

To account for the social context, we take the utilities for
X2 to be conditional, and assume that both selectability and
the rejectability ofX2 are influenced by the selectability of
X1, as indicated in Figure 3.

Table 2 The categorical selectability and rejectability for the Pris-
oner’s Dilemma leader.

(C, C) (C, D) (D, C) (D, D)

uS1

3

10

1

10

4

10

2

10

uR1

1

4

1

4

1

4

1

4

S1 S2

R1 R2

Fig. 3 The influence network for the social Prisoner’s Dilemma game

Table 3 displays the conditional selectability forX2 given
the commitments ofX1. If X1 were to commit to(C, C),
((D, C), or (D, D), thenX2 would do likewise in the inter-
est of maximizing its payoff. But if ifX1 were to commit
to (C, D), thenX2 would resist being exploited by placing
zero conditional utility on(C, D) and apportioning equally
to the other outcomes.

Table 3 R2’s conditional selectability for the social Prisoner’s
Dilemma game.

(x1, x2)

(C, C) (C, D) (D, D) (D, D)

uS2|S1
(x1, x2|C, C) 1 0 0 0

uS2|S1
(x1, x2|C, D) 1

3
0 1

3

1

3

uS2|S1
(x1, x2|D, C) 0 0 1 0

uS2|S1
(x1, x2|D, D) 0 0 0 1

Table 4 displays the conditional rejectability forX2 given
the commitments ofX1. If X1 were to commit to(C, C),
thenX2 would place zero conditional rejectability on that
outcome and apportion all of its conditional rejectability equal-
ly to the other outcomes. IfX1 were to commit to(C, D),
X2 would place all of its rejectability on that outcome to en-
sure it will not be exploited. IfX2 were to commit to(D, C),
thenX2 would not reject that outcome so as to not exploit
X1, and instead would reject exploitation by placing its con-
ditional rejectability on(C, D). Finally, if X1 were to com-
mit to (D, D), X2 would not reject that outcome, but would
instead reject(C, D) as before.

The utility of a joint commitment is given by

uS1S2R1R2
[(x1, x2), (x

′
1
, x′

2
), (y1, y2), (y

′
1
, y′

2
)] =

uS1
(x1, x2)uS2|S1

(x′
1
, x′

2
)|x1, x2)

uR1
(y1, y2)uR1|S1

[(y′
1
, y′

2
)]. (26)

The joint praxeic selectability and rejectability functions,
as defined by (17) and (18) are given in Table 5, and the
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Table 4 R2’s conditional rejectability for the social Prisoner’s
Dilemma game.

(x1, x2)

(C, C) (C, D) (D, D) (D, D)

uR2|S1
(x1, x2|C, C) 0 1

3

1

3

1

3

uR2|S1
(x1, x2|C, D) 0 1 0 0

uR2|S1
(x1, x2|D, C) 0 1 0 0

uR2|S1
(x1, x2|D, D) 0 1 0 0

jointly satisficing set (withq = 1) is {(C, C), (D, D)}.
The individual selectability and rejectability marginal util-
ities, as defined by (21) and (22) are displayed in Table 6,
from which it can be seen that the individually satisficing
sets (withq1 = q2 = 1) areΣ1

1
= {(C, C), (D, C)} and

Σ2

1
= {(C, C), (D, D)}. Consequently, the compromise set

is C = {(C, C)}.

Under the classical formulation of the Prisoner’s Dilem-
ma, the only rationally justifiable solution is mutual defec-
tion, since that formulation does not take into consideration
any social relationships. From the classical point of view,
mutual cooperation, although Pareto optimal, cannot be jus-
tified. The social version of the game as developed here,
however, indicates that mutual cooperation is the only justi-
fied solution.

Table 5 The joint praxeic selectability and rejectability for the social
Prisoner’s Dilemma game.

[(x1, x2), (x1, x2)] ũS1S2
[(x1, x2), (x1, x2)]

[(C, C), (C, C)] 0.3
[(C, D), (C, D)] 0.0
[(D, C), (D, C)] 0.0
[(D, D), (D, D)] 0.2

ũR1R2
[(x1, x2), (x1, x2)]

[(C, C), (C, C)] 0.0
[(C, D), (C, D)] 0.2
[(D, C), (D, C)] 0.025
[(D, D), (D, D)] 0.025

Table 6 The individual selectability and rejectability utilities for the
social Prisoner’s Dilemma game.

(x1, x2)

ũS1
(x1, x2) 0.3 0.1 0.4 0.2

ũR1
(x1, x2) 0.25 0.25 0.25 0.25

ũS2
(x1, x2) 0.3 0.0 0.0 0.7

ũR2
(x1, x2) 0.25 0.25 0.25 0.25

5 Reconciliation with Classical Theory

Not all problems fit naturally into the dual-utility structure of
satisficing theory. One way to deal with this situation, while
still retaining some of the flavor of satisficing theory, is to
invoke the assumption that all consequences are rejectabil-
ity neutral, and ascribe all meaningful utility to selectability.
Under this situation, we set the rejectability to a constant:
uRj| pa (Rj)[aj | cp (Rj)] = Kj = 1

|Ai|
(| · | denotes cardinal-

ity) for all aj . We define the conditional utility ofXi as

uXi| pa (Xi)
[ai| cp (Xi)] = uSi| pa (Si)

[ai| cp (Si)]. (27)

Thus, (14) becomes a function ofai, i = 1, . . . , n, only, and
we may write

ûX(a1, . . .an) =

n
∏

i=1

uXi| pa (Xi)
[ai| cp (Xi)], (28)

and the marginals become

ũXi
(ai) =

∑

¬ai

ûX(a1, . . . ,an). (29)

Once all of the valuations are concentrated in a single
utility, we view the decision problem from the classical per-
spective of optimization. The most well-known solution con-
cept for individuals is the non-cooperative game theoretic
concept of Nash equilibria [31]. Leta∗ = (a∗

1
, . . . , a∗

n). The
action profilea∗ is a Nash equilibriumif, were any single
individual to alter its choice, its utility would decrease ; i.e.,
if a

† = (a∗
1
, . . . , a′

i, . . . , a
∗
n), then, in terms of categorical

utilities,

uXi
(a∗) ≥ uXi

(a†) (30)

for all a′
i ∈ Ai \ {a

∗
i } for i = 1, . . . , n.

When conditional utilities are involved, we may define
two notions of equilibrium. First, let us define what might
be called a conditional Nash equilibrium. The action profile
a
∗ is aconditional Nash equilibriumif

uXi| pa (Xi)
(a∗|a∗, . . . ,a∗)) ≥ uXi| pa (Xi)

(a†|a†, . . . ,a†))

(31)

for all a′
i ∈ Ai \ {a

∗
i } for i = 1, . . . , n.

We may also compute the Nash equilibrium in terms of
the marginal utility defined by (29). The action profilea

∗ is
a Nash equilibrium if

ũXi
(a∗) ≥ ũXi

(a†) (32)

Example 2 Prisoner’s Dilemma, Continued. Let us revisit
the Prisoner’s Dilemma discussed in Example 1 under the
assumption of neutral rejectability, and setuX1

= uS1
and

uX2| pa (X2) = uS2| pa (X2) as defined in Tables 2 and 3, re-
spectively. By inspection, we see that the conditional Nash
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Table 7 The marginal utilities for the Prisoner’s Dilemma.

(C, C) (C, D) (D, C) (D, D)

uX1

3

10

1

10

4

10

2

10

uX2

3

10
0 0 7

10

equilibrium is(D, D), as with the conventional formulation.
Furthermore, the marginal utilities are given in Table 7, and
we see that, again the Nash equilibrium is(D, D).

The Nash equilibrium is usually considered to be an ap-
propriate solution concept for non-cooperative games. On
the other hand, with a cooperative game (i.e., one where
binding agreements are possible), it may be possible to en-
ter into negotiations and bargain for a solution. For the play-
ers to forge an agreement, however, each must achieve an
acceptable degree of satisfaction. Abargaining gameis a
cooperative game in which each participant possesses adis-
agreement pointthat defines the benefit that is guaranteed
to accrue to it if a compromise cannot be reached. The dis-
agreement point, therefore, is an indication of the strategic
strength that is conferred on the participant as it partici-
pates in negotiations: the higher the disagreement point, the
greater bargaining strength of the participant.

A well-known bargaining concept that offers a clear def-
inition of individual acceptability is the Nash bargain [30],
which permits each participant to make maximal use of its
strategic strength. The approach is based on four fundamen-
tal principles: (i) invariance to positive affine transforma-
tions; (ii) Pareto optimality; (iii) independence of irrelevant
alternatives, and (iv) symmetry, which is the notion that no
individual agent can expect that the other agents will grant
it better terms than that individual itself would be willing to
grant, were roles reversed.

Nash showed that these four conditions lead to a unique
solution. LetdXi

denote the disagreement point forXi. The
negotiation set, denotedN , is the subset of action profiles
such that every participant achieves at least its disagreement
point. In terms of categorical utilities, the negotiation set is

N =
{

a ∈ A: uXi
(a) ≥ dXi

, i = 1, . . . , n
}

(33)

and the Nash bargain is

aN = arg max
a∈N

n
∏

i=1

[

uXi
(a) − dXi

]

. (34)

The intuitive interpretation of a Nash bargain is that it de-
fines a fair compromise. It enables each player to take ad-
vantage of the strategic strength endowed by its disagree-
ment point. The higherXi’s disagreement point, the more
action profiles that are unfavorable to it are eliminated.

The structure of (34) suggests that the optimal group so-
lution can be interpreted as a Nash bargain with unilateral

utilities replaced by conditional utilities and all disagree-
ment points set to zero. Analogously, therefore, we may de-
fine aconditional Nash bargaining solution. When decisions
are made under certainty, the negotiation set is defined as

N =
{

a ∈ A: uXi| pa (Xi)
(a)| cp (Xi) ≥ dXi

, i = 1, . . . , n
}

.

(35)

The conditional Nash bargaining solution is

aN = arg max
a∈N

n
∏

i=1

[

uXi| pa (Xi)
[a| cp (Xi)] − dXi

]

. (36)

Referring again to the Prisoner’s Dilemma example, it
is easily seen that both the conditional Nash bargain is the
same as the conventional Nash bargain for the Prisoner’s
Dilemma; namely, the Pareto optimal solution(C, C).

6 Conditionally Decoupled Societies

6.1 The General Case

The approach developed above assumes that the conditional
preferences are defined over the entire product action space.
In this respect conditional preferences are generalizations of
classical categorical preferences, the difference being that
the preferences can be modulated by the commitments of
others. Although increased complexity is associated with the
introduction of conditional preferences, there are cases were
this additional complexity is not justified. It can be the case
that the only commitments that affect the preferences of an
agent are the direct consequences to its parents. This situa-
tion motivates the notion of conditional decoupling.

Definition 5 A society isconditionally decoupledif the con-
ditional preference of each agent is a function only of its
own actions, given the commitments of its parents to their
own actions.

Whereas, for a non-decoupled system, the utilities are
functions of the entire action profile, for a decoupled system,
the utilities are functions of individual actions. To develop
this concept, supposecp (Vi) = {ai1 , . . . ,aipi

}. Then the
conditional utility

uVi| pa (Vi)
[a| cp (Vi)] = uVi| pa (Vi)

(a|ai1 , . . . ,aipi
) (37)

becomes

uVi| pa (Vi)
[ai| cp (Vi)] = uVi| pa (Vi)

(ai|ai1 , . . . , aipi
) (38)

Then (14) becomes

ûSR(a1, . . . an, a′
1
, . . . , a′

n) =

n
∏

i=1

uSj| pa (Sj)[aj | cp (Sj)]

n
∏

j=1

uRj| pa (Rj )[a
′
j | cp (Rj)]

(39)
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The corresponding joint selectability and rejectability mar-
ginals are given by

uS(a1, . . . , an) =
∑

(a′
1
,...,′

n
)

uSR(a1, . . . , an,′
1
, . . . , a′

n) (40)

and

uR(a′
1
, . . . , a′

n) =
∑

(a1,...,an)

uSR(a1, . . . , an, a′
1
, . . . , a′

n).

(41)

We may now define asocial welfare functionas

W (a1, . . . , an) = uS(a1, . . . , an)−qGuR(a1, . . . , an) (42)

whereqG is the jointq-value for the group. The jointly sat-
isficing set is the set of action profiles that are jointly satis-
ficing for the society as a whole, and is defined as

S = {(a1, . . . , an) ∈ A: W (a1, . . . , an) ≥ 0}. (43)

This procedure, however, does not account for the possibil-
ity that the elements ofS may not be acceptable to all (or
any) of the individuals. Thus, we must also compute the in-
dividual satisficing sets. To proceed, we must first compute
the selectability and rejectability marginals as

uSi
(ai) =

∑

¬ai

uS(a1, . . . , an) (44)

and

uRi
(ai) =

∑

¬ai

uR(a1, . . . , an), (45)

respectively. We may then define the individually satisficing
sets as

Σi = {ai ∈ Ai: uSi
(ai) − qiuRi

(ai)}. (46)

this set includes all alternatives that are satisficing, or good
enough, forXi. The satisficing rectangleis the set of all
action profiles such that each component is individually sat-
isficing, and is given by

R = Σ1 × · · · × Σn. (47)

The intersection of the jointly satisficing set and the satis-
ficing rectangle yields thecompromise set, comprising the
action profiles that are simultaneously good enough for the
group and for each individual.

C = S ∩ R. (48)

If C 6= ∅, then we may form abest compromiseas

a
∗ = arg max

a∈C
W (a). (49)

If C = ∅, then there are no action profiles that are si-
multaneously good enough for the group and each individ-
ual. However, the satisficing approach provides a natural and
systematic negotiation framework which which each indi-
vidual man control the degree to which it is willing to lower
its standards in an attempt to reach a compromise. By lower-
ing its qi-value incrementally, eachXi increases the size of
its satisficing set. By specifying the increment∆qi thatXi

is willing to reduce its standards, each participant can con-
trol the amount of compromise it is willing to offer others. If
enough participants are willing to lower theirq-values suf-
ficiently, it is easy to see that, eventually, the consensus set
will be non-empty, and a best compromise can be achieved.
Although such negotiations may fail to reach a compromise
that is acceptable to all members, the significant aspect of
this type of negotiation is that no individual isa priori sub-
jugated to the will of the society in the sense that there is no
possibility for that individual’s preferences to receive con-
sideration. Thus, every individual can be assured of receiv-
ing sufficient benefit, by its own definition, before agreeing
to the compromise. If an individual could not enjoy at least
that minimal assurance, it may not be inclined to join or re-
main affiliated with a society.

6.2 Social Choice

With the general multi-agent decision problem, each indi-
vidual possesses its own action set. Some scenarios, how-
ever, are such that there is only one action set that applies
to the group as a whole. Scenarios of this type are termed
social choiceproblems. Thus, with a social choice problem,
there is only one action spaceA. The social welfare function
(42) becomes

W (a) = uS(a, . . . , a) − qGuR(a, . . . , a) (50)

and the jointly satisficing set becomes

S = {a ∈ A: W (a) ≥ 0}. (51)

The individual selectability and rejectability marginals are
computed according to (44) and (45), and the individually
satisficing setsΣi, i = 1, . . . , n are given by (46). The in-
tersection of the individually satisficing sets and the jointly
satisficing set forms thesocial compromise set

CS = Σ1 ∩ · · · ∩ Σn. (52)

If S = ∅, then there is no group action that is good enough
for the group and each individual. However, by reducing the
q-values incrementally as discussed above, a consensus will
eventually emerge. Thesocial consensusset is the intersec-
tion of the social compromise set and the jointly satisficing
set

GS = S ∩ CS. (53)
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Thebest compromiseis the action in this set that maximizes
the social welfare function; that is,

a∗ = arg max
a∈GS

W (a). (54)

Example 3 The Family Walk. Suppose a family, consisting
of a father, mother, and child, is take one of three possible
nature walk, denoted{w, w′, w′′}. The father prefers long
hikes, the mother prefers beautiful scenery, and the child
prefers an easy walk.

The first order of business in framing this in the satis-
ficing context is to settle on operational definitions for the
notions of selectability and rejectability. From the point of
view of each individual, the main goal of walk is enjoyment
according to its own criterion. Thus, it is reasonable to as-
sociate selectability with the degree of narrow self-interest.
Accordingly, we define the three selectability utilities in Ta-
ble 8.

Table 8 Individual selectability utilities.

x uS1
(x) uS2

(x) uS3
(x)

w 0.1 0.4 0.3
w′ 0.3 0.4 0.6
w′′ 0.6 0.2 0.1

As the operational definition of rejectability, we assume
that each agent has a unit of concern for the interests of oth-
ers. Let us first consider the mother. Since she has concern
for the interests of her child, she will encode this informa-
tion in a rejectability function that is conditioned on the se-
lectability commitment of her child, as illustrated in Table 9.
To interpret this table, consider the first column, which cor-
responds touR2|S1

(·|w); that is, the child commits to select-
ing w. Since this walk is tied for the most preferred by the
mother, she ascribes no conditional rejectability to that al-
ternative, and places all of her conditional rejectability mass
on w′ andw′′ in inverse proportion to her her selectability.
Similar arguments apply if the child commits tow′ or w′′.

Table 9 Mother’s conditional rejectabilityuR2|S1
.

x uR2|S1
(x|w) uR2|S1

(x|w′) uR2|S1
(x|w′′)

w 0.0 0.4 0.5
w′ 0.4 0.0 0.5
w′′ 0.6 0.6 0.0

The father’s role in this decision process is first to defer
first to the commitments of his child, then to the commit-
ments to his wife, and then, subject to those constraints, to
reject the alternative that is least preferred in terms of his
narrow self-interest. These values are provided in Table 10.

Table 10 Father’s conditional rejectabilityuR2|S1S2
.

x

w w′ w′′

uR3|S1S2
(x|w, w) 0 0 1

uR3|S1S2
(x|w, w′) 0 0 1

uR3|S1S2
(x|w, w′′) 0 1 0

x

w w′ w′′

uR3|S1S2
(x|w′, w) 0 0 1

uR3|S1S2
(x|w′, w′) 0 0 1

uR3|S1S2
(x|w′, w′′) 1 0 0

x

w w′ w′′

uR3|S1S2
(x|w′′, w) 0 1 0

uR3|S1S2
(x|w′′, w′) 1 0 0

uR3|S1S2
(x|w′′, w′′) 1 0 0

Finally, we must specify the child’s rejectability. This
rejectability is not conditioned, since the model does not call
for the child’s preferences to be influenced by the parents’
preferences. Thus, the child’s concern for the interests of
others is neutral; that is, the child’s rejectability function is
uniform, as provided in (55).

uR1
(w) = uR1

(w′) = uR1
(w′′) =

1

3
(55)

Figure 4 illustrates the influence flows of the satisficing
praxeic network for the family walk.

S1 S2 S3

R1 R2 R3

Fig. 4 A satisficing praxeic network for the family walk

Using the values provided in the above tables, we may
compute the social welfare function, yielding

W (w) = −0.05

W (w′) = 0.36667

W (w′′) = −0.052;

henceS = {w′}.
We next compute the individually satisficing sets, yield-

ing

uS1
(w) − q1uR1

(w) = −0.233

uS1
(w′) − q1uR1

(w′) = −0.033

uS1
(w′′) − q1uR1

(w′′) = 0.267,
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uS2
(w) − q2uR2

(w) = 0.14

uS2
(w′) − q2uR2

(w′) = 0.14

uS2
(w′′) − q2uR2

(w′′) = −0.06,

and

uS3
(w) − q

3
uR3

(w) = −0.12

uS3
(w′) − q3uR3

(w′) = 0.18

uS3
(w′′) − q3uR3

(w′′) = −0.32.

Thus, we haveΣ1 = {w′′}, Σ2 = {w, w′}, andΣ3 = {w′}.
Consequently,C = Σ1 ∩ Σ2 ∩ Σ3 = ∅, and the society has
not reached a compromise that is acceptable to all partici-
pants. However, if the father reducesq1 to 0.9, then

uS1
(w) − q1uR1

(w) = −0.2

uS1
(w′) − q2uR1

(w′) = 0.0

uS1
(w′′) − q3uR1

(w′′) = 0.3.

Hence,Σ1 = {w′, w′′}, and a consensus exists withGS =

{w′}. An important feature of this example is that the fa-
ther need only reduce its standards by a small amount to
achieve a consensus. In terms of the narrow self-interest of-
fering given by Table 8, we see, after taking into considera-
tion the social dependencies that exist among the individu-
als, that the consensus alternative is best for the mother and
the child and second best for the father.

7 Conclusions

Multi-stakeholder decision theory, and social robotics in par-
ticular, is in need of a mathematical framework that is de-
signed to accommodate sophisticated social behaviors such
as cooperation, compromise, negotiation, and altruism. The
classical framework developed by the social sciences and
operations research is based on categorical preference or-
derings and optimization, and is not sufficiently general to
characterize these social behaviors. This research represents
a significant departure from classical theory by incorporat-
ing three critical notions: conditioning, coherence, and sat-
isficing.

In contrast to categorical utilities, which are designed
to characterize self-interest, conditional utilities provide a
means whereby individuals may extend their spheres of in-
terest beyond the self. By modulating its preference struc-
ture to account for the preferences of others, an individual
may account for sophisticated social relationships such as
conditional altruism, and thereby give deference to others
without categorically redefining its preferences.

In a homogeneous environment where decision makers
are required to compromise and negotiate, it is important to
ensure that no agent can be categorically subjugated. Co-
herence is a minimal notion of equity among the partici-
pants that can be ensured if and only if the mathematical

syntax of the utilities corresponds to probability mass func-
tions (albeit with different semantics). For societies whose
inter-agent influence relationships can be represented by a
directed acyclic graph, coherence ensures that the edges are
conditional mass functions, resulting in a structure that is
mathematically identical to a Bayesian network. This struc-
ture permits individual utilities to be aggregated to form a
group utility that accounts for social relationships between
individuals, thereby providing a complete model of the com-
munity.

Satisficing, as defined herein, is an approach to decision
making that is as mathematically precise and formalized as
is the conventional notion of optimization. The essential ad-
vantage of satisficing is that it readily extends to the multi-
agent case, whereas optimization is intrinsically a single-
agent concept. Furthermore, since satisficing is designed to
provide a set of acceptable solutions rather than a unique
best solution, it provides a natural mechanism with which to
design a negotiation protocol and reach a compromise.
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Attitude Adaptation in Satisficing Games
Matthew Nokleby and Wynn Stirling

Abstract—Satisficing game theory offers an alternative to
classical game theory that describes a flexible model of players’
social interactions. Players’ utility functions depends on other
players’ attitudes rather than simply their actions. However,
satisficing players with conflicting attitudes may enact dysfunc-
tional behaviors, resulting in poor performance. We present an
evolutionary method by which a population of players may adapt
its attitudes to improve payoff. Additionally, we extend the Nash
equilibrium concept to satisficing games, showing that the method
presented leads players toward an equilibrium in their attitudes.
We apply these ideas to the Stag Hunt, a simple game in which
cooperation does not easily evolve from non-cooperation. The
evolutionary method presented provides two major contributions.
First, satisficing players may improve their performance by
adapting their attitudes. Second, numerical results demonstrate
that cooperation in the Stag Hunt can emerge much more readily
under the method presented than under traditional evolutionary
models.

I. I NTRODUCTION

Game-theoretic models are often used to construct societies
of artificial agents. Commonly, agents are modeled as players
in a non-cooperative game in which players focus solely on the
maximization of individual payoff. The players’ self-interest
leads to Nash equilibria [3], which are strategy profiles such
that no single player can improve its payoff by changing strate-
gies. Unfortunately, self-interested behavior places significant
limitations in terms of the players’ social interactions. For
example, it is often difficult to engender cooperation and other
social behaviors with self-interested players. Indeed, the self-
interest hypothesis has come under nearly continuous criticism
since the inception of game theory [4–7].

Satisficing game theory [8] offers an alternative to non-
cooperative game theory. It was developed for the synthesis of
artificial agents and specifically focuses on social interactions
between players. Players utilities are expressed as conditional
mass functions, allowing them to consider the preferences of
others rather than focusing solely on individual self-interest.
Satisficing models have previously been successful in over-
coming the social hurdles presented by non-cooperative game
theory, allowing players to exhibit sophisticated social behav-
iors such as altruism, negotiation, and compromise [9]. How-
ever, satisficing theory presents its own set of challenges. As in
real-life social situations, satisficing communities may behave
dysfunctionally. When players with incompatible attitudes are

The authors are with the Electrical and Computer Engineering De-
partment, Brigham Young University, Provo, UT 84602, USA (e-mail:
{nokleby,wynn}@ee.byu.edu). Portions of this work were presented at the
2006 IEEE World Congress on Computational Intelligence [1] and the 2007
IEEE Symposium of Foundations of Computational Intelligence [2]. This
material is based upon work supported by, or in part by, the U. S. Army
Research Laboratory and the U. S. Army Research Office under grant number
W911NF-07-1-0650.

grouped together, they can choose incoherent behaviors that
lead to poor performance.

The Stag Hunt, a simple game originally suggested by
Rousseau [10], underscores the difficulty of achieving coop-
eration under self-interest. As usually formalized, the game
involves two hunters. They can catch a stag only if they
hunt stag together, but each can catch a (much smaller) hare
separately. That is, a player earns maximum payoff if both
players cooperate, but risks failure if it attempts to cooperate
while the other does not. Since each player must individually
decide between cooperation and non-cooperation, it represents
a useful model for the analysis of potentially cooperative
behavior. For example, a group of workers choosing whether to
strike loosely fall under the Stag Hunt model: a large number
of workers may achieve a significant benefit by striking, while
a single worker who “strikes” alone incurs significant loss.

Social dilemmas such as the Stag Hunt have been studied
extensively by (among others) social scientists, economists,
and biologists. A large body of recent work focuses on
learning-based [11–13] and evolutionary [14–16] methods for
achieving cooperation. In evolutionary game theory, pioneered
by Maynard Smith [17, 18], populations of players make
decisions by trial-and-error rather than by explicit utility
maximization. Over time, natural selection favors individuals
who earn higher payoff, altering the population’s makeup.
Large, well-mixed populations are described by the replicator
dynamics [19], which defines a system of ordinary differential
equations governing the evolution of the population. Under
suitable conditions, the replicator dynamics drives the popu-
lation to a Nash equilibrium.

The Stag Hunt presents considerable difficulties from an
evolutionary perspective. Under the standard replicator dynam-
ics, a population composed primarily of hare hunters cannot
evolve into a group of stag hunters, even though each player
benefits from cooperation. Skyrms posits a compelling reason
for this failure: “for the Hare Hunters to decide to be Stag
Hunters, each mustchange her beliefsabout what the others
will do. But rational choice based on game theory as usually
conceived, has nothing to say about how or why such a change
might take place” [20, emphasis in the original].

Motivated by Skyrms’ conjecture, we explore methods by
which “such a change” may take place in satisficing game
theory. To do so, we attempt to bridge the gap between non-
cooperative and satisficing game theory by incorporating ele-
ments of non-cooperative game theory into satisficing theory.
In a manner similar to [21, 22], we present a method whereby
a population of players may modify its attitudes according
to the game structure and the attitudes of other players. In
our method, which employs the standard replicator dynamics,
players whose attitudes result in higher payoffs reproduce
more readily, causing their attitudes to dominate the popula-
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tion. The resulting model blends the two decision theories:
players retain the conditional utility structure of satisficing
theory while improving payoff by evolutionary means. The
dynamics leads the players toward a Nash equilibrium in
players’ attitudes rather than in their actions.

In Section II we familiarize the reader with the basics of
satisficing game theory. In Section III we review the classical
formulation of the Stag Hunt and its evolutionary difficulties.
We present a satisficing model for the Stag Hunt in Section
IV. In Section V we define the attitude equilibrium and
present the attitude dynamics. We present experimental results
in Section VI and compare the satisficing approach to other
recent methods in evolutionary game theory. We give our
conclusions in Section VII.

II. SATISFICING GAME THEORY

While the simple and seemingly reasonable assumption of
self-interest—also called individual rationality—has given rise
to a rich and successful theory of games, narrow maximization
may betoo simple, particularly in describing social situations.
As observed by Luce and Raiffa, “general game theory seems
to be in part a sociological theory which does not include any
sociological assumptions. . . it may be too much to ask that any
sociology be derived from the single assumption of individual
rationality” [4, p. 196]. Satisficing game theory provides an
alternative to the classical framework. It presents a more
elaborate structure which may be more useful in modeling
social behaviors. Players may directly concern themselves with
the preferences of others, rather than explicitly attempting to
maximize utility.

We construct the satisficing framework by altering the
structure of the players’ utility functions. First, each player
possessestwo utilities: one to characterize the benefits associ-
ated with taking an action and one to characterize the costs.
A satisficing player contents itself with a decision for which
the benefits outweigh the costs is “good enough” or satisfic-
ing.1 Second, the players’ utility functions share a common
syntax with probability mass functions, allowing probabilistic
concepts such as conditioning and independence to be applied
to players’ preferences—albeit with a significantly different
interpretation.

The use of probability mass functions to describe a player’s
preferences rather than a random phenomenon is an unusual
one, and warrants further explanation. A rigorous justification
is given in [24], where it is shown that the use of mass
functions as utilities guarantees several useful social prop-
erties regarding the reconciliation of group and individual
preferences. Fortunately, however, the benefits of conditional
utilities may also be appreciated intuitively. For two discrete
random phenomenaX and Y , whereY is dependent onX,
we can express the probabilities forY by the conditional
mass functionpY |X(y|x). The conditional mass function gives
hypothetical probabilities ofY : what would be the probability

1Although they share similarities, satisficing game theory should not be
confused with the concept of “bounded rationality” satisficing introduced by
Simon [23]. With satisficing̀a la Simon, individuals search for sub-optimal
choices that meet a variable threshold oraspiration level, implicitly accounting
for the cost of continued searching.

that Y = y if we knew thatX took on some valuex? If
we know the probabilities forX = x, we can compute the
marginal mass function according to basic rules of probability
theory:pY (y) =

∑

x pY |X(y|x)pX(x). The marginal probabil-
ities for Y are influenced—but not entirely dictated—by the
probabilities ofX.

Similarly, players’ preferences may depend upon the pref-
erences of others, allowing their utilities (which we callsocial
utilities) to be expressed as conditional mass functions. The
conditional mass functions allow for hypothetical expressions
of utility: what would player 1’s utilities be if player 2
unilaterally preferred a particular action? We can compute
player 1’s marginal utilities—which are the utilities used for
decision-making—by summing the conditional utilities over
player 2’s actual preferences. This structure allows players to
consider not simply what actions other players may prefer,
but how strongthe preferences for action are. Their utilities
are influenced by others’ preferences in a controlled manner
which does not require that they discard their own preferences.

A. Formalization

First, define the set of playersX = {1, 2, · · · , n}. Each
player chooses a pure strategyui ∈ Ui, whereUi is player
i’s pure-strategy set. Apure-strategy profile, which describes
the actions of all of the players, is ann-dimensional vector
u ∈ U, whereU = U1 × U2 × · · · × Un is the pure-strategy
space.

As mentioned in the previous subsection, each player
possesses two social utilities. To describe these, we define
two “selves” or perspectives from which each player may
consider its actions [25]. The selecting self considers actions
strictly in terms of their associated benefits, while the rejecting
self considers actions only in terms of the costs incurred in
implementing them. These selves are described by these-
lectability functionpSi

(ui) and rejectability functionpRi
(ui),

respectively.
Since social utilities are mass functions, they are normalized

across the pure-strategy sets and therefore describe therelative
benefits and costs associated with a pure strategy inUi. They
also provide players with a formal definition of “good enough.”
A pure strategy is “good enough,” or satisficing, if the relative
benefits are at least as great as the relative costs. In the
vernacular, we may view satisficing as “getting one’s money
worth,” as opposed to optimization, where players seek “the
best and only the best.” While the former concept allows for
a set of multiple actions that are “good enough,” the latter is
designed to produce a unique solution. We therefore define the
individually satisficing setfor player i as

Σi = {u ∈ Ui: pSi
(u) ≥ qpRi

(u)}, (1)

where q is the index of caution. Typically,q = 1, but
we may adjust a player’s definition of “good enough” by
changing q. Setting q ≤ 1 ensures thatΣi is not empty.
We may combine the players’ individually satisficing sets by
forming thesatisficing rectangleℜ12···n, which is defined as
the Cartesian product

ℜ12···n = Σ1 × Σ2 × · · · × Σn. (2)
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The satisficing rectangle is the set of all strategy profiles that
are simultaneously satisficing to each player.

It is convenient to express the relationship between play-
ers’ utilities graphically. In probability theory, relationships
between random variables are expressed in Bayesian networks
[26]. Similarly, in satisficing theory the relationship between
players’ utilities are expressed inpraxeic networks.2 The prax-
eic network consists of a directed acyclic graph (DAG), where
the nodes are the selecting and rejecting perspectives of each
player and the edges are the conditional utility functions. For
example, consider the simple two-player community depicted
in Figure 1. For each player, the rejecting preferences depend
on the selecting preferences of the other player, while the
selecting preferences are independent.

S1 S2

R1 R2

Fig. 1. A simple praxeic network.

Parenthetically, we note that praxeic networks also resemble
the spatial evolutionary models discussed in [15, 16, 28–30]. In
these models, graphical connections determine which players
can interact during play. That is, individuals may only play
with players to whom they are connected. In contrast, graphi-
cal connections in praxeic networks define how players influ-
ence each other in play. Both models describe, in some sense,
players’ social relationships. But, while spatial evolutionary
models describe which players can pair up in a game, praxeic
networks describe which players’ utilities can influence the
utilities of others.

In discussing the players’ social utilities, we retain the ter-
minology of probability theory. In the community from Figure
1, we refer to player 1’sconditional rejectability function,
denotedpR1|S2

(v1|u2). As mentioned above, the conditional
mass function expresses a hypothetical proposition, where the
antecedent is the strategy favored by player 2, and the conse-
quent is the utility of player 1. That is, if player 2’s selecting
preferences entirely favored strategyu2, what would be player
1’s rejectability forv1? As with probability mass functions, we
may compute themarginal rejectability by summing over the
conditionals:pR1

(v1) =
∑

u2∈U2
pR1|S2

(v1|u2)pS2
(u2). The

marginal utilities determine the individually satisficing sets
and the satisficing rectangle. If a utility is independent (such
as the selectability functions in this example), its marginal is
expressed directly, without conditioning.

By allowing conditioning in the players’ utilities, we im-
plicitly assume that players have at least partial knowledge
of each other’s utilities. Each player must have sufficient
knowledge of other players’ utilities in order to compute its
marginal utilities and find its individually satisficing set. In the
example community, each player must know the other player’s

2The termpraxeic is derived frompraxeology, which refers to “the science
of human conduct” or ”the science of efficient action.” [27]

selectability function in order to compute its own rejectability.
However, since players do not consider each other’s actions
in determining the individually satisficing sets, they need not
observe (or predict) each other’s choices.

With the marginal and conditional utilities defined for
the example community, we can form theinterdependence
function pS1···SnR1···Rn

(u1, · · · , un, v1, · · · , vn), which is the
joint mass function of all players’ selecting and rejecting pref-
erences. By the chain rule of probability theory, the interdepen-
dence function for this example ispS1S2R1R2

(u1, u2, v1, v2) =

pR1|S2
(v1|u2)pR2|S1

(v2|u1)pS1
(u1)pS1

(u1).
Satisficing games are characterized by the triple

(X,U, pS1···SnR1···Rn
), whereX is the set of players,U is the

pure-strategy space, andpS1···SnR1···Rn
is the interdependence

function. From this information, all necessary marginal
utilities can be computed and the satisficing rectangle can be
determined.

Finally, it is often useful to specify the players’ social
utilities in terms of variable parameters, which we refer to
as the players’attitudes. The interpretation of the attitudes,
of course, depends on the specific game being played, but in
general they express each player’s temperament, which affects
the degree to which its utilities depend on those of other
players. For example, in the Stag Hunt, the players’ attitudes
will characterize their aversion to risk, which influences each
player’s willingness to engage in stag-hunting.

B. Random Satisficing Games

Often, a player’s utility will depend on random phenomena,
resulting in expected utilities based on the distribution of the
random event. With classical game theory, it is required that
the probabilistic distributions of the random phenomena not be
influenced by the preferences of the players. In other words, a
player’s belief regarding a random event may affect its utilities,
but not vice versa. In most cases this restriction poses no
difficulty. However, we may want to consider circumstances in
which a player’s subjective probability about an event depends
on players’ preferences.

The conditional structure of social utilities provides for such
a possibility. Since the utilities are mass functions, we can
combine both probabilistic and preferential information into a
single model. Figure 2 illustrates a network implementing such
a model. This praxeic network is similar to Figure 1 in that
it contains the same four vertices associated with the players’
selecting and rejecting selves. However, we also include two
random variablesθ1 andθ2, which represent phenomena that
are known to the players only probabilistically. This network
describes both players whose preferences depend on random
phenomenaandrandom phenomena which depend on players’
preferences. The dependencies from Figure 1 still persist.R1

still depends—albeit indirectly, throughθ2—on S2, and R2

still depends onS1, which now dependsθ1.

III. T HE STAG HUNT

In the Stag Hunt, players choose between two pure strate-
gies: hunt stag or hunt hare, denoteds and h, respectively.
The payoff for playing each pure strategy depends on the
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θ1 S2

S1 θ2

R1 R2

Fig. 2. An praxeic network with “true” random variables.

action of the other player. If the other player hunts stag,
the payoff for hunting stag is higher than that of hunting
hare. However, if the other player hunts hare, stag hunting
yields a low payoff. That is, the players must hunt together
to catch the stag and obtain the higher payoff. The payoff for
hunting hare, on the other hand, is independent of the other
player’s choice. Each player can individually catch a hare, and
therefore can always opt for the modest—but more secure—
payoff associated with consuming a hare. We quantitatively
express the players’ utilities in the payoff matrix of Table I.

TABLE I
PAYOFF MATRIX FOR A TWO-PLAYER STAG HUNT.

Player 2
Player 1 s h

s (4, 4) (0, 3)

h (3, 0) (3, 3)

There are two pure-strategy Nash equilibria for the Stag
Hunt: (s, s) and (h, h). If the players simultaneously hunt
stag or hare, there is no incentive for either player to change
actions. There is also amixed-strategyequilibrium, in which
each player invokes a randomized rule to choose between the
two pure strategies. We will study the mixed-strategy equi-
librium in more detail later. Each pure-strategy equilibrium
has its benefits. The(s, s) equilibrium is optimal in that it
maximizes both players’ payoffs. However, since successful
stag hunting requires the cooperation of the other player, risk-
averse players may choose instead to hunt hare. The(h, h)

equilibrium is regarded as therisk-dominantequilibrium in the
sense that the potential gains of deviating from hare hunting
are less than the potential losses: at best, a hare hunter will
increase its utility by one by switching to stag, but at worst, it
will decrease its utility by three. Thus, conservative—yet fully
rational—players might choose to hunt hare.

This dichotomy illustrates the fundamental issue of the Stag
Hunt. Obviously, if each player had certain assurance that
the other player would hunt stag, everyone would cooperate.3

However, players do not have such an assurance under the
usual model, but must choose their actions independently. The
players’ actions then boil down to how much confidence each

3Interestingly, it is straightforward to show that if the game is played
sequentially (i.e. player 1 makes its move, and then player 2—who observes
player 1’s choice—moves), mutual stag-hunting becomes the uniquesubgame
perfectNash equilibrium. [31]

player has in the other’s willingness to cooperate and how
risk-averse each player is. As mentioned by Skyrms, classical
game theory has little to say about this topic. Indeed, the Nash
equilibria do not tell us which actions the players will take.
They simply imply that once a pair of players is in either of the
pure-strategy equilibria, neither player will have incentive to
deviate. To study which equilibrium will result under different
circumstances, we turn to evolutionary game theory [32, 33].

A. The Replicator Dynamics

The replicator dynamics is the classic instantiation of evolu-
tionary game theory. It models the evolution of a population’s
strategies according to their ecological fitness. Consider a
large population of players who are “programmed” to play a
particular strategy—regardless of the other player’s behavior—
in a symmetric two-player game such as the Stag Hunt. The
players are randomly paired up to play the game at each
time step. Each player reproduces asexually4 according to
its payoffs; that is, the number of offspring that a player
has is proportional to its payoff during the previous game.
Players’ strategies also “breed true,” meaning that offspring
are programmed to the same pure strategy as their parents. We
assume that the population is well-mixed, giving each player
an equal chance of being paired with any other player.

For a symmetric, two-player game where each player must
choose some strategy in the pure-strategy setU , define the
mixed-strategy simplex∆U as the set of all mixed (random-
ized) strategies overU . If U containsm elements, we can
characterize a mixed strategy as a nonnegativen-dimensional
vectorx that obeys the constraint

∑m

i=1
xi = 1. Each player’s

mixed strategy is probabilistically independent of the other
player’s. The interior of∆U is the set of mixed strategies
which assign nonzero probability to each pure strategy:

int(∆U ) = {x ∈ ∆U : xi > 0, i ∈ {1 . . . m}}.

In the replicator dynamics, we interpret each elementxi as the
population share, or fraction of the population, playing pure
strategyi. That is, if we randomly draw an individual from
the population described byx, the probability that it will be
programmed to playi is xi. At time t, the expected utility5 of
a player who plays pure strategyi against a random member
of the population isu(i,x(t)) =

∑m

j=1
π(i, j)xj(t), where

π(i, j) represents the utility of playing pure strategyi against
pure strategyj. As the players reproduce, the population shares
described byx(t) vary, and the more successful strategies
tend to dominate over those which are poorly-adapted to
the evolving community. As the population size approaches
infinity we may invoke the law of large numbers, and the
dynamics of the population shares becomes a system ofm

differential equations:

ẋi(t) =
[

u(i,x(t)) − u(x(t),x(t))
]

xi(t), i ∈ {1 . . . m}, (3)

4This does not contradict the fact that the players must pair off to play the
game. While they do play the game pairwise, each player earns its payoff
individually. The number of offspring it produces is proportional only to its
own payoff, and is entirely independent of the other player’s.

5We useπ to represent the utility (or payoff) for when players use only
pure strategies, whileu represents the expected utility when mixed strategies
are involved.
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whereu(x(t),x(t)) is the population’s average expected util-
ity,

u(x(t),x(t)) =

m
∑

i=1

u(i,x(t))xi(t)

=

m
∑

i=1

m
∑

j=1

π(i, j)xi(t)xj(t).

Intuitively, (3) tells us that a pure strategy’s population share
increases at timet if its expected utility is higher than the
average expected utility across the population. It is shown
in [32] that, if the initial conditions satisfyx(0) ∈ int(∆U )

(all pure strategies are represented in the initial conditions),
any steady state of the dynamics is a Nash equilibrium in the
players’ strategies.

It should be noted that the standard replicator model de-
scribes a selection dynamics rather than a mutation dynamics.
Players do not change strategies under this model; instead,
the offspring of players whose strategies are suboptimal are
overwhelmed by the offspring of more successful players.
As time continues, the fraction of the population playing
suboptimal strategies becomes arbitrarily small.

To account for random factors such as mutation, migration,
and payoff fluctuations, several stochastic replicator models
have been proposed [13, 14, 34, 35]. We examine a model from
[14], which augments the standard replicator dynamics by
introducing fixed mutation probabilities into the dynamics. The
mutation probabilities are contained in the matrixW = [Wij ],
whereWij represents the probability that an individual playing
strategyj spontaneously switches to strategyi. The mutation
dynamics differs from (3) by the addition of a mutation term:

ẋi(t) =
[

u(i,x(t)) − u(x(t),x(t))
]

xi(t)

+

m
∑

j=1

(Wijxj(t) − Wjixi(t)). (4)

The dynamics forxi are altered by adding the rate at which
players mutate into the population sharexi (described by
∑

j Wijxj) and subtracting the rate at which players mutate
out of the population sharexi (described by

∑

j Wjixj). When
mutation probabilities are zero (W= I), (4) collapses to
the standard replicator dynamics. In general, however, we are
forced to give up the theoretical properties guaranteed under
the standard replicator model. The steady-state behavior of the
system no longer corresponds to Nash equilibria, regardless of
initial conditions.

B. Stag Hunt Replicator Dynamics

1) Standard Dynamics:For the Stag Hunt, the population
is described by the two-dimensional vectorx = (xs, xh).
The payoff matrix (Table I) shows that the payoff for a stag
hunter is four when paired with another stag hunter, and zero
when paired with a hare hunter. A stag hunter therefore gains
an expected utility ofu(s,x) = 4xs. Since the utility for
hunting hare is independent of the other player’s actions,
u(h,x) = 3. The population’s average expected payoff is
given byu(x,x) = 4x2

s −3xs +3. Sincexs = 1−xh, we can

characterize the dynamics by examining only the stag hunting
share. Suppressing time arguments, we get

ẋs =
[

u(s,x) − u(x,x)
]

xs = −4x3

s + 7x2

s − 3xs. (5)

While the nonlinearities prevent a closed-form solution, we
can easily examine the qualitative behavior of the population.
In Figure 3, we show a direction field for the replicator
dynamics, which gives the sign of the derivative as a function
of xs. The stationary points, wherėxs = 0, occur atxs =

{0, 3/4, 1}. The point atxs = 3/4 corresponds to the mixed-
strategy Nash equilibrium discussed previously. However, the
mixed-strategy equilibrium is not stable; any deviation drives
the dynamics to one of the pure-strategy points, which are
asymptotically stable. We may regardxs = 3/4 as a boundary
for the initial conditions of the population: if fewer than 75%
of the population initially hunt stag, the dynamics quickly
drives stag hunters to relative extinction. If more than 75%
initially hunt stag, hare hunters die out. Although stag hunting
prevails in a predominantly cooperative society, these dynam-
ics cannot evolve cooperation from an initially non-cooperative
population.

0 0.2 0.4 0.6 0.8 1yl
ab

el
0 0.75 10 0.75 10 0.75 1

xs

Fig. 3. Direction field for Stag Hunt replicator dynamics.

2) Mutation Dynamics:Using the replicator model in (4),
we add a probability of mutation into the Stag Hunt dynamics
in the hope that mutation may help evolve a cooperative
population. We assume that the probability of mutating from
stag to hare is identical to the probability of mutation from
hare to stag. Consequently, we can parameterize the mutation
matrix by a single mutation probability0 ≤ α ≤ 1:

W =

[

1 − α α

α 1 − α

]

.

The dynamics forxs becomes

ẋs = −4x3

s + 7x2

s − 3xs + Wsh(1 − xs) − Whsxs (6)

= −4x3

s + 7x2

s − 3xs + α(1 − 2xs). (7)

The closed-form expression for the stationary points of the
dynamics is quite unwieldy, so in Figure 4 we plot the direc-
tion field for the dynamics as a function ofα andxs. When
mutation probabilities are small, the qualitative behavior of the
solution does not change: there remain two stable stationary
points at which nearly all of the population hunts either stag
or hare and an unstable stationary point which defines the
boundary between the stag-hunting and hare-hunting basins
of attraction. The boundary point increases with the mutation
rate, suggesting that mutation exacerbates the evolutionary
difficulties of the Stag Hunt.

For large mutation probabilities, the dynamics differs con-
siderably, leaving a single stationary point to which the dy-
namics converges independent of initial conditions. Even with
absurdly high mutation rates—in which evolution is governed
more by mutation than by payoff—only a minority of the
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population hunts stag. Of course, since the population size is
infinite, the mutation replicator model defines a deterministic
system as in the standard dynamics. Resultantly, finite popula-
tions, with random pairings and mutation, may spontaneously
evolve cooperation from non-cooperation. But the moral of
the story is that, on average, even finite populations rarely
cooperate if they are large, well-mixed, and composed of
players that are pre-programmed to play a particular pure-
strategy.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08
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0.18

0.2

xs

α

Fig. 4. Direction field for Stag Hunt stochastic replicator dynamics.

Finally, as we have already discussed, there exist other evo-
lutionary models than the replicator dynamics. In Section VI,
we investigate the effects of more sophisticated evolutionary
mechanisms on the Stag Hunt. For the time being, however,
we focus on the underlying structure of the players’ behavior.
Our solution, based upon satisficing game theory, affords a
flexible structure for players’ social interactions, increasing
the possibility for cooperation even under simple evolutionary
dynamics.

IV. T HE SATISFICING STAG HUNT

In a two-player Stag Hunt, the set of players isX =

{1, 2}, and each player has an identical pure-strategy set
Ui = {s, h}, i ∈ X. In formulating a satisficing game, we
are free to select an arbitrary structure for the praxeic network
and specify the conditional utilities as we see fit. We are then
constrained to carry out the rules of probability in computing
the marginal utilities which determine the players’ behavior.
Thus, the formulation of a satisficing game is a process of
“designing” the conditional structure and examining the results
to see if the players’ behavior makes sense.

First, we give conceptual definitions for the selectability
and rejectability preferences, which we will further clarify as
we mathematically define the players’ social utilities. What
do we mean by “benefits” and “costs” for the players in
the Stag Hunt? In our treatment, we consider selectability
in terms of successful cooperation. To the extent to which
stag hunting can be successful, the selecting self prefers to
hunt stag. We associate rejectability with the raw opportunity

cost of an action, tempered by risk-aversion. The opportunity
cost of hunting hare is the payoff for catching a stag, and the
opportunity cost of hunting stag is the payoff for catching a
hare.

Next, we define the interconnections between the four selves
and form the praxeic network. Our model is illustrated in
Figure 5. In addition to the vertices corresponding to the
selecting and rejecting selves, we include a vertex which
corresponds to a binary random variableθs which accounts
for the possibility of failure. It is not necessarily certain, even
if both players hunt stag, that they will succeed. We useθs = 1

to denote that a successful stag hunt is possible andθs = 0 to
denote that stag hunting will result in failure.

R1 R2

θs

S1 S2

Fig. 5. The praxeic network for the Stag Hunt.

To define the rejectability function for each agent, we first
must define a normalized measure of opportunity cost. Letφsi

andφhi
denote the raw utility (in arbitrary units) of consuming

stag and hare, respectively. Normalizing, the relative utility of
hare-hunting becomesµ′

i =
φhi

φhi
+φsi

for i = 1, 2. The relative
utility of stag-hunting is then1 − µ′

i.
Given this definition, we may letφsi

= 4 and φhi
= 3,

the payoff values given in Table I, resulting inµ′
i = 3

7
.

However, we further wish to take into account the temperment
of the players. As discussed in Section III, a central issue in
the Stag Hunt is to determine what players of differing risk-
aversion levels should do. Therefore, we introduce a parameter,
ρi, which expresses the degree of playeri’s risk aversion.
A player with ρi = 1 is risk-neutral, a player withρi > 1

is risk-averse, and a player withρi < 1 is payoff-seeking
and tends to ignore risk. We then defineµi = ρi

φhi

φhi
+φsi

.
Thus,µi reflects a player’s willingness to take risks as well as
the relative utility for stag and hare. A maximally risk-averse
player will hunt stag only if success is certain, while a fully
payoff-seeking player will hunt stag regardless of the odds. To
ensure a meaningful game, we still require that both players
will never prefer hare to stag, orµi < 1

2
for i = 1, 2. For

convenience, we will simply refer toµi as playeri’s risk-
aversion level, which parameterizes the player’s attitudes.

We define each player’s rejectability function as

pRi
(ui) =

{

µi, for ui = s

1 − µi, for ui = h
, (8)

an expression of normalized opportunity cost for each action.
The cost of hunting stag is the relative hare hunting utility,
and vice versa. Note that the players’ rejecting selves are not



7

dependent on others’ preferences, allowing us to define the
marginal utilities directly.

We next define the conditional distribution forθs. The
distribution of this random variable, which is conditioned upon
both players’ rejecting selves, represents the probability that
the players will successfully hunt stag. The distribution ofθs

incorporates whether or notR1 andR2 reject cooperationand
how likely the players are to catch a stag if they cooperate.
We model the latter consideration by defining0 ≤ σ ≤ 1,
which represents the probability of catching a stag given that
the players cooperate. It may reflect the number of stag in
the environment, the players’ hunting skills, or other external
factors. If R1 andR2 altogether reject hare hunting, then the
players will cooperate and successfully capture a stag with
probability σ. We characterize this by defining

pθs|R1R2
(ϑs|h, h) =

{

σ, for ϑs = 1

1 − σ, for ϑs = 0
, (9)

whereθs represents the random variable andϑs represents its
realization. If, however, either player unilaterally rejects stag
hunting, the probability of catching a stag is zero, yielding

pθs|R1R2
(ϑs|s, s) = pθs|R1R2

(ϑs|s, h) (10)

= pθs|R1R2
(ϑs|h, s) (11)

=

{

0, for ϑs = 1

1, for ϑs = 0
. (12)

Notice that the players’ preferences influence the probability
of a random event as discussed in Section II-B. Since the
players’ rejecting preferences affect their willingness to hunt
stag, the conditional structure is justifiable.

We compute the marginal mass function by summing over
the conditional random variables, yielding

pθs
(ϑs) =

∑

v1,v2

pθs|R1,R2
(ϑs|v1, v2)pR1

(v1)pR2
(v2) (13)

=

{

σ(1 − µ1)(1 − µ2), for ϑs = 1

1 − σ(1 − µ1)(1 − µ2), for ϑs = 0
. (14)

From (14) we see that as the risk-aversion levels decrease,
the probability of a successful stag hunt increases. If both
players are completely payoff-seeking (µ1 = µ2 = 0), the
probability of a successful stag hunt isσ. Either player can
reduce the chances for a successful hunt. As the risk-aversion
µi increases for either player, the probability of a successful
stag hunt decreases.

Finally, we define the conditional selectability. Each player’s
selectability is influenced by the probability of a successful
stag hunt. The selectability, as discussed earlier, is tied to the
benefits of cooperation: to the extent that a successful stag
hunt is possible (θ= 1), selectability favors stag hunting. The
higher the probability of successful stag hunting, the more
beneficial it is to hunt stag. The corresponding conditional

selectability function is

pSi|θs
(ui|ϑs) =



















1 for ui = s|ϑs = 1

0 for ui = h|ϑs = 1

0 for ui = s|ϑs = 0

1 for ui = h|ϑs = 0

. (15)

The simple form of the conditionals allows us to express the
marginal selectability as

pSi
(ui) =

{

σ(1 − µ1)(1 − µ2) for ui = s

1 − σ(1 − µ1)(1 − µ2) for ui = h
. (16)

A. The Satisficing Rectangle

With all of the social utilities defined, we have completely
characterized the players’ utilities and can solve for the
pure-strategy profiles that form the satisficing rectangle. As
discussed in Section II, the satisficing rectangle is the set
of pure-strategy profiles that are simultaneously satisficing
to each player individually. In Figure 6, we setq = 1 and
plot the regions of the satisficing rectangle as functions of
µ1 and µ2, which specify the players’ attitudes. There are
four possibilities. When both players have low risk-aversion,
(s, s) is the unique strategy profile in the satisficing rectangle.
If risk-aversion is high in both players,(h, h) results. In the
(h, s) and(s, h) regions, however, one player is strongly risk-
averse while the other strongly seeks payoff, resulting in one
player that tries to cooperate while the other does not. On
the boundaries of the four regions, the satisficing rectangle
contains multiple strategy profiles.

0 0.25 0.5
0

0.25

0.5

µ1

µ
2

σ = 0.6

σ = 0.8

σ = 1

(s, s)

(h, h)

(s, h)

(h, s)

Fig. 6. Satisficing rectangle regions for the Stag Hunt.

These last two regions illustrate a unique feature of satisfic-
ing models. In the(h, s) and(h, s) regions, one player chooses
to hunt hare while the other player, who is aware of the first
player’s increased risk-aversion, nevertheless stands by its post
and attempts to hunt stag. Such dysfunctional behavior is a
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consequence of the structure of the utilities: players’ utilities
depend on the others’ attitudes rather than the strategies they
play.

We hasten to note that dysfunctional behavior is not a failure
per se of the satisficing model. Dysfunctional societies do
exist in practice, and we may interpret these regions as an
acknowledgement that players with incompatible attitudes may
act incoherently. However, in designing artificial systems, we
typically prefer to avoid incoherent behaviors, sociologically
justifiable or not. It seems unreasonable that incompatible
players would continue to exhibit the same attitudes and to
enact the same incoherent strategies. Thus, we introduce the
attitude dynamics, which provides a way for players to adapt
their attitudes and avoid such dysfunctional behavior.

V. ATTITUDE DYNAMICS

To introduce the attitude equilibrium and the attitude dy-
namics, we first embellish the structure of the satisficing game.
We endow each player with a classical utility function which is
based solely on the strategy profile that the players implement.

Definition 1: An augmented satisficing gameis a 5-tuple
(X,U, pS1···SnR1···Rn

,A,π(u)). The first three elements are
the set of players, the pure-strategy space, and interdependence
function as normal. Additionally, we introduce the pure-
attitude spaceA= A1×A2×· · ·×An containing the attitudes
that the players may exhibit. These attitudes are parameters
in the players’ social utilities, and are different for each
satisficing game. We also introduceπ(u), a vector payoff
function which describes the raw payoff to the players for
implementing the pure-strategy profileu ∈ U.

To augment a satisficing game, the players’ attitudes must be
specified as distinct parameters in the players’ social utilities.
Further, we must be able to construct a raw payoff function that
is separate from the social utilities. Constructing raw payoff
functions may be difficult in practice. In a system of artificial
agents, for example, the agents’ objectives may be sufficiently
complicated that it is impossible to define a simple payoff
function for each agent. In a simple game like the Stag Hunt,
the extension is straightforward. Each player’s attitudes are
given by the risk-aversion levelµi, yielding a pure-attitude
space ofA = [0, 1/2) × [0, 1/2). The payoff functionπ(u)

is described by the payoff matrix in Table I.
The augmented satisficing game describes a two-step map-

ping from attitudes to payoffs. The social utilities—determined
by the interdependence function—map the players’ attitudes
to pure-strategy profiles.6 The payoff function then maps the
pure-strategy profile to raw payoffs. Thus, in an augmented
satisficing game, we may evaluate the raw utility of exhibiting
a particular attitude. To simplify notation, we will occasionally
refer toπ(a), the payoff to the players for implementing the
pure-strategy profile determined by the pure-attitude profile
a ∈ A. That is, we may think of an augmented satisficing
game as a non-cooperative game where players’ payoffs are

6We have glossed over the fact that, in general, the satisficing rectangle
contains multiple pure-strategy profiles. For the Stag Hunt, this presents no
problem because the satisficing rectangle contains a single strategy profile
almost everywhere. We will assume that, if necessary, the players employ a
tie-breaking mechanism to select a unique strategy profile.

determined by the attitudes they exhibit rather than the strate-
gies they play.

We may also discussmixed attitudeswhich are probability
distributions over the attitudes the players exhibit. Denoting
the cardinality ofUi as ki, the mixed attitude of playeri
is given by a (normalized and nonnegative)ki-dimensional
vectorzi. The discussion of mixed strategies in Section III-A
applies directly to mixed attitudes. We assume that players’
mixed attitudes are probabilistically independent of each other.
We define playeri’s mixed attitude simplex∆a

i . The mixed-
attitude space is the Cartesian productΘa = ∆a

1
×∆a

2
×· · ·×

∆a
n. A mixed-attitude profile is a vector of mixed attitudes

z = (z1, z2, . . . , zn) ∈ Θa.
Since the players’ mixed attitudes are independent, the

probability that a pure-attitude profile is exhibited is equal
to the product of the associated probabilities. Thus, player
i’s expected utilityui(z) when the players exhibit the mixed-
attitude profilez ∈ Θa is:

ui(z) =
∑

a∈A

πi(a)

n
∏

i=1

ziai
, (17)

where ziai
is the probability with which playeri exhibits

the pure-attitudeai. Now, given complete knowledge of the
satisficing game and the other players’ utilities, a player may
considerchangingtheir attitudes to increase expected utility,
which motivates the attitude equilibrium.

Definition 2: An attitude equilibrium is a mixed-attitude
profile z

∗ ∈ Θa such that

ui(z
∗
1
, . . . , z∗i , . . . , z

∗
n) ≥ ui(z

∗
1
, . . . , z′i, . . . , z

∗
n) (18)

for eachz
′
i ∈ ∆a

i and for eachi ∈ X.
The definition for the attitude equilibrium is essentially iden-
tical to that of the Nash equilibrium: no player can improve
its expected utility by exhibiting a different mixed attitude. In
fact, we may say that an attitude equilibrium is an equilibrium
in players’ attitudes, rather than in their strategies. Because of
the analogy between the attitude equilibrium and the Nash
equilibrium, many theoretical results apply.

Theorem 1:An attitude equilibrium exists for every aug-
mented satisficing game with finite attitude spaces.

Proof: This result relies upon the fact that any augmented
satisficing game defines a classical non-cooperative game
whereX is the set of players,A takes the role of the pure-
strategy space andπ(a) is the payoff function. In [3], it
is shown that any non-cooperative game with a finite pure-
strategy space has at least one Nash equilibrium, although it
may exist only in mixed strategies. Since an attitude equi-
librium is simply a Nash equilibrium in the players’ attitudes,
one must exist for any augmented satisficing game with a finite
pure-attitude space, even if it exists only in mixed attitudes.

Note that a finite attitude space is a sufficient, but not nec-
essary, condition for the existence of an attitude equilibrium.
Indeed, for the Stag Hunt, even though the attitude spaces
are continuous, it is immediate that attitude equilibria exist in
pure attitudes. In Figure 7, the attitude equilibria are shown
for several values ofσ. If the players’ pure-attitude profile
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lies in these regions, there is no incentive for either player to
change attitudes.

0 0.25 0.5
0

0.25

0.5

µ1

µ
2

σ = 0.6

σ = 0.8

σ = 1

(s, s)

(h, h)

(s, h)

(h, s)

Fig. 7. Attitude equilibrium regions for the Stag Hunt.

Consider the(s, s) region of the satisficing rectangle. Here,
both players receive maximum payoff and there is no incentive
for either player to deviate. Notice, however, that only part
of the (h, h) region is an equilibrium. This is because, when
player i’s risk-aversionµi is sufficiently low, it is possible
for player j to move the group from mutual hare-hunting to
stag-hunting by lowering its ownµj . Even though(h, h) is
an equilibrium under the classical game, the satisficing model
gives the players greater influence over each other’s behavior,
increasing the possibility for cooperation. Asσ increases, the
size of the(h, h) equilibrium decreases, disappearing entirely
whenσ = 1.

Finally, notice that the dysfunctional regions(s, h) and
(h, s) do not contain equilibria. In these regions, each player
can improve its payoff by changingµi and forcing the game
into either (s, s) or (h, h). The attitude equilibrium concept
provides a useful juxtaposition of satisficing theory and indi-
vidual rationality: the social structure of the satisficing model
decreases the attraction of mutual hare-hunting, while the
introduction of the classical payoff function gives incentive
for players to adapt their attitudes and avoid dysfunctional
behaviors of the(s, h) and (h, s) regions.

If a large population of players adapts by trial-and-error
experimentation, we can model the evolution of the players’
attitudes by a straightforward application of the standard repli-
cator dynamics. We again restrict our attention to symmetric,
two-player games. Thus, both players are described by the
pure-attitude setA and the payoff functionπ(a). We require
that A be finite, and we denote the cardinality ofA as m.
Define a normalized vectorz(t) = (z1(t), z2(t), · · · , zm(t)),
wherezi(t) represents the population share exhibiting theith
pure attitude. Just as with traditional games, we may describe
the dynamics of the population shares by a system ofm

differential equations:

żi(t) =
[

π(i, z(t)) − π(z(t), z(t))
]

zi(t). (19)

By analogy with the standard formulation,π(i, z(t)) is the
expected payoff for exhibiting theith attitude against a
random sample from the population andπ(z(t), z(t)) =
∑

i

∑

j π(i, j)zi(t)zj(t) is the average expected payoff.
Let ∆A be the mixed-attitude simplex ofA. Just as with

mixed strategies, the interior of∆A is the set of all mixed
attitudes which gives nonzero probability to each pure attitude.

Theorem 2:Let ξ(t, z(0)) denote the solution for the atti-
tude dynamics in (19) at timet with initial conditionsz(0).
If z(0) ∈ int(∆A) and limt→∞ ξ(t, z(0)) = z

∗, thenz
∗ is an

attitude equilibrium.
Proof: This result follows directly from the fact that

an augmented satisficing game can be thought of as a clas-
sical game where players choose attitudes rather than play
strategies. As mentioned in Section III-A, it is shown in [32]
that, when initialized with a mixed strategy on the interior of
the mixed-strategy simplex, any steady state of the replicator
dynamics is a Nash equilibrium. Since an attitude equilibrium
is a Nash equilibrium in players’ attitudes, the result holds for
the attitude dynamics.
Note that Theorem 2 does not guarantee that a steady-state will
occur, even under well-behaved initial conditions. Rather, if a
steady-state results under suitable initial conditions, it must be
an attitude equilibrium.

VI. RESULTS

A. Attitude Dynamics

To apply the attitude dynamics, we first quantize the values
that µ may assume. DefineA = {ν1, ν2, . . . , ν100}, a set of
100 evenly-spaced values ofµ over [0, 1/2). We initialize the
population sharesz according to an exponential distribution
so that most players hunt hare, orzi(0) ∝ e−λ(

1

2
−νi). As we

setλ higher, the initial population is more risk-averse and less
willing to hunt stag.

We use the payoff matrix in Table I to determine the
raw payoff for exhibiting a particular pure-attitude profile
a = (µ1, µ2) ∈ A × A. If a is in the (h, h) region of
the satisficing rectangle (see Figure 6), then the payoff to
the first player isπ(µ1, µ2) = 3. Similarly, the payoffs are
π(µ1, µ2) = 3 and π(µ1, µ2) = 0 if a belongs to the(h, s)

and (s, h) regions, respectively. Finally,π(µ1, µ2) = 4σ if a

is in the (s, s) region.7

Because of the high dimensionality of the state space and the
complexity of the utility functions of the players’ preferences,
it is difficult to examine the attitude dynamics analytically. We
cannot easily solve for stationary points or say much about the
relative sizes of the basins of attraction as we could under the
(much simpler) standard replicator dynamics. Fortunately, we
can specify meaningful initial conditions and numerically ap-
proximate the solution to the system of differential equations.
We examine several scenarios where the vast majority of the

7We multiply by σ in the payoff to account for the probability that the
players succeed given that they both hunt stag.
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population hunts hare and discuss when it is possible to evolve
a cooperative community.

First, we examine the dynamics withσ = 1. We initialize
the population withλ = 10, leaving over 85% of the
population hunting hare. Figure 8(a) shows the initial joint
probability mass function of the players plotted along with
the four regions of the satisficing rectangle. The vertical axis
shows the joint probability that a pair of players—randomly
selected from the population—will end up at a particular point.
Since the players are drawn randomly and independently from
the infinite population, the joint probability is the product
of the marginal probabilities given byz. That is, Pr(µ1 =

νi, µ2 = νj) = zi(t)zj(t).
Initially, almost all of the joint probability mass is in the

mutual hare-hunting region. The dynamics, however, quickly
pushes the population towards stag-hunting. Within thirty
iterations, almost the entire population is in the mutual stag-
hunting region, the most common values of(µi, µj) close
to zero (Figure 8(b)). This is due to the fact that mutual
cooperation is the only attitude equilibrium whenσ = 1. For
any positive, finiteλ, all steady-state population distributions
will be entirely within the(s, s) region.

Next, we lower σ to see how the dynamics changes.
Keeping the initial conditions the same, we letσ = 0.925,
introducing the(h, h) attitude equilibrium region. Now, over
90% of the initial population hunts hare. This scenario yields a
highly interesting result. The hare hunting equilibrium initially
dominates and the population shares associated with the stag
hunting regions quickly diminish (Figure 9(a)). We notice,
however, that there are small migrations toward the boundaries
of the decision regions. These players still predominantly hunt
hare, but they are less risk-averse. As evolution continues, a
small concentration of players emerges around the boundaries
of the four regions, as illustrated in Figure 9(b). Players in
this region are quite versatile: they hunt hare with risk-averse
players, hunt stag with the payoff-seekers, and only very rarely
will they end up hunting stag with a player who refuses
to cooperate. The concentration of players slowly begins to
dominate, causing more and more players to hunt stag. Figure
9(c) shows the population att = 100. By this time, essentially
all of the population is composed of moderately risk-averse
but versatile players. This truly emergent result provides an
interesting insight in defining “fitness” in a social system. In an
uncertain scenario where both hare-hunting and stag-hunting
are potentially dominant strategies, the most successful players
are those who are flexible—those who can adapt their actions
to the preferences of those around them.

If we lower σ much below 0.925, the dynamics fails
to evolve the society toward cooperation for these initial
conditions. This happens for two reasons: (1) the size of the
(s, s) region becomes smaller with decreasingσ, and (2) the
expected payoff for exhibiting attitudes in the(s, s) region
decreases. However, even under the unfavorable conditions
shown where a pair of stag hunters might fail, the satisficing
model can evolve cooperation from noncooperation. Fewer
than 10% of the initial population are required to hunt stag
in the satisficing model, a significant improvement over the
standard replicator model, where over 75% must initially hunt

(a) t = 0

(b) t = 30

Fig. 8. Joint attitude distribution forσ = 1, λ = 10.

stag.

B. Spatial Evolutionary Models

For comparison, we also consider the Stag Hunt under the
spatial evolutionary models discussed in [15, 16, 28–30], which
have been proven effective in promoting cooperation in social
dilemmas. In [15], the Stag Hunt is specifically studied in
terms of the relative benefit for mutual stag hunting. Here,
we examine the question in terms of initial population: what
fraction of the population must initially hunt stag in order for
cooperation to flourish?

Spatial evolutionary models are described by undirected
graphs, where each vertex represents a player, and each edge
represents a social link between two players. As with the
replicator dynamics, each player is pre-programmed to play a
particular pure strategy. But, in the spatial dynamics, a player
may change strategies depending on the relative fitness of
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its neighbors. At each generation, players accrue payoff by
playing a single instance of the game with each neighbor. After
play, each player randomly selects a neighbor (possibly itself)
with a probability proportional to the payoff accrued in the
current previous round, adopting that player’s pure-strategy
for the next round.

We may interpret the spatial dynamics as an imitation dy-
namics, where a player imitates the behavior of its neighbors,
or as a death-birth dynamics, where players “die” and give
rise to a new generation whose strategies depend on the
neighbors’ relative fitness. Regardless of interpretation, for
fully connected graphs, the dynamics converges to the standard
replicator dynamics as the population size becomes large and
the time between generations becomes small.

In the Stag Hunt, letNs(i) andNh(i) be the set of player
i’s neighbors (including itself) that hunt stag and hare, respec-
tively, and letP (i) denote the payoff earned by playeri during
a single generation. Thus, letting|·| denote the cardinality of
a set, playeri earnsF (i) = 4(|Ns(i)| − 1) if it hunts stag,
and F (i) = 3(|Ns(i)| + |Nh(i)| − 1) if it hunts hare.8 Next,
defineFs(i) =

∑

j∈Ns(i) F (j) and Fh(i) =
∑

j∈Nh(i) F (j),
the respective sum payoff of stag- and hare-hunting neigh-
bors. Finally, since a neighbor is selected with a probability
proportional to its fitness, playeri hunts stag during the next
generation with probabilityFs(i)/(Fs(i) + Fh(i)).

The spatial dynamics is highly dependent on the structure
of the graph used to model the population. We construct our
graphs according to so-called “scale-free” models [36], in
which the number of neighbors follows a power-law distri-
bution. If Ki is the random variable describing the number
of neighbors for playeri, then eachKi is identically and
independently distributed according topKi

(k) ∝ kγ for some
constantγ. This distribution describes a heterogeneous, and
realistic, model of social connectivity: many players have only
a few neighbors, while a few players are heavily connected to
the rest of the population. Scale-free models have been shown
to improve the possibility of cooperation in social dilemmas
[15].

To evaluate the performance of the spatial dynamics, we
construct graphs with50 players, an average number of
connections per playerz = E(K), and an initial fraction of
the populationxs(0) hunting stag. For each(xs(0), z) pair, we
construct ten graphs, each of which is seeded with ten initial
populations. After running the dynamics for5000 generations,
we record the steady state behavior by averaging the fraction
of stag hunters over an additional500 generations. Figure 10
shows the average results of our trials. For moderately low
values ofz, the spatial dynamics considerably improves the
possibility for cooperation: a sizeable fraction of the steady-
state population hunts stag even when only a quarter of the
initial population cooperate. This result is consistent with
previous studies of cooperation in spatial networks [15, 16].
When the average number of connections is small, cooperation
emerges more readily. However, in contrast to the attitude
dynamics, stag hunting does not consistently dominate the

8The (−1) term in each payoff accounts for the fact that, althoughNs(i)
or Nh(i) includes playeri, the player does not pair with itself during play.

population unless a solid majority of players initially coop-
erate.

VII. C ONCLUSION

In this paper, we have extended the theory of satisficing
games by incorporating elements from non-cooperative game
theory. We augment the satisficing game with a standard utility
function that gives the raw payoff to a player for exhibiting
particular attitudes. The augmented framework results in an
attitude equilibrium in which no single player can improve
its raw payoff by exhibiting different attitudes. The attitude
equlibrium combines the merits of both satisficing and non-
cooperative game theory. The conditional utility structure
allows players to consider others’ preferences in making
decisions, and the standard payoff function allows players to
adapt their attitudes to avoid dysfunctional behavior.

The non-cooperative elements of augmented satisficing
games allow us to employ evolutionary game theory, where
adaptation occurs by trial-and-error. We define an attitude
dynamics by applying the standard replicator dynamics to the
attitudes exhibited by the players, rather than the strategies
play. The attitude dynamics models the evolution of players’
attitudes according to the game and the attitudes of other
players. Given appropriate initial conditions, the steady state
of the dynamics is an attitude equilibrium.

We have presented a satisficing model for the Stag Hunt,
a game under which it is difficult to evolve a cooperative
population. Under the augmented satisficing framework, dys-
functional behaviors vanish: the attitude equilibria lie entirely
within the regions where players either mutually hunt stag or
mutually hunt hare. Also, the attitude dynamics facilitates the
evolution of cooperation by introducing strategic complexity
into the dynamics. Instead of simply choosing whether or not
to hunt stag, a player chooses a risk-aversion level, which
governs its interaction with the rest of the population. Under
a wide variety of circumstances, the dynamics encourages the
population to become less risk averse, allowing cooperation to
flourish. Our results significantly outperform other evolution-
ary methods, including classic replicator models and recently-
proposed spatial evolutionary models.

Finally, the theoretical properties that borrow from non-
cooperative game theory suggest that our results will general-
ize to large classes of games. Specifically, any game with finite
attitude spaces must have an attitude equilibrium, and any
(properly initialized) steady state of the attitude dynamics is
an attitude equilibrium. While we cannot, of course, guarantee
any specific results, we may expect that the qualitative benefits
of our approach will pertain to other games.
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Fig. 9. Joint attitude distribution forσ = 0.925, λ = 10.
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Fig. 10. Average steady-state stag-hunting fraction under spatial evolutionary
dynamics.


