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Abstract

The ability to produce high-resolution images of the Earth’s surface from space

has flourished in recent years with the continuous development and improvement

of satellite-based imaging sensors. Earth-imaging satellites often rely on complex

onboard navigation systems, with dependence on Global Positioning System (GPS)

tracking and/or continuous post-capture georegistration, to accurately geolocate ground

targets of interest to either commercial and military customers. Consequently, these

satellite systems are often massive, expensive, and susceptible to poor or unavail-

able target tracking capabilities in GPS-denied environments. Previous research has

demonstrated that a tightly-coupled image-aided inertial navigation system (INS),

using existing onboard imaging sensors, can provide significant target tracking im-

provement over that of conventional navigation and tracking systems. Satellite-based

image-aided navigation is explored as a means of autonomously tracking stationary

ground targets by implementing feature detection and recognition algorithms to accu-

rately predict a ground target’s pixel location within subsequent satellite images. The

development of a robust satellite-based image-aided INS model offers a convenient,

low-cost, low-weight and highly accurate solution to the geolocation precision prob-

lem, without the need of human interaction or GPS dependency, while simultaneously

providing redundant and sustainable satellite navigation capabilities.
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Satellite-based Fusion

of

Image/Inertial Sensors

for

Precise Geolocation

I. Introduction

This research outlines the methodology of integrating the imaging sensors of a

satellite-based Earth observation system with the inertial sensors of the satel-

lite’s navigation system in order to accurately locate a ground target of interest and

autonomously track that target over an extended period of time. The image-aided

satellite navigation system design uses conventional feature detection and recognition

methods in order to provide robust, rapid target tracking capability without the need

for additional vehicle-based or ground-based hardware or dependency on external

navigation reference sources.

1.1 Background

As early as the mid-1950s, the desire to explore the space beyond our skies led

to the development of man-made satellites. Ever since the first of these satellites, the

Soviet-built Sputnik 1, was launched in 1957, scientists, astronomers, and engineers

were eager to harness the vast capabilities of the space environment. These efforts

paved the way for space-based breakthroughs in communications, weather, imaging,

and manned space flight.

In particular, the numerous applications involving terrestrial imagery from space

have led to high demands in the areas of agriculture, geology, education, intelligence,

and warfare. At any one point in time, day or night, ground images are continuously

captured from space by observation satellite systems orbiting the Earth. Often, a

ground target of interest’s geographic location (referred to as the target’s “geoloca-

1



tion”) is desired; for example, for commercial or military purposes. However, the

ability to quickly, accurately and efficiently detect and track a ground target from

space, without the need of sophisticated, costly, or deniable systems, has been an

ongoing challenge of the space community.

1.2 Problem Definition

Current Earth-imaging satellite systems often rely on either external navigation

reference sources, such as the Global Positioning System (GPS), or continuous post-

capture georegistration, to provide precise ground target geolocation. Often, these

current imaging system designs are massive, expensive, sluggish, and jammable. An

additional risk to highly complex systems is the increased susceptibility to unforeseen

hardware-related anomalies. Since high image resolution requirements must be met in

order to track many man-made targets, conventional satellite databases often demand

high memory capacity. The resulting image processing time is often impractical.

Additionally, if routine hardware calibration is required onboard the satellite in order

to maintain navigation accuracy, the resulting image capturing performance could

degrade if such a calibration where to inhibit the imaging sensor’s ability to locate

the ground target.

The motivation of this research is to develop an inexpensive, light-weight, highly

accurate image-aided inertial satellite navigation system without the need for human

interaction or dependence on external navigation reference systems, such as GPS.

Image-aided geolocation algorithms are of interest for both military and civilian space

applications in which weight, cost, and time savings are of interest and/or the denial of

GPS is of concern. Any civilian or military satellite system producing digital imagery

would benefit from a robust, low-cost, autonomous satellite system providing precise

geolocation capabilities.

2



1.3 Scope

Satellite-based image-aided navigation is explored as a means of autonomously

tracking a stationary ground target within subsequent satellite images and using fea-

ture recognition algorithms to predict the target’s pixel location within each image.

In order to make this problem tractable, certain assumptions are made. Although the

effects of atmospheric turbulence are covered in detail, weather and lighting conditions

are assumed to be favorable at the location of interest. For example, environmental

limitations such as precipitation, fog, cloud cover, and poor sunlight conditions are

not covered. Image quality issues, including ego-motion disparity and motion blur

among subsequent images are also not specifically identified in this research. Also,

for simplicity, a spherical Earth model of constant elevation is assumed.

1.4 Research Contributions

Many contributions are made on behalf of this research. These contributions

are primarily defined in Chapter II and implemented in Chapter III of this thesis, and

are listed here in their respective order of appearance.

The extended Kalman filter is utilized to efficiently estimate the state of the non-

linear dynamic satellite navigation system from a series of noisy measurements [12,13].

A background in orbital mechanics, specifically, the systematic transformation from

geometrical orbital parameters to satellite position and velocity vectors, provide nom-

inal satellite trajectory modeling [15, 22]. A detailed understanding of the turbu-

lent and refractive effects on an image propagating through the atmosphere provides

insight to realistic image system modeling [1, 5, 21]. The primary contribution to

image-aided navigation theory demonstrates that tightly-coupled image-aided inertial

navigation can provide significant target tracking improvement over that of conven-

tional navigation systems [28,30]. Image matching theory utilized the sum-of-squared-

difference algorithm, in which a target with unique features can be tracked among a

series of pixelated images by measuring the correspondence between images [3, 16].

3



Finally, the development of the stochastic projection method provided a means of ac-

curately and optimally predicting a target’s pixel location within in a series of images

by limiting the number false matches and constraining the feature correspondence

search [28,30].

1.5 Methodology

The thesis is organized as follows:

• Chapter II : Chapter II provides the detailed mathematical background of the

image/inertial sensor integration problem. The first sections of this chapter

cover mathematical notation, reference-frame declarations, coordinate transfor-

mations, inertial sensor design, and Kalman filtering. The following sections

review orbital dynamics, specifically, Newtonian and Keplerian theory, satellite

trajectory transformation, and orbital classifications. Further sections discuss

optical modeling, spatial coherence, and imaging through turbulence, specifi-

cally, the effects of image jitter and horizontal light refraction displacement.

The following sections cover image-aided navigation theory, image matching

techniques, and georeferencing theory. The final section of this chapter covers

the stochastic projection method.

• Chapter III : Chapter III covers the methodology of this research, implementing

the theories covered in Chapter II to build a satellite-based image-aided nav-

igation system. The first sections develop the orbital model, satellite vehicle

model, and imaging system model. The next sections assign noise modeling

with respect to atmospheric turbulence, image sensors, satellite trajectory, and

optical measurements. The following sections develop the truth model with re-

spect to the ground target and implement image matching and georeferencing

techniques to provide an accurate target location error prediction. The final

section of this chapter is the implementation of the extended Kalman filter.

4



• Chapter IV : Chapter IV supports the Monte Carlo results and observations of

the image-aided satellite navigation system. Two distinct profiles, one satellite

in a low-Earth orbit with high image resolution, and the other in a high-Earth

orbit with low image resolution, are produced. The respective vehicle position,

vehicle velocity, vehicle attitude, and target location errors are analyzed in detail

in the following sections, both with and without the introduction of image-aided

target predictions.

• Chapter V : Chapter V provides conclusions and closing remarks regarding the

image/inertial integrated navigation system, as well as potential areas for future

exploration in the subject.

5



II. Background

This chapter reviews the mathematical and conceptual background required to

fully develop an image-aided navigation system of an orbiting satellite. First,

a definition of the mathematical notation used throughout the document will be

presented, followed by reference frame definitions. A basic understanding of inertial

navigation will follow. Next, a review of both linear and nonlinear Kalman filtering

methods will be discussed, specifically, the Extended Kalman Filter (EKF). Orbital

mechanics required to define a satellite’s orbital path, as well as the concepts behind

satellite imaging will be described. Finally, an in-depth discussion of imaging through

atmospheric turbulence will be presented and analyzed.

2.1 Mathematical Notation

The mathematical notation to be used throughout this paper is listed in Ta-

ble 2.1.

2.2 Inertial Navigation

In this section, basic concepts of an inertial navigation system (INS) are dis-

cussed, including navigation reference frames, coordinate frame transformation, and

functionality and errors associated with strapdown INS sensors.

2.2.1 Basic Concepts . The concept of navigation as a means of determining

direction from one place to another has been used for centuries. Navigation can be

as simple as following directions on a map by determining position based on one’s

surroundings. Navigation systems are often developed for vehicles in order to plot,

ascertain, and direct the vehicle through land, air, sea or space. One navigation

technique uses fixed stars to define a reference frame fixed in space. This reference

is commonly referred to as the “inertial” reference frame. Given knowledge of the

motion of the Earth and the time of the observation, the navigator is able to use the

celestial measurements to define his or her position on the surface of the Earth [24].

6



Table 2.1: Defined mathematical notation

Type Description Example

Scalars Scalar variables are designated with italic type x or X

Vectors Vectors are denoted by lower case bold type x

Matrices Matrices are denoted by uppercase bold type X

Transpose The transpose of a vector or matrix is desig-
nated with a superscript capital letter T

xT or XT

Estimated Variables Estimates of random variables are identified
with the hat character

x̂

Calculated Variables Variables containing error are denoted with
the tilde character

x̃

Direction Cosine Ma-
trix (DCM)

DCMs are designated by a bold capital letter
C with a subscript designating the originat-
ing coordinate frame and a superscript as the
resulting coordinate frame

Cb
a

Frame of Reference Vectors expressed in a specific reference frame
are annotated with a superscript letter

ra

2.2.2 Reference Frames. In order to express inertial navigation information

in standardized coordinates, fundamental reference frames must be defined relative

to an origin and orthogonal axes. Descriptions of the reference frames discussed are

as follows, based on those described in Refs. [24] and [25]:

• The True Inertial Frame (I-frame) is a theoretical reference frame where New-

ton’s laws of motion apply; therefore, it has no predefined origin or orientation.

• The Earth-centered Inertial Frame (i-frame), depicted in Figure 2.1, is an or-

thogonal reference frame with an origin at the Earth’s center of mass and a

non-rotating x, y and z axes with respect to fixed stars. For terrestrial naviga-

tion purposes, the Earth-centered inertial frame can be considered an inertial

reference frame.

• The Earth-centered Earth-fixed Frame (e-frame), depicted in Figure 2.2, is an

orthogonal reference frame whose origin is also located at Earth’s center of
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mass. Its x, y and z axes are fixed with respect to the Earth, with the x axis

on the equatorial plane pointing toward the Greenwich meridian, the y axis on

the equatorial plane pointing toward 90 degrees east longitude, and the z axis

aligned with the north pole.

• The Vehicle-fixed Navigation Frame (n′-frame), depicted in Figure 2.1, is an

orthogonal reference frame with an origin located at a predefined point on a

vehicle (usually the vehicle’s center of gravity). Its x, y and z axes point in the

north, east and down (NED) directions relative to the Earth, respectively. For

standardization, down is defined as the direction of the local vertical component

of the Earth’s gravity vector.

• The Earth-fixed Navigation Frame (n-frame), depicted in Figure 2.2, is an or-

thogonal reference frame with an origin located at a predefined location on the

Earth (i.e., Earth’s surface). Similar to the n’ -frame, its x, y and z axes point

in the NED directions relative to the Earth, respectively (where down is defined

as the direction of the local vertical component of Earth’s gravity vector).

• The Body Frame (b-frame), depicted in Figure 2.3, is an orthogonal reference

frame aligned with the roll, pitch and yaw axes that point out of a vehicle’s

nose, right wing and bottom, respectively. Vehicle strapdown inertial navigation

systems are referenced in the b-frame. For an orbiting satellite, it is assumed

that this frame is equivalent to the n-frame.

• The Camera Frame (c-frame), depicted in Figure 2.4, is an orthogonal reference

frame rigidly attached to a camera, with origin at the camera’s optical center. Its

x, y and z axes are oriented up, to the right, and out of the camera, respectively.

It will be assumed in this research that the camera is rigidly mounted onto the

satellite; therefore, the c-frame will be equivalent to the n-frame.

2.2.3 Coordinate Transformations. Coordinate transformations describe the

relationship between two reference frames and are classified as either three- or four-

parameter transformations [19,24,25]. In this research, this coordinate transformation
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Figure 2.1: Inertial, Earth and Navigation Reference Frames [25].

Figure 2.2: Earth-centered, Earth-fixed Navigation Reference Frame [25].
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Figure 2.3: Body Reference Frame [24]. Figure 2.4: Camera Reference Frame [25].

will be the direction cosine matrix (DCM). Since three-parameter coordinate trans-

formations contain a singularity at a pitch angle of 90◦, the use of the four-parameter

DCM coordinate transformation will be used.

The DCM is a three-by-three matrix representing the unit vector of the origi-

nating frame projected along the axis of the resulting frame. The DCM is written in

component form as

Cr
o =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 . (2.1)

The elements cij represent the cosine of the angle between the i-axis of originating

reference frame (o) and the j-axis of the resulting frame (r). The DCM is propagated

in time through the equation

Ċr
o = Cr

oΩ
o
ro, (2.2)

where Ωo
ro is the skew symmetric form of the angular rate vector ωo

ro = [ωx ωy ωz]
T ,

defined as
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Ωo
ro =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (2.3)

This represents the angular turn rate of the originating frame with respect to the

resulting frame expressed in the axes of the originating frame.

2.2.4 Navigation Sensors . To more accurately describe inertial navigation,

it is the process of establishing the position, velocity, and attitude of a vehicle using

information derived from its inertial sensors. Sensors within INS units are often rigidly

“fixed” to the moving body, commonly referred to as a strapdown INS system. These

sensor devices, namely accelerometers and gyroscopes, are used to measure linear and

angular motion, respectively, in the inertial frame. Figures 2.5 and 2.6 illustrate the

function of accelerometers and gyroscopes within a strapdown INS system.

Accelerometers are mechanical or electrical sensor systems that use seismic

masses and springs to measure translational motion of the platform in which they

are located. In other words, accelerometers use simple proof mass physics to measure

the total external specific force acting upon itself [24]. Specific force is defined here

as the sum of acceleration acting on the body with respect to the inertial reference

frame plus gravity. Strapdown IMU systems consist of a triad of accelerometers,

usually aligned with the vehicle’s body reference frame.

Gyroscopes are the mechanical, electrical, or optical sensor systems used to

measure rotational motion in an inertial system [24]. Mechanical gyroscopes rely on

the inertial properties of a proof (often spinning) mass for their operation, producing

measurements of turn angle or turn rate with respect to inertial space. Similarly,

optical gyroscopes provide a measure of angular rate. However, instead of a using a

spinning mass to detect rotation, these gyroscopes use interference of laser light, called

the Sagnac effect, to detect changes in orientation and spin of the gyroscope. Optical
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Figure 2.5: A two-dimensional strapdown INS unit [24]. The body attitude, θ, is
computed by integrating the measured angular rate, ωyb, and is used to
resolve the specific forces, fxb and fzb, into the reference frame.

gyroscopes, such as ring laser gyroscopes, have an advantage over their mechanical

counterparts, as there are no moving parts, no inherent drift due to friction, and

generally compact in size and lightweight.

As with all real-world IMUs, the measurements from accelerometers and gyro-

scopes are corrupted by errors. Most of these errors are correctable through factory

calibration techniques; however, it is not possible to remove all errors. A brief ex-

planation of these sensor errors, general to both accelerometers and gyroscopes, are

listed below [24] [25]:

• Bias : Constant or slowly-varying additive error.

• Scale Factor : Constant or slowly-varying multiplicative error.

• Sensor Misalignment : The result of mechanical fabrication and installation er-

rors made at the factory. These errors result in a difference between the sensor’s

sensitive axis and the platform reference.

• Vibration: Measurement bias as a function of specific vibration(s).
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Figure 2.6: A strapdown INS unit in a rotating reference frame [24]. An estimate
of the turn rate of the reference frame is derived using the estimated
component of horizontal velocity.

• Measurement Noise: An additive error component with high-bandwidth power

spectral density, such as electrical noise, thermal noise, etc.

2.3 Kalman Filtering

In this section, basic concepts of Kalman filtering are discussed. Two types

of Kalman filters will be presented: conventional (for linear navigation states) and

extended (for nonlinear navigation states). All equations in Section 2.3 are derived

in Refs. [12] and [13].

2.3.1 The Conventional Kalman Filter. The conventional Kalman filter is

an efficient recursive filter that estimates the state of a dynamic system from a se-

ries of measurements containing random noise [12]. To make the estimation problem

tractable, it is assumed that the prior knowledge of the navigation state can be ade-

quately described as a multivariate Gaussian distribution. In addition, the stochastic

process noise and additive measurement noise are assumed to be zero-mean, Gaussian
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and white, and that the nonlinear state dynamics and measurement equations can be

modeled using perturbation techniques.

The Kalman filter state equation, also known as the linear stochastic differential

equation, can be written as

ẋ(t) = F(t)x(t) + B(t)u(t) + G(t)w(t), (2.4)

where F(t) is the state model applied to the state vector x(tk), B(t) is the control-

input model applied to the control vector u(t), and G(t) is the noise model applied

to the zero mean, white Gaussian process noise vector w(t) with covariance kernel

E[w(t)wT (t + τ)] = Q(t)δ(τ). (2.5)

In Equation (2.5), Q(t) is the process noise intensity and δ(τ) represents the Dirac

delta function. The measurement model equation for the Kalman filter is defined at

time tk as

z(tk) = H(tk)x(tk) + v(tk), (2.6)

where H(tk) is the observation model applied to the true state vector x(tk) and v(tk)

is the zero-mean, white Gaussian measurement noise process of intensity R(ti) in

which

E[v(ti)v
T (tj)] =

R(ti) ti = tj

0 ti 6= tj.

(2.7)

The initial conditions of this Kalman filter are characterized by the equations

x̂(to) = x̂o (2.8)
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and

P(to) = Po. (2.9)

In Equations (2.8) and (2.9), x̂o is defined as the initial measurement estimate vector

at initial time t0 and Po is the initial covariance matrix of the form

Po = E[δxoδx
T
o ], (2.10)

where δxo is the initial state error. The measurement estimate and covariance are

propagated forward in time by k iterations using the equations

x̂(t−k+1) = Φ(tk+1, tk)x̂(t+k ) + Bd(tk)u(tk) (2.11)

P(t−k+1) = Φ(tk+1, tk)P(t+k )ΦT (tk+1, tk) + Gd(tk)Qd(tk)G
T
d (tk). (2.12)

In Equations (2.11) and (2.12), x̂(t−k+1) and P(t−k+1) are the propagated state vector

and covariance matrix prior to a measurement update, respectively, Φ(tk+1, tk) =

eF(tk)∆t is the state transition matrix, Bd(tk) is the discrete control-input model,

Gd(tk) is the discrete noise model and Q(tk) is the discrete process noise intensity

(calculated using the Van Loan approach or first-order approximation methods [12]).

The measurement updates are computed as

K(tk) = P(t−k )HT (tk) [H(tk)P(t−k )HT (tk) + R(tk)]
−1 (2.13)

x̂(t+k ) = x̂(t−k ) + K(tk) [zk − H(tk)x̂(t−k )] (2.14)

P(t+k ) = P(t−k ) − K(tk)H(tk)P(t−k ), (2.15)
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where K(tk) is the Kalman gain, zk is the measurement, and x̂(t+k ) and P(t+k ) are the

state vector and covariance matrix following the measurement update.

2.3.2 The Extended Kalman Filter . The extended Kalman filter (EKF) is

a minimum mean-square-error (MMSE) estimator based upon the first-order approx-

imation Taylor series expansion of the non-linear system dynamics and measurement

models [13]. Unlike the conventional Kalman filter, the EKF can handle nonlinear

system models and is therefore more applicable in real-world scenarios. The EKF

nonlinear stochastic differential equation can be written as

ẋ(t) = f [ x(t),u(t), t ] + G(t)w(t), (2.16)

where f [ x(t),u(t), t ] is a known model vector of nonlinear functions with respect

to the state vector x(t) and the control-input vector u(t). G(t) is the noise model

applied to the additive noise vector w(t).

Rewriting the nonlinear measurement equations in matrix form with respect

to the desired navigation states, the discrete-time measurements for the EKF are

modeled as a known nonlinear function of the state plus linearly additive measurement

noise as

z(ti) = h [ x(ti), ti ] + v(ti). (2.17)

Given the nonlinear stochastic state and measurement models, the extended

Kalman filter can be built. As a starting point, the initial state and covariance

conditions at time t0 are defined with respect to the initial time t0. They are defined

as, respectively,

x̂(t0/t0) = x̂(t+i ) (2.18)

and
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P(t0/t0) = P(t+i ). (2.19)

The basic concept of the EKF is to relinearize about each state estimate x̂ once

it has been computed. As soon as a new state estimate is made, a new and statistically

“better” reference state trajectory is incorporated into the estimation process. With

the EKF, it is assumed that deviations from the reference (or nominal) trajectory are

small enough to allow linear perturbation techniques to be employed with adequate

results.

To achieve the final form of the extended Kalman filter, the most recent nominal

xn(t/ti), defined at time t with respect to incremented time ti, is combined with the

state perturbation estimate, δx̂(t/ti), to generate an estimate of the full state. This

assumes the following model is accurate for x(t):

x(t) = xn(t/ti) + δx(t/ti). (2.20)

The optimal estimate, x̂(t/ti), is defined as the sum of the most recent nominal

estimate and the optimal estimate of δx(t), denoted as

x̂(t/ti) = xn(t/ti) + δx̂(t/ti). (2.21)

Since, for the EKF, δx̂(t/ti) is zero over the entire duration between measurement

intervals, the best estimate of the total state over this interval would be the solution

to the following

˙̂x(t/ti) = f[ x̂(t/ti), u(t), t ]. (2.22)

By calculating the partial derivative of f [ x(t),u(t), t ] with respect to the state vector,

x, the dynamics partial derivative matrix, F[ t; x̂(t/ti) ], is derived as
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F[ t; x̂(t/ti) ] , ∂f [ x(t),u(t), t ]

∂x

∣∣∣∣
x(t)=xn(t/ti)

. (2.23)

It is assumed that F[ t; x̂(t/ti) ] is valid and constant with respect to each time inter-

val. Therefore, the transition matrix Φ(ti+1, ti) for the stochastic difference equation

can be computed for each time interval as

Φ(ti+1, ti) = e F[ t; x̂(t/ti) ] ∆t (2.24)

δx(ti+1) = Φ(ti+1, ti) δx(ti) + w(ti). (2.25)

Similarly, the partial derivative of h [ x(ti), ti ] can be calculated from the

measurement equation with respect to the state vector, x. The observation partial

derivative matrix, H[ ti; x̂(t−i ) ], is derived as

H[ ti; x̂(t−i ) ] , ∂h [ x(t), ti ]

∂x

∣∣∣∣
x(t)=x̂(t−i )

. (2.26)

Next, the estimate is propagated forward to the next sample time ti+1 by the

following estimate and covariance propagation equations

˙̂x(t/ti) = f[ x̂(t/ti), u(t), t ] (2.27)

P(t−i+1) = Φ(ti+1, ti)P(t+i )ΦT (ti+1, ti) + Gd(ti)Qd(ti)G
T
d (ti), (2.28)

where Qd(ti) is the discrete process noise intensity. In Equation (2.28), the con-

ventional Kalman filter covariance equation above is used since it is assumed that

F[ t; x̂(t/ti) ] remains constant over the time interval. Furthermore, since this equa-
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tion is a relatively simple to calculate (unlike the differential equation form that will be

seen with the other filters), the overall run time of this filter will be greatly decreased.

Finally, the extended Kalman filter measurement update equations incorporate

the measurement by

K(ti) = P(t−i )HT [ti; x̂(t−i )]
(
H[ti; x̂(t−i )]P(t−i )HT [ti; x̂(t−i )] + R(ti)

)−1
(2.29)

x̂(t+i ) = x̂(t−i ) + K(ti)
(
zi − h[x̂(t−i ), ti]

)
(2.30)

P+(ti) =
(
I − K(ti)H

T [ti; x̂(t−i )]
)
P(t−i ), (2.31)

where K(ti) is the Kalman gain and I is the identity matrix. Now that the new whole

value state estimate x̂(t+i ) is defined, it can be used to reset the new, most recent

nominal estimate xn(t/ti+1) and is proceeded to the next propagation set as

xn(t/ti+1) = x̂(t+i ) (2.32)

x̂(t/ti+1) = xn(t/ti+1) + δx̂(t/ti+1). (2.33)

2.4 Orbital Mechanics

Accurately predicting an orbiting satellite’s position at any given instant is

vital if precise geolocation of ground targets is to be achieved. Satellite tracking

can be accomplished by one of two methods: an onboard navigation system, such as

INS, or an external tracking system with an onboard receiver, such as GPS. Orbital

prediction is often determined several hours (up to 48 hours) in advance and is based

on the known orbital parameters of the satellite [15]. In order to fully understand the

behavior of satellites orbiting the Earth, an in-depth explanation of orbital mechanics

is warranted, including an understanding of Newton’s laws, Kepler’s laws, Keplerian

element transformation, and orbit types.
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2.4.1 Newton’s Laws . To understand how a satellite travels around a planet,

the laws of motion derived by the English scientist Sir Isaac Newton (1642 - 1727)

must be analyzed [31]. Based on Newton’s second law, that is, the acceleration of

the center of a body is proportional to the force applied to that body, this concept

can be used with regard to the satellite and the Earth as point mass bodies under

gravitational attraction. Although gravitational forces are not the only forces acting

upon these bodies, it is by far the largest contributor and is a valid approximation of

orbital position prediction [15].

According to Newton, the gravitational force of the Earth onto an orbiting

satellite is

F = −GMm

r2

r

r
(2.34)

where G = 6.67 × 10−11 N(m/kg)2 is the Earth’s gravitational constant, M = 5.97 ×

1024 kg is the mass of the Earth, m is the mass of the satellite in kg, r is the distance

between the point masses in km (equaling the radius of the Earth plus the satellite’s

altitude above the Earth), and r = rsat − rEarth is the position of the satellite relative

to the Earth, in a Cartesian coordinate system, in km. The motion of the satellite

can therefore be written as a second order differential equation as [19]

r̈ +
G(M + m)

r3
r = 0 (2.35)

and can be simplified, since M À m, to

r̈ +
GM

r3
r = 0 (2.36)

where GM = 3.986 × 108 m3/s3 is the Earth’s standard gravitational parameter.

2.4.2 Kepler’s Laws . It is well understood that objects orbiting the Earth

follow an elliptical pattern. One of first to discover this was the sixteenth-century Ger-
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Figure 2.7: Kepler’s three laws of planetary motion: orbital ellipse, law of equal areas,
and orbits with equal periods [22].

man astronomer Johannes Kepler (1571-1630). Kepler devised the three fundamental

laws of planetary motion as follows [22]:

• Planets follow an elliptical orbit with the sun at one of its foci.

• A line joining a planet and the sun sweeps out equal areas during equal intervals

of time.

• Two planets with the same semi-major axis length have equal orbital periods.

These laws are summarized in Figure 2.7.

2.4.3 Keplerian Elements . Given knowledge of Kepler’s laws of planetary

motion under idealized conditions (i.e., a perfect ellipse), the motion of a satellite

can be characterized by an elliptical orbit in space with the Earth as one of its foci.

This orbit can be specifically identified in three dimensions by six geometrical orbital

parameters, known as geometric Keplerian elements [15] [22]. Five of these elements

describe the size and shape of the orbit, while the sixth element describes the position

of the satellite at a particular instant in time (or “epoch”). The definitions of these

six geometric Keplerian elements are listed below, and are depicted in Figure 2.8:

• Semi-major axis (a): The size of the orbit in km, its length is the distance

between the geometric center of the orbital ellipse and the apoapsis (point of

farthest approach to the central body).
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Figure 2.8: The six geometric Keperian orbital elements in two and three dimensions,
respectively. The X and Y directions correspond to the semi-major and
semi-minor axes of the orbit, respectively. The elements a, e, i, Ω, ω and
ν describe the position of the satellite P at a given epoch [22].

• Eccentricity (e): The shape of the orbit. It is a measure of how much the ellipse

deviates from a perfect circle (when e = 0).

• Inclination (i): The angle between the orbital plane to central body’s equator

in rad.

• Right Ascension of the Ascending Node (RAAN or Ω): The rotation of orbit’s

reference plane with respect to ascending node (the point on the satellite’s orbit

where it crosses the equatorial plane) in rad.

• Argument of Perigee (ω): The angle from the ascending node to perigee (the

point at which the satellite is closest to the center of the Earth) in rad.

• True Anomaly (ν): The location of the satellite at a given epoch, this is the

angle between the ascending node and the satellite position in the orbital plane

in rad.

Given the Keplerian elements, the satellite’s orbital period in sec, Torb, and orbital

apogee in m, aporb, (the point in orbit farthest from the Earth) can be deduced as
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Torb = 2π

√
a3

GM
(2.37)

aporb = (1 + e)a − Re, (2.38)

where GM is the standard gravitational parameter (see Section 2.4.1) and Re is the

radius of the Earth in m.

2.4.4 Satellite Position and Velocity Transformation . Although it is more

common to see the Keplerian elements described in Section 2.4.3 as geometrical char-

acterizations of the orbit itself, these elements also can be represented as the six

satellite position and velocity elements in the Cartesian coordinate system [15]. The

defined orbital coordinate system is equivalent to the inertial frame (i-frame) in which

the origin is located at the elliptical foci located at the center of the Earth. The x

and y axes of this reference frame correspond to the semi-major and semi-minor axes

of the orbit, respectively, as seen previously in Figure 2.8.

In order to generate the three-dimensional satellite position and velocity vectors,

r and v, in the i-frame, the six geometric Keplerian elements a, e, i, Ω, ω and ν must

undergo a reference frame transformation [15]. The magnitude of the orbital radius,

‖r‖, or the distance between Earth’s center and the satellite, is defined as

‖r‖ =
a(1 − e2)

1 + e cos ν
. (2.39)

The satellite position and velocity vectors in the two-dimensional orbital plane de-

scribed in Figure 2.8 (denoted here as the pqw-frame), are calculated, respectively,

as
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rpqw =



‖r‖ cos(ν)

‖r‖ sin(ν)

0


(2.40)

and

vpqw =

√
GM

a(1 − e2)



− sin(ν)

e + cos(ν)

0


. (2.41)

Transforming from the pqw-frame to the i-frame, the direction cosine matrix Ci
pqw

(see Section 2.2.3) is defined as

Ci
pqw =



cos Ω cos ω − sin Ω sin ω cos i − cos Ω sin ω − sin Ω cos ω cos i sin Ω sin i

sin Ω cos ω − cos Ω sin ω cos i − sin Ω sin ω + cos Ω cos ω cos i − cos Ω sin i

sin ω sin i cos ω sin i cos i


.

(2.42)

Finally, the satellite position and velocity vectors in the i-frame are calculated, re-

spectively, to be
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ri =



ri
x

ri
y

ri
z


= Ci

pqwrpqw (2.43)

and

vi =



vi
x

vi
y

vi
z


= Ci

pqwvpqw. (2.44)

2.4.5 Orbit Types . Now that the elliptical orbit of the satellite can be fully

characterized as the six satellite position and velocity parameters, a unique elliptical

orbit can be designed. Considerations for the satellite’s orbit are largely based upon

the desired orbital period and apogee (see Section 2.4.3). For comparison, three

popular orbital classifications are listed below and depicted in Figure 2.9 [22,31]:

• Low Earth Orbit (LEO): The orbit closest to the Earth’s surface. It lies just

beyond the thermosphere (or outer atmosphere). LEO orbits typically have a

period of approximately 90 min and an apogee between 450 and 600 km above

the Earth’s surface. High-resolution imaging satellites and the International

Space Station (ISS) are located in this orbit.

• Geosynchronous Orbit (GEO): A high Earth orbit (HEO), a geosynchronous

orbit has a period equal to that of Earth’s (approximately 24 hrs). Its apogee

is approximately 36,000 km above the Earth’s surface. A GEO orbit directly

above the Earth’s equator is known as a geostationary orbit. Communication,
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Figure 2.9: Three common satellite orbits: low Earth orbit (LEO), Geosynchronous
orbit (GEO), and Molniya orbit (MOL), the last two of which are defined
as high Earth orbits (HEOs) [31].

early warning and nuclear detection satellites are located in geosynchronous and

geostationary orbits.

• Molniya Orbit (MOL): The Molniya orbit, a HEO orbit named after the Sovi-

et/Russian satellites of the same name, has a unique 12 hr orbit at an approxi-

mate 63 deg inclination. With an apogee between 26,000 and 38,000 km above

the Earth’s surface, a distinct advantage of satellites in MOL orbits is their

ability to track locations in the northern hemisphere for an extended period of

time, with less ground interference at high look angles than would be true with

lower Earth orbits. Communication and intelligence satellites use this orbit.

2.5 Optical Modeling and Spatial Coherence

In this section, the basic physical properties of an optical sensor model are

presented, and the concept of spatial coherency is reviewed.

2.5.1 Optical Modeling . An optical sensor is designed to measure the inten-

sity of light entering the device through an aperture and converts it into an electrical

signal which can be read by an observer [25, 28]. These sensors typically make use
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of either a charge-coupled device (CCD) or complimentary metaloxide semiconductor

(CMOS) active-pixel sensor to create a two-dimensional image as a function of light

intensity [9].

For the purposes of this research, the world is defined as a collection of real

objects of interest that illuminate the world and interact with the other physical

objects through various types of reflection. In radiometry, irradiance is defined as the

amount of light intensity with respect to unit area that falls on an object’s surface [2].

The physical irradiance pattern enters the aperture of the optical sensor (defined as

the scene) and is projected onto the image plane. This process is represented as

a continuous array of nonnegative real numbers. For simplicity, object surfaces are

assumed to be Lambertian, meaning the brightness of the surface to an observer is

the same regardless of the observer’s angle of view.

A digital optical imaging sensor consists of an aperture, lens, detector array, and

sampling array. A simple imaging system model is shown in Figure 2.10. The lens

images the scene on the detector array. The light pattern focused on the detector array

is defined as the image. The detector array converts the light energy into a voltage

or a charge which is converted to a digital value by the sampling array (e.g., an 8-bit

digital value within the set [0-255], where 255 represents the highest intensity).

2.5.2 Spatial Coherence. Spatial coherence is defined as the property of

waves to maintain definite phase in space. Within the topic of imaging, an under-

standing of coherence is warranted as it describes the correlation properties of light

waves [9]. The constructive addition and destructive subtraction of light waves, known

as optical interference, can affect the resulting image clarity, particularly in the pres-

ence of atmospheric turbulence.

First, the physical properties of light waves must be characterized. In mathe-

matical terms, the equation for a light wave is defined as a complex field

Ug(u, v) = A(u, v)e−i φ(u,v) (2.45)
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Figure 2.10: A digital optical imaging system, consisting of an aperture, lens, detec-
tor array and sampling array [28]. Objects in the world are collected
into the aperture (a scene) as an irradiance pattern and focused onto
the detector, producing an image represented digitally as an array of
nonnegative numbers.

where A(u, v) is the amplitude, φ(u, v) is the phase and i is the imaginary number.

Coherent sources have correlated (non-random) wave phase while incoherent sources

have uncorrelated (random) phase [8].

The simulation of coherent and incoherent sources through a lens can be achieved

by the means of convolution [8]. This convolution, in which the object forms a spread

function region at the image plane, results in a slightly blurred image. This method

is depicted in Figure 2.11.

It can be shown that coherent imaging is linear in amplitude while incoherent

imaging is linear in intensity, as

Ii(u, v) = |h(u, v) ⊗ Ug(u, v)|2 (Coherent Imaging) (2.46)

Ii(u, v) = |h(u, v)|2 ⊗ Ig(u, v) (Incoherent Imaging), (2.47)
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Figure 2.11: Convolution through a lens. An object at point P forms a spread function
of region Q, resulting in a slightly blurred image.

where h(u, v) is the amplitude spread function, |h(u, v)|2 is the point spread function,

Ig(u, v) is the object intensity, Ii(u, v) is the image intensity, and “⊗” is the convo-

lution operator [8]. For coherent light, image intensity is the squared convolution of

the object wave function and the amplitude spread function. For incoherent light, im-

age intensity is the convolution of the object intensity and the point spread function

(which is the amplitude spread function squared). The resulting effects of these cases

are illustrated with a simple rectangular object pattern in Figure 2.12 [21]. In the

case of coherent imaging, the resulting image intensity has a blurred “waffling effect”,

a phenomenon known as Fresnel ringing, which is the result of optical diffraction [21].

In the case of incoherent imaging, the image intensity distributes evenly, producing

images with sharper features than those produced by coherent imaging.

In the case of satellite imaging, the sun is a predominantly incoherent source,

meaning the majority of the light rays from the sun have random phase. This results

in nearly uniform phase distribution on the image plane as light from the sun bends

around the edges of the object (or objects) in the object plane. Therefore, image

blurring as the result of Fresnel ringing is not of concern.
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Figure 2.12: Coherent and incoherent imaging with a rectangular pattern. The object
(a) is convolved with the amplitude (or point spread) function (b) to
produce either a coherent image (c) or incoherent image (d). Note the
blurred “waffle effect” in (c), the result of optical diffraction [21].
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2.6 Imaging Through Turbulence

Ground images are continuously captured from space by orbiting observation

satellite systems. When these images are collected from a satellite several kilometers

above the Earth’s surface, it is likely that image resolution and image displacement

will be affected by the atmosphere. In order to understand the turbulent effects on an

image collected through the atmosphere, a background of turbulence theory must be

presented. Following this background, the concepts and derivations of the turbulence

strength parameter, C2
n is defined. The atmospheric coherence width, r0, among other

important turbulence parameters, will then be discussed in light of the problem at

hand. Unless stated otherwise, all equations in Section 2.6 are derived in Ref. [1].

2.6.1 Turbulence Background . The Earth’s atmosphere is comprised of

gases, chemicals and water vapor, all contributing to refractive index fluctuations,

causing light waves to bend and scatter (or attenuate) unpredictably. The refractive

index of the Earth’s atmosphere is near unity, however, as light propagates through

this medium, the optical waves become randomly distorted and the resulting image

resolution becomes limited [21].

Atmospheric turbulence is the result of stochastic variations in temperature

and velocity within the Earth’s atmosphere [21]. This turbulence is caused by a

combination of solar heating the surface and atmosphere, convection (causing hot air

to rise and cold air to fall) and diffusion (mixing areas of high concentration and

areas low concentration). An illustration of the atmospheric layers is depicted in

Figure 2.13. The largest concentration of turbulence is within the first 20 to 24 km

above the surface [1]. It is assumed in this analysis that weather conditions are clear

with no obstruction due to clouds, rain or fog.

2.6.2 Turbulence Strength . The index of refraction, n, is one of the most sig-

nificant parameters with respect to light wave propagation through the atmosphere [1].

Fluctuations in atmospheric refractive index are related to corresponding fluctuations
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Figure 2.13: The Earth’s atmospheric layers. Nearly 100% of the atmospheric mass
is contained within the troposphere and stratosphere, the majority of
which is contained solely within the troposphere.

in temperature, T (measured in K), and pressure, P (measured in millibars), and can

be written accordingly as

n(R) = 1 + 79 × 10−6P (R)

T (R)
, (2.48)

where R, assigned as any point in space, is bounded by the inertial subrange, or the

range of unstable air masses (eddies) defined by the inner scale bound lo and outer

scale bound Lo as [lo ¿ R ¿ Lo]. For this research, the Kolmogorov turbulence

spectrum will be assumed; therefore, the inertial subrange is unbounded.

The statistical description of the random turbulence-induced fluctuations in the

atmosphere’s refractive index can be expressed as a structure function with respect

to R. Assuming statistically homogeneous and isotropic turbulence (R = |R1−R2|2),

the structure function, Dn(R), is expressed as

Dn(R) =

C2
n l

−4/3
o R2 0 ≤ R ¿ lo

C2
n R2/3 lo ¿ R ¿ Lo,

(2.49)

where C2
n is the refractive index structure parameter. C2

n is a measure of the strength of

fluctuations in the refractive index, and can be interpreted as a measure of the strength
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of atmospheric turbulence. C2
n is quantified in terms of pressure, P , temperature, T

and the temperature structure constant, C2
T , by

C2
n =

(
79 × 10−6 P

T 2

)2

C2
T . (2.50)

The associated power spectral density for refractive index fluctuations, over the

inertial subrange defined by [1/Lo ¿ κ ¿ 1/lo], is defined by

Φn(κ) = 0.0033C2
nκ−11/3. (2.51)

C2
n is known to vary as a function of height above ground, the strongest occurring

during the daytime near the ground (on an order of 10−13m−2/3 or higher). In order

to express the turbulent strength as a function of height, models for both C2
n and

atmospheric winds must be assigned. The Bufton wind model is commonly used to

describe the atmospheric winds as

V (z) = vG + ωsz cos ζZ + vT exp

[
−

(
z cos ζZ − HT

LT

)2
] [

sin2 φ + cos2 φ cos2 ζZ

]1/2
,

(2.52)

where z is the propagation slant path (in m) given by the equation z = h sec ζ, where

h is the height above ground in m and ζ is the zenith angle in rad. The zenith angle

angle assignment is depicted in Figure 2.14. Furthermore, vG = 5 m/s is assigned

as the ground wind speed, ωs = 0 deg/s as the turbulent slew rate, vT = 30 m/s as

the tropopause wind speed, HT = 12.5 km as the average altitude of the tropopause,

LT = 4.8 km as the average thickness of tropopause and φ = 0 deg as the direction

of wind speed [1].

Using the Bufton wind model in Equation (2.52), the root mean square (RMS)

wind speed due to turbulence is calculated to be
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Figure 2.14: Zenith and nadir viewing angles, ζZ and ζN , respectively. The relation-
ship of slant path, z, with respect to altitude, h, is z = h sec ζ [21].

vrms =

[
1

15 × 103

∫ 20×103

6×103

V 2(z) dz

]1/2

, (2.53)

where the integration limits in Equation (2.53) encompass the troposphere defined in

Figure 2.13.

Finally, the Hufnagel-Valley (H-V) 5-7 model, commonly used to describe C2
n,

is defined as [1]

C2
n(h) = 0.00594

(vrms

27

)2

(10−5 h)10 exp

(
−h

1000

)
+2.7 × 10−16 exp

(
−h

1500

)
+ A exp

(
−h

100

)
,

(2.54)

where h = z cos ζ, A = 1.7 × 10−14 m−2/3, and vrms = 21 m/s from Equation (2.53).

Note that A is the nominal value of C2
n at the ground (or C2

n(0)). Using the H-V

C2
n model, a comparison of the turbulent strength, C2

n as a function of propagation

distance, z, and zenith angle, ζ, can be seen in Figure 2.15.
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Figure 2.15: Turbulence strength, C2
n, as a function of propagation distance, z, and

zenith angle, ζZ . As ζZ increases, the relative height above ground de-
creases to where turbulence is greatest, contributing to higher C2

n for
longer durations.
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2.6.3 Atmospheric Coherence Width . The atmospheric coherence width,

r0, also called Fried’s parameter, is the measure of the spatial coherence of light at

the receiver. A large r0 implies that light is coherent across large distances, indicating

good imaging system performance [1,21]. Since turbulent strength, C2
n, is nonlinear in

nature, the direction of propagation can greatly affect the resulting coherence width.

Consider two distinct paths of a propagating point source, producing a spherical

wave at the source that becomes a planar wave over a large propagation distance

(such as the case between the Earth’s surface and an orbiting satellite). In the first

case, an uplink path is defined in which the atmosphere is farthest from the receiver

(i.e., an imaging system in orbit). In the second case, a downlink path is defined in

which the turbulent atmosphere is nearest the receiver (i.e., for an imaging system

on the ground). The resulting coherence width of the uplink path, onto the satellite

receiver, is many times larger than the satellite itself. This large coherence width

is due to the sun’s incoherent light, reflected from the ground, bending appreciably

early in the propagation path (when the wave’s spatial extent is small) and remaining

essentially unchanged as it propagates toward the satellite. The opposite is true for

the relatively small coherence width of the downlink path, in which the wave’s spatial

extent is large when entering the turbulent atmosphere and remains turbulent as it

propagates toward the ground [6,7]. An illustration of these two cases can be seen in

Figure 2.16.

For a satellite imaging system, in which light is propagated from the ground

(the transmitter) to the satellite (the receiver), the uplink path is assigned. For

coherence width computation, it is necessary to identify the statistical path moments

of the optical system. The uplink propagation first and second path moments are,

respectively,
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µ1u =

∫ H

h0

C2
n(h)

[
Θ + Θ̄ ξ

]5/3
dh (2.55)

µ2u =

∫ H

h0

C2
n(h) (1 − ξ)5/3 dh, (2.56)

where h is the the elevation in km, h0 = 0 is the elevation of the ground (at sea level),

H is the elevation of the satellite in km, and ξ = (h− h0)/(H − h0) is the normalized

distance variable. The output (receiver) beam curvature parameter, Θ, equals one for

a spherical wave. Therefore, Θ̄ = 1 − Θ = 0. The resulting coherence width for the

uplink path, r0u , is defined as

r0 =
[
0.42 sec(ζN)k2

(
µ1u + 0.622µ2uΛ

11/6
)]−3/5

(2.57)

=
[
0.42 sec(ζN)k2µ1u

]−3/5
. (2.58)

Since the output (receiver) Fresnel ratio parameter, Λ, equals zero for a spherical wave

case, Equation (2.57) is simplified to Equation (2.58). Note that, for the uplink case,

the viewing angle, ζN , is with respect to nadir at the satellite, pointing downward. As

expected, r0 for the uplink case will be much larger than for the downlink case. This

result implies good imaging system performance for an observation satellite collecting

images of the ground.

2.6.4 Image Jittering . An on-axis object may appear to wander within

a satellite image due to atmospheric turbulence. This frequent shifting (or displace-

ment) of the object, otherwise known as “image jittering” is associated with the angle

of arrival fluctuations of an optical wave onto the receiver aperture [1,32]. These angle

of arrival fluctuations, < β2
a >, are defined primarily by turbulence at high altitudes,

and are related to the coherence width of the propagation path (see Section 2.6.3).
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Figure 2.16: Uplink and downlink path scenarios for a propagating point source
(spherical wave). Note the effects of free-space diffraction in the uplink
case, providing minimal atmospheric turbulence effects and ultimately a
large coherence width at the receiver (the satellite) [21].

The RMS angle of arrival for an uplink path, in rad, simplified for a spherical

wave, is calculated as

< β2
a >= 2.91µ1u sec(ζN)(DG)−1/3, (2.59)

where DG is the aperture diameter of the receiver in m. The resulting image displace-

ment standard deviation (or “image jitter”), in m, is calculated to be

σimag = flens

√
< β2

a >, (2.60)

where flens is the focal length of the lens in m. The variance of the angle of arrival

fluctuations in rad, σ2
a, which attributes to reduction in image resolution, is calculated

as

σ2
a = 6.88(r0)

−5/3 sec(ζN)(DG)−1/3k−2, (2.61)
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where r0 is the uplink coherence width in m and k is the wave number in rad/m.

In the uplink case, σimag and σ2
a are very small, since r0 is very large. Assuming an

off-nadir angle of less than 25 deg for LEO orbits, and an angle of less than 5 deg for

HEO orbits, atmospheric turbulence due to image jittering can generally be ignored

with respect to an observation satellite.

2.6.5 Atmospheric Refraction . In free space, light waves propagate in

straight lines due to the fact that their dielectric permittivity, ε0, and magnetic per-

meability, µ0, are constant in space and time relative to the speed of wave propagation

c as defined by the following formula [8]

c = (µ0ε0)
−1/2. (2.62)

However, the dielectric permittivity of the atmosphere, ε, is greater than that of free

space (ε > ε0). Therefore, light waves propagate at a speed ν that less than c and in

doing so deviate from straight propagation paths, resulting in refraction (or bending)

of the beam [5]. This results in a non-uniform atmospheric refraction, n, that is greater

than unity with respect to the Cartesian coordinate x−, y− and z−directions, or [8]

n(x, y, z) =
c

ν
> 1. (2.63)

Therefore, in order to determine the true path of the light wave, atmospheric refraction

must be considered.

According to Ref. [1], the refractive index of the atmosphere can be closely

approximated as a function of optical wavelength, λ (in m), pressure, P (in mbars),

and temperature, T (in K). Assuming the non-uniform lower atmospheric density is

limited to within 20 km of the surface, P and T are analyzed as a function of altitude,

z (in km). From [5], pressure in the lower atmosphere is calculated to be
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P (z) = ‖ − (2.26 × 10−5z − 1)5.32×103‖, 0 ≤ z ≤ 20 km. (2.64)

Likewise, temperature in the lower atmosphere is computed as

T (z) =

−6.81 × 10−3(z − 1) + 293, 0 ≤ z ≤ 11 km

218, 11 < z ≤ 20 km.

(2.65)

Finally, the atmosphere’s refractive index, n, can be written in terms of optical wave-

length, λ (in m), pressure, P (in millibars), and temperature, T (in K), as [1]

n(z) = 1 + 77.6 × 10−6(1 + 7.52 × 10−3λ−2)
P (z)

T (z)
, 0 ≤ z ≤ 20 km. (2.66)

Figure 2.17 depicts the plot of pressure, temperature and refractive index, with respect

to altitude.

Next, Snell’s law [9] is used to calculate the ground-to-satellite horizontal dis-

placement due to light refraction. Snell’s law is defined as

n1 sin θ1 = n2 sin θ2 = n3 sin θ3, (2.67)

where n1, n2 and n3 are the refractive indices of the troposphere, tropopause and

free space, respectively. This relationship can be seen in Figure 2.18. Given a known

off-zenith departure angle θ1, the sequential angles θ2 and θ3 can also be computed.

Using geometry, the horizontal displacement ∆xn can be calculated as

∆xn = xw − xwo (2.68)

= (zw1 tan θw1 + zw2 tan θw2 + zw3 tan θw3) − zw0 tan θwo, (2.69)
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Figure 2.17: Pressure, temperature and refractive index, with respect to altitude, at
a wavelength of 675 nm. Between 11-20 km, temperature remains steady
through the tropopause. Above an altitude of 20 km, it is assumed that
turbulence is negligible, and therefore is approximately where free space
begins (n ' 1).
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Figure 2.18: The refraction of a light wave through the tropopause (n2) to free space
(n3). Since the index of refraction decreases to approximately 1 at alti-
tudes above the tropopause (n3 < n2), light waves refract to a greater
extent, resulting in a larger departure angle in free space (θ3 > θ2)

where xw is the total horizontal displacement from the surface to the satellite including

atmospheric refraction and xwo is the horizontal displacement from the surface to the

satellite without atmospheric refraction. Assuming an off-nadir angle of less than 25

deg for LEO orbits, and an angle of less than 5 deg for higher orbits, the effects of

atmospheric refraction is found to be minimal.

2.7 Image-Aided Navigation

In previous research [25, 27], it has been demonstrated that the coupling of

imaging with inertial sensors has provided a navigation improvement of at least two

orders of magnitude over inertial systems without the aid of optical devices. As

such, knowledge of the navigation state (i.e., position, velocity, and attitude) of a

space vehicle could also be improved by using image-aided navigation, provided that

optical measurements from an imaging sensor pointed toward the ground are available.

This section will summarize the background behind image-aided navigation, review

a means of matching a satellite image to predefined image template, and introduce

the concept of georeferencing in order to identify a targets location on a relative

coordinate system.

42



2.7.1 General Background . Although advances in the field of image-aided

navigation have been made, the level of accuracy in such a system is critically de-

termined by the alignment and calibration of the imaging sensor [23]. Previous ap-

proaches, including mechanical techniques and field-calibrated estimation based tech-

niques [11], have had limited success, requiring dedicated equipment unsuitable for

field work and being subject to intermittent manufacturer errors.

Other more recent approaches use real-time estimators and use the field of visible

stars to provide the reference for the optical system [29]. No operator involvement

or external equipment is required in this stellar observation approach. Additionally,

star observation accounts for time-varying errors prominent in inertial sensors (see

Section 2.2.4) and has the advantage of operating in real time. An example of such

a spacecraft navigation system includes the high accuracy star tracker (HAST) [14].

However, stellar observations require visibility of the sky and star tracking algorithms

must be sensitive enough to resolve the location of celestial objects. Additionally, if

an onboard imaging system has the combined role of star tracking as well as Earth

observation, the ability to track both star and ground targets may be limited.

2.7.2 Image Matching . Image matching is used in many applications, in-

cluding object recognition, stereo matching, and feature tracking, as a means of iden-

tifying a feature or area common among a series of pixelated images [3]. Image-aided

navigation can benefit from image matching algorithms by incorporating matched im-

age data between subsequent images to determine how a stationary target “wanders”

between those images.

Image matching applications used for feature tracking commonly use the sum-

of-squared-difference (SSD) measure to determine the best match between subsequent

images [16]. The SSD method operates directly on the pixelated irradiance pattern

of the image (see Section 2.5.1) and measures the correspondence between an image

and a template (in which a match of the original image exists). Knowledge of the

maximum position uncertainty of the feature of interest within the template allows
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the image matching to be performed efficiently with greatest likelihood of determining

a unique image match.

The SSD can be computed as [3]

SSD(u, v) =
n∑

x=0

n∑
y=0

[
f(x, y) − t(x − u + dx, y − v + dy)

]2
(2.70)

where f is the satellite image and t is the template in which the image is to be matched

within. The summation is over the Cartesian coordinates (x, y), corresponding to the

northern and eastern directions in the n-frame, respectively. A template with northern

and eastern boundary limit parameters, u and v, form a “window” with respect to

the origin (the origin is assumed to be in the center of the image). Disparities dx

and dy are the vertical and horizontal differences between images in the n-frame,

respectively, and are sometimes used to determine depth or distance of an object

within the image [17]. Low SSD values represent a good match between the image

and template, indicating where the difference between the image and template is

minimal. In Equation (2.70), the differencing between the image and template is

squared to ensure that SSD results are always non-negative.

Although the sum-of-squared-difference has the advantage of being relatively

simplistic and easy to implement, weaknesses of SSD also exist. This method is sen-

sitive to outliers and is not accustomed to template variations, such as those that

occur at occluding boundaries in the image [16]. Since SSD is restricted to over-

lapping the entire image over the template, this algorithm can be easily “fooled”

by repeated patterns throughout the template, resulting in increasing probability of

erroneous matching. This weakness is especially inherent to indoor navigation, in

which repeatable features (i.e., flooring and ceiling tiles) are common. Fortunately,

this problem is not as prevalent with outdoor navigation and satellite imagery, where

feature repeatability, particularly at higher resolutions, is rare.
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Figure 2.19: Georeferenced control points with unique features are used to georegis-
ter a target in a satellite image to a reference map (image provided by
Manifold Systems).

2.7.3 Georeferencing . Georeferencing is the process of identifying a target’s

location on a coordinate system relative to the Earth. The process of georeferencing

a target onto a reference map is depicted in Figure 2.19, where pre-assigned feature-

rich control points within the image are used to “georegister” (or adjust) a target to

a geographic location based upon a known reference map. This process is known as

georegistration. The target’s georeferenced location (measured in e-frame latitude/-

longitude coordinates) is referred to as the target’s geolocation.

A georeferenced image can be used to measure the coordinates of a target of

interest within an image. However, inaccurate geolocation can limit this capability,

for example, if an insufficient number of control points are available to accurately

determine the target’s location. Large satellite attitude errors characterized by a

low-performance inertial sensors can also limit geolocation performance.

Tightly coupled image-aided inertial navigation systems have been designed to

extract navigation information of the satellite by automatically detecting and tracking

stationary optical features of opportunity in the environment, thereby vastly reducing

the vehicle’s attitude errors [26]. One significant advantage of this navigation system

is that it can operate in areas where GPS is either denied or unavailable.
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2.8 Stochastic Constraints

Using an imaging sensor to determine the navigation states from optical mea-

surements depends upon tracking the target location through a series of images. Tar-

get recognition through image interpretation, however, can be very inefficient and time

consuming if the number false matches are not limited and the feature correspondence

search is not constrained. Therefore, the stochastic projection method developed in

Refs. [28,30], which constrains this correspondence search by area by incorporating a

priori knowledge of the satellite navigation states, allows the user to accurately and

optimally predict the pixel location and uncertainty of a target feature in a series of

images.

As mentioned in Ref. [30], this stochastic projection method uses many of the

assumptions of the Kalman filter in Section 2.3.1. The landmark of interest is assumed

to be stationary (or very slowly moving) with respect to the surface of the Earth.

Additionally, the camera is assumed to be rigidly mounted to the vehicle with a known

alignment and calibration. Finally, it is assumed that the terrain is flat (constant

elevation). All equations in Section 2.8 are derived in Ref. [30].

Given the navigation state at time ti, x(ti), described in Equation (2.4), the

landmark position corresponding to a pixel location, y(ti), is a non-linear function

of x, given by

y(ti) = g [x(ti)]. (2.71)

The calculated landmark position, ỹ(ti), is modeled as a perturbation about the true

position as

ỹ(ti) = y(ti) + δy(ti), (2.72)

where ỹ(ti) is a function of the calculated navigation state, x̃(ti). x̃(ti) is also modeled

as a perturbation about truth, and is of the form
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x̃(ti) = x(ti) + δx(ti). (2.73)

Applying perturbation techniques to the landmark position function, the land-

mark error, δy(ti), can be expressed as a linear function of the navigation state errors

δy(ti) = Gyx(ti)δx(ti), (2.74)

where the influence coefficient, Gyx(ti), is defined as

Gyx(ti) =
∂g [x(ti)]

∂x(ti)

∣∣∣∣
x(ti)=x̃(ti)

. (2.75)

The landmark error covariance, Pyy(ti), and cross-correlation, Pxy(ti), are defined as

Pyy(ti) = E[δy(ti)δy
T (ti)] (2.76)

Pxy(ti) = E[δx(ti)δy
T (ti)]. (2.77)

Substituting Equation (2.74) into Equation (2.76) yields

Pyy(ti) = Gyx(ti)Pxx(ti)G
T
yx(ti). (2.78)

The cross correlation matrices are calculated in a similar manner as

Pxy(ti) = Pxx(ti)G
T
yx(ti) (2.79)

Pyx(ti) = Gyx(ti)Pxx(ti). (2.80)
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Combining the navigation state with the landmark state through augmentation,

the initial combined state vector, x?(to), and initial combined covariance matrix,

P?(to), are defined, respectively, as

x?(to) =


x(to)

y(to)

 (2.81)

and

P?(to) =


Pxx(to) Pxy(to)

Pyx(to) Pyy(to)

(2.82)

Likewise, the combined psuedonoise matrix, G?(ti), is expressed as

G?(ti) =


Gx(ti) 0

0 Gy(ti)

 (2.83)

and the combined process noise intensity, Q?(ti), is expressed as

Q?(ti) =


Qx(ti) 0

0 Qy(ti)

 . (2.84)

Gy(ti) defines the landmark error dynamics as a random walk by

δẏ(ti) = Gy(ti)wy(ti), (2.85)

and wy(ti) is a zero-mean, white Gaussian noise process with covariance kernel
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E[wy(ti)w
T
y (ti + τ)] = Qy(ti)δ(τ). (2.86)

For propagating the combined navigation and landmark estimate, the EKF

nonlinear stochastic differential equation is expressed as

ẋ?(t/ti) = f [ x?(t/ti),u
?(t), t ] + G?(ti)w(ti), (2.87)

in which the dynamics of the landmark state within x?(t/ti) are zero. Therefore, the

respective partial derivative dynamics matrices for the navigation and landmark state

are derived as

Fx[ t; x̂(t/ti) ] , ∂f [ x,ux(t), t ]

∂x

∣∣∣∣
x=xn(t/ti)

(2.88)

Fy[ t; ŷ(t/ti) ] , ∂f [ y,uy(t), t ]

∂y

∣∣∣∣
y=yn(t/ti)=0

, (2.89)

and the combined partial derivative dynamics matrix is written as

F?[ t; x̂?(t/ti) ] =


Fx[ t; x̂(t/ti) ] 0

0 Fy[ t; ŷ(t/ti) ]

 . (2.90)

The pixel location measurements for the EKF are modeled as a known nonlinear

pixel projection function of the combined state plus linearly additive measurement

noise as

z(ti) = h [ x?(ti), ti ] + v(ti), (2.91)
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such that the pixel location measurements are a function of the combined navigation

and landmark state. The respective partial derivative pixel projection matrices are

then derived as

Hzx[ ti; x̂(t−i ) ] , ∂h [ x, ti ]

∂x

∣∣∣∣
x=x̂(t−i )

(2.92)

Hzy[ ti; ŷ(t−i ) ] , ∂h [ y, ti ]

∂y

∣∣∣∣
y=ŷ(t−i )

, (2.93)

and the combined partial derivative pixel projection matrix is written as

H?[ ti; x̂?(t−i ) ] =


Hzx[ ti; x̂(t−i ) ] 0

0 Hzy[ ti; ŷ(t−i ) ]

 . (2.94)

Finally, the the covariance of the pixel location errors can be written as the

EKF residual covariance computed within the Kalman gain (Equation (2.30)) as

Pzz(ti) = H?[ ti; x̂?(t−i ) ]P?(t−i )H?T [ ti; x̂?(t−i ) ] + R(ti). (2.95)

Therefore, given the pixel coordinates of a stationary ground landmark at time

ti, the predicted pixel coordinates of the same landmark at time ti+1 can be described

by the pixel location error covariance, Pzz(ti), as a function of the combined navigation

and landmark state covariance, P?(ti), the pixel projection matrix, H?[ ti; x̂?(t−i ) ],

and the measurement noise intensity, R(ti).
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III. Method

In this chapter, the modeling and methodology of a satellite-based image-aided

navigation system will be covered, using concepts covered in the previous chap-

ter. First, two satellite trajectories, one low-Earth orbit and one high-Earth orbit,

will be produced. Next, modeling of the satellite system will be developed, includ-

ing the vehicle’s imaging system parameters as well as identifying system-level noise

parameters. The ground image model will be constructed, using the defined satellite

trajectory and noise parameters, as well as existing satellite imagery. Image match-

ing and georeferencing techniques will be implemented to predict the landmark state.

Finally, an extended Kalman filter model will be presented.

3.1 Orbit Modeling

One of the first steps in developing an image-aided navigation system for an

orbiting satellite is the understanding of the satellite’s trajectory around the Earth.

This requires knowledge of the satellite’s position and velocity, both of which are

computed from this trajectory.

In order to prove orbital independence of this satellite-based system, two orbit

types, one LEO and one HEO (specifically, a MOL), will be produced. Descriptions

of these orbits can be found in Section 2.4.5. Using geometric Keplerian orbital

elements defined in Section 2.4.3, both orbits are characterized. The basis of this

element assignment may be dependent upon orbit requirements for the system, such

as a specified orbital period or orbital apogee (see Equations (2.37) and (2.38)). It

should be noted that these orbit declarations are assumed to be nominal and are not

corrupted by error. The parameters assigned for the low Earth and Molniya orbits of

this satellite are represented in Table 3.1.

3.2 Satellite System Modeling

Provided the assigned Keplerian orbit elements mentioned in Section 3.1, the

initial conditions for all navigation and landmark states of this satellite navigation
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Table 3.1: Assigned nominal Keplerian elements for a typical LEO and MOL. Using
these elements, the orbital period and apogee were calculated.

Keplerian Element LEO MOL

a (km) 6,760 26,600

e 0.0323 0.704

i (rad) 1.71 1.10

Ω (rad) 5.97 3.60

ω (rad) 5.46 4.92

ν (rad) 3.12 1.36

Torb (hrs) 1.54 12.0

aporb (km) 598 38,900

system can be defined. These nominal parameters will later provide a basis for the

true navigation and landmark states (where error corruption will be introduced).

3.2.1 Nominal System State Modeling . First, the initial position and

velocity navigation states for the nominal satellite system dynamics are defined in

the three-dimensional Cartesian coordinate system. Using Equations (2.39) through

(2.44), presented in Section 2.4.4, the position vector in the i-frame, rx, ry, and rz (in

units of km) and velocity vector in the i-frame, ṙx, ṙy, and ṙz (in units of km/min),

are computed from the geometric Keplerian elements presented in Table 3.1.

Next, the initial attitude states of the satellite in the n-frame, φ and θ, that being

the pitch and roll angles of the satellite imaging system measured in rad, are assumed

to nominally be zero. In other words, it is assumed that initially the satellite’s imaging

sensor is pointed directly at the target of interest on the ground. For simplicity, it

is assumed that the x- and y-axes of the satellite image (in the n-frame) are always

aligned with respect to the true latitude and longitude axes of the Earth, respectively;

therefore, image rotation is not of concern and the yaw angle of the satellite need not

be estimated.
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Table 3.2: Initial nominal LEO and MOL navigation and landmark states at apogee,
with respect to their respective i and n-frames. The initial navigation
states, rxnom0 , rynom0 , rznom0 , vxnom0 , vynom0 , and vznom0 , are derived using
Keplerian orbital element transformation. Assuming the satellite’s imaging
sensor is pointed directly at the target, the initial attitude states, φnom0 and
θnom0, and the initial landmark states, tnxnom0 and tnynom0 , are considered
to be zero.

Initial Conditions LEO MOL

rxnom0 (km) -4,710 17,100

rynom0 (km) 780 -13,900

rznom0 (km) 5,080 39,600

vxnom0 (km/min) -300 81.2

vynom0 (km/min) 139 50.0

vznom0 (km/min) -299 -17.3

φnom0 (rad) 0 0

θnom0 (rad) 0 0

tnxnom0 (pixels) 0 0

tnynom0 (pixels) 0 0

Finally, the initial n-frame landmark states for the system are defined as the

northern and eastern target position errors on the ground, tnx and tny. Since this state

measurement is based upon the resolution of the satellite image, it is calculated in

units of pixels (see Section 2.5.1 for details diffraction-based imaging). Similar to the

attitude states, the nominal landmark states are initially assumed to be zero, again

implying the satellite’s imaging sensor is pointed directly at the target of interest on

the ground. For the derived low Earth and Molniya orbits, the satellite navigation

and landmark states at apogee are represented in Table 3.2.

3.2.2 Satellite System Dynamics . The navigation and landmark state dy-

namics equations can now be presented. Rewriting Equation (2.36) from Section 2.4.1,

the satellite’s acceleration vector in the i-frame, r̈, can be computed as

53



r̈ = − GM

‖ r ‖3
r + wr̈(t), (3.1)

where GM is the Earth’s standard gravitational parameter (approximately 398,600

km3/min2), ‖ r ‖ is the magnitude of the satellite’s position vector and wr̈(t) is

uncorrelated, zero-mean, white, Gaussian noise source with

E[wr̈(t)wr̈(t)
T (t + τ)] = qr̈(t)δ(τ). (3.2)

The randomized displacement of the satellite image in the n-frame as a result

of variations in the attitude of the imaging sensor (assume to be rigidly fixed to the

satellite body) can be described as a first-order time-correlated drift. This drift can

be characterized as a first-order Gauss-Markov process [12], in which the satellite’s

rate of pitch and rate of yaw, respectively, can written as

φ̇ = − 1

τφ

φ + wφ̇(t) (3.3)

θ̇ = − 1

τθ

θ + wθ̇(t), (3.4)

where τφ and τθ are the first-order Gauss Markov time constants of the roll and pitch

angle in arcmin, respectively, and wφ̇(t) and wθ̇(t) are uncorrelated, zero-mean, white,

Gaussian noise sources with

E[wφ̇(t)wφ̇(t)
T (t + τ)] = qφ̇(t)δ(τ) (3.5)

E[wθ̇(t)wθ̇(t)
T (t + τ)] = qθ̇(t)δ(τ). (3.6)

As explained in Section 2.8, the landmark state vector will be used to accurately

predict the pixel location of a target. As such, tnx and tny will be defined as a
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Figure 3.1: Generated nominal satellite
trajectory in a LEO.

Figure 3.2: Generated nominal satellite
trajectory in a MOL.

stochastic projection of the navigation states, and will therefore have no dynamics.

In other words,

ṫn = 0 + wṫn
(t), (3.7)

where wṫn
(t) is uncorrelated, zero-mean, white, Gaussian noise source with

E[wṫn
(t)wṫn

(t)T (t + τ)] = qṫn
(t)δ(τ). (3.8)

Using the initial conditions found in Table 3.2 and the defined satellite system

dynamics expressed in Equations (3.1) through (3.7), the nominal low-Earth and

Molniya orbits are generated. The resulting path of the satellite’s position in each

orbit is depicted in Figures 3.1 and 3.2.
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Table 3.3: Assigned imaging parameters for an observation satellite, for both LEO
or MOL orbits. A high apogee in the MOL orbit results in higher image
resolution, PX, a smaller maximum off-nadir angle, ηNmax , and smaller
view angle (the maximum angle at which the image can be viewed). Since
similar imaging systems will be used for either orbit, the operating wave-
length, λ, lens diameter, Dlens and lens focal length, flens, will not vary.

Imaging Parameters LEO MOL

PX (km/pix) 0.1 1.0

ζNmax (deg) 25 5.0

view angle (deg) 0.4 0.2

λ (nm) 675 675

Dlens (m) 0.60 0.60

flens (m) 10 10

It is assumed that the optimal operation time of the satellite is when it reaches

its orbital apogee, since it is at that location in orbit where the satellite travels at

its slowest rate (as dictated by Kepler’s 2nd law in Section 2.4.2) and therefore the

satellite is able to capture as many images of the target of interest as possible within

the designated off-nadir angle limits.

3.2.3 Image System Modeling . Based on an appropriate imaging system

suitable for either LEO or MOL orbits [4, 18, 20], the observation satellite’s assigned

imaging parameters are represented in Table 3.3.

It will be assumed that the designed LEO orbit with an apogee of 598 km will

have an image resolution, PX, of less than 1 km/pixel (perhaps on the order of 0.1

km/pixel), whereas the MOL orbit with an apogee of 38,900 km will likely have a

PX of no better than 1 km/pixel. Likewise, the satellite’s off-nadir angle, ηNmax , and

maximum angle at which the image can be viewed, view angle, will likely be much

larger for a satellite in a LEO orbit versus that in a MOL orbit, is the satellite’s

location is orders of magnitude closer to the Earth’s surface in the lower orbit. For

simplicity, it will be assumed that all other imaging system parameters would be
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sufficient for either orbit. Therefore, its operating wavelength, λ, lens diameter, Dlens

and lens focal length, flens, will remain unchanged.

3.3 Noise Modeling

It is unreasonable to assume that the nominal image-aided satellite navigation

system described in Section 3.2 would not be corrupted by real-world errors. Such

errors could include measurement noise due to sensor misalignment (Section 2.2), tra-

jectory noise due to atmospheric drag (Section 2.4), image sensor noise due to vehicle

vibration (Section 2.5), or image displacement (or fluctuation) due to atmospheric

turbulence (Section 2.6).

3.3.1 Turbulence Noise . Errors due to atmospheric turbulence are identified

in order to determine if these errors are significant enough to model in the satellite

system. As discussed in Section 2.6, it is already assumed that these errors will be

minimal in even the worst case scenarios (i.e., when the off-nadir angle ζN = ζNmax).

For completeness, however, these calculations are warranted.

From Sections 2.6.4 and 2.6.5, it was shown that target location errors due to

turbulence may exist due to image jitter and horizontal light refraction displacement.

Using Table 3.3, and Equations (2.60) and (2.69), the resulting image jitter, σimg, and

refraction displacement, ∆xn, are summarized in Table 3.4.

As expected, at minimum off-nadir angles (ζN = 0), turbulence error due to

image jitter and refraction displacement are insignificant in either orbit. At maximum

off-nadir angles (ζN = ζNmax), σimg is again insignificant, and ∆xn is approximately

0.5 pixels (with respect to image resolution) for either orbit. It can be deduced that

for uplink propagation at relatively high altitudes above the lower atmosphere (i.e.,

the case of an imaging sensor onboard an orbiting satellite), image jitter is not found

to be of concern, and image displacement due to refraction is only of slight concern

when off-nadir angles approach their maximum limit. As such, for completeness, very

57



Table 3.4: Image position error due to turbulence in LEO and MOL orbits. At mini-
mum off-nadir angles (ζN = 0), image jitter, σimg, and refraction displace-
ment, ∆xn, are practically non-existent for either orbit. At maximum
off-nadir angles (ζN = ζNmax), σimg is again very small, and ∆xn is only a
half a pixel (with respect to image resolution) in either case.

Error due to Turbulence LEO Molniya

σimg at ζN = 0 (pixels) 4.8 ×10−12 1.0 ×10−34

σimg at ζN = ζNmax (pixels) 5.0 ×10−12 1.1 ×10−34

∆xn at ζN = 0 (pixels) 0 0

∆xn at ζN = ζNmax (pixels) 0.54 0.56

slight additive error will be introduced in the attitude and landmark states, as listed

in the following section.

3.3.2 Image Sensor, Trajectory and Measurement Noise . As mentioned

earlier in Section 3.3, space vehicles, as well as their onboard hardware, are subject to

errors as a result of real-world noise sources, including vehicle vibration, atmospheric

drag and measurement miscalibration, just to name a few. In order to model these

errors in a recursive estimator (such as the extended Kalman filter derived in Sec-

tion 2.3.2), these noise sources are all assumed to be zero-mean, Gaussian and white.

For the purpose of modeling, these assumptions are assumed to be reasonable. With

this in mind, careful consideration must be given as to the numerical assignment of

these noise sources.

The assigned initial statistical and process noise parameters for the designed

LEO and MOL orbits are summarized in Tables 3.5 and 3.6, respectively. Given

faster satellite trajectories, larger off-nadir angles and higher atmospheric effects in

a LEO orbit, it is reasonable to assume that all initial uncertainties be an order of

magnitude smaller and all process noise strengths be at least an order of magnitude

larger than they would be in a MOL orbit. An exception would be the time constants,

τφ and τθ, since the rate of image sensor drift is independent to the altitude of the
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Table 3.5: Assigned initial statistical parameters for a satellite in LEO and MOL
orbits. Faster satellite trajectories, larger off-nadir angles and higher at-
mospheric effects in the LEO orbit justify these parameters to be an order
of magnitude smaller than they would be in the MOL orbit, with the ex-
ception of the independent time constants, τφ and τθ.

Statistical Parameters LEO MOL

σrx0 , σry0 , σrz0 (km) 0.5 0.05

σvx0 , σvy0 , σvz0 (km/min) 0.05 0.005

σφ0 , σθ0 (rad) 5 ×10−4 5 ×10−5

τφ, τθ (min) 10 10

σtnxmeas, σtnymeas (pix) 0.5 0.05

Table 3.6: Assigned process noise parameters for a satellite in LEO and MOL orbits.
Faster satellite trajectories, larger off-nadir angles and higher atmospheric
effects in the LEO orbit justify these parameters to be at least an order of
magnitude larger than they would be in the MOL orbit.

Noise Parameters LEO MOL

qr̈x , qr̈y , qr̈z (km2/min2) 5 ×10−4 5 ×10−6

qφ̇, qθ̇ (min−1) 5 ×10−8 5 ×10−10

qṫnx
, qṫny

(pix2/min) 10 0.1

satellite. Note that all initial statistical parameters are relatively small since it is

assumed that a navigation system calibration had just recently occurred.

It should be noted that the satellite roll and pitch rate noise strengths, qφ̇

and qθ̇, are both first-order Gauss-Markov processes as described in Section 3.2.2.

Accordingly, these values are calculated as

qφ̇ = 2
σφ0

2

τφ
(3.9)

qθ̇ = 2
σθ0

2

τθ
. (3.10)
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Figure 3.3: Generated true satellite attitude error, as first-order Gauss-Markov pro-
cesses [12]. In this particular example, an imaging system in a MOL orbit
is modeled over a 24 hour period. As a first-order Gauss-Markov process,
the mean diverges toward zero at a rate relative to the time constants τφ

and τθ.

The results of this first-order Gauss-Markov process, that being the true satellite

attitude states, φtrue and θtrue, are plotted in Figure 3.3. The nominal roll and pitch

are assumed to be zero for all time (with no optical drift).

Furthermore, the combined process noise intensity matrix, Q?, including both

navigation and landmark states, is
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Q? =



(qr̈x)
2 0 0 0 0 0 0

0 (qr̈y)
2 0 0 0 0 0

0 0 (qr̈z)
2 0 0 0 0

0 0 0 (qφ̇)
2 0 0 0

0 0 0 0 (qθ̇)
2 0 0

0 0 0 0 0 (qṫnx
)2 0

0 0 0 0 0 0 (qṫny
)2



. (3.11)

Likewise, the measurement noise intensity matrix, R, in pixels, is described as

R =


(σtnxmeas)

2 0

0 (σtnymeas)
2

 . (3.12)

The pixel location measurement in the n-frame, a function of both the navigation and

landmark states, is calculated as

∆zmeas =


∆xmeas

∆ymeas

 =


tnx − doφ

PX
0

0 tny − doθ
PX

 , (3.13)

and where the slant range in the e-frame, do, from the satellite to the ground target

coordinates (xoe, yoe, zoe), is computed as
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do =

√
(rx − xoe)

2 + (ry − yoe)
2 + (rz − zoe)

2. (3.14)

3.4 Ground Error Modeling

Given the assigned satellite trajectory and noise parameters, a ground image

model can be constructed using existing satellite imagery. A three-hundred square

mile image of the greater Cincinnati, Ohio area, provided by the National Aeronautics

and Space Administration (NASA) Landsat satellite [10], is assigned to represent

the area of the Earth where the satellite is tracking the target of interest. It is

assumed that the satellite is at or near its apogee so that the target tracking duration

is maximized. In order to accurately represent the capabilities of a satellite image

sensor in either LEO or Molniya orbits, the resolution of the image, PX, must be

considered. For simplicity, identical images of the area are used for either orbit, one in

which PX = 0.1 km/pixel (or 10 pixels/km) to represent the satellite in a low Earth

orbit, and one where PX = 1 km/pixel to represent the satellite in a Molniya orbit.

A sample of the image template (the area in which the subsequent satellite images

will be captured within), at a resolution of 1 km/pixel, is depicted in Figure 3.4.

In order to generate the truth data for the landmark state, tnxtrue and tnytrue, a

full understanding on the landmark error is necessary. Rationally, target error should

be a function of the trajectory of the satellite (as the satellite moves across the sky

above the target) as well as a function of the time-correlated attitude errors affecting

the image sensor (as described in Section 3.3.2). This combination will be assumed

in order to produce the desired truth data for the landmark state.

The northern and eastern true target position errors of the satellite in the n-

frame, tnxorb and tnyorb, solely as a function of orbital drift, are defined as
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Figure 3.4: A 300 square mile Landsat image of the greater Cincinnati, Ohio area [10].
For the LEO case (where the satellite is close to the Earth), an image
resolution, PX, of 0.1 km/pixel (10 pixels/km) is used, whereas for the
Molniya orbit case (where the satellite is very far from the Earth at it
apogee), a PX of 1 km/pixel is used.
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tnxorb = Re
∆lat

PX
(3.15)

tnyorb = Re
∆lon

PX
cos(latnom), (3.16)

where Re is the radius of the Earth in the e-frame (approximately 6,378 km), and the

angular latitude and longitude separation in the e-frame (as a result of the difference

between the nominal and true satellite trajectories), ∆lat and ∆lon, are defined as

∆lat = latnom − lattrue (3.17)

∆lon = lonnom − lontrue. (3.18)

Since it is assumed that the terrain is flat, knowledge of the true altitude error is not

necessary and therefore is not computed. Next, the true target location error as a

function of only the attitude error first order Gauss-Markov processes, tnxFOGM and

tnyFOGM , described in Section 3.3.2, are calculated as

tnxFOGM = doφFOGM (3.19)

tnyFOGM = doθFOGM . (3.20)

The slant range, do, from the satellite position to the target aimpoint, is calculated

as

do =

√
(rx − xoe)

2 + (ry − yoe)
2 + (rz − zoe)

2, (3.21)

and the first-order Gauss-Markov attitude errors are calculated as
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φFOGM (i) = e−∆t/τφ φFOGM(i − 1) (3.22)

θFOGM (i) = e−∆t/τθ θFOGM(i − 1), (3.23)

where i is the current sample, i−1 is the previous sample, and ∆t is the time between

samples.

Finally, the combined true target location error in the n-frame, tnxtrue and tnytrue,

as a function of both orbital drift and first order Gauss-Markov processes, are defined

as

tnxtruth = tnxorb + tnxFOGM (3.24)

tnytruth = tnyorb + tnyFOGM (3.25)

An example of the resulting landmark state truth data, mapped onto a target

of interest (East Fork Lake, 25 miles east of downtown Cincinnati), is depicted in

Figure 3.5.

3.5 Image Matching Development

Image matching techniques discussed in Section 2.7.2 can be implemented as a

means of tracking a target with unique features among a series of pixelated images. By

incorporating matched image data between subsequent images, it can be determine

how a stationary target appears to “drift” between those images, therefore providing

indirect knowledge of how the true landmark error is generated.

Using the sum-of-squared-difference approach defined in Equation (2.70), a

satellite image, representing what the onboard image sensor “sees” based upon the

satellites view angle, is sampled across each pixelated row and column with respect
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Figure 3.5: Generated ground error in the LEO case, as a function of orbital drift and
first-order Gauss-Markov processes. In (a), the target of interest (East
Fork Lake) is tracked in a generated image with a swath width of 500
pixels (50 km), as dictated by the satellite’s view angle. The blue asterisk
denoting the target in (b) is within 3 sigma of the generated ground error
uncertainty (represented here as a dashed circle).
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Figure 3.6: Matching a satellite image containing a target of interest (b) within an
image template (a), using the SSD approach. In (a), the overlaying image
is sampled across each row and column, and the SSD for each sampling is
computed in order to determine the lowest SSD intensity (best match).

to an image template (that being the 300 square mile image presented in Figure 3.4).

This concept is represented in Figure 3.6, where the target of interest (the lake tracked

in Figure 3.5) is matched onto the 300 square mile map of the greater Cincinnati, Ohio

area.

The SSD process can be represented as a three dimensional contour plot, in

which lower SSD values indicating where the difference between the image and tem-

plate is minimal, representing the best match between the two images. This is illus-

trated in Figure 3.7.

3.6 Georeferencing Development

Although the image matching process described in Section 3.5 is an efficient

means of determining how a target of interest wanders between subsequent satellite

images, it has no knowledge of any existing initial measurement error generated prior

to the image matching process. In other words, when the first image is captured, the

image sensor assumes that no initial target location error exists, and unknowingly
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Figure 3.7: A 3-D contour plot of the resulting SSD calculations for each row and
column sample. The “best match” is determined to be where the SSD
values reach a local minimum, indicating where the difference between
the satellite image and image template is smallest.

matches the future captured images relative to the first image. Whether or not the

image does in fact contain the target in never truly determined.

Georeferencing provides a solution to this dilemma. Knowledge of the initial

target location error by means of automated georeferencing (see Section 2.7.2), the

target’s true location in the n-frame can be determined relative to a reference map of

the Earth. Essentially, a georeferenced image can be used to accurately predict the

initial true pixel location of the target. The benefits of geolocation are apparent in

Figure 3.8, where a constant “bias” between the SSD matched landmark state and

the truth data can be seen. The remaining bias between the matched data and truth

data is simply calculated as

tnbias ' tnmatch − tntruth. (3.26)
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Figure 3.8: Plotting of the best matched northern and eastern target location errors
against the generated truth data. The matched data accurately follows
the truth data, however, a constant error remains because the initial true
pixel location is unknown. This “bias“ between the matched data and
truth data can be corrected using georeferencing techniques.

Note that tnbias is only an approximation of this bias, and not a true representation,

since its calculation is limited by the available image resolution (rounded to the nearest

pixel).

Through combined image matching and georeferencing techniques, an accurate

target location error prediction is generated that closely matches the true target lo-

cation error

tnpred ' tnmatch − tnbias (3.27)

tnpred ' tntruth. (3.28)
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3.7 Extended Kalman Filter Development

Provided the truth data for the navigation and landmark state in Section 3.2,

the statistical and noise parameters generated in Section 3.3, and the truth (and

predicted) data derived in Sections 3.4 through 3.6, the extended Kalman filter defined

in Section 2.3.2 can now be built.

The initial navigation and landmark state mean, x?
0, and state covariance, P?

0,

both derived in Equations (2.81) and (2.82), can be calculated, where, from Equa-

tion 3.28, the initial target location error, y0, is equal to the predicted target location

error, or

y0 = tnpred0. (3.29)

The resulting combined initial state vector is
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x?
0 =


x0

y0

 =



rxnom0

vxnom0

rynom0

vynom0

rznom0

vznom0

φnom0

θnom0

tnxpred0

tnypred0



. (3.30)

Likewise, the resulting combined initial covariance matrix is

P?
0 =


Pxx0 Pxy0

Pyx0 Pyy0

 , (3.31)

where Pxx0 is assigned to be
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Pxx0 =



σ2
rx0

0 0 0 0 0 0 0

0 σ2
vx0

0 0 0 0 0 0

0 0 σ2
ry0

0 0 0 0 0

0 0 0 σ2
vy0

0 0 0 0

0 0 0 0 σ2
rz0

0 0 0

0 0 0 0 0 σ2
vz0

0 0

0 0 0 0 0 0 σ2
φ0

0

0 0 0 0 0 0 0 σ2
θ0



, (3.32)

and Pxy0, Pyx0 and Pyy0 are calculated, respectively, as

Pxy0 = Pxx0G
T
yx0 (3.33)

Pyx0 = Gyx0Pxx0 (3.34)

Pyy0 = Gyx0Pxx0G
T
yx0. (3.35)

The influence coefficient, Gyx0, defined in Equation (2.75), is determined from the

partial derivatives of the target location error equation solved in Section 3.4, defined as

tnx = tnxorb + tnxFOGM (3.36)

tny = tnyorb + tnyFOGM . (3.37)
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Consider the homogeneous nonlinear differential equation defined in Equation (2.16)

ẋ?(t) = f [ x?(t),u?(t), t ]. (3.38)

For the given input function, u?
0 (assumed in this model to be zero), and the initial

condition, x?
0, the nominal solution trajectory, x̃?(t) is known to exist. The perturba-

tions in the initial condition are denoted as

x?(t) = x̃?(t) + δx?(t), (3.39)

where the perturbation state vector for the system model is defined as

δx?(t) =



δrx

δvx

δry

δvy

δrz

δvz

δφ

δθ

δtnx

δtny



. (3.40)
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From Equations (2.24) and (2.25), the transition matrix and linear perturbation equa-

tions, respectively, are therefore

Φ?(t, t0) = eF?(t)∆t (3.41)

δx?(t) = Φ?(t, t0) δx?(t−) + w(t). (3.42)

From Equations (2.88) through (2.90) and Equations (3.1) through (3.7), the

partial derivative dynamics matrix for both the navigation and landmark states, F?(t),

is calculated as

F?(t) =



0 1 0 0 0 0 0 0 0 0

∂r̈x

∂rx
0 ∂r̈x

∂ry
0 ∂r̈x

∂rz
0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

∂r̈y

∂rx
0 ∂r̈y

∂ry
0 ∂r̈y

∂rz
0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

∂r̈z

∂rx
0 ∂r̈z

∂ry
0 ∂r̈z

∂rz
0 0 0 0 0

0 0 0 0 0 0 ∂φ̇
∂φ

0 0 0

0 0 0 0 0 0 0 ∂θ̇
∂θ

0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



. (3.43)

F?(t) can be further solved as
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F?(t) =



0 1 0 0 0 0 0 0 0 0

(2r2
x−r2

y−r2
z)GM

‖r‖5 0 3rxryGM

‖r‖5 0 3rxrzGM
‖r‖5 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

3rxryGM

‖r‖5 0
(2r2

y−r2
x−r2

z)GM

‖r‖5 0 3ryrzGM

‖r‖5 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

3rxrzGM
‖r‖5 0 3ryrzGM

‖r‖5 0
(2r2

z−r2
x−r2

y)GM

‖r‖5 0 0 0 0 0

0 0 0 0 0 0 − 1
τφ

0 0 0

0 0 0 0 0 0 0 − 1
τθ

0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



.

(3.44)

Note that the dynamics of the landmark states, ṫnx and ṫny, are zero, since they are

stochastic projections of the navigation state (see Section 2.8). From Equations (2.92)

through (2.94), and Equation (3.13), the partial derivative pixel projection matrix,

H?(t), is calculated as

H?(t) =


∂∆xmeas

∂rx
0 ∂∆xmeas

∂ry
0 ∂∆xmeas

∂rz
0 ∂∆xmeas

∂φ
0 1 0

∂∆ymeas

∂rx
0 ∂∆ymeas

∂ry
0 ∂∆ymeas

∂rz
0 0 ∂∆ymeas

∂θ
0 1

 . (3.45)
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H?(t) can be further solved as

H?(t) =


−φ (rx−xoe)

H′ PX
0 −φ (ry−yoe)

H′ PX
0 −φ (rz−zoe)

H′ PX
0 −H′

PX
0 1 0

−θ (rx−xoe)
H′ PX

0 −θ (ry−yoe)

H′ PX
0 −θ (rz−zoe)

H′ PX
0 0 −H′

PX
0 1

 , (3.46)

where H ′ is defined as

H ′ =
√

r2
x − 2rxxoe + x2

oe + r2
y − 2ryyoe + y2

oe + r2
z − 2rzzoe + z2

oe. (3.47)

The resulting estimates of the navigation and landmark state will be presented

in the next chapter.
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IV. Results and Observations

In order to validate the mathematical methods presented in Chapter III, the satellite-

based image-aided navigation system algorithms are evaluated using simulation-

based analyses. First, the development of the simulation will be described. An analy-

sis of Monte Carlo results for a satellite system in both low Earth and Molniya orbits

will follow.

4.1 Simulation Development

The performance of the extended Kalman filter built in Section 3.7 is verified

using a statistical ensemble of sample functions, totaling 100 sample functions per

Monte Carlo run. Each Monte Carlo run has a 20 minute duration, sampling at

1 Hz (for a total of 1200 data points per sample). For each sample, an entirely

new set of inertial sensor and imaging system data is generated using the respective

system dynamics and and error models described Chapter III, and are based upon

the assigned statistical and noise parameters listed in Table 3.6.

For each 20 minute run, the EKF is implemented for three distinct profiles:

the first without any image-aided updates to the target location error estimate, the

second using only the image matching method developed in Section 3.5 to update

the target location error estimate, and the third using both image matching and

georeferencing methods developed in Sections 3.5 and 3.6 to update the target location

error estimate. For convenience, these profiles were be referred to as “non-updated”,

“image-matched”, and “image-corrected”, accordingly.

In each profile, initial and subsequent target location error predictions are made

per Equations (3.28) and (3.29). In the non-updated profile, these predictions are

assigned to be zero mean with initial uncertainty, P?
0. In the image-matched profile,

subsequent images are matched to the first captured image in order to reduce optical

drift; however, without knowledge of the initial target location error, a constant target

location error will remain. Finally, in the image-corrected profile, the initial bias of
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the image matched profile is corrected through georeferencing, therefore providing the

most precise target geolocation capability of the three profiles.

In order to demonstrate system performance in multiple orbits, two Monte Carlo

scenarios will be implemented. The first scenario contains a satellite system in low

Earth orbit, where the satellite is located in a relatively small orbital apogee and image

resolution is high. The second scenario consist of a system in a Molniya orbit, where

the satellite is located in a relatively high orbital apogee and image resolution is low.

Orbital and imaging system parameters are listed in Tables 3.1 and 3.3, respectively.

For simplicity, the pre-generated high-resolution and low-resolution satellite im-

ages of the greater Cincinnati, Ohio area are used to represent a satellite in the LEO

and MOL orbits, respectively. This template is depicted in Figure 3.4. Whereas these

static satellite images are appropriate for testing the coupled image/inertial sensor al-

gorithm, the results are not directly comparable to the performance of a real satellite

imaging system. As such, imaging issues including poor sunlight conditions, target

obstruction, ego-motion disparity and motion blur between subsequent images are not

modeled [25].

4.2 Low Earth Orbit Simulation

The navigation and landmark state errors of the imaging satellite are simulated

in 20 minute durations for a total of 100 samples. The satellite is initialized in a LEO

orbit at an elevation of 598 km (at apogee) above the Cincinnati, Ohio area, with an

imaging resolution of 0.1 km/pixel.

The position and velocity errors of the satellite, in the e-frame x-, y- and z-

directions, are shown in Figures 4.1 through 4.2, respectfully. As expected with large

acceleration-level noise, the inertial position and velocity measurement errors accumu-

late over time, resulting in quickly growing position and velocity error uncertainties

without bound. The observed drift from zero mean is the result of two phenomenon.

The first phenomenon is that the additive error, introduced onto the initial position
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and velocity states prior to propagation, results in a slight deviation of the estimated

orbit from true orbit over time, producing a non-zero position and velocity error

mean. The second phenomenon is due to an insufficient number of Monte Carlo sam-

ples, resulting in a perceived “bias” of each position and velocity error state away

from the true zero mean. Although not confirmed by this research, it is hypothesized

that by running tens of thousands of samples, the position and velocity errors would

begin to approach their expected zero means. Note the variations of position and ve-

locity errors between non-updated, image-matched and image-corrected profiles were

minimal; therefore, only the non-updated profile is depicted.

The attitude errors of the imaging system, time-correlated first-order Gauss-

Markov processes described in Sections 3.2.1 and 3.3, are shown in Figure 4.3. Being

first-order Gauss-Markov processes, the state estimates are zero-mean with growing

uncertainties, reaching a steady state of approximately 0.17 degs at time constant, τ ,

of 10 minutes. Note the variations of attitude errors between non-updated, image-

matched and image-corrected profiles were minimal; therefore, only the non-updated

profile is depicted.

The n-frame target location errors are estimated with respect to the non-

updated, image-matched and image-corrected profiles as shown in Figures 4.4 through

4.6, respectfully. As a stochastic projection of the navigation states, the behavior of

the non-updated target location errors in Figure 4.4 correspond to the growing posi-

tion and velocity errors and of the first-order Gauss-Markov attitude errors. As such,

a zero-mean target location error is observed with a large, unbounded uncertainty

growing over the 20 min duration. Recalling Equation (3.37), the target location er-

ror due to satellite orbital drift is dominate in LEO orbit, primarily the result to faster

satellite trajectories, larger off-nadir angles and larger atmospheric effect considera-

tions, causing a larger initial uncertainty in a particular direction (in this case, the

x-direction). The non-updated profile can be visualized with respect to the satellite

image in Figure 4.7.
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The image-matched target location errors in Figure 4.5 are also zero-mean; how-

ever, it can be seen that the time-correlated drift with respect to the attitude states is

suppressed by the image matching algorithm, resulting in steady uncertainties. This

uncertainty remains high, however, since navigation state uncertainties are large and

knowledge of the initial target location error is not available. Again, the satellite or-

bital drift due to large statistical and noise parameters dominates the target location

error, potentially causing a larger uncertainty in a particular direction (in this case,

the x-direction). The image-matched profile can be visualized with respect to the

satellite image in Figure 4.8.

In Figure 4.6, the image-corrected target location error remains small in both

x- and y-directions. This error is seen to improve by roughly an order of magnitude

compared to that of the previous two profiles. The image-corrected profile takes

advantage of both the image-matching algorithm (which corrects the time-correlated

drift) as well as the georeferencing algorithm (which corrects the initial target location

error). The result is a greatly reduced target location error throughout the entire 20

minute duration, corrupted only by minor measurement noise. The image-corrected

profile can be visualized with respect to the satellite image in Figure 4.9.

Finally, the root-sum-squared (RSS) errors of the target location error are ana-

lyzed in order to provide a more direct comparison of the simulated satellite system’s

performance with respect to the three profiles. The RRS errors comparing the tar-

get location errors in these three cases are shown in Figure 4.10. Over the entire 20

minute simulation, it can be clearly seen that the image-corrected profile improves

the system performance by an order of magnitude over that of the non-updated and

image-matched profiles.
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Figure 4.1: Simulated 100-run Monte Carlo satellite position error results in LEO,
without image updates. The position error sample functions are indicated
by blue dotted lines. The ensemble mean and 3-sigma standard deviation
are indicated by the green and red solid lines, respectively. The large
acceleration-level noise results in quickly growing position uncertainties.
The observed drift is most likely due to both the initial introduction of
acceleration noise as well as the low number of Monte Carlo samples.
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Figure 4.2: Simulated 100-run Monte Carlo satellite velocity error results in LEO,
without image updates. The velocity error sample functions are indicated
by blue dotted lines. The ensemble mean and 3-sigma standard deviation
are indicated by the green and red solid lines, respectively. The large
acceleration-level noise results in quickly growing velocity uncertainties.
The observed drift is most likely due to both the initial introduction of
acceleration noise as well as the low number of Monte Carlo samples.
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Figure 4.3: Simulated 100-run Monte Carlo satellite attitude error results in LEO,
without image updates. The attitude error sample functions are indicated
by blue dotted lines. The ensemble mean and 3-sigma standard deviation
are indicated by the green and red solid lines, respectively. The attitude
errors are zero-mean with growing uncertainties, reaching a steady state
of approximately 0.17 degs at a time constant, τ , of 10 minutes.
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Figure 4.4: Simulated 100-run Monte Carlo target location error results in LEO, with-
out image updates. The target location error sample functions are indi-
cated by blue dotted lines. The ensemble mean and standard deviation are
indicated by the green and red solid lines, respectively. A zero-mean tar-
get location error is observed with a large, unbounded uncertainty growing
over the 20 min duration.
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Figure 4.5: Simulated 100-run Monte Carlo target location error results in LEO, with
image matching. The target location error sample functions are indicated
by blue dotted lines. The ensemble mean and standard deviation are in-
dicated by the green and red solid lines, respectively. The time-correlated
drift with respect to the attitude errors is suppressed by the image match-
ing algorithm, resulting in large steady uncertainties.
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Figure 4.6: Simulated 100-run Monte Carlo target location error results in LEO, with
full image correction. The target location error sample functions are in-
dicated by blue dotted lines. The ensemble mean and standard deviation
are indicated by the green and red solid lines, respectively. Both time-
correlated drift and initial target location error are corrected in this profile,
resulting in a reduced target location error by an order of magnitude.
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Figure 4.7: Mapped 100-run Monte Carlo target location error results after 20 minutes
in LEO, without image updates. Over time, the target location error is
seen to grow without bound.

Figure 4.8: Mapped 100-run Monte Carlo target location error results after 20 minutes
in LEO, with image matching. Although the initial target location error
is large, the error does not significantly drift over time.
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Figure 4.9: Mapped 100-run Monte Carlo target location error results after 20 minutes
in LEO, with full image correction. Both the image-matching algorithm
(which corrects the time-correlated drift) and georeferencing algorithm
(which corrects the initial target location error) are utilized.
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Figure 4.10: Simulated 100-run Monte Carlo root-sum-squared (RSS) target location
error results in LEO, comparing the three image-aided profiles. It can
be clearly seen that the image-corrected profile improves the system per-
formance by an order of magnitude over that of the non-updated and
image-matched profiles.
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4.3 High Earth Orbit Simulation

For a satellite system in a MOL orbit, an identical simulation to that of the

LEO scenario is conducted to determine whether the satellite system’s elevation and

image resolution would vastly affect the results. For comparison, the navigation and

landmark state errors of the imaging satellite are again simulated in 20 min durations

for a total of 100 samples. The satellite is initialized in a MOL orbit at an elevation

of 38,900 km (at apogee) above the Cincinnati, Ohio area, with an imaging resolution

of 1 km/pixel.

The e-frame x-,y- and z-directional position and velocity errors of the satellite

are shown in Figures 4.11 through 4.12, respectfully. With the smaller acceleration-

level noise at the higher orbit, the inertial position and velocity measurement errors

accumulate more slowly over time, resulting in slowly growing position and velocity

error uncertainties without bound. As with the LEO orbit position and navigation

error states, the observed drift is due to both the initial introduction of acceleration

noise as well as the low number of Monte Carlo samples. Again, the variations of po-

sition and velocity errors between non-updated, image-matched and image-corrected

profiles were minimal; therefore, only the non-updated profile is depicted.

The time-correlated first-order Gauss-Markov process attitude errors of the

imaging system are shown in Figure 4.13. Being first-order Gauss-Markov processes,

the state estimates are zero-mean with growing uncertainties, reaching a steady state

of approximately 0.017 degs at time constant, τ , of 10 minutes. Again, the variations

of attitude errors between non-updated, image-matched and image-corrected profiles

were minimal; therefore, only the non-updated profile is depicted.

The n-frame target location errors are estimated with respect to the non-

updated, image-matched and image-corrected profiles as shown in Figures 4.14 through

4.16, respectfully. As with the lower orbit scenario, the behavior of the non-updated

target location errors in Figure 4.14 correspond to the growing position, velocity, and

attitude errors. As such, a zero-mean target location error is observed with a large,
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unbounded uncertainty growing over the 20 min duration. The target location error in

the MOL scenario is not dominated by either satellite orbital drift or time-correlated

optical drift, resulting in a large and unsteady initial uncertainty in both x- or y-

directions. The non-updated profile can be visualized with respect to the satellite

image in Figure 4.17.

The image-matched target location errors in Figure 4.15 are also zero-mean;

however, like in the LEO scenario, the time-correlated attitude drift is suppressed by

the image matching algorithm. This results in steady and high uncertainties due to

large navigation state uncertainties and unknown initial target location error. In the

MOL orbit, neither orbital drift or optical drift dominate the target location error.

The image-matched profile can be visualized with respect to the satellite image in

Figure 4.18.

In Figure 4.16, the image-corrected target location error remains small in both

x- and y-directions. Like the LEO scenario, this error is seen to improve by roughly

an order of magnitude compared to that of the previous two profiles, taking advantage

of both the image-matching and georeferencing algorithms. The result is a greatly

reduced target location error throughout the entire 20 minute duration, corrupted

only by minor measurement noise. The image-corrected profile can be visualized with

respect to the satellite image in Figure 4.19.

Finally, the RSS errors of the target location error are analyzed with respect to

the three profiles. The RRS errors comparing the target location errors in these three

cases are shown in Figure 4.20. Very similar to the LEO scenario, it can be clearly

seen that the image-corrected profile improves the system performance by an order

of magnitude over the entire 20 minute duration.

4.4 Simulation Comparisons

In comparison of the LEO and MOL scenarios, the image-corrected profile in

both cases has been shown to provide highly accurate target tracking results over a
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20 minute duration. The larger statistical and noise parameters of the LEO orbit,

resulting in respectively large navigation uncertainties, still do not drastically affect

target tracking performance in the image-matched or image-corrected profiles. Like-

wise, in both the high-resolution LEO system and low-resolution MOL system, it is

shown that subsequent satellite images can be effectively matched and minimal initial

target location error can be provided through georeferencing, in order to accurately

predict and track the target location in either scenario.
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Figure 4.11: Simulated 100-run Monte Carlo satellite position error results in MOL,
without image updates. The position error sample functions are indi-
cated by blue dotted lines. The ensemble mean and 3-sigma standard
deviation are indicated by the green and red solid lines, respectively. The
smaller acceleration-level noise results in slowly growing position uncer-
tainties. The observed minor drift is most likely due to both the initial
introduction of acceleration noise as well as the low number of Monte
Carlo samples.
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Figure 4.12: Simulated 100-run Monte Carlo satellite velocity error results in MOL,
without image updates. The velocity error sample functions are indicated
by blue dotted lines. The ensemble mean and 3-sigma standard deviation
are indicated by the green and red solid lines, respectively. The smaller
acceleration-level noise results in very minor growth of velocity error
uncertainties.
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Figure 4.13: Simulated 100-run Monte Carlo satellite attitude error results in MOL,
without image updates. The attitude error sample functions are indi-
cated by blue dotted lines. The ensemble mean and 3-sigma standard
deviation are indicated by the green and red solid lines, respectively.
The attitude errors are zero-mean with growing uncertainties, reaching
a steady state of approximately 0.017 degs at a time constant, τ , of 10
minutes.
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Figure 4.14: Simulated 100-run Monte Carlo target location error results in MOL,
without image updates. The target location error sample functions are
indicated by blue dotted lines. The ensemble mean and standard de-
viation are indicated by the green and red solid lines, respectively. A
zero-mean target location error is observed with a large, unsteady un-
certainties over the 20 min duration.
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Figure 4.15: Simulated 100-run Monte Carlo target location error results in MOL,
with image matching. The target location error sample functions are
indicated by blue dotted lines. The ensemble mean and standard devi-
ation are indicated by the green and red solid lines, respectively. The
time-correlated drift with respect to the attitude errors is suppressed by
the image matching algorithm, resulting in large steady uncertainties.
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Figure 4.16: Simulated 100-run Monte Carlo target location error results in MOL,
with full image correction. The target location error sample functions
are indicated by blue dotted lines. The ensemble mean and standard
deviation are indicated by the green and red solid lines, respectively.
Both time-correlated drift and initial target location error are corrected
in this profile, resulting in a reduced target location error by an order of
magnitude.
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Figure 4.17: Mapped 100-run Monte Carlo target location error results after 20 min-
utes in MOL, without image updates. Over time, the target location
error is seen to very slowly grow without bound.

Figure 4.18: Mapped 100-run Monte Carlo target location error results after 20 min-
utes in MOL, with image matching. Although the initial target location
error is large, the error does not significantly drift over time.
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Figure 4.19: Mapped 100-run Monte Carlo target location error results after 20 min-
utes in MOL, with full image correction. Both the image-matching al-
gorithm (which corrects the time-correlated drift) and georeferencing
algorithm (which corrects the initial target location error) are utilized.
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Figure 4.20: Simulated 100-run Monte Carlo root-sum-squared (RSS) target location
error results in MOL, comparing the three image-aided profiles. The
image-corrected profile improves the system performance by an order of
magnitude over that of the non-updated and image-matched profiles.
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V. Conclusions

This thesis introduces the concept of fusing the imaging and inertial sensors of

a satellite observation system to accurately and autonomously geolocate com-

mercial or military ground targets of interest. In this chapter, conclusions regarding

the image-aided satellite system simulation are presented, and potential focus areas

of future research are addressed.

5.1 Summary

As mentioned in Chapter I, the goal of this research was to develop a low-cost,

low-weight, highly-accurate image-aided inertial satellite navigation system without

the need of human interaction or dependency on external navigation system sources.

This section summarizes the implementation, results and observations of this system

design.

In Chapter III, the orbital modeling parameters listed in Section 3.1 were used to

define both a nominal low Earth and Molniya orbit of an imaging satellite. The satel-

lite system parameters and dynamics defined in Section 3.2 described the trajectory of

the vehicle and the functionality of the onboard imaging system. Next, the navigation

and landmark noise error parameters assigned in Section 3.3 were introduced into the

nominal state initial conditions and system dynamics to produce simulated truth data;

specifically, the generated ground error as described in Section 3.4. Image matching

and georeferencing techniques presented in Sections 3.5 and 3.6, respectively, aided

in the tracking of the ground target of interest by detecting unique features of the

target between subsequent images and correcting for any initial target location error.

Finally, the extended Kalman filter described in Section 3.7 was implemented in order

to estimate of the navigation and landmark states and determine the errors between

the estimated and truth data over time.

In Chapter IV, the satellite-based image-aided navigation system algorithms de-

fined in Chapter III were evaluated using Monte Carlo simulation-based analyses. The

performance of the extended Kalman filter was verified using a 20 minute statistical
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ensemble of 100 independent sample functions, sampled at 1 Hz, and were analyzed in

three image-aided profiles: non-updated, image-matched and image-corrected. Two

separate Monte Carlo scenarios are implemented: the first was a satellite system in a

low Earth orbit (with high image resolution) and the second system in a high Earth

orbit (with low image resolution). Respective high and low resolution images of the

Cincinnati, Ohio area were used to represent the satellite’s field of view and identify a

unique target of interest. In both LEO and MOL orbit scenarios (Sections 4.2 and 4.3,

respectively), it was observed that the full image-aided target location prediction of

the image-corrected profile minimized the target location error by an order of mag-

nitude throughout the 20 minute simulation. Additionally, it was shown that the

satellite system’s trajectory and image resolution capability did not drastically affect

the performance of the image-aided satellite system in either scenario, verifying that

this model is suitable for both high or low Earth orbit assignments with corresponding

image resolution requirements.

5.2 Conclusions

Based upon the methodology, results and observations summarized in Sec-

tion 5.1, final conclusions of the image-aided satellite inertial navigation system can

be made.

A significant motivator defined in Chapter I expressed the need for a low-cost,

low-weight, highly-accurate satellite imaging system. Growing expenses associated

with overall satellite design and space launch capabilities demand that space vehicles

be as efficient and light weight as possible. Since the developed image-aided algo-

rithms defined in Chapter III utilize only pre-existing image and inertial sensors, and

no additional vehicle or ground tracking hardware is implemented, it can be reason-

ably concluded that vehicle cost and weight will not be drastically affected by this

design. The accuracy of the fully corrected image-aided model, as discussed in detail

in Chapter IV, provides appreciable evidence that minimal target location error is
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available for the first 20 minutes of target tracking. It is assumed that this period of

time is sufficient for most target tracking applications.

Since this integrated image/inertial Earth observation system actually estimates

the extended Kalman filter navigation states of the satellite, these estimates can be

fed back into the satellite in order to improve the combined satellite navigation/target

tracking solution. This is particularly beneficial to navigation systems requiring rou-

tine navigation calibrations since these calibrations are accomplished simultaneously

with the target tracking functionality.

Another motivator for this research was to build a system that is fully au-

tonomous and independent of external navigation reference sources, such as GPS or

continuous post-capture georeferencing. The image matching SSD algorithm is shown

to be fully autonomous, and therefore satisfies this requirement. Likewise, GPS or

similar external reference sources are never implemented in this model and is therefore

independent of such systems. The georeferencing algorithm used to initially correct

the target location prediction could be viewed as a possible infringement; however, in

this application, it is assumed that a pre-generated georeferenced map of the area of

interest is available, with a sufficient number of control points to accurately correct

any initial target location errors. Additionally, since an image matching algorithm

is used in conjunction with this georeferencing technique, the target need only be

georeferenced once in order to provide significant target tracking improvement. As

a comparison, if the target were to instead be georeferenced once every sample (in

the case of no available image-matching capabilities), sluggish georeferencing response

time would potentially outweigh any target location error correction. It was shown

that one-time geolocation early in the simulation provided considerable target track-

ing improvement throughout the entire simulation; therefore, the response time of one

georeferencing sampling is not of major concern.
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Although further advances could be made to further optimize the performance

of the target tracking system, these results show promise that the development of a

robust image-aided satellite system is worthwhile.

5.3 Future Work

This research represents a preliminary analysis in the fusion of image/inertial

sensors of Earth-observation satellites for precise geolocation of ground targets. A

number of recommendations for future research can be made, further exploring this

space-based image-aided navigation system. They are listed as follows:

• Simulation Using Real Data: While the pre-generated satellite images are ap-

propriate for testing the coupled image/inertial sensor algorithm, the results are

not directly comparable to the performance of a real satellite imaging system.

A logical next step would be to test a series of authentic, subsequent satellite

images of a feature-rich ground target in order to provide further verification of

system performance.

• Use of a Standard Earth Coordinate Frame: This research uses a simplistic,

spherical Earth model as a reference frame and assumes the target of interest is

located at a fixed elevation (i.e., at sea level). A more sophisticated reference

coordinate system, such as the World Geodetic System 1984 (WGS 84), would

provide more precise ground tracking capabilities for real-world image-aided

satellite navigation systems.

• Introduction of Imaging Anomalies : Imaging issues such as poor sunlight con-

ditions, partial target obstruction, binocular disparity, motion blur, and affine

transformations are not identified in this research. It is recommended that a

number of these considerations be modeled to provide further system credibility

in the presence of real-world imaging anomalies.
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