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1 Problem Statement

The objective of this research grant is to develop a new mathematical formalism for cooper-
ative multiagent system synthesis that is explicitly designed to accommodate sophisticated
social relationships such as negotiation and compromise. To do so, we focus on the founda-
tional assumptions that undergird multiagent decision making, and challenge the adequacy of
the classical assumptions for the design of socially sophisticated artificial multiagent systems.

Classical approaches to multiagent decision making, such as von Neumann-Morgenstern
game theory [19] and social choice theory [1,4,10], are founded upon two key assumptions.

e [t is assumed that each member of a multiagent system possesses a well-defined total
preference ordering over all of the feasible actions of the collective. Such preference
orderings are categorical in the sense that they are unconditional — once defined, the
preference orderings are immutable and are viewed as the selfish desires of the members
even if, ostensibly, they express some notion of altruism by substituting the preferences
of others for one’s own.

e [t is assumed that each member will seek to maximize benefit to itself, regardless of
the effect doing so has on other members.

These two assumptions form the basis of the classical doctrine of individual rationality.
Perhaps the most well-known game-theoretic instantiation of this doctrine is the concept
of Nash equilibria: a state of mutual constrained optimization for all members in the sense
that any member who unilaterally deviates from an equilibrium state will be less satisfied.
Individual rationality is appropriate for competitive social situations, but does not provide a
framework within which sophisticated social relationships can be easily modeled and, hence,
is not well suited as a model for cooperative multiagent systems.

The social choice solution to the multiagent system decision problem is to combine, or ag-
gregate, the utilities of each individual to form a social welfare function to be maximized. As
with the game-theoretic approach, however, classical social choice approaches use categorical
utilities, and do not account for social relationships among the individuals.

We introduce a significant departure from classical approaches to multiagent decision
making. Our approach differs from the classical formulation in three major ways.

1. Conditioning. We relax the assumption that each member of a multiagent system
possesses a total preference ordering over all feasible actions of the collective. We
assume, instead, that members of a multiagent system are able to modulate their
preferences as a function of the preferences of others. To account for this change, we
replace categorical utilities with conditional utilities that are designed to express the
preferences of each individual as a function of the preferences of others, as appropriate.

2. Coherence. We invoke a weak notion of equity by assuming that a minimal condition
for meaningful negotiations to take place is for each member of the system to have a
“seat at the table” in the sense that its interests at least have a chance of being taken
seriously by the group as a whole. Stated more formally, we require the system to
be coherent, meaning that no individual can be categorically subjugated in the sense
that every action that is acceptable to the collective requires the individual to be



disadvantaged. Such an individual would effectively be disenfranchised, and would
not be in a position to undertake meaningful negotiations. This structure does not
eliminate hierarchical systems; rather, it simply means that, even in master/slave
relationships, the possibility exists (but not the guarantee) that the slave’s preferences
can be acceptable to the master. For a slave to be categorically subjugated, every
action that is good for the master would have to be bad for the slave.

. Satisficing. We replace the notion of optimization with a concept of being adequate,
or good enough. The terminology we use for this concept is satisficing. This term was
initially introduced by Simon [11-13], who addressed the question of how a decision
maker might choose in the presence of informational or computational limitations.
Simon’s approach is to seek an optimal choice, but to terminate searching and once the
decision maker’s aspiration level has been met. A slightly different notion of satisficing
is to accept the best solution so far obtained, once the cost of continuing to search
exceeds the expected improvement in value were the search to continue. Many other
variations of this concept have appeared in the literature and it is not the intent of this
report to review them in detail. Suffice it to say, however, that all of these approaches
view satisficing as a species of bounded rationality: one settles for a solution that is
deemed to be “good enough,” but which is not necessarily, and usually not, optimal in
any meaningful sense. Satisficing a la Simon is an heuristic approximation to the ideal
of being best (and is only constrained from achieving this ideal by practical limitations).

The concept of satisficing we employ, however, differs from the afore-mentioned notions
in several important ways.

(a) In contrast to satisficing as advanced by Simon and others, it is not heuristic;
rather, it is a concept that is as mathematically formalized and precise as is the
notion of optimization.

(b) It treats being good enough as the ideal (rather than an approximation) — it is
not a species of bounded rationality.

(c) It naturally extends to the multi-agent case, thereby providing a natural frame-
work for multi-agent decision making.

(d) It readily accommodates the extension of interests beyond the self, thereby ac-
commodating more sophisticated social relationships than self-interest affords.

We retain the term “satisfice” because, even though our approach is not heuristic, we
nevertheless seek solutions that are good enough, with the essential difference being
that we provide a non-heuristic and mathematically precise definition of what it means
to be good enough.

While optimization is intrinsically an individual concept (if a group is to optimize, it
must act as an individual), satisficing, as we define it, is a social concept: what is best
for you may be incompatible with what is best for me, but what is good enough for
you can also be good enough for me, provided we each have some flexibility regarding
what we view as good enough.



To motivate our concept of satisficing, we note that humans often invoke a systematic
approach to decision making that, while still based on quantitative measures of per-
formance, does not correspond to optimization. In the vernacular, the optimization
paradigm corresponds to seeking “the best and only the best” solution. Also common,
however, is the paradigm of “getting your money’s worth,” or ensuring that the ben-
efits are greater than the costs. This notion of being good enough is the satisficing
paradigm that we advocate. A comprehensive introduction to this perspective can be
found in [15].

2 Summary of Results: Negotiations

A multiagent system comprises a collective of agents who must work cohesively to accomplish
some fundamental objective. Typically, however, such systems are mixed-motive, in the
sense that the interests of all individuals will not all coincide perfectly; hence, opportunities
for both cooperation and competition will exist. The major contribution of this study is
the development of a mathematical framework that accommodates both cooperative and
competitive aspects of a multiagent system. In this section we briefly describe the three
main components of our theory (conditioning, coherence, and satisficing) and show how they
are used to define a framework within which to conduct negotiations. Publications arising
from this research are [16, 17], which are included in Appendices A and B, respectively.

2.1 Conditional Utilities

Let {Xi,...,X,}, n > 2, denote a group of autonomous decision makers. Let A; denote a
finite set of feasible actions available to X;, ¢ =1,...,n, let A= A; x --- x A, denote the
product action space, and let a = (aq,...,a,) denote the action profile that obtains when
each X; instantiates a; € A;. A categorical utility for X; is a mapping uy,: A — R such that
ux,(a) > uy, (') if X; strictly prefers a to a’ and uy, (a) = ux,(a’) if X; is indifferent between
a and a’. Classical decision-theoretic approaches,such as von Neumann-Morgenstern game
theory, employ categorical utilities (i.e, they are the payoffs of a game).

A conditional utility differs from a categorical utility in that it is a hypothetical, rather
than a concrete, expression. Before formally defining a conditional utility, we must first
introduce the notion of a commitment. In the interest of clarity, we temporarily restrict our
discussion to a two-agent system (X7, X5). Now suppose, from the point of view of X, that
X, views a = (ay, az) to be its most preferred joint action. We shall call this hypothetical
constraint on X; a commitment. A commitment, therefore, represents the antecedent of a
hypothetical proposition, the consequent of which is a conditional utility denoted u, x,(-|a).
More generally, for an n-agent system, if X; is influenced by the p; element sub-collective
{Xi, .. , X, }, then the conditional utility of X; is of the form Uy X, X (ailag,, .. -, aim)'

In contrast to categorical utilities, a conditional utility expresses X;’s pfeferences over A
given the commitments of all other agents that influence it. In the most general case, each
agent would be influenced by every other agent, but it is often the case that agents will be
most heavily influenced by their immediate neighbors. For example, hierarchical organiza-
tions are organized so that superiors influence subordinates. Other multiagent systems are



organized into small loosely connected clusters. Thus, although a fully connected system is
possible, many interesting multiagent systems are relatively sparsely connected. With this
project we will focus on systems whose influence relationships can be represented graphically
with a directed acyclic graph, or DAG. The vertices of the graph represent the various mem-
bers of the collective, and the edges represent the conditional utilities. Figure 1 illustrates
an influence network for a five-member multiagent system. We see that X; influences Xs,
who in turn influences X3 and X5. X5 is also influenced by Xj,. Finally, X3 is influenced
by Xy and X5. Since X; and X, are root vertices, they possess categorical utilities uy, and
uyx, (not shown on the graph). It should be noted that, if all utilities were categorical, then
this graph would have no edges — it would consist of n isolated vertices, each possessing a
categorical utility. With this more general model, only the root vertices possess categorical
utilities, all others possess conditional utilities.

UX3|Xp X5

Figure 1: An influence network for a five-member multiagent system.

2.2 Coherence

A collective that possesses the property that none of its members can be categorically subju-
gated is said to be coherent. We have appropriated this term from probability theory, since
the notion of avoiding sure subjugation is completely analogous to the probabilistic notion
of avoiding sure loss. As the Dutch Book Theorem and its converse establish, the only way
for a gambler to avoid a situation of sure loss (his payoff is less than his stake regardless of
the outcome), is for him to place bets in accordance with the axioms of probability. One
of the key results of our investigation is to demonstrate that, similarly, the only way for
a member of a collective to avoid categorical subjugation is for all utilities to possess the
mathematical structure of conditional or marginal mass functions. Under this constraint,
the edges in Figure 1 are conditional mass functions, and the graph therefore possesses the
mathematical structure of a Bayesian network (albeit with different semantics). Convention-
ally, Bayesian networks operate in the epistemological! domain; that is, involving random
phenomena. To distinguish between the conventional probabilistic application of Bayesian
networks and our praxeological® application, we shall refer to networks such as is depicted
in Figure 1 as prazeic networks.

IEpistemology relates to the categorization of propositions in terms of knowledge and belief.
2Praxeology relates to the categorization of actions in terms of their effectiveness and efficiency.



The DAG structure, coupled with the fact that the edges are mass functions, permits
a natural way to aggregate the preference orderings of the individuals to form a group
preference ordering. As is well known from Bayesian network theory, the so-called Markov
condition, which states that nondescendent nonparents of a vertex have no influence on
the vertex, given the state of its parent vertices [2]. Accordingly, just as the multivariate
probability mass function is formed as the product of the conditional and marginal mass
functions of a Bayesian network, the multiagent utility of collective is formed as the product
of the conditional and marginal utilities of the praxeic network. Thus, the multiagent utility
associated with the network illustrated in Figure 1 is

Ux, xox5X4X5 (al7 Az, as, a4, 35) =

More generally, let pa (X;) = (Xj,, ..., X;,,) denote the p; parents of X;, and let ux,,. x,)
denote the conditional utility of X, given its parents. If a vertex has no parents, then the
conditional utility becomes a categorical utility; that is, .y, . x,) = ux, if pa(X;) = @. The
multiagent utility then becomes

Ux, .x,(A1,...,8,) = H U, o (x; [A5] €D (X5)], (2)
i=1

where cp (X;) = {a;,,...,a;, }.

The probabilistic syntax of the utilities constructed in this way provides a natural way
to link the praxeological and epistemological aspects of a decision problem into a common
unifying framework. To illustrate, let us modify the network in Figure 1 by replacing vertex
X5 with a random variable, ¢, as illustrated in Figure 2, where |, is a utility conditioned
on the commitment of X, and the value that 6 assumes and py|x,x, is a probability mass
function conditioned on the commitments of X5 and X4. The resulting multiagent utility is
of the form

uX1X2X3X40(a17 Ay, as, A4, 19) = Ux, (al)UXQ\Xl (a2|al)ux3\x20(a3|a2> ﬁ)ux4(a4)pe\xzx4 (19> ag, a4)>
(3)
where ¢ is the value assumed by the random variable 6. The expected utility is then obtained
by averaging over the values that # may assume, yielding

/aX1X2X3X4 (a17 Az, as, a4) = Z uX1X2X3X49(a17 Az, a3, A4, 79) (4>
9

This result extends to the general n-dimensional case in the obvious way.

The most general formulation of this framework assumes that each individual’s utility
is defined over the product action space A, given the commitments of each of its parents
to action profiles in A, as is presented above. For many applications, however, this full
generality is not necessary, since it is often reasonable to assume that agents’ utilities are
defined with respect to their own actions, given commitments by others to only their own
actions. Thus, we introduce the notion of decoupling.



Po|xoxy

UX3| X0

Figure 2: A praxi-epistemic network for a four-member multiagent system.

Definition 1 A multiagent system is conditionally decoupled if the conditional preference
of each agent is a function only of its own actions, given the commitments of its parents to
their own actions.

For a decoupled multiagent system, (3) becomes

Ux, xyx5x,0 (A1, A2, 03, A4, V) = Ux, (A1) Uy x, (G2]01) Uy 0 (as]|az, V)ux, (@) Doy, (0, a2, as).
(5)

In general, the individual conditional utilities are of the form
uxi\pa(xn[aﬂ cp (Xi)] = uXi\pa(Xi)(ai‘ailv R az‘pi) (6)

where the action sub-profile {a;,,...,a;, } corresponds to the commitments by pa (X;) =
{Xi, ..., X, }, and the multiagent utility is of the form

n
Ux,x, (1, an) = Huxi‘pa(xi)(aﬁail, @y, ), (7)
=1
For the remainder of this report we focus on decoupled systems.

2.3 Satisficing

Even though optimization is often taken as the sine qua non of of formalized decision-making
procedures, humans are often wont to evaluate propositions in terms of the upside versus
the downside, the pluses versus the minuses, the benefits versus the costs, and so forth. One
of the important omissions in the extant literature is a systematic formal treatment of this
mode of evaluating possible choices. An important result of earlier research by the principal
investigator is the introduction of a formalized mathematical treatment of this alternative
mode of decision making. It should be noted that this approach has been inspired by the
work of the philosopher Isaac Levi [6], who proposed a novel way, using the mathematics of
probability theory, to improve one’s knowledge. In [15], the principal investigator applied
Levi’s approach to the praxeological domain and extended it to the multiagent case.
Conventional utilities combine all costs and benefits of taking action into a single function.
One common approach is to define utility as a linear combination of those aspects of taking



action that relate to the effectiveness (benefits) of taking an action and those aspects that
relate to the inefficiency (costs) of taking the action. In practice, the weights of these two
facets of taking action become tuning parameters to facilitate the design of a system that
provides acceptable performance (at the end of the day, even optimization is subjective).

Many theorists (e.g., [1,3,5,7]) have argued, however, that it is unwise to aggregate con-
flicting interests into a single preference ordering. Some have asserted that in a social setting
individuals have multiple facets, as defined by Steedman and Krause [14], who maintain that
an agent, although an indivisible unit, nevertheless is capable of considering its choices from
different points of view, and that separate utilities may be defined to correspond to each
facet of an individual. A natural way to classify attributes is according to their effectiveness
and efficiency. Each individual may be viewed as being composed of two facets: the selecting
facet, which evaluates actions in terms of effectiveness toward pursuing objectives without
concern for efficiency, and the rejecting facet, who evaluates actions in terms of efficiency
with respect to consuming resources without concern for effectiveness. We shall view these
selecting and rejecting facets as the “atoms” of the system. Notationally, we define S; and
R; as the selecting and rejecting facets, respectively, of X;

Accordingly, we define separate utilities for the selecting facet and the rejecting facet.
In accordance with the conditioning and coherence properties, these utilities are conditional
mass functions. Each agent has a unit of selecting utility to apportion among the feasible
actions and a unit of rejecting inutility also to apportion. An n-agent system thus comprises
2n atoms: n selecting facets and n rejecting facets, and the graph of such a system comprises
2n praxeic vertices whose edges are conditional utilities. Figure 3 illustrates a refinement,
in terms of the facets, of the influence relationships originally defined by Figure 2. This
network reveals more explicitly just how the agents influence each other. We see that S,
influences R, S, influences #, and so forth. Also, facets Ry and R, are not influenced by
any other facets and hence, in addition to S7, Ss, and Sy, are root nodes.

UR3|Sy

Figure 3: A Satisficing network for a four-member multiagent system.

According to the fundamental property of Bayesian networks, we may form the multiagent
utility as the product of all marginal and conditional utilities, yielding

u515253S4R1R2R3R40(a1a g, a3, G4, a,1a a'/2a aé, agta 19) =
Us, (a1)Us, (a2)Us,|ry0(as|as, V)us, (as)

uR1 (a/l)uR2|S1 (a/2 ‘al)uRg‘SQ (CL/3 |CL2)UR4 (aﬁl)pe‘szﬂ?z (19|a47 al2)7 (8)



and the expected utility is

N Y AN
Us, 54555, R1 RyR3 Ry (a17 g, a3, G4, A1, Ay, A3, CL4) =

/ / / /
g uS1$2S354R1R2R3R49(a17 A2, A3, 4, A7, Qg, Ag, Ay, J). (9)
9

This expected utility is called the aggregation function. Analogous to the way a joint
probability distribution captures all of the interdependencies among multiple random vari-
ables, the aggregation function captures all of the inter-relationships among the facets of a
multiagent system.

2.4 Negotiation
2.4.1 Optimal Compromise

The three components of conditioning, coherence, and satisficing provide a framework within
which members of multiagent system can negotiate and compromise. The key feature that
enables this ability is that the satisficing approach provides a set of acceptable actions, rather
than a singleton set comprising the optimal action.

For a non-decoupled system, the utilities are functions of the entire action profile, but for
a decoupled system, the utilities are functions of individual actions. With this restriction,
the multiagent utility function becomes

sy sy (A1, Ay ey ay) = Husj\pa<sj)[aj| cp (5;)] HURj\pamj)[aﬂ cp (R;)], (10)
i=1 j=1

where cp (5;) and cp (R;) denote the commitments by pa (.S;) and pa (R;), respectively.
The corresponding joint selectability and rejectability marginals are given by

usl...sn(al,...,an) = Z usl,,,gan,,,Rn(al,...,an,’l ,...,a;) (11)
(at,--,a7)
and
uRl...Rn(all,...,a;,L) - Z usl...san...Rn(al,...,an,all,...,a;). (12)
(alv"'van)

We may now define a social welfare function as

Wiai,...,a,) = us,.s,(a1,...,0,) — qoUpn,. .z, (C1, ..., Q) (13)

where g € [0, 1] regulates the threshold for rejecting elements of \A. Nominally, ¢, = 1, but
as we shall see, this parameter serves as negotiating parameter. The jointly satisficing set is
the set of action profiles that are jointly satisficing for the system as a whole, and is defined
as

S=A{(ay,...,a,) € A W(ay,...,a,) > 0}. (14)

10



This set, however, does not account for the possibility that the elements of S may not be
acceptable to all (or any) of the individuals. Thus, we must also compute the individual sat-
isficing sets. To proceed, we must first compute the selectability and rejectability marginals

us (a:) =Y g, (a1, ., ay) (15)

and

Un, () = Y tpyony(an, - ), (16)

respectively, where the notation Zﬁai is the so-called “not sum” notation meaning the sum
is taken over all elements except a;.
We define the individually satisficing sets as

Ei = {ai c .AZ usi(ai) — qiuRi(ai)}, (17)

where ¢; € [0,1] is X;’s individual negotiation index. This set includes all alternatives
that are satisficing, or good enough, for X; at the given negotiation index. The satisficing
rectangle is the set of all action profiles such that each component is individually satisficing,
and is given by

R=%; X XX,. (18)

The intersection of the jointly satisficing set and the satisficing rectangle yields the compro-
mise set, comprising the action profiles that are simultaneously good enough for the group
and for each individual.

C=SNR. (19)

If C # @, then we may form a best compromise as

a" = arg max W(a). (20)
If C = @, then there are no action profiles that are simultaneously good enough for
the group and each individual. However, the satisficing approach provides a natural and
systematic negotiation framework by which each individual may control the degree to which
it is willing to lower its standards in an attempt to reach a compromise. By lowering its
gi-value incrementally, each X, increases the size of its satisficing set. By specifying the
increment Ag; that X; is willing to reduce its standards, each participant can control the
amount of compromise it is willing to offer others. If enough participants are willing to
lower their ¢-values sufficiently, it is easy to see that, eventually, the consensus set will be
non-empty, and a best compromise can be achieved. Although such negotiations may fail
to reach a compromise that is acceptable to all members, the significant aspect of this type
of negotiation is that no individual is a priori subjugated to the will of the collective in the
sense that there is no possibility for that individual’s preferences to receive consideration.
Thus, every individual can be assured of receiving sufficient benefit, by its own definition,
before agreeing to the compromise.
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2.4.2 Nash Bargains

A bargaining game is a cooperative game in which each participant possesses a disagreement
point that defines the benefit that is guaranteed to accrue to it if a compromise cannot
be reached. A well-known bargaining concept that offers a clear definition of individual
acceptability is the Nash bargain [8], which permits each participant to make maximal use
of its strategic strength. Let dy, denote the disagreement point for X;. The negotiation set,
denoted N/, is the subset of action profiles such that every participant achieves at least its
disagreement point. In terms of categorical utilities, the negotiation set is

N ={acAuy(a)>dy, i=1,...,n} (21)
and the Nash bargain is
ay = arggé%{ll [uy,(a) —dy,]. (22)

The intuitive interpretation of a Nash bargain is that it defines a fair compromise. It enables
each player to take advantage of the strategic strength endowed by its disagreement point.
The higher X;’s disagreement point, the more action profiles that are unfavorable to it are
eliminated.

The structure of (22) suggests that the optimal group solution can be interpreted as a
Nash bargain with unilateral utilities replaced by conditional utilities and all disagreement
points set to zero. Analogously, therefore, we may define a conditional Nash bargaining
solution. When decisions are made under certainty, the negotiation set is defined as

N ={ac A uy, ux,(@)cep(X;) > dy, i=1,...,n}. (23)

The conditional Nash bargaining solution is

n

ay = argmax 11 [tx,1pmcxp [a] €D (X0)] — dy, ] (24)

3 Summary of Results: Attitude Adaptation

An important benefit of the satisficing approach is that cooperation occurs much more readily
than under standard utility-maximization. To examine this phenomenon more closely, we
studied the emergence of cooperation using evolutionary game theory. Evolutionary game
theory [20] studies large populations of players whose reproductive potential is determined by
the payoff gained during play. For infinitely large, well-mixed populations, the evolution of
the population is described by the replicator dynamics [18]. In the simplest case, all players
have the same action space A, and are paired with one other player each “round.” Let x;(¢)
be the fraction of the population playing strategy a; € A at time t. Then, the population
shares evolve according to the following system of differential equations:

i (t) = [u(a:, x(t)) — u(x(t), x(t))] 2 (1), Vi, (25)

where u(a;,x(t)) is the expected utility of playing strategy a; against a player randomly
drawn from the population described by z(t), and u(x(t), x(t)) is the average expected utility.
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Essentially, a strategy’s population share grows or shrinks if it fares better or worse than
average, respectively. Given appropriate initial conditions, the steady-state of the replicator
dynamics is a Nash equilibrium.

To apply evolutionary dynamics to the satisficing case, we note that players’ conditional
utilities are often expressed in terms of tunable parameters that govern (for example) players’
willingness to cooperate or defer to the preferences of others. We term these parameters
attitudes and study how players might adapt their attitudes in order to increase payoff.
Instead of running the replicator dynamics on players’ actions (as in the classical case),
we run the replicator dynamics on players’ attitudes, allowing us to study the ecological
fitness of exhibiting a particular attitude. This dynamics leads the players to an attitude
equilibrium, a point at which no player can improve its payoff by changing its attitudes.

As a concrete example, we focus on the well-studied Stag Hunt game, which involves two
players. They can catch a stag but cooperating, but each can catch a (much smaller) hare
alone. That is, a player earns maximum payoff if both players cooperate, but risks failure if
it attempts to cooperate while the other does not. Under the standard replicator dynamics,
the population ends up entirely non-cooperative (hunting hare) unless a significant majority
of the population initially hunts stag. So, it is impossible under this framework to evolve a
cooperative population from non-cooperation.

We applied satisficing theory to see if we could do any better. We developed a simple
satisficing model for the Stag Hunt and applied the replicator dynamics to the players’
attitudes. Under the satisficing model, cooperation is significantly easier to achieve than
under the standard model. Indeed, the population evolves toward cooperation even when
only 10% of the initial population hunts stag. This study is detailed in [9], which is included
in Appendix C.
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Rational Coordination Under Risk:
Coherence and the Nash Bargain

Wynn C. Stirling and Matthew S. Nokleb$tudent Member, IEEE

Abstract— The design of automated multiagent cooperative property of a collective that is capable of sophisticated social

systems can be greatly facilitated by the use of conditional utili- pehaviors such as negotiation, compromise, and altruism.
ties, which provide each individual the capability of modulating

its interests as a function of the interests of others. Perhaps the

weakest possible requirement for meaningful coordination is Il. MODELING FUNDAMENTALS

that the group be coherent: no individual is required, under

all circumstances, to sacrifice its own welfare to benefit the L€t {X1,..., X}, n > 2, denote a group of autonomous
group. When the influence relationships among the members decision makers. Le#l; denote a finite set of feasible actions

of a group can be expressed via a directed acyclic graph, a available toX;,i=1,...,n, let. A= A4; x--- x A,, denote
group is coherent if and only if its utilities are conditional  pe product action space, andfet= (ay, . . ., a,) denote the

mass functions. This structure permits the performance aspects . . . . .
to be merged with the random aspects to form a unified action profile that obtains when eadh instantiates:; € A;.

mathematical framework for decision problems under risk. The Classical multiagent decision theory assumes that each
resulting solution may be interpreted as the Nash bargaining individual possesses a total preference ordering over all

solution when the disagreement points of all agents are set to action profiles. Under this assumption, eakh possesses a

zero. Coherence is shown to be opergtionally equivalent to .the utility u.: A — R such thatuy (a) > uy (') if X; prefers
concept of symmetry for a cooperative game. The resulting ;L d - , .Lf . Ld'ff b

theory is designed to account for both individual and group- 2 10 @', andux (a) = uy, (a’) if X; is indifferent between
level preferences. a and a’. These utility functions are assumed to provide

a complete and immutable description of the valuations of
actions for the collective. Generally, they are provided as
part of the problem statement and, once defined, the logic

Many multiagent decision problems require the decisionsed to arrive at these orderings is assumed to be irrelevant
makers to cooperate to achieve the goals of the collective.ta the actual decision-making enterprise. We will term these
purely cooperative collective is one in which the interests diinctions categorical utilities since they are unconditional
all individuals coincide perfectly. Many collectives, howeveryaluations of decision-maker preferences.
are mixed-motive, and opportunities for both conflict and The categorical model of preferences, however, restricts
cooperation exist. A key question in such cases is ththe ability of individuals to modulate their preferences by
definition of what it means to be rational. Historically, thisgiving deference to others under specific situations. For
guestion has been addressed from two distinct points ekample, consider a collective that possesses a hierarchical
view: game theory and social choice theory. Under gam&ructure such thafX; dominatesX, in some functional
theory, each individual seeks to optimize its own perforway. In such a caseXs may need to adjust its preferences
mance, whereas in the social choice context, the goal @&cording to the preferences &f, but could not do so with
to maximize performance of the group as a whole. In tha categorical preference ordering. Inste&d,would possess
former case, the value of the individual decisions to tha set of conditional preference orderings, each depending on
group is not explicitly considered, and in the latter casehe hypothetical assumption of;’s preferences. We may
although the value judgments of the individuals may be usa@present this set of conditional preferences by a set of
to define group-level performance, there is no assurance tlwinditional utilities u,,x, such thatuy, x, (a2]a1) is the
the resulting decision will maximize the performance of, outility that X, ascribes tauy € A; given the hypothetical
even be acceptable to, any given individual. assumption thatX; is committed to actiona; € Aj.

The reconciliation of these two extreme perspectives iEhis hypothetical commitment serves as the antecedent to a
an important theoretical objective, both for human decisiohypothetical proposition whose consequent is the conditional
making and for the design of artificial decision-makingutility. A hypothetical commitment may take many forms, but
entities who must cooperate. An important design principlperhaps the most important one, with respect to the social
for such scenarios is that the agents function according toteraction of the agents, is that, from the perspectiv& gf
a mathematical framework that isoherentin the sense X considers:; € A; to be its most preferred action. Under
that no individual can be categorically subjugated; i.e., ithis interpretation,X, is in a position to give deference to
required in all situations to sacrifice its own welfare toX; by adjusting its conditional utility in a way that benefits
benefit the group. If an agent were so required, it would ndpr, in a malevolent scenario, injureX),.
enjoy even an exiguous sense of equity—it would effectively In general, if every agent influences every other agent
be disenfranchised. Coherence is a minimal, yet criticaa fully connected group), then every agent’s utility would
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be conditioned on every other agent’s hypothesized commagent’s preferences are not conditioned on the commitments
ments. It is often the case, however, that individual memberf any other agent.

of a group are most strongly influenced by their neighbors Example 2.1:Consider a collective involving three agents
(functionally, spatially, or temporally). For example, hier-with the hierarchical structure illustrated in Figure X;
archical groups possess a distinctive “top-down” structurés the primary agent (in the sense that it's mission is most
where the preferences of subordinate agents are influenaaitical to the success of the enterprisé); and X3 are

by their superiors. A hierarchical structure is a special cashe secondary and tertiary agents, respectively. We observe
of more general “Markovian” structures that are amenable tiat pa (X;) = 0, pa(X3) = {Xi}, and pa(X3) =
graphical analysis. A graphical structure that has been shoWiX;, X»}. As a specific illustration, supposé;’s concern is

to be effective in many situations isdirected acyclic graph the appropriate market sector of a product to be manufactured
or DAG. DAGs provide a convenient and powerful languagéeithera;, the affluent customers, af, the less prosperous
with which to encode influence relationships—the most wettonsumers). Given the sectaks’s concern is to decide
known being so-calledayesian networkswhich are used which product to manufacture (either widgets or gizmos
extensively for the design of artificially intelligent systemsa),. Finally, given the sectors and the produtt,’s concern is

[1-3]. to choose which grade of materials to use (either high quality
A directed graph is a paif = (X,E), whereX = a3, or low quality a}). Thus, A; = {a;,al}, i = 1,2,3.
(X1,...,X,) is a finite set set oferticesand E is a set The product action spacgl = A; x Ay, x Az contains

of directed edgedinking pairs of vertices. IfX; is directly eight action profiles. The three agents must cooperate to
influenced byX;, then there is a directed edge, denoted™ achieve maximum productivity and hence must coordinate
from X; to X;. A path from X; to X, is a sequence of their choices. The corresponding utilities arg,: A, — R,
vertices { X;, Xx,, Xi,,..., X;} such thatX; — Xp, —  wuy,x, A2 x A1 — R, anduy, x, x,: Az x A1 x Ay — R.
Xk, — -+ — X;. We write X; — X if there is a path The issue facing this group is to use these three utility
from X; to X;. If there are no paths such that — X; for  structures to formulate a plan that is acceptable individually
any i, the graph is said to bacyclic as well as for the group.

If X; — X, thenX; is called aparentof X, and.X; is
achild of X;. The set of parents oX; is denotedba (X;) =
{Xi,: Xi;, — Xi,j = 1...,pi}, and the set ofhildrenof X;
is denotecth (X;) The descendents of;, denotedle (X;),
is the subset of verticesSX,; : X;— X;, , m=1...,d;}.

A fundamental property of a DAG is thiglarkov condi-
tion: nondescendent nonparents of a vertex have no influence
on the vertex, given the hypothesized commitments of its ~ F9- 1. The influence network for a three-agent hierarchy.

parent vertices. Suppose. (X;) = {X,}. By the Markov N ) o
condition, X,’s utility is therefore a function only of the _ The conditional structure permits agents to exhaindi-

pair (z;, x;). In general, suppos&; hasp; parents, denoted tional altruism by defining their preference orderings as a
pa(X;) = {X,, X, }. For any action profilea — function of the preferences of_ others. I_:or example, suppose
(a1,...,an), leta; = (ai,,...,a;, ) denote the sub-profile ¥x,(a) > ux, (a’). X, could reinforce this strong preference
of a corresponding topa (X;). We may then express the DY Settingus, x,ala) > ux,x, (a’la), thereby deferring to
utility of a to X; as the preferences of(;. This type of altruism, however is
not categorical, since, conditioned on, say, a commitment by
Ux,(8) = Ux, | pax (@i]25), (1) X, toa”, X, need not prefea to a’. Conditional altruism
the conditional utility of X; given the action sub-profile of tus provides decision makers with a natural vehicle with
its parents. Ifpa (X;) = 0, then its utility is not influenced which to estabhsh_ §qph|stlcated somql relat|0nsh|p§ that can
fenhance the possibilities for compromise and negotiation. For
marginaland is of the formu (a1, ..., a) = uy, (a;). The e>.<ampI¢,X2 can use its conditional utility as a p_aramgter
conditional utilities constitute the edges of the DAG. with which to adjust the amount of deference it is willing
The conditional and marginal utility structures providel© 9rantX; to effect a compromise. Conversely, can use
an important mechanism by which an agent may assess fitg conditional utility to threaten or punisK; by reducing
preferences. Whereas the general structreas . . . , a,) its utl!lty of actl_qns that are k_)enef|C|aI t&; and, thereby,
requiresX; to specify its preferences over all action profiled®ducing the utility of that action to the group (e.g., through
(a1,. .., ay), the conditional approach requirds to specify ~agdregation, as will be discussed shortly).
its preferences only over its own action space, given each
possible action of its parents. Thus, the agent is required to
define its conditional preference ordering with respect only to The study of how individual preferences are used to form
the actions of itself for each hypothetical situation regarding group decision is the central issue of social choice theory
its parents. Although this structure can be generalized, in thi4—6], and hence is relevant to the study of autonomous
paper we restrict attention to collectives where at least omaultiagent decision making groups. Social choice theory

UX3|X1Xg

by the commitments of any other agent. lIts utility is the
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has traditionally been applied to human societies, but thes assume that(ys) > q(y1), butr(y1, 21) > r(y2,21) and
concepts are directly applicable to artificial societies as welk(y1, z2) > r(y2,22). Suppose you purchase a $1 gamble
particularly those that are intended to function cooperativell’ = y», and deem a fair purchase price to &@-); i.e.,
A key issue of this theory is how to aggregate the interests gbu pay %(y2) for the gamble to win $1. Now also suppose
individuals to form a group decision in a democratic fashionyou sell the gamble(ys, z1) V (y2,22). By additivity of
i.e., in a way such that the interests of all individuals aréeliefs, a fair selling price for this bet would b§(ys, z1) V
respected and given equitable consideration. (y2,22)] = 7(y2,21) + 7(y2,22). However, according to
Informally, a society iscoherentif each member has a the above ordering, you must hayéys) > % and, since
“seat at the table” in the sense that the possibility exists(yz2,21) + r(y2,22) < r(y1, 21) + r(y1, 22), it follows that
(although not the guarantee) that, for each of the individuals|(yz, z1)V (y2, 22)] < %. After all gambles have been bought
a solution exists that is good for the group and is alsand sold, your net wealth i§(y2, z1) V (y2, 22)] —q(y2) < 0.
good for that individual. Obviously, most voting schemes ar@o overcome this loss, you must make up the difference
transparently coherent (assuming each voter’s most preferredce the outcome of the gamble is known. But if neither
candidate is on the ballot), but when complex influence relay nor (y2, z1) V (y2, z2) occur, you win nothing and you
tionships exist among the members of a group, establishimgy nothing; if(y2, z1) V (y2, 2z2) occurs, then, of coursegs
coherence may not be obvious. occurs, so you win $1 which you must pay to the buyer of
To formalize the notion of coherence, let us assumeXhat your gamble. Thus, once the gambles have been bought and
is able, after taking into consideration all social, economigold, your net wealth is invariant to whatever happens—you
and political relationships between it and other agents, ®uffer a sure loss.
define a utilityu ., over its action space. We also assume that A belief system is said to beoherentif it is not possible
the group possesses a group-level utility,  ,: A — R. to construct a Dutch book. The Dutch Book theorem [8, 9]
Definition 3.1: Let uy, denote X;’s categorical utility, and its converse [10] state that a belief system is coherent
i = 1,...,n, and letuy, , denote the utility of if and only if it complies with a probability measure that
the groupX = {Xi,...,X,}. X is coherentif, given describes the degrees of belief regarding the propositions
that ux,(a;) > ux,(a}), there exists an action sub-profileunder consideration. The above example does not comply

(ai,...,a}_y,a} q,--.,a}) such that with the Ia_lws of pro.bab_ility_theory, sinegys) # r(ya, 21)+
r(y2, 22); i.€., marginalization fails.
Uy xn (@], al_q a,a) 4, ... ah) > Mathematically, a.clondition of categorical subjugatiqn cor-
* * rox * responds to a condition of sure loss. Therefore, to eliminate
Uxyox, (@50 1,035,051, ..,a).

the possibility of categorical subjugation, the utilities must
possess the same syntax as probability mass functions. We
rmalize this result as follows.

If there does not exist such a sub-profile, th&n is in
a position of categorical subjugationevery action profile §9
that contains its most preferred action is dominated b . -
profiles that do not contain its most preferred action. In LetX = {Xl’.""X”} beagroup.ofdlstnbuted decision- .
terms of voting, incoherence means that, no matter hoWak_ers whose mfluence relationships can be expressed with
the others vote X;'s candidate will lose. EffectivelyX; a dlrecte(;( acy(éllc %ra&h. For e?cﬁif,Xlet pj Viz) i

is disenfranchised. Categorical subjugation is similar to th{aXil’ -+» Xy, } denote thep; parents ol,, and ‘e A; =
notion of suppressioras discussed by [7] and [5]. Ay %o x Ay, denote thep;-dimensional product of the

The question thus becomes: what constraints must ggtlon spaces corresponding to the parent&pfif X; has

placed on the utilities to ensure that a condition of categoricQP paren_t_s, thend, = 0. _For eachX;, Ux;| ba () (@32
subjugation is impossible? To address this question, let U the utlity that X; ascribes toa;, conditioned onX;,
turn to an analogous issue. A Dutch book is a gamblin§Cmmiting toa;,, j = 1,....p;. It X; h‘?‘? no parents, the
situation such that, no matter what the outcome, the gambl ?nqmonal utility is the marginal utllity; i.€.1tx; pa cx,) =
will be worse off for having taken the gamble—a situationX: if pa (X;) - 0. . : . .
of sure loss(one’s reward is always less than one’s stake). Th_eorem 1_3:1_.Categor|cal SUbJUQat'.O.n cannot oceur 'T and
To illustrate a Dutch book, Supposé can take one of only if the UtI|ItIeSuXiI‘ pa (x,) A€ conditional mass functions
two distinct valuesy,; or y», and letq(y) denote a belief del(‘jlned overd; x A;; "e",u"j pa <Xi),(ai|ai) 2 Ovﬁi € Ai
function® of y; i.e., ¢(y) measures the strength of belief that?" DA, Uxiivn xp (ai]a’) = 1 val € A;). Furthermore,
Y =y the group—levgl utility of(aq,...,a,) for the groupX =
By convention, we will assume that we have full belief{Xl’ o Xn} s
that exactly one of these values obtains—the disjunction of
y1 and yo must occur. We further assume that beliefs are v
additive, thusg(y: V y2) = ¢q(y1) + ¢(y2) = 1. Now let Z
take on one of two distinct values or 29, and letr(y, 2)
denote the belief that” = y and Z = z simultaneously. Let

n
X(a) = Ux,..x, (ala s an) = HuXi\pa(Xi)(ailai)v (2)
=1

wherea; is the sub-profile ok corresponding tea (X;).
Proof: The Dutch Book Theorem and its converse estab-

lish that the utilities must be mass functions. Consequently,
We refrain from using the term “probability” here, since we do not@ll Of the edges of the DAG are utilities that possess the math-

requireq to possess all of the properties of a probability mass function. ematical structure of conditional probability mass functions



(albeit with different semantics). Furthermore, the categd the higher the disagreement point, the greater bargaining
utilities of each root vertex of the DAG possess the mathstrength of the participant.
ematical structure of marginal probability mass functions. A well-known bargaining solution concept that offers a
Thus, the DAG satisfies all of the conditions of a Bayesianlear definition of individual acceptability is the Nash bar-
network, and we may apply the fundamental theorem ajain [12], which permits each participant to make maximal
Bayesian networks; namely, that the joint probability masase of its strategic strength. The approach is based on
function of the random variables associated with the verticédsur fundamental principles: (i) invariance to positive affine
is the product of the conditional probability mass functionsransformations; (ii) Pareto optimality; (iii) independence of
of all vertices with parents, and the marginal mass functiorigelevant alternatives, and (iv) symmetry, which is the notion
of all root vertices [1-3].  that no individual agent can expect that the other agents
The content of this theorem is that the mathematics afill grant it better terms than that individual itself would
probability theory, which traditionally applies tepiste- be willing to grant, were roles reversed.
mological situations involving assessments of belief and Nash showed that these four conditions lead to a unique
knowledge, also applies faraxeologicalsituations involving  solution. Letd, denote the disagreement point {&§. The
assessments of expediency and efficiency. This result meamegjotiation sgtdenoted\/, is the subset of action profiles
that the mathematical notions of probability theory, such asuch that every participant achieves at least its disagreement
independence, conditioning, marginalization, and so fortipoint. Although Nash’s theory pertains to categorical utili-
can be given praxeological, as well as epistemologicalies, we may adapt the concept to the conditional case by
interpretations. replacing categorical utilities with conditional utilities. The
Once the joint utility has been formed by the aggregationegotiation set is defined as
of individual utilities, the group-optimal action profile that

maximizes the group utility is N ={ac A ug iy (ailai) > ds,, i=1,...,n}

4)
2 Following in the spirit of Nash’s result, the bargaining
e = arg;%a‘nuxmuxi)(aﬂai)- () solution is
i=1
n
IV. INDIVIDUALLY RATIONAL SOLUTIONS ay = argmaNXH [t o x (@] 25) — dix, |- (5)
ae / k2 K k2
Although the social choice-theoretic approach presented i=1

above possesses a weak notion of acceptability for théle note that this solution is not, strictly speaking, a Nash
individuals (coherence), that does not imply that the groupargain, since the utilities are not categorical. Nevertheless,
solution is acceptable to any given individual in terms ofhe solution still possess the key feature of the Nash bargain;
benefit to it. Simply having the opportunity for one’s interestiamely, that each participant takes full advantage of its
to be equitably considered by the group does not implgtrategic strength in that all action profiles that do not
that one’s interests are adequately represented in the graaghieve at least its disagreement point are excluded from
decision. consideration.

The most well known solution concept of non-cooperative
game theory is Nash equilibria [11]. This solution concept V- RECONCILING GROUP AND INDIVIDUAL CHOICES
is a reasonable approach under competitive scenarios, buiThe above discussion demonstrates that, for groups whose
when the agents are ostensibly to cooperate, it can leadcial relationships can be represented by a directed acyclic
to overly pessimistic results. For example, for scenariograph, the bargaining solution and the coherent group-level
where attempting to cooperate leaves one vulnerable tptimal solution possess similar structure, differing mainly
exploitation, such as Prisoner's Dilemma-type games, the the introduction of disagreement point for the bargaining
Nash equilibrium leads to the next-worst solution, rather thagolution concept. With the bargaining approach, the disagree-
the Pareto solution. Particularly when the agents are disposednt point is the value that the decision maker can guarantee
to communicate with each other, a more appropriate solutidor itself, regardless of whether or not a compromise can
concept is one that permits some notion of equity or fairnesge reached. The justification for this approach is that it is
to guide the decisions. possible for the agent to walk away from negotiations and

Cooperative game theory differs from non-cooperativgo its own way without regard for others. While a go-it-
theory in that players may enter into binding agreementdone option may be possible for human decision makers,
regarding their behavior. For the players to forge an agrean automated system that will not cooperate is likely to
ment, however, each must achieve an acceptable degreebef dysfunctional. In fact, it may be necessary that they
satisfaction. Abargaining gameis a cooperative game in reach a compromise solution, regardless of the individual
which each participant possesseslisagreement pointhat  costs. If such a situation obtains, then the disagreement point
defines the benefit that is guaranteed to accrue to it if far each agent will be its zero level, in which case the
compromise cannot be reached. The disagreement poibargaining solution will coincide with the optimal solution
therefore, is an indication of the strategic strength that i®r the group. This is an interesting result. Why should the
conferred on the participant as it participates in negotiationbest individual solution in the sense of a fair compromise



for each individual, as expressed by (5), also result in thelements as vertices of @axeic-epistemic networkvhose
best group-level solution, as expressed by (3)? The faetiges are conditional mass functions. _
that there is such a close correspondence suggests that the€t® = {01, ..., 0,,} denotem random variables over the

; iy product sample spad® = 0, x --- x O,, associated with
thIOHS of_symmetry(no |nd|V|d_uaI can expe_q that Othersthe decision problem which, when merged wkh forms an
will grant it better terms than it would be willing to grant

M= _ ' (n+m)-dimensional DAG, called praxi-epistemic network
were roles reversed) armbherence(no individual interests | et ), denote the realization ¢, and let9 = (01, 0m).
can be categorically subjugated to the interests of the grouphen the jointpraxi-epistemic utilityis

are operationally equivalent. n m
Theorem 5.1:For groups whose sqcial relationships canuxe(a, ) = Huxﬂpa(xi)(aAai,ﬂi) Hpej‘pa(eﬁ(ﬁﬂaj,ﬂj),

be represented by a directed acyclic graph, (a) coherence i=1

implies symmetry, and (b) if symmetry applies and one Q)

individual is categorically subjugated, then all individuals are is th ditional probability of . ai :

categorically subjugated—a condition of mutual categoricdf "€"€Ps;1r= ;) 1S the conditional probability of; given its

subjugation parents,a; and; correspond to the praxeic and epistemic

Proof: If coherence holds, then the utilities may beP@r€nts. respectively, ak;, anda; and¥; correspond to

aggregated as the product of the conditional and margingle praxeic and epistemic parents, respectivelyy,ofThe

utilities, as given by (2), which, by changing the zero Ievel,exIoeCted utility then becomes the praxeic marginal

j=1

yields the bargain structure ux(a) = Z Uxo(a, D). 8)
n 9EO
_lj[l [wsciton e (@ifas) — dic ] ©6) Theorem 3.1 establishes that maximizing(x) yields the
- optimal joint action; i.e.,
Since the labeling of agents is arbitrary, exchangijgand P :
X leaves this structure unaffected, hence symmetry holds. ag = arg m&a(ux(a). (9)
ac

Now supposeX; can be categorically subjugated. By
symmetry, if the roles of(; and X, j # i, are exchanged Furthermore, under the assumption that no action can be
(including the utilities), then the solution is unchangedtaken unless all decision makers can agree on a joint action,
Thus, X; must be categorically subjugated as well. Sincéhe disagreement point for each decision maker is zero, and
j is arbitrary, this means that all players are categoricall{B) constitutes the bargaining solution for the group. Thus,
subjugated. the group decision can also be viewed as individually optimal
Mutual categorical subjugation is a pathological conditibn in the sense that each takes full advantage of its strategic
says thatll agents musalwayssacrifice their own welfare strength.
to benefit the group. In fact, even if all individuals could In addition, this solution also satisfies the coherency
agree that a given action profile were simultaneously best feroperty, as established by the following corollary.
all of them, that profile would not be best for the group— Corollary 6.1: Let themarginal expected utility ofX; be
a violation of the Pareto principle. More generally, such given by
situation would mean that the interests of the individuals have .
only partial influence, at best (and perhaps no influence), ux;(ai) = Zu"(al""’a”) i=1.
on the interests of the group. Such a pathological situation o
would violate the most fundamental premise of social choicehere)__  is the so-called “not-sum” notation meaning that

n

; (10)

theory: “Democratic theory is based on the premise that tibe sum is taken over all elements(af;, . . ., a,) excepta;.
resolution of a matter of social policy, group choice or col- If ux,(a;) > ux,(aj), then there existgas,...,a;_,,
lective action should be based on the desires or preferencgs;, - - -, a;,) such that
of the individuals in the society, group, or collective” [5,
p. 3]. ux(ay,...,a;j_q,a5,a5,q,...ay,) >
* * * *
V1. MULTIAGENT DECISION MAKING UNDER RISK U (01, -+ By By Oy - )

o o - ] Proof: Supposeuy,(a;) > ux,(a;) holds, but there is no
A decision is made under risk if the utility of actionsgych (g, Jai %, ..., a%). Then

is dependent upon random phenomena. When decisions

are made under risk, the classical approach is a two-step,, (q,) = Zux(al,
procedure. First, the utilities are defined to correspond with
the decision makers’ preferences; next, the expected value , - ,
of the utility is computed. However, since Theorem 3.1 Zu"(al""’ai""’a”> = ux(a5), (11)
establishes that coherent utilities must possess the mathemat- o

ical syntax of probability mass functions, the praxeologicah contradiction. 0

and epistemological aspects of a decision problem may beExample 6.1:Figure 2 displays a praxi-epistemic network
merged into a single praxi-epistemic structure. In particulagorresponding to the hierarchal manufacturing scenario with
we may view the decision-making elements and the randothe network introduced in Example 2.1. The root node of

iy Ay) <

—aq



VIl. CONCLUSION

This paper provides a new theoretical approach to the
modeling of distributed autonomous decision makers. Po-
tential applications include mobile unmanned robotic sys-
tems such as coordinated UAV surveillance and reconnais-
. >€C0%nce missions, distributed decision making, scheduling and
Let us take® = {v, '}, wherev corre_sppnds 10 2 growing ¢ rdination for manufacturing enterprise automation, and
economy and) corresponds to a shrinking economy. Thusman/machine decision making scenarios.
the probability of the economic status is conditioned on c,nentional categorical preference orderings are not de-
the market sector. The corresponding conditional prObab'l't:iflgned to account for sophisticated social relationships such
functions are as compromise and negotiation, since they do not easily

Poix, (V]az) = 0.5 Poix, (V' |az) = 0.5 permit individuals to expand their spheres of interest to
Do, (9]al) = 0.6 oy, (0']ab) = 0.4. account for thg prgferer_mes of others._ Th.e introduction of
conditional utilities is an important contribution to the theory
The utility of the product to be manufactured depends upogs multiagent decision making, since it permits each agent
the market sector and the economic state, and is given agp express its preferences as a function of the preferences
of others. Individual conditional individual utilities can be

this DAG is X1, the agent who decides which market sector
to target, and is given by

Ux, (a1) = 0.6 Ux, (a2) = 0.4.

This example also includes a random componéntthat
characterizes the economic environment of the market sect

Dxyixy0(@2]a1,9) = 0.7
Pxyix,0(az]al, ¥) = 0.5
Pxyix,0(az]ar,¥') = 0.4
Pxyix,0(az]ay,¥') = 0.2

Pxyix,0(@blar, ) = 0.3
Pxyixse(aslal, ¥) = 0.5
Pxyix,0(a5lar,¥') = 0.6
pX2‘X]9(a12|all7/(9/) =038

Finally, the utility of the grade of materials used in the

manufacture is conditioned on the product and the sect
is given by

Pxsixyxo(@slar,a2) = 0.6 py,ix, x,(a5lar,a2) = 0.4
Pxsix, x, (@3lar, ay) = 0.6 Dxsix, x, (@5]a1,a%) = 0.4
Pxsix, x, (@3lal, az) = 0.3 Dxsix, x, (@5]ah, a2) = 0.7
Pxsix1 x5 (as|a’, az) = 0.2 Pxjix1x, (azlat,as) = 0.8

The praxi-epistemic utility is

U, xyx50(01,02,03,0) = Uy, (1)Ux, x,0(a2]a1, V)

Uxq|xq X (a3|a1, a2)p9\x1 (19|a1)-

(12)

UX3]|X1X2

Fig. 2. The praxi-epistemic network for the hierarchy scenario.

The expected utility is the praxeic marginal
(13)

uX1X2X3(a/17a/27a/3): § /U’X1X2X39(a11a21a3119)'
YeO

Straightforward calculations using the above utility values in-[

dicates that the optimal solution for the grougdds, a1, as),
with a global utility value ofux, .., (a1, a2, as) = 0.216.
Upon computing the marginals, we obtain

Ux, (@1) 0.6
Ux,(a2) = 0.584
Ux,(a3) = 0.4624,

indicating that the best group solution is also best Xor
and X, but is worst forXs.

aggregated to form a group utility that incorporates the
social relationships that exist among the individuals, thereby
providing a complete model of the community of decision

makers.

A second contribution is the notion of coherence and the
g}troduction of a mathematical structure for the utilities that
ensures that no agent can be categorically subjugated. This
structure permits the social relationships between individuals
to be represented by a directed acyclic graph whose edges
are conditional mass functions — a Bayesian network. This
new syntax provides a natural vehicle with which to model
sophisticated social relationships such as altruism.

A third contribution is the merging of the praxeic and
epistemic components of a decision problem into a single
praxi-epistemic utility that accounts for both utility and risk.
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Abstract The design of robotic systems that are capabldives, and (b) procedures for using value judgments to make
of sophisticated social behavior such as cooperation, conthoices.

promise, negotiation, and altruism, requires more complex The field of social robotics, in particular, provides a rich
mathematical models than is afforded by the classical mectenvironment for the application of decision-making logics
anisms for making value judgments and decisions. A newhat are able to accommodate sophisticated social behaviors
concept of multi-agent satisficing, defined in terms of rel-such as compromise, negotiation, and altruism. Whether a
ative effectiveness and efficiency, is an alternative to classocial robot interfaces with humans, other robots, or both, it
sical optimization-based decision making. Conditional utili-typically resides in a community that involves some notion
ties, which take into account the interests of others as well asf coordination (which may be either cooperative or compet-
the self, represent an alternative to the categorical utilities dafive). In such an environment, value judgments can depend
classical decision theory. A multi-agent utility aggregationupon the desires and preferences of others, and procedures
structure is developed that avoids the sure subjugation of thler making choices must take these complex social relation-
interests of any individual to the interests of the group. Byships into account.

expressing a society as a directed acyclic graph, Bayesian This paper provides a mathematical framework within
network theory is applied to artificial societies. A satisficingwhich to design and synthesize complex decision-making
social welfare function accounts for the influence relationcollectives that are able to accommodate socially complex
ships among decision-making agents. decision making. Section 2 provides a brief history of classi-
cal multi-agent decision making and motivates our approach.
Section 3 introduces the key components of the framework
we are proposing, Section 4 introduces new concepts of so-
cial welfare, Section 5 reconciles our theory with classical
approaches, Section 6 describes a special case of what we
termdecoupledocial systems, and Section 7 offers conclu-
sions.

Keywords Multi-agent Systems, Game Theory, Social
Choice Theory, Satisficing, Conditional Preferences,
Coherence

1 Introduction

Multi-stakeholder decision problems arise in many contexts,

including social choice theory, game theory, distributed con2 Background

trol theory, multi-criterion/multi-objective decision theory, .
multi-agent systems theory, and social robotics. Anhougr{:ooperative robotics is an active research area. Of particu-
the particulars of these various contexts can differ widely, tdar interest is the development of theories for decentralized
be rational, each must possess two fundamental attribute&@ntrol of multi-robot societies. Swarm-based approaches

(a) an ability to make value judgments regarding alternabave demonstrated the emergence of cooperative behavior
[24,25]. Potential functions, consisting of constraints and

The Electrical and Computer Engineering Department, Brigha 90als that are imposed upon the system, have been used to
Young University, Provo, UT 84602, USA, voice: (801) 422-7669, Fax:address the mobile robot navigation problem [5]. Shannon
(801) 422-0201, E-mailwynn,nokleby @ee.byu.edu information theory has been applied to the investigation of




diversity among heterogeneous agents, thereby enabling aipon the point of view. In the classical game-theoretic con-
assessment of the ability of the system to perform cooperdext, each individual seeks to optimize value to itself, and a
tively [4]. Behavior-based approaches have been applied tdash equilibrium is a constrained mutually optimal solution
the design of cooperative robotic teams, stressing minimafor all players in the sense that no individual can unilaterally
ism, statelessness, and tolerance [53]. The variety displayéahprove its welfare by changing its decision. On the other
by these various of approaches is a strong indication of theand, in the social choice context, it is the “organization in-
complexity involved in the design of cooperative multiagentcarnate,” as Raiffa put it [37], who seeks to maximize value
systems, and is in indication that there is no single approador the group considered as a whole. In the former case, the
that can be universally applied to the design and synthesiglue of the individual decisions to the group is not explicitly
of such systems. considered, and in the latter case, although the value judg-
Because of the complexity of multiagent systems, it isments of the individuals are used to define group-level deci-
important to review the fundamental principles that are exsions (e.g., a weighted sum of individual valuations), there
ploited, either implicitly or explicitly, in their design. Ac- is no assurance that the resulting decision will maximize the
cordingly, we provide a brief review of classical decision-value to any individual. In fact, the decision that is best for

theoretic foundations and a discussion of rationality. the group can be extremely unfavorable to some members
of the group.
2.1 Classical Decision-theoretic Foundations 2.2 Rationality

The multi-stakeholder decision problem originated in the soThe classical approach to decision making in group settings
cial sciences context, with foundations laid by Bergson [6]js the doctrine of individual rationality: the notion that each
Samuelson [39], Arrow [1,2], and others, who assert thaindividual should act in a way that maximizes its own satis-
individual values are the fundamental elements of a societyaction (without explicit regard for the satisfaction of oth-
Arrow has provided what is perhaps the most clear definiers). This doctrine enjoys a central role in classical deci-
tion of this concept: “It is assumed that each individual insion theory and game theory. As discussed by Tversky and
the community has a definite ordering of all conceivable soKahneman, “The assumption of [individual] rationality has
cial states, in terms of their desirability to him ... It is sim- a favored position in economics. It is accorded all of the
ply assumed that the individual orders all social states bynethodological privileges of a self-evident truth, a reason-
whatever standard he deems relevant” [1, p. 17]. Furthemble idealization, a tautology, and a null hypothesis. Each
more, Friedman argues that the process by which these prejf these interpretations either puts the hypothesis of ratio-
erences are obtained is irrelevant: “The economist has littlaal action beyond question or places the burden of proof
to say about the formation of wants; this is the province oksquarely on any alternative analysis of belief and choice.
the psychologist. The economist’s task is to trace the corifhe advantage of the rational model is compounded because
sequences of any given set of wants. The legitimacy of anyio other theory of judgment and decision can ever match it
justification for this abstraction must rest ultimately, in thisin scope, power, and simplicity” [52, p.89].
case as with any other abstraction, on the light that is shed The uncritical application of individual rationality as a
and the power to predict that is yielded by the abstractioninodel for decision making in multi-agent contexts can be
[17, p. 13]. According to the Arrow/Friedman model, eachproblematic. Arrow has observed that “rationality in appli-
participant in a multi-agent decision problem comes to theation is not merely a property of the individual. Its useful
decision-making activity with pre-defined preference orderand powerful implications derive from the conjunction of
ings, the origins of which are not germane to the decisionndividual rationality and other basic concepts of neoclassi-
problem. Such preference orderings eaéegorical The as-  cal theory — equilibrium, competition, and completeness of
sumption that each individual possesses a categorical prafarkets. .. When these assumptions fail, the very concept of
erence ordering has been adopted almost universally in clagationality becomes threatened, because perceptions of oth-
sical multi-stakeholder decision-making contexts. ers and, in particular, their rationality become part of one’s
The most common procedure for using value judgmentswn rationality” [3, p. 203].
to make choices is to invoke some notion of optimization If all agents are indeed focused on, and only on, their
— the sine qua nonof classical decision theory. As put narrow self-interest, then categorical preferences are appro-
by Euler, “Since the fabric of the world is the most perfectpriate. Difficulties arise, however, when the sphere of con-
and was established by the wisest Creator, nothing happensrn of an individual extends beyond its own narrow self-
in this world in which some reason of maximum or min- interest. The only way such an individual can use categorical
imum would not come to light” (quoted in [35]). What is preferences to accommodate the preferences of other indi-
optimal in multi-stakeholder settings, however, can depengiduals is to redefine its values by substituting (at least par-



tially) the values of the others for its own. Such behavior is avere invented for conceptual simplicity and computational
manifestation otategorical altruismi.e., irrevocably sac- convenience in models loaded with implicit or explicit as-
rificing one’s own welfare in an attempt to benefit anothersumptions of symmetry, continuity, and fungibility in order
thus fundamentally changing the nature of the association.to allow us (especially in a pre-computer world) to utilize

Considerable research, notably in the field of behavoriaihe methods of calculus and analysis. Reality was placed on
economics [8], has addressed the need for agents to defidded of Procrustes to enable us to utilize the mathematical
their preferences such that they consider social interactiontechniques available [43].

Fehr and Schmidt [15] discuss how individual preference or- It is time to make the bed fit its occupant. Particularly in
derings may be modified to take into account concepts sudhe context of artificial multi-agent system design and syn-
as fairness and cooperation by introducing a notion of inthesis, a framework is needed to model explicitly the possi-
equity aversion. To account for this attribute, they includePply complex value judgments the may exist among the mem-
in addition to a purely selfish component, an inequity averbers of an artificial society. Itis time to account for situations
sion component in their utility. Consequently, they rely uporiwhere the conditions under which preferences are formed
(re-defined) categorical preference orderings to model sociglre relevant and cannot be summarily ignored; it is time to
interactions. All that changes is the definition of the indi-accommodate more complex and flexible criteria for mak-
vidual's self-interest. This approach, however, has serioug decisions. In other words, it is time to move beyond cat-
limitations, as acknowledged by Sen: “It is possible to de-egorical preference orderings and optimization as the foun-
fine a person’s interests in such a way that no matter whatational components of multi-stakeholder decision making.
he does he can be seen to be furthering his own interests in

every isolated act of choice ...no matter whether you are a ) ) o
single-minded egoist or a raving altruist or a class-conscious A Social Framework for Cooperative Decision

militant, you will appear to be maximizing your own utility Making

in this enchanted world of definitions” [40, page 19]. Cate-

gorical altruism simulates cooperation, compromise, and af‘ social vx:elfa;f LUI’;CUOI”I, ‘ZS dteﬁ?(_edd_b)_/dArrlowals. a pro-
truism with a regime that is explicitly designed to character-=S5S OF FU€ Which, for each Set ot individual or ernjgs
.., R, for alternative social states (one ordering for

ize selfishness, competition, and avarice, and does not offél)‘Q’ e . . ,
a natural and intuitively pleasing framework within which each |nQ|V|dua!), states"a corresponding .soual ord¢r|r_19 of
to express sophisticated and complex social relationshipg‘.ltematlve s_omal s_tateR [1_’ p- 23] Clgssmally, the |nd|_—

While such constructions may serve to explain some form¥'dual orderings (either ordinal or cardinal), are categorical,

of human behavior, it is difficult to see how they can be used” that they account only for the interests of the individuals.

systematically to synthesize complex relationships betweeWe W'_Sh to expar?d the spheres of mte_rest of the individu-
artificial agents als to include the interests of others as itself. However, once

we move beyond restricting to individual interests, the no-

f Thehfc.)ug_dzuor:al a;sumpt!ons_ of ca_tigor]:cal- p;gf%renlceﬁon of optimization becomes problematic. Optimization is
or each individual and optimization (either for individuals an individual concept: for a group to optimize, it must act

or for the group) undergird virtually all of classical formal- as a single unit, capable of making rational judgments and

ized decision th_eory in both |nd|V|duaI_ and group SetNgS oices. Such a structure however, is not consistent with our
These assumptions correspondatmlysistools that serve,

ith . ¢ lai d dict h beh assumption that the decision-makers are autonomous.
with varying success, 1o explain and predict human benav=—q, approach is to replace the twin assumptions of op-

or, butthey are not causal: they do not govern h”ma?” beha\fi'mization and categorical preferences with two alternative
ior. On the other hand, models that are used to design a SY&;

. . _ oncepts: satisficing and conditioning. Our goal is to create
tem of artificial autonomous decision-making agents mu

b - th thesigools that will indeed sh satisficing social welfare function and individual welfare
€ causal. they arsynthesisools that will Indeed govem ¢, etions that can be used to construct compromise solu-
the behavior of the artificial society.

) i tions that are simultaneously acceptable to the group and
Many social science researchers argue, however, that thge individuals, thereby removing, or at least reducing, the

classical foundational assumptipns do not provide an ad‘;‘r‘/\'/edge that separates classical concepts of group and indi-
quate model for human behavior (e.g., see [26,47]). Anq;iqual interests.

if their adequacy to analyze human behavior is questioned,

then we may rightly question their appropriateness as as-

sumptions with which to synthesize the behavior of artifi-3.1 Satisficing

cial societies that are expected to behave in ways that are

can be understood and trusted by humans. As Shubik as dera multi-agent setting it is not generally possible to maxi-
knowledged, “Economic man, operations research man andize both individual and group preferences simultaneously.
the game theory player were all gross simplifications. TheyA potentially more socially accommodating concept is that



decisions are “good enough.” What is best for you may begood enough, and it is this concept that we invoke as the
different from what is best for me, but what is good enoughsatisficing paradigm that we develop in this paper. A com-
for you may also be good enough for me, provided we haverehensive introduction to this perspective can be found in
some flexibility in our respective notions of what it means to[49].
be good enough. The term “satisficing” has been advanced Many theorists (e.g., [1, 13, 18, 27]) have argued that it is
as a synonym for this alternative to strict optimization.  unwise to aggregate conflicting interests into a single pref-
The first usage of the term “satisficing” in a decision-erence ordering. Some have asserted that in a social set-
theoretic context is attributed to Simon [44—-46], who ad-ting individuals have multiple facets, as defined by Steed-
dressed the question of how a decision maker might makean and Krause [48], who maintain that an agent, although
a choice in the presence of informational or computationa&n indivisible unit, nevertheless is capable of considering its
limitations. Simon’s approach is to seek an optimal choiceghoices from different points of view, and that separate utili-
but to terminate searching and once the decision maker’s aties may be defined to correspond to each facet of an individ-
piration level has been met. Put another way, to satisfice igal. A natural way to classify attributes is according to their
to accept the best solution so far obtained, once the cost effectiveness and efficiency. Each individual may be viewed
continuing to search exceeds the expected improvement s being composed of two facets: S&ecting facetwhich
value were the search to continue. Many other variations ofvaluates actions in terms of effectiveness toward pursuing
this concept have appeared in the literature [7, 14, 20, 23, 28bjectives without concern for efficiency, and tiegecting
29, 33,36,41,50,51,54-56], and it is not the intent of thifacet who evaluates actions in terms of efficiency with re-
paper to review them in detail. Suffice it to say, howeverspect to consuming resources without concern for effective-
that all of these approaches view satisficing as a species ofss. We shall view these selecting and rejecting facets as
bounded rationality: one settles for a solution that is deemethe “atoms” of the society,
to be “good enough,” but which is not necessarily, and usu- When formulating a problem under the satisficing frame-
ally not, optimal in any meaningful sense. Satisficeagp ~ work, it is essential that the selecting and rejecting criteria
Simon is an heuristic approximation to the ideal of beingnot be restatements of each other. The selecting criterion
best (and is only constrained from achieving this ideal byshould correspond to the goals of the problem, and the re-
practical limitations) jecting criterion should correspond to the consumption of
The concept of satisficing developed herein differs fronvesources. This dual utilities approach is the basis for our
the afore-mentioned notion in several important ways. Firstotion of satisficing.
in contrast to satisficing as advanced by Simon and others, Under the optimization paradigm, all of the performance
it is not heuristic; rather, it provides a concept of satisficingmeasures are combined into a single utility, whereas un-
that is as mathematically formalized and precise as is thder the satisficing paradigm, the measures of effectiveness
notion of optimization. Second, it treats the notion of beingare encoded separately from the measures of efficiency. Un-
good enough as the ideal (rather than an approximation) —eler the optimization paradigm, the alternatives are compared
it is nota species of bounded rationality. Third, it extends toagainst each other in order to identify the globally best one.
the multi-agent case, thereby providing a natural frameworBy contrast, under the satisficing paradigm, the effectiveness
for multi-agent decision making. Fourth, it readily accom-and efficiency attributes are locally compared for each alter-
modates the extension of interests beyond the self, theremative separately, and all alternatives for which the effective-
accommodating more sophisticated social relationships thamess measures exceed the efficiency measures are consid-
self-interest affords. We retain the term “satisfice” becausesred to be satisficing. Thus, whereas the optimization para-
even though our approach is not heuristic, we neverthelesligm is designed to identify a single best alternative, the sat-
seek solutions that are good enough, with the essential difsficing paradigm is designed to identify all alternatives that
ference being that we provide a non-heuristic definition ofare good enough. The non-uniqueness attribute is a key fea-
what it means to be good enough. ture of satisficing in a multi-stakeholder environment, since
Although it seems eminently reasonable at least to atit is amenable to flexibility on the part of the individuals and
tempt (given sufficient resources) to seek an optimal deciof the group.
sion, humans often invoke a systematic approach to deci- To introduce the formalism of satisficing, let us first con-
sion making (even in single-agent decision problems) thasider a single agenk, with selecting and rejecting facets
while still based on quantitative measures of performancealenotedS and R, respectively, and leis denote the select-
does not correspond to optimization. In the vernacular, théng utility, or selectability which measures the progress to-
optimization paradigm corresponds to seeking “the best andard the goal ofX, andu denotes the rejecting inutility, or
only the best” solution. Also common, however, is the paratejectability which measures the consumption of resources
digm of “getting your money’s worth.” In an intuitively pleas- such as cost, exposure to hazard, loss of social reputation,
ing sense, this latter notion admits an interpretation as beingnd so forth.



Definition 1 Let.4 denote the set of actions availableXo  Definition 2 Let V; be an arbitrary element d¥, and let
An actiona € Ais satisficingif us(a) > qur(a) whereg €~ V; = (V},,...,V},) be an arbitrary:-element subset &¥
[0, 1] regulates the threshold for rejecting elementsicds  that does notincludg. A commitment profilga;, . ..., a;, },
not satisficing. (Nominallyy = 1, but as we shall seg,can a;, € A, is a hypothetical statement By, that the ac-
serve as a measure of how willing an agent is to negotiatetjon profile a;, is the one that is most preferred By,

Thesatisficing seis {=1,...,k.
5, = {a € A ug(a) — qugp(a) > 0} (1) Definit_ion 3A co_nditional utility for V; with respect to a
commitment profile{a;, , ..., a;, }, denoteduy, ., (ala;, ,
Satisficing as defined above is expressed in a single- -, a;, ), is a utility for V; given thatV; is committed to
agent context with categorical utilities. It is easily seen, in{a;,,...,x;, }.

this simple context, thats andu,, can easily be combined Operationally, a conditional utility foV; serves as the con-

to form a classical utilitux(a) = us(a) — quz(a), which sequent of a hypothetical proposition whose antecedent is

is amenable to opt|m|;at|on. Opt|m|zqt|on, however, is de—a commitment byV ;. This expression does not represent
signed to produce a single best solution, whereas, by co :

T . ) r1/;5 actual utility ofa, nor does it imply thai’;, truly most
trast, satisficing is designed to produce a (possibly) nonf)referSa’. Instead, it means that, v/, ' V.,) were
e , , U %

singleton set of solutions that are good enough in the Senss‘?multaneously to prefefa’ a ) fo all other action
i P i J10 T Tk
f[ha.t thg _effectlveness (_)f the action is as Ieas.t as great %?ofiles, then; would define its utility ofa accordingly.
its inefficiency. In the single-agent context, satisficing rep- An attractive feature of a conditional utility is that it per-
resents a novel approach, but if it is possible to optimize

hen th be little i ) K isfici : mits V; to expressconditional altruism To illustrate, sup-
then there may be little incentive to seek a satisficing so l_’boseuvj (a) > uy, (a), that is, V; were to ascribe much

tion. The real power of the satisficing concept, however, '%igher categorical utility te than toa’, but V; were to do
manifestin the multi-agent case, as will be furtherdevelopeﬂ1e opposite, ascribing higher utility t than toa, i.e

below. uy, (a’) > uy, (a). V; could give deference to; by replac-
ing its categorical utilityu,, with a conditional utiIittui‘Vj

such thatu,, |, (ala) > uy,)y, (a'la) butu,,, (a'la’) =

uy,|v, (ala’) = uy,(a’), thus deferring td/; if, but only if,

V; were to favora strongly over'.

3.2 Conditioning

LetX = (Xy,...,X,) denote a collective of autonomous
stake-holders (e.g., agents). More specificallySlet (51,
...,Sy,) denote the collective of selecting facets, and let3.3 Social Networks
R = (Rs1,..., R,) denote the collective of rejecting facets.
Notationally, we write writeV = SR = (51,...,S,, R1, Conditional preferences provide each individual with the abil-
.., R,), a system oPn facets. Since we will be dealing ity to define its preferences as a function of the hypothetical
with the facets, rather than the agents, it is convenient to uggreferences of all other subsets of the collective. This feature
the symbolV;, i = 1,...,2n, to denote either a selecting represents an important departure from the traditional cate-
facet or a rejecting facet. gorical definitions of preference and provides the foundation
Let A; denote a finite set of alternatives available tofor the modeling of a complex society that possesses sophis-
X;. Of course, ifX; takes actiorn; € A;, then that ac- ticated social relationships such as altruism (either benev-
tion also applies taS; and R; (split personalities are not olent or malevolent). Conditional preference relations per-
allowed, but this does not mean théif and R, must al-  mit the explicit modeling of such relationships, rather than
ways contemplate taking the same action). The product aenerely simulating them by redefining categorical preference
tion space is denotedl = A; x --- x A,, and anaction  orderings. Although conditional preference relations are more
profilea = (aq,...,a,) € A denotes the joint action taken complexthan are categorical ones, as noted by Palmer, “Com-
by the collective. plexity is no argument against a theoretical approach if the
A categorical utilityfor V;, denotedu,., is a mapping complexity arises not out of the theory itself but out of the
uy,: A — R, and provides a total ordering of all action pro- material which any theory ought to handle” [32, p. 176].
files for V;. According to the conventional Arrow/Friedman Nevertheless, the introduction of conditional utilities in-
model, categorical utilities for all participants in the multi- creases the complexity of the mathematical model of a col-
stakeholder decision problem are defined prior to the decisitettive. At one extreme, all of the members of the collective
making activity and, furthermore, the mechanisms that dicwould be devoted to narrow self-interest, and all utilities
tate the way they are defined are irrelevant. As an alternativeyould be categorical (the classical game-theoretic model).
we introduce the notion of @onditional utility. To develop At the other extreme, each of the members would be influ-
this concept, we must first definecammitment enced by the preferences of every other member, resulting



in a fully connected collective. Fortunately, however, manyj = 1,...,p;. If V; has no parents, the conditional utility is
potentially interesting societies are such that the connectiorie categorical utility; i.€4ty,| .. (v,) = Uy, if pa (Vi) = @.
between the members are relatively sparse. Just as with hGensider the DAG illustrated in Figure 1. By inspection,
man societies, it is likely that members will be organizedpa (S1) = pa(R3) = pa(R4) = &, pa(S2) = {R1},

into relatively small clusters of individuals that are some-pa (S3) = {S2, 54, R1},pa(Ss) = {Rs},pa(R1) = {R2},
what loosely connected with other clusters. One such modeindpa (R2) = {S1}.

is a hierarchical structure, where the preferences of superi- A fundamental property of a DAG is thdarkov con-

ors influence those of subordinates. Another, more parall@ition: nondescendent nonparents of a vertex have no influ-
model, is one where the individuals are grouped into funcence on the vertex, given the state of its parent vertices [10].
tion, spatial, or temporal neighborhoods. A powerful andConsequently, if a society can be represented as a DAG, the
convenient way to represent such relationships is througbonditional utility of a facet is dependent only upon the com-
graph theory, which provides a means to express directlynitments of its parents. Thus, for the DAG in Figurdb,is

the influence relationships that exist among the individualsinfluenced only by the commitments 8f, .S is influenced
With such a formalism, the vertices of the graph represeny the commitments of>, Ss, andR;, and so forth. Thus,
the members of the collective, and the edges represent tltenditional utility of R, is of the formux, ., r,, Where
influence flows among them as encoded in the conditionalp (R2) = {S:}, and the conditional utility of5 is of the
utilities. For the extreme case where all individuals posses®rmus, ., (s,), Wherecp (S3) = {52, S4, R, }. Categorical
categorical preferences, the graph would have no edges -tilities are associated with the root nodss, Rs3, and Ry,
each individual would be expressed by an isolated vertexsince these nodes have no parents.

When conditional preferences exist, however, the graph will

have edges, as illustrated in Figure 1. )
4 Social Welfare

@ @ @ 4.1 Collective Preferences

The central question for a collective of autonomous decision
makers is how they should function as a group. In the classi-
@ @ cal non-cooperative game-theoretic formulation, the notion
of a group preference is irrelevant— each individual is com-
mitted to, and only to, its own satisfaction, and the emer-
@ @ gence of a coherent notion of group welfare would be strictly
coincidental. As observed by Shubik, “It may be meaning-
Fig. 1 A directed acyclic graph ful, in a given setting, to say that group 'chooses’ or 'de-
cides’ something. It is rather less likely to be meaningful
to say that the group 'wants’ or 'prefers’ something” [42,
In this paper we concentrate directed acyclic graphs p. 124]. Social choice theory, on the other hand, focuses on
or DAGs. Formally, a directed graph is a péir= (V, E), the aggregation of individual preferences to form a social
whereV = (V4,..., Va,) is afinite set of vertices anfl is  welfare function that can be used to define what is best for
a set ofedgedinking pairs of vertices. IV} is directly influ-  the group. Classical social choice theory, however, as de-
enced byV; butV; does not directly influenck;, then there  veloped by Arrow [1], Debreu [12], Fishburn [16], and oth-
is a directed edge, denoteds” from V; to V;. A pathfrom  ers, also relies upon categorical preferences, as does multi-
Vi toVj; is asequence of vertic¢¥;, Vi, , Vi,, ..., V;} such  objective decision theory [21]. The main classical result, at-
thatV; — Vi, — Vi, — --- = V. We writeV; — V; if  tributed to Debreu, is that a necessary and sufficient for a
there is a path fron¥; to V;. If there are no paths such that group utility to be defined as the weighted sum of individual

V; — V; for anyi, the graph is said to becyclic utilities is that the individual utilities must be categorical.

If V; — Vj, thenV; is called aparentof V;, andV; is In the presence of conditional preferences, the issue of
achild of V;. The set of parents df; is denotedba (V;) =  social welfare takes on added complexity. For example, the
{Vi,m Vi, — Vi,j = 1...,p;}, and the set othildrenof  traditional axioms of social choice theory, such as the in-
V; is denotecth (V;). If V; has no parents, them (V;) = dependence of irrelevant alternatives, becomes problematic.
@. The descendents &f, denotedle (V;), is the subset of Thus, we must pursue a different course when aggregating
vertices{V;, :Vi—V, ,m=1...,d;}. conditional preferences. In the interest of clarity, we begin

Letcp (Vi) = {vi,,... vxipi} denote the commitment our discussion of this concept with the bi-agent case, with

profile forpa (V). For eachV;, u,, | pa (v,)[x|cp (Vi)] isthe 'V = (V,V3). Let us suppose thaf; possesses a categori-
utility that V; ascribes tax, given thatV;; commits tox; , cal utility u,, andV, possesses a conditional utility,, ., .



The corresponding DAG is displayed in Figure 4.1. Given  Let 4,,,, denote theutility of a joint commitmentBy
these utilities, the central questions are: (i) Can these twthe above arguments, this function can be expressed as
utilities be combined in a rational way to form a group util-

ity? and, if so, (ii) How should they be combined? Gy, v, [(a1, a2), (a), a3)] =

F[uVl (alan)’uV2\V1 (a/17a/2|a17a2)] (2)

@ @ for some functiont, called theaggregation function
RIS

Fig. 2 A two-agent DAG 4.2 Aggregation

Obviously, there are many possibilities fél, and to nar-

To address this issue, we introduce the notion of ajoin[OW the choices, it is necessary to impose some additional
commitment. Ajoint commitmenby (Vi,Va) is a condition constraints. One reasonable constraint is that the collective
. 1,V2 . .
that, simultaneously/; is committed ta(as, as) € A; x As possess at least a weak sense of equity so that a meaning-
and'Vg is committed ’to(a’l ah) € Ap X Ag’. The utility of a ful notion of cooperation can occur. Specifically, we wish to

joint commitment would provide a complete description 0fav0|d a condition oftategorical subjugationTo introduce

the way the collective views all possible consequence prot_hls concept, let us restrict interest to the collectieand

files (one for each decision maker). It would provide infor—VQ' We shall say thab; is categorically subjugated to the

mation regarding the degree of conflict and the possibilitiegonect've If every consequence profile that is acceptable to

. . . . the collective would requiré; to sacrifice its performance.
for compromise, since only one profile can actually be im- quire; P

plemented by the collective. Suppose that
If there were no conflicts, then there would exist a jointus, (a}, a5) > us, (a7, a3), (3)
commitment of the forni(aj, a3), (a3, a3)] that would si- but
u

multaneously maximize benefit i@ andV; and, hence, by
the Pareto principle, to the collective. In the presence of con,
flicts, however, joint commitments of the forfu, as) (a1,
as)], where both commit to the same profile, would reprefor all (a1, a2) € A; x As. ThenS; would be categorically
sent a compromise solution. The issue, then, is to define asubjugated, sincé;’s preferred joint action can never be
acceptable compromise. preferred by the society. Avoiding categorical subjugation
ensures that all participants have a “seat at the table” when
negotiating. Otherwise, the interests of some facets will be
so contrary to the interests of the collective that, no mat-
ter what the collective decides, the interests of the affected
individual facets will be suppressed. Unless the possibility
(although not the guarantee) exists that the interests of the
individual are compatible with the interests of the collective,
the individual will be effectively disenfranchised. Although
categorical subjugation is not always avoided in human so-
cieties (e.qg., dictatorships), avoiding categorical subjugation
is an important feature of an artificial society that must ne-
gotiate to reach a compromise.

If categorical subjugation is to be avoided, then there
must exist an action profiléi; , a2) such that, if (3) holds,
then

S1Va [(a/lv a/2)7 (alv a2)] < ﬂS1V2 [(a/llv a/2/)7 (alv a2)] (4)

To determine the utility of a joint commitment, consider
the following argument. Fd(a1, az), (a}, a})] to be a joint
commitment, it is necessary that;, a2) be a commitment
by V1. Butif (a1, as) is acommitment by, then for(a, a})
to be a commitment by5, (af, a),) must be a commitment
by V5 given that(ai, as) is @ commitment by;. Further-
more, if (a1, a2) is not a commitment by;, then[(a1, az),
(a},a%)] is not a joint commitment, regardless of whether or
not (a}, af) is a commitment by%,. Thus, when consider-
ing the utility of a joint commitment td(a1, as), (a}, ab)],
if the utility of a commitmenttdas, as) by V4 is considered
first, then the utility of a commitment t@, a}) by V2 will
be relevant only if(a1, a2) is @ commitment by;. Conse-
quently, given the utility of a commitment (@1, a2) by V3
and the conditional utility of a commitment (@, a}) by
V5 given thqt(al, a_g_) isa commitment by, knowledge_of sy, (@), ah), (@1, a2)] > sy, [(a, al), (@1, a2)]. (5)
the categorical utility of a commitment (@}, a}) by V4 is
not required in order to compute the utility of a joint com- A similar argument regarding the categorical subjugation of,
mitment to[(a1, z,), (a}, ab)]. Thus, the utility of a joint say,R; can be made with the inequalities reversed in (3), (4),
commitment to[(a1, az2), (a}, a5)] is a function of the cat- and (5) whenR; replacesS;.
egorical utility of a commitment tda;, a2) by V3 and the The question now becomes: what conditions are neces-
conditional utility of a commitment byx to (¢f, a}) given  sary to impose upon the aggregation functiério ensure
that(aq, as) is a commitment by . that categorical subjugation can never occur? To address this



guestion, let us turn to an analogous issue. A Dutch bookis The above discussion illustrates the fact that categori-
a gambling situation such that, no matter what the outcomesal subjugation and sure loss are mathematically equivalent.
the gambler will be worse off for having taken the gambleThus, if a multi-agent valuation system is to be coherent,
— a situation ofsure losgone’s reward is always less than in that it is not not possible to construct a situation where
one’s stake). To illustrate a Dutch book, Suppbsean take categorical subjugation can occur, then the valuation system
one of two distinct valuegy; or y», and letg(y) denote abe- must comply with the mathematical structure of probability
lief function ofy; that isq(y) measures the strength of belief theory.

thatY = y. Without loss of generality, we may restrict be-
lief functions to the unit interval; that i, < ¢(y) < 1. (We
refrain from using the term “probability” here, since we do
not requireg to possess all of the properties of a probability
mass function.)

By convention, we will assume that we have full belief
that exactly one of these values obtains, that is, that the dis-
junction ofy; andy, must occur, and that beliefs are addi-
tive, thus, if V; is a selecting facet, with the inequalities reversed if

is a rejecting facet.

Definition 4 Letw,, denote a categorical utility fdr;. The
collectiveV is coherentf, for eachi € {1,...,2n}, given
thatu,, (a) > u,, (a’), there exists a commitment sub-profile
( aj, ..., ai,l, gli+1, - ,éQn) such that

o (A1, A1, 8,041, .., 82,) >

uvl...V2n(€11,...,éi,l,a/,é”l,...,égn) (10)

q(y1 Vy2) = q(y1) +qy2) = 1. (6) . _ _
Let'V be a group of decision making facets whose influ-

Now let Z take on one of two distinct values or z;, and  ence relationships can be expressed with a directed acyclic
letr(z, y) denote the belief that = » andY” = y simulta-  graph. For eacl;, letpa (Vi) = (Vj,,..., Vi, ) denote the

neously. Let us now assume that p; parents of;, and letA” = A x --- x A (p; timeg de-
note thep;-fold product of the joint action space correspond-
q(y2) > a(y1) (7) " ing to the parents oF;. If V; has no parents, thed? — .
7(21,y2) < 7(21,91) (8) Letep(V;) = (ay,,...,a, ) denote the commitment pro-
(22, y2) < r(22,11). 9) fileforpa (V;). ForeacM,uV|pa(V [a| cp (V;)] is the util-

ity that V; ascribes ta, given thatV;, commits toa;,, j =
The following example illustrates a Dutch book. Supposel, . ... p;. If V; has no parents, the conditional utility is the
you purchase a $1 gamble thet = y,, and deem a fair categorical utility; .82y, | pa v,y = Uy, If pa(V;) = @.
purchase price to beg(y); that is, you pay §(y-) for the
gamble to win $1. Now also suppose you sell the gambl
(z1,y2)V(z2, y2). By additivity of beliefs, a fair selling price
for this bet would ber[(z1,y2) V (22,92)] = 7(21,92) +
r(z2,y2). However, according to the above ordering, you
must haveg(y>) > 3 and, sincer(z1,y2) + 7(22,52) < wy, .. vlalep (Vi)] > 0Vx € A (11)
r(z1,y1) + r(22,11), it follows thatr((z1, y2) V (22, y2)] <
%. After all gambles have been bought and sold, your nefnd
wealth isr[(z1,y2) V (22,92)] — ¢(y2) < 0. To overcome Z Uy, ooy 8] ep (X3)] = 1 (12)
this loss, you hope to make up the difference once the oufic 4
come of the gamble is known. But if neithgrnor (z;, y2) Vv
(z2,y2) Occur, you win nothing and you pay nothing, and if

Jheorem 1 If a society can be represented as a directed
acyclic graph, categorical subjugation cannot occur if and
only if the utilitiesu,, ... v,, are conditional mass functions.
That is,

forall (a;,,...,a;, ) € A"). Furthermore, the utility of a

(21,y2) V (22, y2) occurs, then, of coursg; occurs, so you joint commitment tGa, ... az) is
win $1 which you must pay to the buyer of your gamble. 2n
Thus, once the gambles have been bought and sold, your e (a1, - agn) = H Uy, pa vy (3] €p (Vi)] (13)
wealth is invariant to whatever happens — you suffer a sure =1
loss. or, more specifically,
A belief system is said to beoherentif it is not pos- , ,
sible to construct a Dutch book. The Dutch Book Theo-Usr(a1:- - an,ay,....a,) =
rem [11,38] and its converse [22] state that a belief sys-
tem is coherent if and only if it complies with a probabil- H H Us, 1 pa sy @3] €D (50)]Un; oo v, ) [ jlep ()],

ity measure that describes the degrees of belief regarding

the propositions under consideration. The above example

does not comply with the laws of probability theory, sincewherea; is the commitment bg;, i = 1,...,n anda’; is
q(y2) # r(z1,y2) + r(22,y2); thatis, marginalization fails. the commitmentbg;,j =1,...,n

(14)



Proof: Mathematically (albeit with different seman- and
tics), we may view; as random variables defined over the
sample space¥;, i = 1,...,2n. The Dutch Book Theo- in(a) = ig(a, ..., a). (18)
rem and its_(_:onverse establish that the necessary and suf- We next definasatisficing social welfare function
ficient condition to ensure that sure loss (categorical sub-
jugation) cannot occur is thaty,,,.,, must correspond W (a) = is(a) — qig(a) (19)
to the conditional probability mass functions ©f given o o
cp (V;). Thus, the categorical utilities of the root vertices@nd thejointly satisficing set
must possesses the mathematical structure of marginal pro%— — {a: W(a) > 0} (20)
ability mass function and the conditional utility of non-root = ¢ ' -
vertices possesses the mathematical structure of conditiormphe parametey is a measure of caution. Nominally= 1,
probability mass functions. Consequently, the vertices angut asq decreases, the number of consequence profiles that
edges of the DAG satisfy all of the conditions of a Bayesiarare rejected decreases. As will subsequently become appar-
network, and we may apply the fundamental theorem oént, another interpretation gfis as arindex of negotiation
Bayesian networks; namely, that the joint probability masssince lowering; enlarges the satisficing set, thereby increas-
function of the random variables associated with the verticeﬁqg the opportunities for reaching a compromise. We will de-
is the product of the conditional probability mass functionsfine all consequence profiles such that the satisficing social
of all non-root vertices, and the marginal mass functions ofvelfare is non-negative as being satisficing.

all root vertices [9, 19, 34]. Equation (13) is simply an appli- ~ We may also compute thiadividual selectability and
cation of the law of compound probability. Thus, coherenceejectability marginal utilitiesas
is established. 0

We will term utilities that comply with Theoremprax- s, (ai) = > ds(au,...,an) (21)
eic utilities It should be noted that this formulation requires A

all utilities to be non-negative and sum to unity. This restric-gng

tion, however, does not reduce the generality of the theorem,

since utilities can be subjected to positive affine transformatie, (a:) = » (a1, ... a,), (22)
tions without affecting the solution. &

Equation (14) expresses the values of the selecting anghere we have employed the so-calledt-sumnotation;

rejecting facets simultaneously. Since parents of selectingameW,va to mean that the sum is taken over ajlfor
facets may comprise both selecting and rejecting facets and-£ ;. ' '

similarly for the parents of rejecting facets, this function  The individual welfare function is

contains all of the possibilities for compromise and conflict.

To be useful for decision making, however, it is necessaryVi(a) = s, (ai) — qitir, (a;) (23)
to compute the joint selectability for all joint commitments

by the selecting facets, and the joint rejectability for all jointanOI thendividually satisficing sefs

commitments by the rejecting facets. Sirﬁ:%a‘2 is a multj— i = {a: Wi(a) > 0}. (24)
variate mass function, we may compute jbiat selectabil-
ity and rejectability marginalas Thecompromise sds the set of all joint actions that are

simultaneously satisficing for the group and for the individ-
is(ar,...,an) = Y dse(ar,...,anal,...a}) (15) uals;thatis,

al,...,al,
cC=x,nxn...nx". (25)
tr(al,...,al) = Z tsr(ai,...,a,,al,...a,) (16) oo "
ai,..an A satisficing set (either for the group or individuals) con-

o - ] - ] stitutes the set of consequences for which effectiveness, as
Once the joint selectability and rejectability marginals meaqured by the selectability utility, is at least as great as
have been computed, we are in a position to define a safines the inefficiency, as measured by the rejectability inu-
isficing social welfare function. We first observe that, SiNCejity. Rather than focusing on seeking the best and only the
only one consequence profile can be implemented, to makg,qt so|ytion, the satisficing methodology focuses on elimi-
a decision, we must ascribe the same commitment to ea}ing had solutions. Since the satisficing set eliminates all
facet, yielding thgoint praxeic selectabilitandjoint prax- - 5ternatives whose effectiveness does not exceed their effi-
eic rejectability ciency, it is optimal in the sense that it eliminates the max-
imum number of bad choices. If, in the extreme case, all
us(a) = is(a,...,a) (17)  but one choice are eliminated, then the satisficing solution
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coincides with the optimal solution. Thus, far from being aTable 2 The categorical selectability and rejectability for the Pris-
boundedly rational solution, the set of satisficing solutiongners Dilemma leader.

possess a well-defined notion of optimality (albeit differ- (¢.c) (@©D) ((DC) (DD
ent). Thus, we come to Euler’s conclusion through the “back Usy 15 16 16 10
door.” um i 1 i 1
Example 1 The Social Prisoner’s DilemnTdne convention-

al Prisoner’s Dilemma game is designed to characterize be- @ @

havior between two decision makers in an environment were

cooperation leads to better results than does defection but,

if only one attempts to cooperate, that individual becomes @

vulnerable to being exploited by the other. Classically, this

game is defined in terms of categorical utilities. K&and Fig. 3 The influence network for the social Prisoner’s Dilemma game
D denote cooperation and defection, respectively. The cor-

responding categorical utilities are the entries of the payoff

matrix displayed in Figure 1. The joint optid@, C') (next Table 3 displays the conditional selectability f6s given
best for both) is the Pareto optimal solution, while, D)  the commitments of(;. If X; were to commit to(C, C),
(next worst for both) is the Nash equilibrium solution. No- (D, C), or (D, D), thenX, would do likewise in the inter-
tice that the game is symmetrical. The classical assumptiogst of maximizing its payoff. But if ifX; were to commit
for this game is that there is no social relationship betweero (C, D), then X, would resist being exploited by placing
the players, and that each is intent on, and only on, maxizero conditional utility on(C, D) and apportioning equally
mizing its own welfare, regardless of the effect doing so haso the other outcomes.

on the other.

Table 3 Ry's conditional selectability for the social Prisoner’s
Table 1 The payoff matrix for the conventional Prisoner's Dilemma Dilemma game.

game. (21, 22)
X ¢ (@D (D,D) (DD)

X1 C D Us,y (s, (1, 22|C, C) 1 0 0 0

C 3,3 @9 us,|s (21, 22|C, D) 3 0 3 3

D 41 (2,2 Usy|s, (1, 22|D, C) 0 0 1 0

US2‘51 (Il,I2|D,D) O 0 0 l

Now let us add some social context to this problem. Sup- ) . ) . .
pose a leader-follower relationship exists between them, with Table 4 displays the conditional rejectability &g given

X, being the leader and’s the follower. We shall assume the commitments ofX;. If X, Wgre to co_mmlt tp_(C, ),
that X follows the conventional structure of maximizing then X; would place zero conditional rejectability on that

payoff, butX; is interested in () following the lead of;, outcome and apportion all of its conditional rejectability equal-

(b) resisting exploitation, and (c) not offendig by taking ly to the other outcomes. _IKl were to commit tC' D),
advantage of the possible propensity f6f to cooperate. X5 would place all of its rejectability on that outcome to en-

We shall take the definition of selectability as the same aSU'e it Will notbe exploited. IX; were to committq D, ),
then X would not reject that outcome so as to not exploit

with the conventional formulation; namely, to seek to max- X . . o
imize payoff. For rejectability, however, we invoke a com—Xl_’ and |n.stead ,"YOUld reject ex_pI0|tat!on by placing its con-
ditional rejectability on(C, D). Finally, if X; were to com-

ponent that is not present in the conventional formulation;" )
namely, to account for social issues, and assume that tff@'t to (D’D)’ X would not reject that outcome, but would
players have a unit of social resource they may commit ténstead re!gc((}, D _) ?S before_. o
each outcome. Since the leader has no social commitments, The utility of a joint commitment is given by
we take rejectability as the same for each outcome. Accord-
ingly, the categorical selectability and rejectability valuests:sm (€1, %2), (1, 25), (Y1,92), (U1, 45)]
for the leader are provided in Table 2. us, (21, T2)us,|s, (27, 25)| 21, 22)
To accoun'F fpr the social context, we take the utI|I'FI.eS for Un, (Y1, Y2)Un, s, (Y1, 95)]. (26)
X5 to be conditional, and assume that both selectability and
the rejectability ofX, are influenced by the selectability of The joint praxeic selectability and rejectability functions,
X, as indicated in Figure 3. as defined by (17) and (18) are given in Table 5, and the
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Table 4 Ry’s conditional rejectability for the social Prisoner's 5 Reconciliation with Classical Theory
Dilemma game.

(z1,2) Not all problems fit naturally into the dual-utility structure of
(C,C) (C,D) (D,D) (D,D) satisficing theory. One way to deal with this situation, while
URy s, (71, 22]C, C) 0 3 3 3 still retaining some of the flavor of satisficing theory, is to
Z?El E;"’i;"’;‘g g; 8 i 8 8 invoke the assumption that all consequences are rejectabil-
wrojs, (a1, 22|D, D) 0 1 0 0 ity neutral, and ascribe all meaningful utility to selectability.

Under this situation, we set the rejectability to a constant:
Us, pary (5] €D (R))] = Kj = ﬁ (| - | denotes cardinal-
ity) for all a;. We define the conditional utility ok; as

jointly satisficing set (withg = 1) is {(C,C), (D, D)}. , N — } ,

The individual selectability and rejectilfoility )m;rginazl}util- Ui (2l P (XD = sy oy il ep (5] @7

ities, as defined by (21) and (22) are displayed in Table 6Thus, (14) becomes a functionaf,i = 1, ..., n, only, and

from which it can be seen that the individually satisficingwe may write

sets (withg; = ¢ = 1) areX} = {(C,C),(D,C)} and N

X2 ={(C,C),(D,D)}. Consequently, the compromise seti,(ay,...a,) = Huxi‘wxi)[az‘I p (X,)], (28)

isC ={(C,C)}. i=1

Under the classical formulation of the Prisoner’s Dilem-and the marginals become

ma, the only rationally justifiable solution is mutual defec-

tion, since that formulation does not take into consideratioriix, (ai) = Y _ iix(ay, ..., a,). (29)

any social relationships. From the classical point of view, —ai

mutual cooperation, although Pareto optimal, cannot be jus- nce all of the valuations are concentrated in a single

tified. The social version of the game as developed hergygjjity we view the decision problem from the classical per-

however, indicates that mutual cooperation is the only justispective of optimization. The most well-known solution con-

fied solution. cept for individuals is the non-cooperative game theoretic
concept of Nash equilibria [31]. Let* = (a},...,a}). The
action profilea* is a Nash equilibriumif, were any single

Table 5 The joint praxeic selectability and rejectability for the social individual to alter its choice, its utility would decrease ; i.e.,

Prisoner's Dilemma game. if al = (a¥,...,al,...,a}), then, in terms of categorical
[(w1,22), (1, 22)]  Us,s,[(T1,22), (T1,72)] utilities,
[(C,0),(C,0)] 0.3
[(D,C),(D,C)] 0.0 ' '
(D, D), (D, D)] 0.2 foralla) € A;\{af}fori=1,...,n.

When conditional utilities are involved, we may define

Ury Ry (1, 22), (21, 22)] two notions of equilibrium. First, let us define what might

[(C,C),(C,O)] 0.0 o o . :
[(C, D), (C, D)] 0.2 be called a conditional Nash equilibrium. The action profile
[(D,C),(D,C)] 0.025 a* is aconditional Nash equilibriunif
(D, D), (D, D)] 0.025
U, pa(xp(@7[%, ... a%)) > Uxi\puxi)(a”aJra e 7aT))
(31)

foralla) € A;\{af}fori=1,...,n.
We may also compute the Nash equilibrium in terms of
Table 6 The individual selectability and rejectability utilities for the the marginal utility defined by (29). The action profie is

social Prisoner’s Dilemma game. a Nash equilibrium if
(21, 22) - . . t
Fe@nLa) 03 01 04 02 Uy, (a%) = 1, (al) (32)
Ug, (v1,72) 0.25 0.25 0.25 0.25 . , . . -
ds, (r1,72) 0.3 0.0 00 07 Example 2 Prisoner’s Dilemma, Continuedet us revisit
in, (x1,22) 0.25 0.25 0.25 0.25 the Prisoner’s Dilemma discussed in Example 1 under the

assumption of neutral rejectability, and set, = us, and
Uxy pa(xe) = Usy pa(xy) aS defined in Tables 2 and 3, re-
spectively. By inspection, we see that the conditional Nash
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Table 7 The marginal utilities for the Prisoner’s Dilemma. utilities replaced by conditional utilities and all disagree-
©.0) ©.D) (D0 (DD ment points set to zero. Analogously, therefore, we may de-
Ux, 3 i Z 2 fine aconditional Nash bargaining solutiokiVhen decisions
Uxy 3 0 0 = are made under certainty, the negotiation set is defined as

N ={a€Auy, ux)(@)cp(X;) >dy,,i=1,...,n}.

i

equilibriumis(D, D), as with the conventional formulation. (35)
Furthermore, the marginal utilities are given in Table 7, andThe conditional Nash bargaining solution is
we see that, again the Nash equilibriungi3, D). n
ay = argmax Ux, | pa(x @] €D (Xi)] — dx, |- 36
The Nash equilibrium is usually considered to be an ap- N gaeNE [ it o ] €p (X)) XJ (36)

propriate solution concept for non-cooperative games. On . . . o .
. : . Referring again to the Prisoner’s Dilemma example, it
the other hand, with a cooperative game (i.e., one wherg : . S
. . : ) IS easily seen that both the conditional Nash bargain is the
binding agreements are possible), it may be possible to en- . : . )
. S . . same as the conventional Nash bargain for the Prisoner’s
ter into negotiations and bargain for a solution. For the play-.. . . .
: Dilemma; namely, the Pareto optimal soluti@i, C').
ers to forge an agreement, however, each must achieve an
acceptable degree of satisfaction.bArgaining games a
cooperative game in which each participant possesdis a 6 Conditionally Decoupled Societies
agreement pointhat defines the benefit that is guaranteed
to accrue to it if a compromise cannot be reached. The diss.1 The General Case
agreement point, therefore, is an indication of the strategic
strength that is conferred on the participant as it partici-The approach developed above assumes that the conditional
pates in negotiations: the higher the disagreement point, tHereferences are defined over the entire product action space.
greater bargaining strength of the participant. In this respect conditional preferences are generalizations of
A well-known bargaining concept that offers a clear def-classical categorical preferences, the difference being that
inition of individual acceptability is the Nash bargain [30], the preferences can be modulated by the commitments of
which permits each participant to make maximal use of itg'.pthers. A]though mclr-eased complexity is associated with the
strategic strength. The approach is based on four fundametitroduction of conditional preferences, there are cases were
tal principles: (i) invariance to positive affine transforma-this additional complexity is not justified. It can be the case
tions; (i) Pareto optimality; (iii) independence of irrelevant that the only commitments that affect the preferences of an
alternatives, and (iv) symmetry, which is the notion that noagent are the direct consequences to its parents. This situa-

individual agent can expect that the other agents will grantion motivates the notion of conditional decoupling.

|t bettel’ terms than that indiViduaI |tse|f W0u|d be WI||II’lg to Deﬁnition 5 A Society isconditiona"y decoup|e'd the con-
grant, were roles reversed. ditional preference of each agent is a function only of its

Nash showed that these four conditions lead to a uniqugwn actions, given the commitments of its parents to their
solution. Letd, denote the disagreement point f§. The  gwn actions.

negotiation setdenoted\, is the subset of action profiles
such that every participant achieves at least its disagreemetnt

) . - o . fun
point. In terms of categorical utilities, the negotiation set is

Whereas, for a non-decoupled system, the utilities are
ctions of the entire action profile, for a decoupled system,
the utilities are functions of individual actions. To develop
N={acAuy(a)>dy, i=1,..n) (33)  this concept, suppose (Vi) = {ai,,...,a;, }. Then the
conditional utility
and the Nash bargain is
? it o8l € (Vi)] = v, o v @l 2,) (37)
ay = arg maxH [ux,(a) — dx,]. (34) becomes
acN - ‘ :

i=1 Uy, pa <vi>[(li| cp (Vi)] = Uy | pa <vi)(ai|ai1 yee e ‘lipi) (38)
The intuitive interpretation of a Nash bargain is that it de-Then (14) becomes
fines a fair compromise. It enables each player to take ad-

vantage of the strategic strength endowed by its disagre@ss (a1, - - an, ey ay) =

ment point. The higheX;'s disagreement point, the more n n )

action profiles that are unfavorable to it are eliminated. H Us; 1 pa (s laz] cp (95)] H Unj | pa vy @] €D (R;)]
j=1

The structure of (34) suggests that the optimal group so- =1

lution can be interpreted as a Nash bargain with unilateral (39)
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The corresponding joint selectability and rejectability mar- If C = @, then there are no action profiles that are si-

ginals are given by multaneously good enough for the group and each individ-
ual. However, the satisficing approach provides a natural and
us(ai,...,an) = Z Usg (a1, Qnsy s s ay,) (40) systematic negotiation framework which which each indi-
(afseh) vidual man control the degree to which it is willing to lower
and its standards in an attempt to reach a compromise. By lower-

ing its ¢;-value incrementally, eacK; increases the size of
its satisficing set. By specifying the incremefig; that X;
is willing to reduce its standards, each participant can con-
trol the amount of compromise it is willing to offer others. If
enough participants are willing to lower thegvalues suf-
ficiently, it is easy to see that, eventually, the consensus set
will be non-empty, and a best compromise can be achieved.
Wiay,...,an) =us(a,...,an)—qcur(al,...,a,) (42)  Although such negotiations may fail to reach a compromise
that is acceptable to all members, the significant aspect of
whereq is the jointg-value for the group. The jointly sat- this type of negotiation is that no individualaspriori sub-
isficing set is the set of action profiles that are jointly satisjugated to the will of the society in the sense that there is no
ficing for the society as a whole, and is defined as possibility for that individual's preferences to receive con-
sideration. Thus, every individual can be assured of receiv-
ing sufficient benefit, by its own definition, before agreeing

This procedure, however, does not account for the possibif? the compromise. If an individual could not enjoy at least

ity that the elements of may not be acceptable to all (or thaj[ mln.|r_nal assurance, _|t may not be inclined to join or re-
any) of the individuals. Thus, we must also compute the inMain affiliated with a society.
dividual satisficing sets. To proceed, we must first compute

ug(al,...,a,) = Z usr(ai, ... an,ay, ... al).
(41)

We may now define aocial welfare functioras

S={(a1,...,an) € A:W(a1,...,a,) > 0}. (43)

the selectability and rejectability marginals as 6.2 Social Choice

us,(ai) = Z“S(al’ £ n) (44)  With the general multi-agent decision problem, each indi-
o vidual possesses its own action set. Some scenarios, how-

and ever, are such that there is only one action set that applies

to the group as a whole. Scenarios of this type are termed

Ug,(a;) = Z ug(ai,...,an), (45)  social choiceproblems. Thus, with a social choice problem,
mai there is only one action spagk The social welfare function

respectively. We may then define the individually satisficing(42) Pecomes

sets as W(a) = us(a,....a) — gourla,...,a) (50)

Y ={a; € At ug, (a;) — giug, (a;)}. (46)  and the jointly satisficing set becomes

this set includes all alternatives that are satisficing, or good = {a € A: W(a) > 0}. (51)

enqugh, fqui. The satisficing rectangles-the §gt of all The individual selectability and rejectability marginals are
f';\c.nc.)n proﬁle_s sgch that each componentis individually Satéomputed according to (44) and (45), and the individually
isficing, and is given by satisficing sets;, ¢ = 1,...,n are given by (46). The in-
(47 tersection of the individually satisficing sets and the jointly
satisficing set forms theocial compromise set

The intersection of the jointly satisficing set and the satis, _ v . 5 (52)
ficing rectangle yields theompromise setomprising the —~° ! "

action profiles that are simultaneously good enough for théf S = &, then there is no group action that is good enough

R:Z‘lX'--XZ‘n.

group and for each individual. for the group and each individual. However, by reducing the
g-values incrementally as discussed above, a consensus will
C=8nR. (48)  eventually emerge. Theocial consensuset is the intersec-
. tion of the social compromise set and the jointly satisficin
If C # @, then we may form dest compromisas set P : y g
a* = argmax W (a). (49) g.=8nc.. (53)

aeC
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Thebest compromisks the action in this set that maximizes Table 10 Father's conditional rejectabilityr, s, s -
the social welfare function; that is,

w ’qu):l ’Ll)”
@ = arg puax Wia) (54) Ty @) 0 0 1
URg| s, 8o (z|w,w") 0 0 1
Example 3 The Family WallSuppose a family, consisting urglsysy(@w,w”) 0 1 0
of a father, mother, and child, is take one of three possible .
nature walk, denotedw, w’, w”}. The father prefers long o o o
hikes, the mother prefers beautiful scenery, and the child Upg|s sy (@w’,w) 0 0 1
prefers an easy walk. Urg|s, sy (zlw’,w’) 0 0 1
The first order of business in framing this in the satis- ungisisy(@wiw”) 1 0 0
ficing context is to settle on operational definitions for the -
notions of selectability and rejectability. From the point of PR —
view of each individual, the main goal of walk is enjoyment Ung|s sy (w’,w) 0 1 0
according to its own criterion. Thus, it is reasonable to as- URy|s, 5o (zlw”,w') 10 0
sociate selectability with the degree of narrow self-interest. urgisysp(@w?w®) 1 0 0
Accordingly, we define the three selectability utilities in Ta-
ble 8.

Finally, we must specify the child’s rejectability. This
rejectability is not conditioned, since the model does not call

Table 8 Individual selectability utilities. for the child’s preferences to be influenced by the parents’

T us (z) us,(z) us,(x) preferences. Thus, the child’s concern for the interests of
5, 8'%’ g'j g'z others is neutral; that is, the child’s rejectability function is
o' 06 0.2 o1 uniform, as provided in (55).
!/ 1 1
i, () =, () =, (") = 3 (55)

As the operational definition of rejectability, we assume . ] . o
that each agent has a unit of concern for the interests of oth- Figure 4 illustrates the influence flows of the satisficing
ers. Let us first consider the mother. Since she has conceRf@xeic network for the family walk.
for the interests of her child, she will encode this informa-
tion in a rejectability function that is conditioned on the se- e @ @
lectability commitment of her child, as illustrated in Table 9.

To interpret this table, consider the first column, which cor-

responds tau, s, (-|w); that is, the child commits to select-

ing w. Since this walk is tied for the most preferred by the @ @
mother, she ascribes no conditional rejectability to that al-

ternative, and places all of her conditional rejectability masgig. 4 A satisficing praxeic network for the family walk
onw’ andw” in inverse proportion to her her selectability.

Similar arguments apply if the child commits# or w” .

Using the values provided in the above tables, we may

compute the social welfare function, yielding
Table 9 Mother’s conditional rejectability. s, .

) @) ) W) ==0.05
Z} URZ%TOI w uRz\s(;AZ’ w uRg\Sélg’ w W(w') — 036667
W' 0.4 0.0 0.5 W(w") = —0.052;
w 0.6 0.6 0.0 ’
henceS = {w'}.

We next compute the individually satisficing sets, yield-

The father’s role in this decision process is first to defer"9
first to the commitments of his child, then to the commit-usl(w) — g, (w) = —0.233
ments to his wife, and then, subject to those constraints, t8 (!
reject the alternative that is least preferred in terms of his ** . "
narrow self-interest. These values are provided in Table 10%s: (w") = qrug, (w") = 0.267,

w') — qrug, (w') = —0.033
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syntax of the utilities corresponds to probability mass func-
tions (albeit with different semantics). For societies whose
inter-agent influence relationships can be represented by a
directed acyclic graph, coherence ensures that the edges are
conditional mass functions, resulting in a structure that is
mathematically identical to a Bayesian network. This struc-
ture permits individual utilities to be aggregated to form a
group utility that accounts for social relationships between
individuals, thereby providing a complete model of the com-
munity.

Us, (W) — @oUr, (w) = 0.14

Ug, (W) — gaug, (w') = 0.14
ug, (W) — goup, (w") = —0.06,
and

Us, (W) — gyup, (W) = —0.12
us, (W) — gaup, (w') = 0.18

"

U, (W) — gsup, (") = —0.32.

Thus, we havel, = {w”}, X = {w,w'}, andXs = {w'}. o . L .
1= w2 = {w, v} s .{w } Satisficing, as defined herein, is an approach to decision
Consequenthy = ¥, N Xy N Y3 = @, and the society has . ) . . .
. . ._making that is as mathematically precise and formalized as
not reached a compromise that is acceptable to all partici- . . o :
. Is the conventional notion of optimization. The essential ad-
pants. However, if the father reduagsto 0.9, then e . } .
vantage of satisficing is that it readily extends to the multi-
agent case, whereas optimization is intrinsically a single-
agent concept. Furthermore, since satisficing is designed to
provide a set of acceptable solutions rather than a unique
best solution, it provides a natural mechanism with which to
design a negotiation protocol and reach a compromise.

Us, (W) — qrUg, (W) = —0.2
us, (W) — gaug, (w') = 0.0
us, (W) — gzug, (w'") = 0.3.

Hence,>; = {w’,w"}, and a consensus exists wifly =
{w’}. An important feature of this example is that the fa-

the"_ need only reduce its standards by a small amount tReknowledgements This material is based upon work supported by,
achieve a consensus. In terms of the narrow self-interest ofr in part by, the U. S. Army Research Laboratory and the U. S. Army

fering given by Table 8, we see, after taking into consideraResearch Office under grant number W911NF-07-1-0650.
tion the social dependencies that exist among the individu-
als, that the consensus alternative is best for the mother arl]-geferences
the child and second best for the father.
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Attitude Adaptation in Satisficing Games

Matthew Nokleby and Wynn Stirling

Abstract—Satisficing game theory offers an alternative to grouped together, they can choose incoherent behaviors that
classical game theory that describes a flexible model of players’ [ead to poor performance.
social interactions. Players’ utility functions depends on other The Stag Hunt, a simple game originally suggested by

players’ attitudes rather than simply their actions. However, - Bar
satisficing players with conflicting attitudes may enact dysfunc- Rousseau [10], underscores the difficulty of achieving coop-

tional behaviors, resulting in poor performance. We present an €ration under self-interest. As usually formalized, the game
evolutionary method by which a population of players may adapt involves two hunters. They can catch a stag only if they

its attitudes to improve payoff. Additionally, we extend the Nash hunt stag together, but each can catch a (much smaller) hare
equilibrium concept to satisficing games, showing that the method separately. That is, a player earns maximum payoff if both

presented leads players toward an equilibrium in their attitudes. | te. but risks fail if it att ts t ¢
We apply these ideas to the Stag Hunt, a simple game in which players cooperate, but risks failure It it attempts 1o cooperate

cooperation does not easily evolve from non-cooperation. The While the other does not. Since each player must individually
evolutionary method presented provides two major contributions. decide between cooperation and non-cooperation, it represents
First, satisficing players may improve their performance by a useful model for the analysis of potentially cooperative
adapting their attitudes. Second, numerical results demonstrate o 4yior, For example, a group of workers choosing whether to
that cooperation in the Stag Hunt can emerge much more readily . j
under the method presented than under traditional evolutionary strike loosely fall under the,St"?‘Q Hunt mo‘?'e'- a Ia_rg_e ”Umt,’er
models. of workers may achieve a significant benefit by striking, while
a single worker who “strikes” alone incurs significant loss.
Social dilemmas such as the Stag Hunt have been studied
. INTRODUCTION extensively by (among others) social scientists, economists,
and biologists. A large body of recent work focuses on
Game-theoretic models are often used to construct socieqi@éming_based [11-13] and evolutionary [14—16] methods for
of artificial agents. Commonly, agents are modeled as playgghieving cooperation. In evolutionary game theory, pioneered
ina non-COOperative game in which players focus SO|EIy on tB? Maynard Smith [17’ 18], popu|ations of p|ayers make
maximization of individual payoff. The players’ self-interesjecisions by trial-and-error rather than by explicit utility
leads to Nash equilibria [3], which are strategy profiles su¢Raximization. Over time, natural selection favors individuals
that no single player can improve its payoff by changing stratgho earn higher payoff, altering the population’s makeup.
gies. Unfortunately, self-interested behavior places significardrge, well-mixed populations are described by the replicator
limitations in terms of the players’ social interactions. Fogynamics [19], which defines a system of ordinary differential
example, it is often difficult to engender cooperation and othgguations governing the evolution of the population. Under
social behaviors with self-interested players. Indeed, the S@t"tab|e conditions, the rep"cator dynamics drives the popu-
interest hypothesis has come under nearly continuous critiCiggfion to a Nash equilibrium.
since the inception of game theory [4-7]. The Stag Hunt presents considerable difficulties from an
Satisficing game theory [8] offers an alternative to norevolutionary perspective. Under the standard replicator dynam-
cooperative game theory. It was developed for the synthesisig¥, a population composed primarily of hare hunters cannot
artificial agents and specifically focuses on social interactioggolve into a group of stag hunters, even though each player
between players. Players utilities are expressed as conditio@hefits from cooperation. Skyrms posits a compelling reason
mass functions, allowing them to consider the preferencesfef this failure: “for the Hare Hunters to decide to be Stag
others rather than focusing solely on individual self-interesjunters, each musthange her beliefabout what the others
Satisficing models have previously been successful in ov@yill do. But rational choice based on game theory as usually
coming the social hurdles presented by non-cooperative gag#ceived, has nothing to say about how or why such a change
theory, allowing players to exhibit sophisticated social behaxight take place” [20, emphasis in the original].
iors such as altruism, negotiation, and compromise [9]. How- Motivated by Skyrms’ conjecture, we explore methods by
ever, satisficing theory presents its own set of challenges. Asjfiich “such a change” may take place in satisficing game
real-life social situations, satisficing communities may behavgeory. To do so, we attempt to bridge the gap between non-
dysfunctionally. When players with incompatible attitudes agboperative and satisficing game theory by incorporating ele-
ments of non-cooperative game theory into satisficing theory.

The authors are with the Electrical and Computer Engineering Den g manner similar to [21 22] we present a method whereby
partment, Brigham Young University, Provo, UT 84602, USA (e-mail; ’ '

{nokleby,wynn}@ee.byu.edu). Portions of this work were presented at lﬁepOpUIaﬁon of pIayers may mOdi.fy its attitudes according
2006 IEEE World Congress on Computational Intelligence [1] and the 206@ the game structure and the attitudes of other players. In

IEEE Symposium of Foundations of Computational Intelligence [2]. Thigr method, which employs the standard replicator dynamics,
material is based upon work supported by, or in part by, the U. S. Arm

Research Laboratory and the U. S. Army Research Office under grant numﬂ@yers Whose att?tUdes _resu!t in_higher p?.yOffS reproduce
W911NF-07-1-0650. more readily, causing their attitudes to dominate the popula-



tion. The resulting model blends the two decision theoriethat Y = y if we knew that X took on some value:? If
players retain the conditional utility structure of satisficingve know the probabilities foX = x, we can compute the
theory while improving payoff by evolutionary means. Thenarginal mass function according to basic rules of probability
dynamics leads the players toward a Nash equilibrium theory:p, (y) = >, py x(y|z)px(x). The marginal probabil-
players’ attitudes rather than in their actions. ities for Y are influenced—but not entirely dictated—by the
In Section Il we familiarize the reader with the basics gbrobabilities of X.
satisficing game theory. In Section Ill we review the classical Similarly, players’ preferences may depend upon the pref-
formulation of the Stag Hunt and its evolutionary difficultieserences of others, allowing their utilities (which we caikial
We present a satisficing model for the Stag Hunt in Sectiatilities) to be expressed as conditional mass functions. The
IV. In Section V we define the attitude equilibrium andonditional mass functions allow for hypothetical expressions
present the attitude dynamics. We present experimental resolftsutility: what would player 1's utilities be if player 2
in Section VI and compare the satisficing approach to othenilaterally preferred a particular action? We can compute
recent methods in evolutionary game theory. We give optayer 1's marginal utilities—which are the utilities used for

conclusions in Section VII. decision-making—by summing the conditional utilities over
player 2’s actual preferences. This structure allows players to
[l. SATISFICING GAME THEORY consider not simply what actions other players may prefer,

While the simple and seemingly reasonable assumption byt r_\ow strongthe preferences for actipn are. Their utilities
self-interest—also called individual rationality—has given ris8"® influenced by others’ preferences in a controlled manner

to a rich and successful theory of games, narrow maximizatidfich does not require that they discard their own preferences.

may betoo simple, particularly in describing social situations. o

As observed by Luce and Raiffa, “general game theory seefhs Formalization

to be in part a sociological theory which does not include any First, define the set of playeX = {1,2,---,n}. Each

sociological assumptions. . . it may be too much to ask that aplayer chooses a pure strategy € U;, whereU; is player

sociology be derived from the single assumption of individuak pure-strategy set. Aure-strategy profile, which describes

rationality” [4, p. 196]. Satisficing game theory provides athe actions of all of the players, is ardimensional vector

alternative to the classical framework. It presents a morec U, whereU = U; x Uy x --- x U,, is the pure-strategy

elaborate structure which may be more useful in modelirspace.

social behaviors. Players may directly concern themselves withAs mentioned in the previous subsection, each player

the preferences of others, rather than explicitly attempting possesses two social utilities. To describe these, we define

maximize utility. two “selves” or perspectives from which each player may
We construct the satisficing framework by altering theonsider its actions [25]. The selecting self considers actions

structure of the players’ utility functions. First, each playestrictly in terms of their associated benefits, while the rejecting

possessesvo utilities: one to characterize the benefits assocself considers actions only in terms of the costs incurred in

ated with taking an action and one to characterize the costaplementing them. These selves are described bystie

A satisficing player contents itself with a decision for whicltectability functionp,, (u;) andrejectability functionp, (u;),

the benefits outweigh the costs is “good enough” or satisfiespectively.

ing.! Second, the players’ utility functions share a common Since social utilities are mass functions, they are normalized

syntax with probability mass functions, allowing probabilisti@cross the pure-strategy sets and therefore descrilvelttize

concepts such as conditioning and independence to be apphbedefits and costs associated with a pure strate@¥.imhey

to players’ preferences—albeit with a significantly differenalso provide players with a formal definition of “good enough.”

interpretation. A pure strategy is “good enough,” or satisficing, if the relative
The use of probability mass functions to describe a playebenefits are at least as great as the relative costs. In the

preferences rather than a random phenomenon is an unuseahacular, we may view satisficing as “getting one’s money

one, and warrants further explanation. A rigorous justificatiomorth,” as opposed to optimization, where players seek “the

is given in [24], where it is shown that the use of maskest and only the best.” While the former concept allows for

functions as utilities guarantees several useful social prapset of multiple actions that are “good enough,” the latter is

erties regarding the reconciliation of group and individualesigned to produce a unigue solution. We therefore define the

preferences. Fortunately, however, the benefits of conditiomadlividually satisficing sefor player: as

utilities may also be appreciated intuitively. For two discrete ]

random phenomend egfd Y, whereY is d){apendent onx, i = {u € Ui ps,(u) 2 qpa, (w)}, @

we can express the probabilities faf by the conditional where ¢ is the index of caution. Typically,q = 1, but

mass functiorpy‘x(y|x). The conditional mass function giveaNe may adjust a player's definition of “good enough” by

hypothetical probabilities of : what would be the probability changingq. Settingg < 1 ensures that; is not empty.

We may combine the players’ individually satisficing sets by

1Although they share similarities, satisficing game theory should not ] P . . .
confused with the concept of “bounded rationality” satisficing introduced &Ermmg th?sat'Sf'C'”g reCtangléRH'“m which is defined as
the Cartesian product

Simon [23]. With satisficingh la Simon, individuals search for sub-optimal
choices that meet a variable thresholdspiration level, implicitly accounting
for the cost of continued searching. Rigp =21 X g X +++ X 2. (2)



The satisficing rectangle is the set of all strategy profiles thedlectability function in order to compute its own rejectability.

are simultaneously satisficing to each player. However, since players do not consider each other’s actions
It is convenient to express the relationship between plaiy+ determining the individually satisficing sets, they need not

ers’ utilities graphically. In probability theory, relationshipsobserve (or predict) each other’s choices.

between random variables are expressed in Bayesian networké/ith the marginal and conditional utilities defined for

[26]. Similarly, in satisficing theory the relationship betweethe example community, we can form tlieterdependence

players’ utilities are expressed fimaxeic networkg.The prax- functionps, s, s, s, (w1, "+ ,Un,v1,- -+ ,v,), Which is the

eic network consists of a directed acyclic graph (DAG), wheieint mass function of all players’ selecting and rejecting pref-

the nodes are the selecting and rejecting perspectives of eawgnces. By the chain rule of probability theory, the interdepen-

player and the edges are the conditional utility functions. Fdence function for this example s, s, », r, (41, 2, v1,v2) =

example, consider the simple two-player community depicted, s, (v1|u2)Pr, s, (V2|w1)ps, (w1)ps, (u1).

in Figure 1. For each player, the rejecting preferences dependatisficing games are characterized by the triple

on the selecting preferences of the other player, while th&,U,ps, . s, r,..r,), WhereX is the set of playerdJ is the

selecting preferences are independent. pure-strategy space, amd, .. s, »,.. =, 1S the interdependence
function. From this information, all necessary marginal
@ @ utilities can be computed and the satisficing rectangle can be
determined.

Finally, it is often useful to specify the players’ social
utilities in terms of variable parameters, which we refer to
@ @ as the playersattitudes. The interpretation of the attitudes,
of course, depends on the specific game being played, but in
general they express each player’s temperament, which affects
the degree to which its utilities depend on those of other

Parenthetically, we note that praxeic networks also resemBI@Yers. For example, in the Stag Hunt, the players’ attitudes
the spatial evolutionary models discussed in [15, 16, 28—30].‘1\H" characterize their aversion to risk, which influences each
these models, graphical connections determine which playBfayer's willingness to engage in stag-hunting.
can interact during play. That is, individuals may only play
with players to whom they are connected. In contrast, grapld: Random Satisficing Games

cal connections i_n praxeic networks define _how_players influ- Often, a player's utility will depend on random phenomena,
ence each other in play. Both models describe, in some senggyiting in expected utilities based on the distribution of the
players’ social relationships. But, while spatial evolutionan,ngom event. With classical game theory, it is required that
models describe which players can pair up in a game, praxgig propabilistic distributions of the random phenomena not be
networks describe which players’ utilities can influence thgfyenced by the preferences of the players. In other words, a
utilities of others. player’s belief regarding a random event may affect its utilities,
In discussing the players’ social utilities, we retain the tefyy; not vice versa. In most cases this restriction poses no
minology of probability theory. In the community from Figuregjtficuity. However, we may want to consider circumstances in
1, we refer to player 1'sconditional rejectability function, \yhich a player's subjective probability about an event depends
denotedpy, s, (v1|uz). As mentioned above, the conditional,p, players’ preferences.
mass function expresses a hypothetical proposition, where thehe conditional structure of social utilities provides for such
antecedent is the strategy favored by player 2, and the cong€sossibility. Since the utilities are mass functions, we can
quent is the utility of player 1. That is, if player 2's selectingompine both probabilistic and preferential information into a
preferences entirely favored strategy, what would be player sjngle model. Figure 2 illustrates a network implementing such
1's rejectability forv, ? As with probability mass functions, wea model. This praxeic network is similar to Figure 1 in that
may compute thenarginal rejectability by summing over the jt contains the same four vertices associated with the players’
conditionals:pr, (v1) = > ,,cp, Pryis, (V1]u2)ps, (u2). The  selecting and rejecting selves. However, we also include two
marginal utilities determine the individually satisficing setg;nqom variable®; and ., which represent phenomena that
and the satisficing rectangle. If a utility is independent (sugf}e known to the players only probabilistically. This network
as the selectability functions in this example), its marginal {gescribes both players whose preferences depend on random
expressed directly, without conditioning. phenomenandrandom phenomena which depend on players’
By allowing conditioning in the players’ utilities, we im- hreferences. The dependencies from Figure 1 still petBist.

plicitly assume that players have at least partial knowledgg|| depends—albeit indirectly, through,—on S, and R
of each other's utilities. Each player must have sufficiertji depends onS;, which now depends; .

knowledge of other players’ utilities in order to compute its
marginal utilities and find its individually satisficing set. In the

example community, each player must know the other player’s
In the Stag Hunt, players choose between two pure strate-

2The termpraxeicis derived frompraxeology, which refers to “the sciencegieS: hunt stag or hunt hare, denotedind h, respectively.
of human conduct” or "the science of efficient action.” [27] The payoff for playing each pure strategy depends on the

Fig. 1. A simple praxeic network.

Il. THE STAG HUNT



@ @ player has in the other's willingness to cooperate and how
risk-averse each player is. As mentioned by Skyrms, classical
game theory has little to say about this topic. Indeed, the Nash
equilibria do not tell us which actions the players will take.

e @ They simply imply that once a pair of players is in either of the
pure-strategy equilibria, neither player will have incentive to
deviate. To study which equilibrium will result under different

@ @ circumstances, we turn to evolutionary game theory [32, 33].

Fig. 2. An praxeic network with “true” random variables. A. The Replicator Dynamics
The replicator dynamics is the classic instantiation of evolu-
tionary game theory. It models the evolution of a population’s

action of the other player. If the other player hunts sta trategies ac_cording to their ecological fitness. Consider a
the payoff for hunting stag is higher than that of huntingarg‘_a population of players who are “programmed” to play a
hare. However, if the other player hunts hare, stag huntiﬁ@rtlcular strgtegy—regardless of the other player’s behavior—
yields a low payoff. That is, the players must hunt togethd} & Symmetric two-player game such as the Stag Hunt. The
to catch the stag and obtain the higher payoff. The payoff fgfayers are randomly paired up to play the game at each
hunting hare, on the other hand, is independent of the otf{§fe step. Each player reproduces asexdaligcording to
player’s choice. Each player can individually catch a hare, afd Payoffs; that is, the number of offspring that a player
therefore can always opt for the modest—but more securdl@s is proportional to its payoff during the previous game.
payoff associated with consuming a hare. We quantitativeRjfayers’ strategies also “breed true,” meaning that offspring

express the players’ utilities in the payoff matrix of Table I.@re¢ programmed to the same pure strategy as their parents. We
assume that the population is well-mixed, giving each player

TABLE | an equal chance of being paired with any other player.
PAYOFF MATRIX FOR A TWO-PLAYER STAG HUNT. For a symmetric, two-player game where each player must
choose some strategy in the pure-strategy($etlefine the

Player 2
Player 1 3 Y 7 mixed-strategy simpledy as the set of all mixed (random-
S @ 4) (0, 3) ized) strategies ovel/. If U containsm elements, we can
h (3’ 0) (3’ 3) characterize a mixed strategy as a nonnegatrdémensional

vectorx that obeys the constrait ", z; = 1. Each player's
mixed strategy is probabilistically independent of the other

There are two pure-strategy Nash equilibria for the Stagjayer's. The interior ofAy is the set of mixed strategies
Hunt: (s,s) and (h, k). If the players simultaneously huntwhich assign nonzero probability to each pure strategy:
stag or hare, there is no incentive for either player to change . ,
actions. There is also mixed-strategyequilibrium, in which int(Ay) = {x € Ay : 2; > 0,i € {1...m}}.
each player invokes a randomized rule to choose between fhenhe replicator dynamics, we interpret each elemerds the
two pure strategies. We will study the mixed-strategy equbopulation share, or fraction of the population, playing pure
librium in more detail later. Each pure-strategy equilibriungtrategyi. That is, if we randomly draw an individual from
has its benefits. Thés,s) equilibrium is optimal in that it the population described hy, the probability that it will be
maximizes both players’ payoffs. However, since successpogrammed to play is z;. At time ¢, the expected utility of
stag hunting requires the cooperation of the other player, I’isi(-p|ayer who plays pure strategyagainst a random member
averse players may choose instead to hunt hare.(khe) of the population isu(i,x(t)) = Z;”:l (i, j)x;(t), where
equilibrium is regarded as thiesk-dominantequilibrium in the 7(i,5) represents the utility of playing pure strategggainst
sense that the potential gains of deviating from hare huntipgre strategy. As the players reproduce, the population shares
are less than the potential losses: at best, a hare hunter wilkcribed byx(t) vary, and the more successful strategies
increase its utility by one by switching to stag, but at worst, tend to dominate over those which are poorly-adapted to
will decrease its utility by three. Thus, conservative—yet fullyhe evolving community. As the population size approaches
rational—players might choose to hunt hare. infinity we may invoke the law of large numbers, and the

This dichotomy illustrates the fundamental issue of the St@gnamics of the population shares becomes a system. of
Hunt. Obviously, if each player had certain assurance thgitferential equations:
the other player would hunt stag, everyone would coopérate. , ,
However, players do not have such an assurance under the(t) = [u(i,x(8)) — u(x(t),x(t))]i(t),i € {1...m}, (3)
usual model, but must choose their actions independently. Therhis does not contradict the fact that the players must pair off to play the

players’ actions then boil down to how much confidence eaghme. While they do play the game pairwise, each player earns its payoff
individually. The number of offspring it produces is proportional only to its
SInterestingly, it is straightforward to show that if the game is playe@wn payoff, and is entirely independent of the other player’s.
sequentially (i.e. player 1 makes its move, and then player 2—who observeS8We user to represent the utility (or payoff) for when players use only
player 1's choice—moves), mutual stag-hunting becomes the usishgame pure strategies, while represents the expected utility when mixed strategies
perfectNash equilibrium. [31] are involved.



wherewu(x(t), x(t)) is the population’s average expected utilcharacterize the dynamics by examining only the stag hunting
ity, share. Suppressing time arguments, we get

by = [u(s,%) — u(x,%)| 75 = —42% + 722 — 3z, (5)

NE

w(x(t),x(t)) = > _uli,x(t))zi(t)

i=1 While the nonlinearities prevent a closed-form solution, we
LR can easily examine the qualitative behavior of the population.
= ZZ”(Z’J)%@)%’“)' In Figure 3, we show a direction field for the replicator

i=1 j=1

dynamics, which gives the sign of the derivative as a function
Intuitively, (3) tells us that a pure strategy’s population shawf x,. The stationary points, wherg, = 0, occur atz, =
increases at time if its expected utility is higher than the {0,3/4,1}. The point atz, = 3/4 corresponds to the mixed-
average expected utility across the population. It is showgtrategy Nash equilibrium discussed previously. However, the
in [32] that, if the initial conditions satisfk(0) € int(Ay) mixed-strategy equilibrium is not stable; any deviation drives
(all pure strategies are represented in the initial conditions)e dynamics to one of the pure-strategy points, which are
any steady state of the dynamics is a Nash equilibrium in theymptotically stable. We may regard = 3/4 as a boundary
players’ strategies. for the initial conditions of the population: if fewer than 75%

It should be noted that the standard replicator model def the population initially hunt stag, the dynamics quickly
scribes a selection dynamics rather than a mutation dynamiddves stag hunters to relative extinction. If more than 75%
Players do not change strategies under this model; instemitjally hunt stag, hare hunters die out. Although stag hunting
the offspring of players whose strategies are suboptimal gnevails in a predominantly cooperative society, these dynam-
overwhelmed by the offspring of more successful playerigs cannot evolve cooperation from an initially non-cooperative
As time continues, the fraction of the population playingopulation.
suboptimal strategies becomes arbitrarily small.

To account for random factors such as mutation, migratia
and payoff fluctuations, several stochastic replicator mode 0 0.75 1
have been proposed [13, 14, 34, 35]. We examine a model frc... Ls
[14], which augments the standard replicator dynamics lg}/ 3
introducing fixed mutation probabilities into the dynamics. The ~
mutation probabilities are contained in the mati = W], 2) Mutation Dynamics:Using the replicator model in (4),
whereWV;; represents the probability that an individual playln%/e add a probability of mutation into the Stag Hunt dynamics
strategy;j spontaneously switches to strategyl'he mutation . . .
dynamics differs from (3) by the addition of a mutation term the hope that mutation may help gyolve a cogperatlve

population. We assume that the probability of mutating from
ii(t) = [u(z‘,x(t)) _ u(x(t),x(t))]xi(t) stag to hare is identical to the probability of mutation from
m hare to stag. Consequently, we can parameterize the mutation
+ Z(Wijx () — Wizi(t).  (4) matrix by a single mutation probability < o < 1:

Direction field for Stag Hunt replicator dynamics.

J=1 W — 11—« «
The dynamics forr; are altered by adding the rate at which |« 1—al’
players mutate into the population share (described by | dynamics fot:, becomes

Zj W;jz;) and subtracting the rate at which players mutate

out of the population shate; (described by, Wj;z;). When iy = —dxd + Tl — 3z, + Won(1 — z) — Wiezs  (6)
mutation probabilities are zero (W= I), (4) collapses to = —42® + 722 — 3z, + (1 — 22). (7)

the standard replicator dynamics. In general, however, we are ) ) )

forced to give up the theoretical properties guaranteed undéte closed-form expression for the stationary points of the
the standard replicator model. The steady-state behavior of fh@amics is quite unwieldy, so in Figure 4 we plot the direc-

system no longer corresponds to Nash equilibria, regardlesdigp field for the dynamics as a function af and z;. When
initial conditions. mutation probabilities are small, the qualitative behavior of the

solution does not change: there remain two stable stationary
) . points at which nearly all of the population hunts either stag
B. Stag Hunt Replicator Dynamics or hare and an unstable stationary point which defines the
1) Standard DynamicsFor the Stag Hunt, the populationboundary between the stag-hunting and hare-hunting basins
is described by the two-dimensional vecter = (zg,z;,). oOf attraction. The boundary point increases with the mutation
The payoff matrix (Table 1) shows that the payoff for a statpte, suggesting that mutation exacerbates the evolutionary
hunter is four when paired with another stag hunter, and zatifficulties of the Stag Hunt.
when paired with a hare hunter. A stag hunter therefore gaind-or large mutation probabilities, the dynamics differs con-
an expected utility ofu(s,x) = 4xs. Since the utility for siderably, leaving a single stationary point to which the dy-
hunting hare is independent of the other player's actionsamics converges independent of initial conditions. Even with
u(h,x) = 3. The population’s average expected payoff iabsurdly high mutation rates—in which evolution is governed
given byu(x, x) = 422 — 3z, + 3. Sincer, = 1 — x5, we can more by mutation than by payoff—only a minority of the



population hunts stag. Of course, since the population sizecisst of an action, tempered by risk-aversion. The opportunity
infinite, the mutation replicator model defines a deterministaost of hunting hare is the payoff for catching a stag, and the
system as in the standard dynamics. Resultantly, finite poputgportunity cost of hunting stag is the payoff for catching a
tions, with random pairings and mutation, may spontaneousigre.

evolve cooperation from non-cooperation. But the moral of Next, we define the interconnections between the four selves
the story is that, on average, even finite populations rareiyid form the praxeic network. Our model is illustrated in
cooperate if they are large, well-mixed, and composed Bfgure 5. In addition to the vertices corresponding to the
players that are pre-programmed to play a particular purselecting and rejecting selves, we include a vertex which
strategy. corresponds to a binary random varialfle which accounts
for the possibility of failure. It is not necessarily certain, even
if both players hunt stag, that they will succeed. Wedise- 1

to denote that a successful stag hunt is possiblefland 0 to
denote that stag hunting will result in failure.
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To define the rejectability function for each agent, we first
Fig. 4. Direction field for Stag Hunt stochastic replicator dynamics. must define a normalized measure of opportunity costglet

and¢y,, denote the raw utility (in arbitrary units) of consuming

Fmally, as we have already @scussed, thgre exist other eg?ég and hare, respectively. Normalizing, the relative utility of
lutionary models than the replicator dynamics. In Section V] i fori—1.2. The relative
=1,2.

we investigate the effects of more sophisticated evoIutionarrfe,llr,e_hl;mmg ﬁeco-mq% :h¢h,i+¢m,
mechanisms on the Stag Hunt. For the time being, howevt ,'t)/ 0 sta_lg— “’?“_”9 Is therl — ui;.
we focus on the underlying structure of the players’ behavior. GIven this definition, we may lep;, = 4 and ¢», = ?

Our solution, based upon satisficing game theory, affordst?® Payoff values given in Table I, resulting i, = 3

flexible structure for players’ social interactions, increasing@Wever, we further wish to take into account the temperment
the possibility for cooperation even under simple evolutionaflf the players. As discussed in Section IIl, a central issue in
dynamics. the Stag Hunt is to determine what players of differing risk-
aversion levels should do. Therefore, we introduce a parameter,
IV. THE SATISFICING STAG HUNT pi,» which expresses the degree of player risk aversion.
A player with p; = 1 is risk-neutral, a player wittp; > 1

In a two-player Stag Hunt, the set of players X = s \igx averse, and a player with, < 1 is payoff-seekin
{1,2}, and each player has an identical pure-strategy set ' Pay < pay b, g

. : N and tends to ignore risk. We then defipg = p;——1—.
U, = {s,h},i € X. In formulating a satisficing game, weT el tg laver's willinan ¢ ":@k ripi(%ﬁ(b\;-\; I
are free to select an arbitrary structure for the praxeic netwo pus,ul_e €cts a players gness 1o take nsks as well as
e relative utility for stag and hare. A maximally risk-averse

and specify the conditional utilities as we see fit. We are théIa er will hunt stag onlv if success is certain. while a full
constrained to carry out the rules of probability in computins y ff Wi k'u | 9 ﬁ'r'] ? ¢ ' dl n, ¥\Ith| ddu %ll_
the marginal utilities which determine the players’ behavio ayoti-seeking piayer will hunt stag regardiess ot the odds. 10

Thus, the formulation of a satisficing game is a process Gpsure a meaningful game, we still require that both players
' \%m never prefer hare to stag, qr; < 3 for i = 1,2. For

“designing” the conditional structure and examining the resul . o oo
convenience, we will simply refer te; as playeri's risk-

to see if the players’ behavior makes sense. ersion level, which parameterizes the player’s attitudes
First, we give conceptual definitions for the selectabilit?V ! ! vel, which p L 1z . P y udes.
We define each player’s rejectability function as

and rejectability preferences, which we will further clarify as
we mathematically define the players’ social utilities. What {MA for u: = s
19 K3

do we mean by “benefits” and “costs” for the players in Pr, (wi) = (8)
the Stag Hunt? In our treatment, we consider selectability
in terms of successful cooperation. To the extent to whi@n expression of normalized opportunity cost for each action.
stag hunting can be successful, the selecting self prefersTtee cost of hunting stag is the relative hare hunting utility,

hunt stag. We associate rejectability with the raw opportunignd vice versa. Note that the players’ rejecting selves are not

1 — py, forui:h’



dependent on others’ preferences, allowing us to define thalectability function is
marginal utilities directly.

for u; = s|¥s =1
for u; = hl¥s =1
We next define the conditional distribution fak. The Psio. (uil0s) = for u; = s[d, =0 (15)
distribution of this random variable, which is conditioned upon for ul _ h|198 _ 0
both players’ rejecting selves, represents the probability that L
the players will successfully hunt stag. The distributiordpf The simple form of the conditionals allows us to express the
incorporates whether or nét; and R, reject cooperatiomnd marginal selectability as

- o O =

how likely the players are to catch a stag if they cooperate.
We model the latter consideration by definifig< o < 1, D (ui) = o(1 = p1)(1 = p2) foru; =s (16)
which represents the probability of catching a stag given that =~ l—o(1—p)(1—p2) foru;=h

the players cooperate. It may reflect the number of stag in

the environment, the players’ hunting skills, or other external The Satisficing Rectangle
factors. If R, and R, altogether reject hare hunting, then the
players will cooperate and successfully capture a stag Witn
probability o. We characterize this by defining ¢

With all of the social utilities defined, we have completely
aracterized the players’ utilities and can solve for the
pure-strategy profiles that form the satisficing rectangle. As
o, for 9, =1 discussed in Section Il, the satisficing rectangle is the set

Pouiryry (Us|h, h) = | — 0, ford, =0’ ©) of pure-strategy profiles that are simultaneously satisficing

to each player individually. In Figure 6, we set= 1 and

whered; represents the random variable ahdrepresents its plot the regions of the satisficing rectangle as functions of
realization. If, however, either player unilaterally rejects stag, and u,, which specify the players’ attitudes. There are
hunting, the probability of catching a stag is zero, yielding four possibilities. When both players have low risk-aversion,

_ s, s) is the unique strategy profile in the satisficing rectangle.
Pty (sl 8) = Poc sy (O], ) (10) I(f ris)k-aversion is high in both playergp, h) results. In the
LA CHI)) 11) (h,s) and(s, h) regions, however, one player is strongly risk-
0, ford,=1 averse while the other strongly seeks payoff, resulting in one
- 1, ford,=0" (12) player that tries to cooperate while the other does not. On

the boundaries of the four regions, the satisficing rectangle
Notice that the players’ preferences influence the probabiligpntains multiple strategy profiles.

of a random event as discussed in Section II-B. Since the
players’ rejecting preferences affect their willingness to hu
stag, the conditional structure is justifiable. 0.5

We compute the marginal mass function by summing ov.~ |——— AN o (R
the conditional random variables, yielding L e T

po. (Vs) = Z Doy s (Oslon, 02)pm, (W1)pmy (v2) (1) | T\ ea,

vV1,V2 ‘—_ Vo)

_ U(l - .[1’1)(1 - :U'Q)a for ﬂs =1 ) (14) g o0.25f :-_‘ \"
1—0o(1—p1)(l—pe), fords=0 B

From (14) we see that as the risk-aversion levels decrea - Y(n,s)
the probability of a successful stag hunt increases. If bc (5:5) B
players are completely payoff-seeking;(#= p2 = 0), the ERY
probability of a successful stag huntds Either player can TN

reduce the chances for a successful hunt. As the risk-avers PR
1; increases for either player, the probability of a successt E L
stag hunt decreases. 0 025 05

M1

Finally, we define the conditional selectability. Each playerisig. 6. Satisficing rectangle regions for the Stag Hunt.
selectability is influenced by the probability of a successful
stag hunt. The selectability, as discussed earlier, is tied to thelhese last two regions illustrate a unique feature of satisfic-
benefits of cooperation: to the extent that a successful siag models. In théh, s) and(h, s) regions, one player chooses
hunt is possible (& 1), selectability favors stag hunting. Theto hunt hare while the other player, who is aware of the first
higher the probability of successful stag hunting, the mopayer’s increased risk-aversion, nevertheless stands by its post
beneficial it is to hunt stag. The corresponding conditionahd attempts to hunt stag. Such dysfunctional behavior is a



consequence of the structure of the utilities: players’ utilitiedetermined by the attitudes they exhibit rather than the strate-
depend on the others’ attitudes rather than the strategies th@s they play.
play. We may also discussiixed attitudesvhich are probability
We hasten to note that dysfunctional behavior is not a failudgstributions over the attitudes the players exhibit. Denoting
per seof the satisficing model. Dysfunctional societies dehe cardinality ofU; as k;, the mixed attitude of playef
exist in practice, and we may interpret these regions as igngiven by a (normalized and nonnegativig}dimensional
acknowledgement that players with incompatible attitudes magctorz;. The discussion of mixed strategies in Section IlI-A
act incoherently. However, in designing artificial systems, wapplies directly to mixed attitudes. We assume that players’
typically prefer to avoid incoherent behaviors, sociologicallyhixed attitudes are probabilistically independent of each other.
justifiable or not. It seems unreasonable that incompatiblge define player’s mixed attitude simplexA¢. The mixed-
players would continue to exhibit the same attitudes and #@itude space is the Cartesian prod@¢t= A% x A% x --- x
enact the same incoherent strategies. Thus, we introduce Afe A mixed-attitude profile is a vector of mixed attitudes

attitude dynamics, which provides a way for players to adapt= (z;,z,,...,z,) € 0%
their attitudes and avoid such dysfunctional behavior. Since the players’ mixed attitudes are independent, the
probability that a pure-attitude profile is exhibited is equal
V. ATTITUDE DYNAMICS to the product of the associated probabilities. Thus, player

To introduce the attitude equilibrium and the attitude dy"S expected utilityu;(z) when the players exhibit the mixed-
namics, we first embellish the structure of the satisficing ganftitude profilez € © is:

We endow each player with a classical utility function which is n
based solely on the strategy profile that the players implement. ui(z) = Z mi(a) H Ziass (17)
Definition 1: An augmented satisficing ganig a 5-tuple acA i=1

(X, U,ps,..s,m,-n,, A, m(0)). The first three elements arewhere z,,, is the probability with which player exhibits
the set of players, the pure-strategy space, and interdependeRgepure-attitude:;. Now, given complete knowledge of the
function as normal. Additionally, we introduce the puresatisficing game and the other players’ utilities, a player may
attitude spacé\= A; x A, x - - - x A, containing the attitudes considerchangingtheir attitudes to increase expected utility,
that the players may exhibit. These attitudes are parametg#fich motivates the attitude equilibrium.
in the players’ social utilities, and are different for each pefinition 2: An attitude equilibriumis a mixed-attitude
satisficing game. We also introduce(u), a vector payoff profile z* € ©¢ such that
function which describes the raw payoff to the players for
implementing the pure-strategy profiiec U. w2y, 25, 2p) 2 ui(2y, .2, 2,)  (18)

To augment a satisficing game, the players’ attitudes mustfla? eachz, € A¢ and for each € X.

specified as distinct parameters in the players’ social l."t'“t'efhe definition for the attitude equilibrium is essentially iden-
Further, we must be able to construct a raw paypff funcUontI’?al to that of the Nash equilibrium: no player can improve
IS separate from th.e.som_al ut|I|t|<_as. Constructing raw payofly expected utility by exhibiting a different mixed attitude. In
functions may be difficult in practice. In a system of aruﬁma} ct, we may say that an attitude equilibrium is an equilibrium

agents, for example, the agents’ objectives may be SUffICIen?E/players’ attitudes, rather than in their strategies. Because of

complicated that it is impossible to define a simple payo e analogy between the attitude equilibrium and the Nash
function for each agent. In a simple game like the Stag Hurg

L ) . uilibrium, many theoretical results apply.
the extension is straightforward. Each player’'s attitudes arg ) y : o ppy
. . . o . Theorem 1:An attitude equilibrium exists for every aug-
given by the risk-aversion level;, yielding a pure-attitude

space ofA = [0,1/2) x [0,1/2). The payoff functions(u) mentsd sf:?tt_:_sr:‘!cmg glam(T_ with fm'ti atft'tUdi spaces. d
is described by the payoff matrix in Table I. roof: This result relies upon the fact that any augmente

The augmented satisficing game describes a two-step m@?sﬂcmg game defines a classical non-cooperative game

ping from attitudes to payoffs. The social utilities—determine ereX is the setd(?f plgyerﬁA takesﬁtrf]e ro!e oflthegpur_e—
by the interdependence function—map the players’ attitudﬁgathegy spr)]ace ane(a) is the payo unct|'oir11 ' r]l [. ] it
to pure-strategy profilés The payoff function then maps the!S Shown that any non-cooperative game with a finite pure-

pure-strategy profile to raw payoffs. Thus, in an augmentéHategy_ space has ?t least one _Nash _equmbrlum,_ although_ It
ay exist only in mixed strategies. Since an attitude equi-

satisficing game, we may evaluate the raw utility of exhibiting o o . .
g9 Y 4 ﬁ;rlum is simply a Nash equilibrium in the players’ attitudes,

a particular attitude. To simplify notation, we will occasionall . P ) 7
refer tor(a), the payoff to the players for implementing thePne must exist for any augmented satisficing game with a finite

pure-strategy profile determined by the pure-attitude proﬁpéjre—attltude space, even if it exists only in mixed attitudes.
a € A. That is, we may think of an augmented satisficing u

game as a non-cooperative game where players’ payoffs ardlote that e}.flnlte attitude space is a sufflc_lent, but npt nec-
essary, condition for the existence of an attitude equilibrium.
SWe have glossed over the fact that, in general, the satisficing rectaniidleed, for the Stag Hunt, even though the attitude spaces

contains multiple pure-strategy profiles. For the Stag Hunt, this presents s continuous, it is immediate that attitude equilibria exist in
problem because the satisficing rectangle contains a single strategy profile itud In Ei 7 th itud ilibri h
almost everywhere. We will assume that, if necessary, the players emplof dr€ attitudes. In Figure 7, the attitude equilibria are shown

tie-breaking mechanism to select a unique strategy profile. for several values of. If the players’ pure-attitude profile



lies in these regions, there is no incentive for either player thifferential equations:
change attitudes. . .
g () = [r,2(t) — m(a(t).2()] =), (19)

By analogy with the standard formulation:,z(t)) is the
expected payoff for exhibiting the&th attitude against a
random sample from the population andz(t),z(t)) =
> 2. m(4, §)zi(t)z;(t) is the average expected payoff.

Let A4 be the mixed-attitude simplex ol. Just as with
mixed strategies, the interior ok 4 is the set of all mixed
attitudes which gives nonzero probability to each pure attitude.

Theorem 2:Let £(¢,z(0)) denote the solution for the atti-
tude dynamics in (19) at time with initial conditionsz(0).

If z(0) € int(A,4) andlim;_, £(t,2z(0)) = z*, thenz* is an
attitude equilibrium.

Proof: This result follows directly from the fact that
an augmented satisficing game can be thought of as a clas-
sical game where players choose attitudes rather than play
strategies. As mentioned in Section IlI-A, it is shown in [32]
that, when initialized with a mixed strategy on the interior of
the mixed-strategy simplex, any steady state of the replicator
dynamics is a Nash equilibrium. Since an attitude equilibrium
is a Nash equilibrium in players’ attitudes, the result holds for
the attitude dynamics. [ ]
Note that Theorem 2 does not guarantee that a steady-state will
occur, even under well-behaved initial conditions. Rather, if a

Consider the(s, s) region of the satisficing rectangle. Heresteady-state results under suitable initial conditions, it must be
both players receive maximum payoff and there is no incentig@ attitude equilibrium.
for either player to deviate. Notice, however, that only part
of the (h, h) region is an equilibrium. This is because, when
player i's risk-aversiony; is sufficiently low, it is possible
for player j to move the group from mutual hare-hunting ta\. Attitude Dynamics
stag-hunting by lowering its owp;. Even though(h,h) IS 1q apply the attitude dynamics, we first quantize the values
an equilibrium under the classical game, the satisficing moqﬁ}ﬂﬂ may assume. Defind = {1, vs, ..., 0100}, @ set of
gives the players greater influence over each other's behavigiy eyenly-spaced values pfover [0, 1/2). We initialize the
increasing the possibility for cooperation. Asincreases, the ;o5 jation shares according to an exponential distribution
size of the(h, k) equilibrium decreases, disappearing entirely, that most players hunt hare, 9(0) M=) As we

Whgna =1 i i . set\ higher, the initial population is more risk-averse and less
Finally, notice that the dysfunctional regior{s, ) and willing to hunt stag.

(h, 8). do not pontain equilibria. ".1 these regiqns, each pIayerWe use the payoff matrix in Table | to determine the
can improve its payoff by changing; and forcing the game o\, navoff for exhibiting a particular pure-attitude profile
into either (s, s) or (h,h). The attitude equilibrium concept,, _ (1,2) € A x A, If ais in the (h, k) region of
provides a useful juxtaposition of satisficing theory and indjg, satisf7icing rectangle (see Figure 6), tr’1en the payoff to

vidual rationality: the social structure of the satisficing modef,, £« player ist (1, 1u2) = 3. Similarly, the payoffs are

decreases the attraction of mutual hare-hunting, while tpr?m,uz) — 3 and (1, 112) = 0 if a belongs to the(h, s)

introduction of the classical payoff function gives incentivgnd (s, h) regions, respectively. Finally;(i1, 1) = 4o if a

for players to adapt their attitudes and avoid dysfunctiongl’ tr;e(s 5) regi'on7 ' ’

belrf1aV|C|)rS of the(s,lht). andgh’f) regmr:js. s by trial-and Because of the high dimensionality of the state space and the
a largeé popuiation of piayers adapts by trial-an 'errOmeplexity of the utility functions of the players’ preferences,

expenmentatlon, we can model the gvoluﬂon of the playerﬁ is difficult to examine the attitude dynamics analytically. We
attitudes by a straightforward application of the standard repJfé\nnot easily solve for stationary points or say much about the

cator dynamics. We again restrict our attention to _Symmemr%lative sizes of the basins of attraction as we could under the
two-player games. Thus, both players are described by

. . . ch simpler) standard replicator dynamics. Fortunately, we
pure-attitude sed and the payoff functionr(a). We require t{}ﬁu simpler) s repl y Ics. For y, W

o A can specify meaningful initial conditions and numerically ap-
that.A be finite, 'and we denote the cardinality &f as m. proximate the solution to the system of differential equations.
Define a normalized vecta(t) = (21(t), 22(¢), - -+ , zm(¢)),

! I We examine several scenarios where the vast majority of the
wherez;(t) represents the population share exhibiting ifte Jorty

pure attitUd_e' Just as with traqitional games, we may describe\Ne multiply by o in the payoff to account for the probability that the
the dynamics of the population shares by a systemmof players succeed given that they both hunt stag.

0 0.25 0.5
M1

Fig. 7. Attitude equilibrium regions for the Stag Hunt.

VI. RESULTS
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population hunts hare and discuss when it is possible to evol x10
a cooperative community.

First, we examine the dynamics with= 1. We initialize
the population withA = 10, leaving over 85% of the
population hunting hare. Figure 8(a) shows the initial join
probability mass function of the players plotted along with
the four regions of the satisficing rectangle. The vertical axis
shows the joint probability that a pair of players—randomly
selected from the population—will end up at a particular point.
Since the players are drawn randomly and independently from
the infinite population, the joint probability is the product
of the marginal probabilities given by. That is, Pr(u; =
Vis p2 = vj) = 2i(t)z;(1).

Initially, almost all of the joint probability mass is in the
mutual hare-hunting region. The dynamics, however, quickly
pushes the population towards stag-hunting. Within thirty
iterations, almost the entire population is in the mutual stag-
hunting region, the most common values @f;, i;) close @¢t=0
to zero (Figure 8(b)). This is due to the fact that mutual
cooperation is the only attitude equilibrium when= 1. For
any positive, finite\, all steady-state population distributions
will be entirely within the(s, s) region.

Next, we lower o to see how the dynamics changes.
Keeping the initial conditions the same, we let= 0.925,
introducing the(h, h) attitude equilibrium region. Now, over
90% of the initial population hunts hare. This scenario yields a
highly interesting result. The hare hunting equilibrium initially
dominates and the population shares associated with the stag
hunting regions quickly diminish (Figure 9(a)). We notice,
however, that there are small migrations toward the boundaries
of the decision regions. These players still predominantly hunt
hare, but they are less risk-averse. As evolution continues, a
small concentration of players emerges around the boundaries
of the four regions, as illustrated in Figure 9(b). Players in
this region are quite versatile: they hunt hare with risk-averse
players, hunt stag with the payoff-seekers, and only very rarely
will they end up hunting stag with a player who refuses
to cooperate. The concentration of players slowly begins tg. 8. Joint attitude distribution for = 1, A = 10.
dominate, causing more and more players to hunt stag. Figure
9(c) shows the population at= 100. By this time, essentially
all of the population is composed of moderately risk-aversgag.
but versatile players. This truly emergent result provides an
interesting insight in defining “fithess” in a social system. In an
uncertain scenario where both hare-hunting and stag-huntﬁrg
are potentially dominant strategies, the most successful player§or comparison, we also consider the Stag Hunt under the
are those who are flexible—those who can adapt their actisatial evolutionary models discussed in [15, 16, 28—30], which
to the preferences of those around them. have been proven effective in promoting cooperation in social

If we lower o much below 0.925, the dynamics fails dilemmas. In [15], the Stag Hunt is specifically studied in
to evolve the society toward cooperation for these initidérms of the relative benefit for mutual stag hunting. Here,
conditions. This happens for two reasons: (1) the size of tive examine the question in terms of initial population: what
(s,s) region becomes smaller with decreasingand (2) the fraction of the population must initially hunt stag in order for
expected payoff for exhibiting attitudes in the, s) region cooperation to flourish?
decreases. However, even under the unfavorable conditionSpatial evolutionary models are described by undirected
shown where a pair of stag hunters might fail, the satisficirggaphs, where each vertex represents a player, and each edge
model can evolve cooperation from noncooperation. Fewapresents a social link between two players. As with the
than 10% of the initial population are required to hunt stagplicator dynamics, each player is pre-programmed to play a
in the satisficing model, a significant improvement over thearticular pure strategy. But, in the spatial dynamics, a player
standard replicator model, where over 75% must initially humiay change strategies depending on the relative fitness of

(b) t =30

Spatial Evolutionary Models
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its neighbors. At each generation, players accrue payoff pgpulation unless a solid majority of players initially coop-
playing a single instance of the game with each neighbor. Afterate.

play, each player randomly selects a neighbor (possibly itself)

with a probability proportional to the payoff accrued in the VII. CONCLUSION

current previous round, adopting that player's pure-strategyin this paper, we have extended the theory of satisficing
for the next round. games by incorporating elements from non-cooperative game

We may interpret the spatial dynamics as an imitation dyneory. We augment the satisficing game with a standard utility
namics, where a player imitates the behavior of its neighbofanction that gives the raw payoff to a player for exhibiting
or as a death-birth dynamics, where players “die” and giysarticular attitudes. The augmented framework results in an
rise to a new generation whose strategies depend on #etude equilibrium in which no single player can improve
neighbors’ relative fitness. Regardless of interpretation, fag raw payoff by exhibiting different attitudes. The attitude
fully connected graphs, the dynamics converges to the standag@ilibrium combines the merits of both satisficing and non-
replicator dynamics as the population size becomes large adperative game theory. The conditional utility structure
the time between generations becomes small. allows players to consider others’ preferences in making

In the Stag Hunt, letV, (i) and Ny, (i) be the set of player decisions, and the standard payoff function allows players to
i's neighbors (including itself) that hunt stag and hare, respeadapt their attitudes to avoid dysfunctional behavior.
tively, and letP(7) denote the payoff earned by playieturing The non-cooperative elements of augmented satisficing
a single generation. Thus, letting denote the cardinality of games allow us to employ evolutionary game theory, where
a set, playeri earnsF' (i) = 4(|N,(i)| — 1) if it hunts stag, adaptation occurs by trial-and-error. We define an attitude
and F(i) = 3(|Ns(i)| + |Nn(i)| — 1) if it hunts haré® Next, dynamics by applying the standard replicator dynamics to the
define (i) = >- cn. iy £'(J) and Fp (i) = 3>, n, ;) F(4), attitudes exhibited by the players, rather than the strategies
the respective sum payoff of stag- and hare-hunting neighlay. The attitude dynamics models the evolution of players’
bors. Finally, since a neighbor is selected with a probabilittitudes according to the game and the attitudes of other
proportional to its fitness, playérhunts stag during the nextplayers. Given appropriate initial conditions, the steady state
generation with probabilityFs (i) /(Fs(i) + Fr(1)). of the dynamics is an attitude equilibrium.

The spatial dynamics is highly dependent on the structureWe have presented a satisficing model for the Stag Hunt,
of the graph used to model the population. We construct cairgame under which it is difficult to evolve a cooperative
graphs according to so-called “scale-free” models [36], population. Under the augmented satisficing framework, dys-
which the number of neighbors follows a power-law distrifunctional behaviors vanish: the attitude equilibria lie entirely
bution. If K; is the random variable describing the numbewithin the regions where players either mutually hunt stag or
of neighbors for playeri, then eachk; is identically and mutually hunt hare. Also, the attitude dynamics facilitates the
independently distributed according 4@, (k) o k7 for some evolution of cooperation by introducing strategic complexity
constanty. This distribution describes a heterogeneous, ainio the dynamics. Instead of simply choosing whether or not
realistic, model of social connectivity: many players have onlp hunt stag, a player chooses a risk-aversion level, which
a few neighbors, while a few players are heavily connected governs its interaction with the rest of the population. Under
the rest of the population. Scale-free models have been shawide variety of circumstances, the dynamics encourages the
to improve the possibility of cooperation in social dilemmapopulation to become less risk averse, allowing cooperation to
[15]. flourish. Our results significantly outperform other evolution-

To evaluate the performance of the spatial dynamics, & methods, including classic replicator models and recently-
construct graphs withs0 players, an average number ofroposed spatial evolutionary models.
connections per player = E(K), and an initial fraction of ~ Finally, the theoretical properties that borrow from non-
the population:,(0) hunting stag. For eadx,(0), z) pair, we cooperative game theory suggest that our results will general-
construct ten graphs, each of which is seeded with ten initiae to large classes of games. Specifically, any game with finite
populations. After running the dynamics 8000 generations, attitude spaces must have an attitude equilibrium, and any
we record the steady state behavior by averaging the fractigoperly initialized) steady state of the attitude dynamics is
of stag hunters over an additions)0 generations. Figure 10 an attitude equilibrium. While we cannot, of course, guarantee
shows the average results of our trials. For moderately I@ay specific results, we may expect that the qualitative benefits
values ofz, the spatial dynamics considerably improves thef our approach will pertain to other games.
possibility for cooperation: a sizeable fraction of the steady-
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