Structure-activity relationships for in vitro diuretic activity of CAP2b in the housefly

Ronald J. Nachmana,*, Geoffrey M. Coastb

a Areawide Pest Management Research, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, USA
b School of Biological and Chemical Sciences, Birkbeck (University of London), London WC1E 7HX, UK

1. Introduction

It is well established that neuropeptides are key factors in controlling primary urine production in Malpighian tubules (CRF-like peptides, insect kinins, CAPA peptides) and fluid reabsorption from the hindgut (ion transport peptide (ITP)) [1,29]. CAP2b (pELYAFPRV-NH2), a CAPA peptide (also included in the literature as a member of the periviscerokinin (PVK) family), was first identified as a cardioacceleratory factor in the moth Manduca sexta [11]. CAPA peptides, including CAP2b, demonstrate diuretic effects on the Malpighian tubules of a number of flies, including the fruit fly Drosophila melanogaster, the housefly Musca domestica (M. domestica), and the stable fly Stomoxys calcitrans [1,2–5,9,10,15,18,21,22,24–26,28]. By contrast, bioassays on the bug Rhodnius prolixus with Manduca CAP2b [23,29] indicated that native CAPA peptides might reduce secretion by Malpighian tubules and thus show antidiuretic effects. These peptides are putative hormones typical of the neurosecretory system in the abdominal ventral nerve cord (VNC) of insects. The CAPA gene, which encodes for two or more CAP2b/PVKs and a single pyrokinin (PK), is known from a number of holometabolous insects, including D. melanogaster [12,13] and M. sexta [14]. Expressed in median neurosecretory neurons of abdominal ganglia, these putative peptide hormones may be released into the hemolymph via perisympathetic organs (PSOs) which are segmentally reiterated neurohemal organs of the abdominal ganglia [7,8]. Larval PSOs of cyclorrhaphous Diptera, however, become incorporated into...
Structure-activity relationships for in vitro diuretic activity of CAP2b in the housefly

U.S. Department of Agriculture, Areawide Pest Management Research, 2881 F/B Road, College Station, TX, 77845

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

14. ABSTRACT

see report

15. SUBJECT TERMS
the dorsal ganglionic sheath [20,30,31] during metamorphosis. Direct analysis of abdominal dorsal sheath tissues via MALDI-TOF/TOF mass spectrometry led to the identification of CAP2b/PVK peptides native to the housefly M. domestica [18,26,32] and three other species of flies [18,19]. The housefly CAP2b/PVK sequences were recently determined to be AGGTGLYAFPRVa (Musdo-CAP2b/PVK-1) and ASLFNAPRVa (Musdo-CAP2b/PVK-2) [18]. The octapeptide CAP2b shares a common C-terminal heptapeptide sequence (LYAFPRVa) with the most active housefly CAP2b sequence, Musdo-CAP2b-1, revealing the likely reason that the Manduca peptide demonstrates relatively potent diuretic activity in the heterologous housefly Malpighian tubule fluid secretion bioassay.

In this study, we use Manduca CAP2b as a model of Musdo-CAP2b-1 and evaluate a series of truncated and Ala-replacement CAP2b analogs in a housefly Malpighian tubule fluid secretion bioassay to identify the active core and those residues most critical to activity.

2. Materials and methods

2.1. Insects

Housefly (M. domestica) larvae were obtained from a commercial fish bait supplier. They were held in the laboratory until they pupated and were then moved to a constant temperature room (28 °C; 12 L:12 D light:dark cycle). Flies that emerged within 12 h of one another were kept as separate age cohorts and provided with water and sucrose ad libidum. All of the experiments described in this paper used 3–4 day-old adult female flies.

2.2. Peptide synthesis

The CAP2b analogs were synthesized via Fmoc methodology on Rink Amide resin (Novabiochem, San Diego, CA) using Fmoc protected amino acids (Advanced Chemtech, Louisville, KY) on an ABI 433A peptide synthesizer (Applied Biosystems, Foster City, CA) under previously described conditions [17]. Crude products were purified on a Waters C18 Sep Pak cartridge and a Delta Pak C18 reverse-phase column (8 mm × 100 mm, 15 μm particle size, 100 Å pore size) on a Waters 510 HPLC controlled with a Millennium 2010 chromatography manager system (Waters, Milford, MA) with detection at 214 nm at ambient temperature. Solvent A = 0.1% aqueous trifluoroacetic acid (TFA); Solvent B = 80% aqueous acetonitrile containing 0.1% TFA. Conditions: initial solvent consisting of 20% B was titrated acid (TFA); Solvent B = 80% aqueous acetonitrile containing ambient temperature. Solvent A = 0.1% aqueous trifluoroacetic acid made to 0.01% TFA. WatPro retention times: Manse-CAP2b[2-8], 7.0 min; Manse-CAP2b[3-8], 8.0 min; Manse-CAP2b[4-8], 11.5 min; Manse-CAP2b[5-8], 10.5 min; Manse-CAP2b[Ala1], 15.5 min; Manse-CAP2b[Ala2], 15.0 min; Manse-CAP2b[Ala3], 13.5 min; Manse-CAP2b[Ala4], 16.5 min; Manse-CAP2b[Ala5], 11.0 min; Manse-CAP2b[Ala6], 5.5 min; Manse-CAP2b[Ala7], 15.0 min. Amino acid analysis was carried out under previously reported conditions [17] and used to quantify the peptide and to confirm identity, leading to the following analyses: Manse-CAP2b[2-8]: A[1.0], F[1.0], L[1.0], P[1.0], R[1.0], Y[1.0], V[1.0]; Manse-CAP2b[3-8]: A[1.0], F[1.0], P[1.0], R[1.0], Y[1.0], V[1.0]; Manse-CAP2b[4-8]: A[0.8], F[1.0], P[1.0], R[1.0], V[0.9]; Manse-CAP2b[5-8]: F[1.0], P[1.0], R[1.0], V[1.0]; Manse-CAP2b[6-8]: A[1.9], F[1.0], L[1.0], P[1.0], R[1.0], Y[1.1], V[0.9]; Manse-CAP2b[Ala1]: A[2.0], E[0.9], F[1.0], P[1.0], R[1.0], V[0.9]; Manse-CAP2b[Ala2]: A[2.0], E[0.9], F[1.0], L[1.0], P[1.0], R[1.0], V[0.9]; Manse-CAP2b[Ala3]: A[2.0], E[1.0], F[1.0], L[1.0], P[1.0], R[1.0], V[0.9]; Manse-CAP2b[Ala4]: A[2.0], E[0.9], F[1.0], L[1.0], P[1.0], R[1.0], V[0.9]; Manse-CAP2b[Ala5]: A[2.1], E[0.7], F[1.0], L[1.0], P[1.0], R[1.0], Y[0.8], V[1.0]; Manse-CAP2b[Ala6]: A[2.0], E[1.0], F[1.0], L[1.0], P[1.0], R[1.0], Y[1.0].

The identities of the peptide analogs were confirmed via MALDI-TOF-MS on a Kratos Kompact Probe MALDI-TOF MS machine (Kratos Analytical, Ltd., Manchester, UK) with the presence of the following molecular ions (M + H+): Manse-CAP2b[2-8], 864.9 [M + H+] ; Manse-CAP2b[3-8], 751.5 [M + H+]; Manse-CAP2b[4-8], 588.6 [M + H+]; Manse-CAP2b[5-8], 517.6 [M + H+]; Manse-CAP2b[6-8], 936.8 [M + H+]; Manse-CAP2b[Ala1], 933.8 [M + H+]; Manse-CAP2b[Ala2], 883.9 [M + H+]; Manse-CAP2b[Ala3], 899.5 [M + H+]; Manse-CAP2b[Ala4], 949.3 [M + H+]; Manse-CAP2b[Ala5], 890.6 [M + H+]; Manse-CAP2b[Ala6], 947.7 [M + H+].

2.3. Isolated housefly Malpighian tubule preparations

Fluid secretion from isolated housefly Malpighian tubules was measured using the “Ramsay assay” as previously described [10]. Tubules were removed from 3 to 4 day post-emergent adult female flies. Flies were dissected under Musca saline [10] and both anterior and posterior tubules were transferred to small (10 μl) drops of bathing fluid (a 1:1 mixture of saline and Schneider’s Drosophila medium) beneath water-saturated liquid paraffin in a Sylgard™ lined Petri dish. The tubules were allowed to equilibrate for 1 h before being challenged with test peptides. Urine escaped from the cut end of the tubule, which was pulled out into the liquid paraffin. Drops of urine were collected at 15 min intervals and their diameter (d) measured as they rested on the Sylgard base of the Petri dish using a Wild digital (MMS235) eyepiece micrometer. Urine volume was calculated as πd3/6 and the rate of secretion obtained by dividing the secreted volume by the collection period. Data were normalized by expressing the increase in fluid secretion as a percentage of the response to 10 nM Musdo-K [16], which was added to all tubules at the end of each experiment. Dose-response curves were prepared using the computer program GraphPad Prism version 4.02 (GraphPad Software, San Diego, CA).

3. Results

A list of the fluid secretion activity of the two CAP2b/PVK peptides native to the housefly, Manse-CAP2b, Manse-CAP2b
truncated analogs, and a Manse-CAP2b Ala scan series of analogs on housefly Malpighian tubules is presented in Table 1. The fluid secretion activity of Manduca CAP2b (EC50 = 53 nM) lies midway between that of the native Musdo-CAP2b/PVK-1 (EC50 = 9 nM) and Musdo-CAP2b/PVK-2 (EC50 = 102 nM); and thus can serve as a reasonable model for a structure-activity relationship study of CAP2b/PVK peptides in the housefly. Interestingly, removal of the pE residue on the N-terminus of Manse-CAP2b leads to the C-terminal heptapeptide sequence common to both Manse-CAP2b and Musdo-CAP2b-1; and the diuretic activity of this fragment Manse-CAP2b[2-8] (EC50 = 8 nM) matches that of Musdo-CAP2b-1 (EC50 = 9 nM). The increase in activity observed with the loss of pGlu1 likely arises from the fact that it now more closely matches the sequence of the native peptide. Removal of another amino acid residue from the N-terminus, as in Manse-CAP2b[3-8] leads to a large drop of an order of magnitude from the parent Manduca CAP2b peptide. Removals of a third (Manse-CAP2b[4-8]) and fourth (Manse-CAP2b[5-8]) residue lead to analogs that retain only trace activity. In the case of the Ala scan series, replacement of the Arg7 (Manse-CAP2b[Ala7]) led to an analog with no significant activity, indicating that Arg7 is therefore the most critical of residues. Replacement of Val8 (Manse-CAP2b[Ala8]; EC50 = 3500 nM) led to a large drop in activity (70-fold) in comparison with the parent peptide, and demonstrated retention of only 45% of the maximal response of Manse-CAP2b and the native housefly peptides. Residues pGlu1 (Manse-CAP2b[Ala1]; EC50 = 23 nM), Tyr3 (Manse-CAP2b[Ala3]; EC50 = 33 nM), Phe5 (Manse-CAP2b[Ala5]; EC50 = 115 nM), and Pro6 (Manse-CAP2b[Ala6]; EC50 = 89 nM) would appear not to be critical for housefly diuretic activity as the resulting analogs were either a little more or a little less active. While Manse-CAP2b[Ala3] demonstrated a maximal response of 70%, this value is not statistically different from that of the parent peptide. Leu2 would appear to be a semicritical residue, as Manse-CAP2b[Ala2] (EC50 = 373 nM), proved to be about six-fold less active.

Table 1 – Fluid secretion activity of CAP2b/PVK peptides and analogs on housefly (M. domestica) Malpighian tubules

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
<th>EC50 (nM) (95% CL)</th>
<th>Maximal response (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musdo-CAP2b/PVK-1</td>
<td>AGGTSGLYAFPRVa</td>
<td>9 (7.2–11.1) [6]</td>
<td>100</td>
</tr>
<tr>
<td>Musdo-CAP2b/PVK-2</td>
<td>ASLFNAPRVa</td>
<td>102 (96–109) [6]</td>
<td>100</td>
</tr>
<tr>
<td>Manse-CAP2b</td>
<td>pELYAFPRVa</td>
<td>53 (39–72) [6]</td>
<td></td>
</tr>
<tr>
<td>Manse-CAP2b[2-8]</td>
<td>LYAFPRVa</td>
<td>8 (3–22)</td>
<td>100</td>
</tr>
<tr>
<td>Manse-CAP2b[3-8]</td>
<td>YAFPRVa</td>
<td>428 (298–613)</td>
<td>100</td>
</tr>
<tr>
<td>Manse-CAP2b[4-8]</td>
<td>AFPRVa</td>
<td>Tr</td>
<td></td>
</tr>
<tr>
<td>Manse-CAP2b[5-8]</td>
<td>FPRVa</td>
<td>Tr</td>
<td></td>
</tr>
<tr>
<td>Manse-CAP2b[Ala1]</td>
<td>pELYAFPRVa</td>
<td>23 (11–46)</td>
<td>100</td>
</tr>
<tr>
<td>Manse-CAP2b[Ala2]</td>
<td>pELYA AFPRVa</td>
<td>373 (255–544)</td>
<td>80</td>
</tr>
<tr>
<td>Manse-CAP2b[Ala3]</td>
<td>pELYAFPRVa</td>
<td>33 (10–105)</td>
<td>100</td>
</tr>
<tr>
<td>Manse-CAP2b[Ala4]</td>
<td>pELYAFPRVa</td>
<td>115 (27–485)</td>
<td>70</td>
</tr>
<tr>
<td>Manse-CAP2b[Ala5]</td>
<td>pELYAFPRVa</td>
<td>89 (62–129)</td>
<td>100</td>
</tr>
<tr>
<td>Manse-CAP2b[Ala6]</td>
<td>pELYAFPRVa</td>
<td>Inactive</td>
<td></td>
</tr>
<tr>
<td>Manse-CAP2b[Ala8]</td>
<td>pELYAFPRVa</td>
<td>3500 (2250–5500)</td>
<td>45</td>
</tr>
</tbody>
</table>

* Values are derived from dose–response curves based on data points derived from six replicates.

4. Discussion

The evaluation of the CAP2b sequence from M. sexta, Manse-CAP2b, in heterologous Malpighian tubule fluid secretion assays in fruit flies and houseflies [3,5,18] established that this family of peptides demonstrated diuretic activity in addition to cardioacceleratory activity. Seven of the eight residues of Manse-CAP2b are identical with the most potent of the native housefly CAP2b/PVK peptides, Musdo-CAP2b/PVK-1. As can be seen in Table 1, the EC50 for housefly Malpighian tubule fluid secretion of Manse-CAP2b is midway between that of the two CAP2b/PVK peptides native to the housefly; and thus can serve as a relevant model sequence to determine a structure-activity relationship profile. The C-terminal fragment Manse-CAP2b[3-8] retains a significant portion of the Malpighian tubule fluid secretion activity of the parent peptide (Table 1). The active core, the minimum sequence required to retain significant diuretic activity in the housefly, is therefore the C-terminal hexapeptide. However, full activity requires the C-terminal heptapeptide fragment (Manse-CAP2b[2-8]), which is more active than the parent Manse-CAP2b and equipotent with the native Musdo-CAP2b-1 (Table 1). The results of the Ala-replacement series identify two residues, Arg7 and Val8, as critical for diuretic activity. The residue Leu2 is semicritical; whereas all others are not critical. Not surprisingly, the critical (R7 and V8) and semicritical (L2) residues are among the most conserved among the CAP2b/PVK family throughout arthropods. The most conserved residues among the CAP2b/PVKs are the C-terminal PRVamide as well as a Leu at position 7 (equivalent to Leu2 in Manse-CAP2b) from the C-terminus [27]. The structure-activity relationship profile determined in this study can aid in the design and development of peptidomimetic agonist/antagonist analogs of this diuretic peptide family with enhanced biostability and bioavailability as tools for arthropod endocrinologists and as potential pest management agents capable of disrupting the water balance in target insects.
Acknowledgments

This study was supported with a Collaborative Research Grant (#LST.CLG.979226) from the North Atlantic Treaty Organization (NATO) (RJN) and a Binational Agricultural Research and Development Grant (BARD #IS3356-02) (RJN), and a grant provided by the USDA/DOD DWFP Research Initiative (#0500-32000-001-01R) (RJN). In addition, we acknowledge the capable technical assistance of Allison Strey, Pawel Zubrzan and Nan Pryor of the USDA Areawide Pest Management Research Unit, Southern Plains Agricultural Research Center.

References

