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1. Introduction

1.1. Research Objectives

As part of this research prograin we proposed the development of an energy-based thermo-
dynamic stabilization framework for hybrid control design of large-scale aerospace systemns.
In particular, we concentrate on hybrid control, hierarchical control, impulsive dynamical
svstems, nonnegative dynamical systems, compartinental systeins, large-scale systeims, non-
linear switching control, cooperative control, and adaptive control. Application areas include
large flexible interconnected space structures, spacecraft stabilization, cooperative control of
winamned alr vehicles, network systemns, swarms of air and space vehicle formations, and

pharniacological systemns.

1.2. Overview of Research

Controls research by the Principal Investigator [1-74] has concentrated on an energy-
based thermodynamic stabilization franiework for hybrid control design of large-scale aero-
space systems. This framework provides a rigorous foundation for developing a unified
energy-based (network thermodynainic) analysis and synthesis methodology for large-scale
aerospace systems possessing hybrid, hierarchical, and feedback structures. This framework
additionally provides a rigorous alternative to designing gain scheduled controllers for gen-
eral nonlinear dynaniical systeirns by constructing minimal complexity logic-based nonlinear
controllers consisting of a number of subcontrollers situated in levels (protocol layers of hier-
archies) such that each subcontroller can coordinate lower-level controllers. Correspondingly,
one of the main goal of this research has been to make progress towards the development
of analysis and hierarchical hybrid nonlinear control law tools for nonlinear large-scale dy-
namical systemns. This framework provides the basis for developing control-system parti-
tioning/embedding using concepts of energy-based thermodynamic hybrid stabilization for

complex, large-scale aerospace systerms.

A thennodynanic stabilization framework for Eulerian swarin models is also developed.
Specifically, we present a distributed boundary controller architecture involving the exchange
of information between uniforinly distributed swarms that guarantee that the closed-loop
system is counsistent with basic thermodynamic principles. Robustness of individual agent
failures and unplanned individual agent behavior is also addressed. In addition, a general

fraimnework for designing sentistable protocols in dynamical networks with switching topolo-

gies is also developed. Specifically, we develop a distributed noulinear controller architecture




for multiagent network consensus with time-dependent and state-dependent comniunication
topologies. Correspondingly, the main goal of tliis research over the past year has been to
make progress towards the developnient of analysis and control for nonlinear multi-agent

systerns.

1.3. Goals of this Report

The main goal of this report is to summarize the progress achieved under the prograin
during the past three years. Since most of the technical results appeared or will soon appear
in over 74 archival journal and conference publications, we shall only summarize these results

and remark on their significance and interrelationship.

2. Description of Work Accomplished

The following partial research accomplisliments have been completed over the past three

years.

2.1. Hybrid Decentralized Maximum Entropy Control for Large-
Scale Dynamical Systems

Modern complex dynainical systems' are highly interconnected and mutually interdepen-
dent, both physically and through a mltitude of informmation and communication network
constraints. The sheer size (i.e., dimensionality) and complexity of these large-scale dy-
namical systems often necessitates a decentralized architecture for analyzing and controlling
these systems. Specifically, in the control-system design of complex large-scale dynamical
systemns it is often desirable to treat the overall system as a collection of interconnected
subsystems. The behavior of the composite (i.e., large-scale) system can then be predicted
from the behaviors of the individual subsystems and their interconnections. The need for
decentralized control design of large-scale systeins is a direct consequence of the physical size
and cowplexity of tlie dynamical model. In particular, computational complexity may be
too large for model analysis while severe constraints on commmunication links between system
sensors, actuators, and processors may render centralized control architectures impractical.
Moreover, evenr when communication constraints do not exist, decentralized processing may

be more economical.

THere we have in mind large flexible space structures, aerospace systems, electric power systems, network
systems, economic systems, and ecological systems, to cite but a few examples.




The complexity of modern controlled large-scale dynamical systems is further exacer-
bated by the use of hierarchial embedded control subsystems within the feedback control
system; that is, abstract decision-making units performing logical checks that identity sys-
tem mode operation and specify the continuous-variable subcontroller to be activated. Such
systems typically possess a multiechelon hierarchical hybrid decentralized control architec-
ture characterized by continuous-time dynamics at the lower levels of the hierarchy and
discrete-time dynamics at the higher levels of thie hierarchy. The lower-level units directly
interact with the dynamical system to be controlled while the higher-level units receive infor-
mation from the lower-level units as inputs and provide (possibly discrete) output commands
which serve to coordinate and reconcile the (sometimes competing) actions of the lower-level
units. The hierarchical controller organization reduces processor cost and controller com-
plexity by breaking up the processing task into relatively small pieces and decomposing the
tast and slow control functions. Typically, the higher-level units perforn logical checks that
determine system mode operation, while the lower-level units execute continuous-variable

commands for a given system mode of operation.

Since implementation constraints, cost, and reliability considerations often require de-
centralized controller architectures for controlling large-scale systems, decentralized control
has received considerable attention in the literature. A straightforward decentralized control
design technique is that of sequential optimization, wherein a sequential centralized subcon-
troller design procedure is applied to an augmented closed-loop plant commposed of the actual
plant and the remaining subcontrollers. Clearly, a key difficulty with decentralized control
predicated on sequential optimization is that of dimensionality. An alternative approach to
sequential optimization for decentralized control is based on subsystem decomposition with
centralized design procedures applied to the individual subsysteins of the large-scale system.
Decomposition techniques exploit subsystem interconnection data and in many cases, such
as i the presence of very high system dimensionality, is absolutely essential for designing

decentralized controllers.

I this research [6], we develop a novel energy-based hybrid decentralized control frame-
work for lossless and dissipative large-scale dynamical systems based on subsystein decompo-
sition. The notion of energy here refers to abstract energy notions for which a physical system
energy interpretation is not necessary. These dynamical systems cover a very broad spec-
trumn of applications including aerospace systems, fluid systemns, electromechanical systems,
electrical systems, combustion systems, structural vibration systems, biological systems,
physiological systemms, power systems, telecommunications systems, and economic systems,
to cite but a few examples. The concept of an energy-based hybrid decentralized comtroller

can be viewed as a feedback control technique that exploits the coupling between a physi-
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cal large-scale dynamical systemn and an energy-based decentralized controller to efficiently
remove energy from the physical large-scale system. Specifically, if a dissipative or lossless
large-scale system is at high energy level, and a lossless feedback decentralized controller
at a low energy level is attached to it, then subsystem energy will generally tend to flow
from each subsystem into the corresponding subcontroller, decreasing the subsystein energy
and increasing the subcontroller energy [1]. Of course, emulated energy, and not physical
energy, is accurnulated by each subcontroller. Conversely, if each attached subcontroller is
at a high energy level and the corresponding subsystem is at a low energy level, then energy
can flow from each subcontroller to each corresponding subsystem, since each subcontroller
can geuerate real, physical energy to effect the required energy flow. Hence, if and when
the subcontroller states coincide with a high emulated energy level, then we can reset these
states to remove the emulated energy so that the emulated energy is not returned to the
plant. In this case, the overall closed-loop system cousisting of the plant and the controller
possesses discontinuous flows since it combines logical switchings with continuous dynamics,

leading to impulsive differential equations [1].

2.2. Control Vector Lyapunov Functions for Large-Scale Hybrid
Dynamical Systems

In this research [5], we provide generalizations to the recent extensions of vector Lyapunov
theory for continuous-time systems [2] to address stability and control design of impulsive
dynaical systemns via vector Lyapunov functions. Vector Lyapunov theory has been devel-
oped to weaken tlhe hypothesis of standard Lyapunov theory in order to enlarge the class
of Lyapunov functions that can be used for analyzing system stability. Lyapunov niethods
have also been used by control system designers to obtain stabilizing feedback controllers
for nonlinear systems. In particular, for smooth feedback, Lyapunov-based methods were
mspired by Jurdjevic and Quinn who give sufficient conditions for smooth stabilization based
on tlhe ability of constructing a Lyapunov function for the closed-loop system. More recently,
Artstein introduced the notion of a control Lyapunov function whose existence guarantees a
feedback control law which globally stabilizes a nonlinear dynamical system. Even though
for certain classes of nonlinear dynamical systems a universal construction of a feedback
stabilizer can be obtained using control Lyapumnov functions, there does not exist a uni-
fied procedure for finding a Lyapunov function candidate that will stabilize the closed-loop

system for general nonlinear systems.

In an attempt to simplify the construction of Lyapunov functions for the analysis and

control design of nonlinear dynamical systems, several researchers have resorted to vector




Lyapunov functions as an alternative to scalar Lyapunov functions. Vector Lyapunov func-
tions were first introduced by Bellman and Matrosov, and are ideal for analyzing large-scale
systems [1,2,5]. The use of vector Lyapunov functions in dynamical system theory offers a
very flexible framework since each component of the vector Lyapunov function can satisfy
less rigid requirements as compared to a single scalar Lyapunov function. Weakening the
hypothesis on the Lyapunov function enlarges the class of Lyapunov functions that can be
used for analyzing system stability. In particular, each component of a vector Lyapunov
function need not be positive definitc with a negative or even negative-semidefinite deriva-
tive. Alternatively, the tiie derivative of the vector Lyapunov function need only satisty an
element-by-eleinent inequality involving a vector field of a certain comnparison systeii. Since
in this case the stability properties of the comparison system imply the stability properties
of the dynaimical system, the use of vector Lyapunov theory can significantly reduce the

complexity (i.e., dimensionality) of tlie dynamical systemn being analyzed.

The results of this research [5] build on those of [2] and include a generalized compari-
son principle involving hybrid comparisoi dynamics that are dependent on the comparison
systein states as well as the nonlinear impulsive dynamical systemn states. Next, we dcvclop
stability theoremms based on hybrid comparison inequalities as well as partial stability re-
sults for impulsive systems using vector Lyapunov functions. Furthermore, we extend the
newly developed notion of control vector Lyapunov functions presented in [2] to impulsive
dynaniical systems and show that in the case of a scalar comparison system the definition
of a control vector Lyapunov function collapses into a combination of the classical definition
of a control Lyapunov fuuiction for continuous-time dynamical systems and the definition of
a control Lyapunov function for discrete-tiine dynainical systemns. In addition, using control
vector Lyapunov fuiictions, we present a universal hybrid decentralized feedback stabilizer
for a decentralized affine in the control nonlinear impulsive dynainical system with guaran-
teed gain and sector margins. These results are then used to develop hybrid decentralized
controllers for large-scale impulsive dynamical systeins with robustness guarantees against

full modeling and input uncertainty.

2.3. Consensus and Semistability in Network Dynamical Systems
with Arbitrary Time-Delays

As discussed in Section 2.1, modern complex dynamical systemms are highly interconnectec
and mutually interdependent, both physically and through a multitude of information and
commnunication networks. By properly formulating these systenis in terms of subsystem in-

teraction involving energy/mass transfer, the dynamical models of many of these systems




can be derived from mass, energy, and information balance cousiderations that involve dy-
namic states whose values are nonnegative. Hence, it follows from physical considerations
that tlie state trajectory of such systems remains in the nonnegative orthant of the state
space for nonnegative initial conditions. Sucli systemns are commonly referred to as nonneg-
ative dynamical systems in the literature. A subclass of nonnegative dymamical systems are
compartmental systems. Compartmental systems involve dynamical models that are char-
acterized by conservation laws (e.g., mass and energy) capturing the exchange of material
between coupled macroscopic subsystemns kmown as compartments. Each compartinent is
assumed to be kinetically homogeneous, that is, any material entering the compartment is
instantaneously mixed with the material of the compartment. The range of applications
of nonnegative systems and compartimental systeimns includes biological and physiological
systems, chiemical reaction systems, queuing systems, large-scale systems, stochastic sys-
tems (wlose state variables represent probabilities), ecological systens, economic systers,
demographic systems, telecommunications systems, transportation systems, power systenms,

thermodynamic systeins, aund structural vibration systeins, to cite but a few examples.

A key pliysical limitation of compartimental systems is that transfers between compart-
ments are not instantaneous and realistic models for capturing the dynamics of such systems
should account for material, energy, or information in transit between compartments. Hence,
to accurately describe the evolution of the aforementioned systems, it is necessary to include
in any mathematical model of the system dynamics some information of the past system
states. In this case, the state of the system at a given timme involves a piece of trajectories
in the space of continuous functions defined on an interval in tlie nonnegative orthant of the

state space. This of course leads to (infinite-dimensional) delay dynarnical systems.

Nomnegative and compartmental models are also widespread in agreemnent problems in
networks with directed graphs and switching topologies. Specifically, distributed decision-
making for coordination of networks of dynamic agents involving information flow can be
naturally captured by compartiental models. These dynamical network systeins cover a very
broad spectrum of applications including cooperative control of unmanned air vehicles, dis-
tributed sensor networks, swarms of air and space vehicle formations, and congestion control
in commmuunication networks. In many applications involving multiagent systems, groups of
agents are required to agree ou certain quantities of interest. In particular, it is important to
develop cousensus protocols for networks of dynamic agents with directed information flow,
switching network topologies, and possible system time-delays. I this research [13], we use
compartmental dynamical systeni models to characterize dynamic algorithins for linear and
nonlinear networks of dynamic agents in the presence of inter-agent communication delays

that possess a continuum of semistable equilibria, that is, protocol algorithins that guaran-
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tee convergence to Lyapunov stable equilibria. In addition, we show that the steady-state
distribution of the dynamic network is uniform, leading to system state equipartitioning or
consensus. These results extend the results in the literature on consensus protocols for linear
balanced networks to linear and nonlinear unbalanced networks with switching topologies

and time-delays.

2.4. Finite-Time Semistable Consensus Protocols for Dynamical
Networks

In recent research [19] a unified stability analysis framework for systemns having a con-
tinuumn of cquilibria was developed. Since every neighborhood of a nonisolated equilibrium
contains another equilibrium, a nonisolated equilibrium cannot be asymptotically stable.
Hence, asymptotic stability is not the appropriate notion of stability for systcins having a
continumnn of equilibria. Two notions that are of particular relcvance to such systems are
convergence and semistability. Convergence is the property whereby every system solution
converges to a limit point that may depend on the system initial condition. Senristability
is the additional requirement that all solutions converge to limit points that are Lyapunov
stable. Semistability thus implies Lyapunov stability, and is implied by asyniptotic stability.

The dependence of the lhniting state on the initial statc is seen in munerous dynamical
systems including compartinental systems which arise in chernical kinetics, and biomedical,
enviromuental, economic, power, and thermodynamic systems [10]. For these systems, cvery
trajectory that starts in a neighborhood of a Lyapunov stable equilibrium converges to a
(possibly different) Lyapunov stable cquilibriuin, and heuce, these systems are semistable. In
addition to semistability, it is desirable that a dynamical system that exhibits senistability
also possesses the property that trajectories that converge to a Lyapunov stable system state

must do so in finite tiime rather than merely asymptotically.

In this research [19], we merge the theories of sewnistability and finite-time stability to
develop a rigorous framework for finite-time semistability. In particular, finite-time semista-
bility for a continuun of equilibria of continuous autononious systemns is established. Con-
tinuity of the settling-time function as well as Lyapunov and converse Lyapunov theorems
for semistability are also developed. In addition, neccssary and sufficient conditions for
finite-tinme semistability of homogeneous systemns are addressed by exploiting the fact that a
homogeneous systein is finite-time semistable if and only if it is semistable and has a negative

dcgree of homogeneity.

Next, we use these results to develop a general framework for designing semistable pro-

tocols in dynamical networks for achieving coordination tasks in finite time. Distributed

i




decision-making for coordination of networks of dynamic agents involving information flow
can be naturally captured by graph-theoretic notions. These dynamical network systems
cover a very broad spectrum of applications including cooperative control of unmanned air
vehicles (UAV’s), autonomous underwater vehicles (AUV’s), distributed sensor networks,
air and ground transportation systems, swarms of air and space vehicle formations, and
congestion control i communication networks, to cite but a few examples. Hence, it is
not surprising that a considerable research effort has been devoted to control of networks
and control over networks in recent years. However, finite-time coordination has not been

addressed in the literature.

In many applications involving multiagent systems, groups of agents are required to agree
on certain quantities of interest. In particular, it is important to develop information con-
sensus protocols for networks of dynamic agents wherein a unique feature of the closed-loop
dynainics under any control algorithm that achieves consensus in a dynamical network is the
existence of a continuum of equilibria representing a state of consensus. Under such dynam-
ics, the lniting consensus state achieved is not determined completely by the dynamics, but
depends on the initial system state. Hence, using the results on finite-time semistability, we
develop a unified framnework for addressing the consensus problem in networks of agents in
finite time. Specifically, we develop nonlinear finite-time controllers using undirected and
directed graphs to accommodate for a full range of possible graph information topologies

without limitations of bidirectional communication.

2.5. Continuous and Hybrid Distributed Control for Multiagent
Coordination: Consensus, Flocking, and Cyclic Pursuit

Modern complex dynamical systems are highly interconnected and mutually interdepen-
dent, both physically and through a multitude of information and communication networks.
Distributed decision-making for coordination of networks of dynamic agents involving in-
formation flow can be naturally captured by graph-theoretic notions. These dynainical
network systems cover a very broad spectrum of applications including cooperative control
of unmanned air vehicles (UAV’s), autonomous underwater vehicles (AUV’s), distributed
sensor networks, air and ground transportation systems, swarms of air and space vehicle

formations, and congestion control in communication networks, to cite but a few examples.

A key application area within aerospace systems is cooperative control of vehicle forma-
tions using distributed and decentralized controller architectures. Distributed control refers

to a control architecture wherein the control is distributed via multiple computational units

that are interconnected through information and communication networks, whereas decen-




tralized control refers to a control architecture wherein local decisions are based only on local
inforination. Vehicle formations are typically dynainically decoupled, that is, the motion of
a given agent or vehicle does not directly affect the motion of the other agents or vehicles.
The multiagent system is coupled via the task which the agents or vehicles are required to

perforin.

In many applications involving multiagent systems, groups of agents are required to agree
on certain quantities of interest. In particular, it is hmportant to develop information con-
sensus protocols for networks of dynamic agents wherein a unique feature of the closed-loop
dynamics under any control algorithin that achieves consensus is the existence of a continuuim
of equilibria representing a state of equipartitioning or consensus. Under such dynaniics, the
limiting consensus state acliieved is not determined completely by the dynamics, but depends
on the initial system state as well. As discussed in Section 2.4, for such systems possessing
a continuun of equilibria, semistability, and not asymptotic stability, is the relevant notion
of stability. Semistability is the property wlhereby every trajectory that starts in a neighbor-
hood of a Lyapunov stable equilibrium converges to a (possibly different) Lyapunov stable

equilibrium.

Alternatively, in other applications of multiagent systeis, groups of agents are required to
achieve and maintain a prescribed geometric shape. This formation problem includes flocking
and cyclic pursuit, wherein parallel and circular formations of vehicles are sought. Ilor
formation control of multiple vehicles, cohesion, separation, and alignment constraints are
typically required for individual agent steering which describe how a given vehicle maneuvers
based on the positions and velocities of nearby agents. Specifically, cohesion refers to a
steering rule wlerein a given vehicle attempts to move toward the average position of local
velicles, separation refers to collision avoidance with nearby vehicles, while alignment refers

to velocity matching with nearby vehicles.

Using graph-theoretic notions, in this research [17,58] we develop a unified framework
for addressing consensus, flocking, and cyclic pursuit problems for multiagent dynamical
systems. Specifically, we present continuous and hybrid distributed and decentralized con-
troller architectures for multiagent coordination. In coutrast to virtually all of the existing
results in the literature on control of networks, the majority of the proposed controllers are
dynamc compensators. The proposed controller architectures are predicated on the recently
developed notion of system therinodynamics [10] resulting in thermodynamically consistent
continuous and hybrid controller architectures involving the exchange of information be-
tween ageuts that guarautee that the closed-loop dynamical network is cousistent with basic

thermodynamic principles. Another unique feature of our frainework is that several of the




proposed controller architectures are hybrid, and hence, the overall closed-loop dynamics
under these controller algorithms achieving consensus, flocking, or cyclic pursuit possesses
discontinuous flows since they combine logical switchings with continuous dynamics, leadiug
to impulsive differcntial equations [1]. The proposed controllers use undirected and directed
graphs to accomniodate for a full range of possible graph information topologies without

limitations of bidirectional coinmunication.

2.6. Robust Control Algorithms for Network Consensus Protocols
with Uncertain Communication Graph Topologies

Due to advances in embedded computational resources over the last several years, a
considerable researcl effort has been devoted to the control of networks and control over
networks. Network systems involve distributed decision-making for coordination of networks
of dynamic agents nrvolving information flow enabling enhanced operational effectiveness
via cooperative control in autonomous systems. These dynamical network systems cover a
very broad spectrum of applications including cooperative control of unmanned air vehicles
(UAV’s) and autonomous underwater vehicles (AUV’s) for combat, surveillance, and recon-
naissarnce; distributed reconfigurable sensor networks for managing power levels of wireless
networks; air and ground transportation systemns for air traffic control and payload transport
and traffic management; swarms of air and space veliicle formations for command and con-
trol between heterogeneous air and space vehicles; and congestion control in comniunication

networks for routing the flow of information through a network.

To enable the applications for thiese multiagent systeins, cooperative control tasks such
as formation control, rendezvous, flocking, cyclic pursuit, cohesion, separation, aliginnent,
and consensus 11eed to be developed. To realize these tasks, individual agents need to share
information of the system objectives as well as the dynamical network. In particular, in many
applications involving multiagent systems, groups of agents are required to agree on certain
quantities of interest. Information consensus over dynamic information-exchange topologies
guarantees agreement between agents for a given coordination task. Distributed cousensus
algorithins involve neighbor-to-neighbor interaction between agents wherein agents update
their information state based on the information states of the neighboring agents. A unique
feature of the closed-loop dynamiics under any control algorithm that achieves consensus in
a dynamnical network is the existence of a continuum of equilibria representing a state of
cousensus. Under such dynamics, the limiting consensus state achieved is not determined
completely by the dynainics, but depends on the initial state as well. As discussed in

Section 2.4, i1 systems possessing a continuum of equilibria, semistability, and not asymptotic
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stability is the relevant notion of stability.

Even though many consensus protocol algorithins have been developed over the last sev-
eral years in the litcrature, robustness properties of these algorithins have been ignored.
Robustuess here refers to sensitivity of the control algorithmm achieving semistability and
consenisus in the face of commniunication uncertainty and communication dropouts. Iu this
research [30], we build on the results of [17,19] to develop robust control algorithius for net-
work consensus protocols with uncertain communication topologies of a specified structure.
In particular, we construct homogeneous control protocol functions that scale in a consistent
fashion with respect to a scaling operation on an underlying space with the additional prop-
crty that the protocol functions can be written as a sum of functions, each homogeneous

with respect to a fixed scaling operation, that retain system semistability and consensus.

2.7. Finite-Time Stabilization of Large-Scale Nonlinear Dynami-
cal Systems

The notions of asymptotic and exponential stability in dynamical systems theory imply
convergence of the system trajectories to an equilibrium state over the infinite horizon. In
many applications, however, it is desirable that a dynainical systeimn possesses the property
that trajectories that converge to a Lyapunov stable equilibrium state must do so in finite
time rather than imerely asymptotically. Most of the existing control techniques in the
literature ensurc that the closed-loop systemn dynainics of a controlled system are Lipschitz
continuous, which implies uniqueness of systeni solutions in forward and backward times.
Hence, convergence to an equilibrium state is achieved over an infinite time interval. In
order to achieve convergence in finite time, the closed-loop system dynamics nced to be
now-Lipschitzian giving rise to non-uniqueness of solutions in backward time. Uniqueness of

solutions in forward time, however, can be preserved in the case of finite-tiine convergence.

In this research [20], we develop a general frainework for finite-time stability analysis of
nonlinear dynamical systems using vector Lyapunov functions. Specifically, we coustruct a
veetor comparison systemn that is finite-time stable and, using the vector comparison prin-
ciple [2], relate this finite-time stability property to the stability propertics of the nonlinear
dynamical system. Furthermore, we design universal finite-time stabilizing decentralized
controllers for large-scale dynanical systems based on the newly proposed notion of a con-
trol vector Lyapunov function [2]. In addition, we present necessary and sufficient conditions
for continuity of such controllers. Moreover, we specialize these results to the case of a scalar
Lyapunov function to obtain universal finite-tiine stabilizers for nonlinear systemns that are

affine in the control.
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2.8. Complexity, Robustness, Self-Organization, Swarms, and Sys-
tem Thermodynamics

Due to technological advances in sensing, actuation, communication, and computation
over the last several years, a considerable research effort has been devoted to the control of
networks and control over networks. Network systems involve distributed decision-making
for coordination of dynamic agents involving information flow enabling enhanced operational
effectiveness via cooperative control in autonomous systems. These dynanical network sys-
tems cover a very broad spectrum of applications including cooperative control of unmanned
air vehicles (UAV’s) and autonomous underwater vehicles (AUV’s) for combat, surveillance,
and reconnaissance; distributed reconfigurable sensor networks for managing power levels of
wireless networks; air and ground transportation systems for air traffic control and payload
transport and traffic management; swarms of air and space vehicle formations for command
and control between heterogeneous air and space vehicles; and congestion control in com-

munication networks for routing the flow of information through a network.

To enable the autonomous operation for these multiagent systems, the development of
functional algorithms for agent coordination and control is needed. In particular, control
algorithms need to address agent interactions, cooperative and non-cooperative control, task
assignments, and resource allocations. To realize these tasks, appropriate sensory and cogni-
tive capabilities such as adaptation, learning, decision-inaking, and agreement (or consensus)
on the agent and multiagent levels are required. The conunon approach for addressing the
autonomous operation of multiagent systems is using distributed control algorithms involv-
ing neighbor-to-neighbor interaction between agents wherein agents update their information
state based on the information states of the neighboring agents. Since most multiagent net-
work systeis are highly interconnected and mmutually interdependent, both physically and
tlirough a multitude of information and communication networks, these systems are char-
acterized by high-dimensional, large-scale interconnected dynamical systems. To develop
distributed methods for control and coordination of autonomous multiagent systems, many

researchers have looked to autonomous swarm systems appearing in nature for inspiration.

Biology has shown that 1nany species of animals sucli as insect swarms, ungulate flocks,
fish schools, ant colonies, and bacterial colonies self-organize in nature. These biological
aggregations give rise to remarkably complex global behaviors from simple local interactions
between large numbers of relatively unintelligent agents without the need for centralized
control. The spontaneous development (i.e., self-organization) of these autonomous biological
systems and their spatio-temporal evolution to more complex states often appears without

any external system interaction. In other words, structure morphing into coherent groups
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is internal to the system and results from local interactions among subsystemn components
that are independent of the physical nature of the individual components. These local
interactions often comprise a simple set of rules that lead to remarkably complex global
behaviors. Complexity liere refers to the quality of a systein wherein interacting subsysteins
self-organize to form hierarchical evolving structures exhibiting emergent system properties.
Hence, a complex dynamical systeni is a system that is greater than the suin of its subsysteins
or parts. In addition, the spatially distributed sensing and actuation control architecture
prevalent in such systems is inlierently robust to individual subsystemn (or agent) failures

and unplanned behavior at the individual subsystemn (or agent) level.

The connection between the local subsystem interactions and the globally complex syste
behavior is often elusive. Complex dynamical systems involving self-organizing components
forming spatio-temporally evolving structures that exhibit a hierarchy of emergent systei
properties are not limited to biological aggregation systems. Such systems include, for ex-
ample, nervous systems, immune systems, ecological systems, quantum particle systems,
cheniical reaction systems, economic systemns, cellular systems, and galaxies, to cite but a
few examples. These systems are known as dissipative systems [24] and consuine energy and
matter while maintaining their stable structure by dissipating entropy to the environment.
For exainple, as i biology, in the physical universe billions of stars and galaxies interact to
form self-organizing dissipative nonequilibrium structures. The fundamental common phe-
nomenon amnong these systems are that they evolve in accordance to the laws of (nonequilib-
riun) thermodynamics which are among the most firinly established laws of nature. System
thermodynamics, inr the sense of [10], involves open interconnected dynamical systems that
exchange natter and energy with their environment in accordance with the first law (con-
servation of energy) and the second law (nonconservation of entropy) of thermodynarmics.
Self-organization can spontaneously occur in such systems by invoking the two fundamental
axioms of the science of heat. Namely, 7) if the energies in the connected subsystems of
an interconnected systemr are equal, then energy exchange between these subsystems is not
possible, and 7i) energy flows from more energetic subsystems to less energetic subsystems.
These axioms establish the existence of a system entropy fuiiction as well as equipartition
of energy [10] in system therinodynamics and information consensus [17,19] in coopera-
tive networks; an emergent behavior in thermodynamic systems as well as swarm systeins.
Heuce, in complex interconnected dynamical systems, self-organization is not a property of

the system’s parts but rather emerges as a result of the nonlinear subsystem interactions.

In light of the above discussion, engineering swarm systeins necessitates the development
of relatively simple autonomous agents that are inherently distributed, self-organized, and
truly scalable. Scalability follows from the fact that such systems do not involve centralized
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control and communication architectures. In addition, engineered swarming systems should
be inherently robust to individual agent failures, unplanned task assignment changes, and
environimental changes. Mathematical models for large-scale swarms can involve Lagrangian
and Eulerian models. In a Lagrangian model, each agent is modeled as a particle governed
by a difference or differential equation, whereas an Eulerian model describes the local energy
or inforination flux for a distribution of swarms with an advection-diffusion (conservation)
equation. The two formulatious can be connected by a Fokker-Plank approximation relating

jump distance distributions of individual agents to terms in the advection-diffusion equation.

In many applications involving inultiagent systems, groups of agents are required to
agree on certain quantities of interest. In particular, it is important to develop informa-
tion consensus protocols for networks of dynamic agents wherein a unique feature of the
closed-loop dynamics under any control algorithm that achieves consensus is the existence
of a continuun of equilibria representing a state of equipartitioning or consensus. Under
such dynamies, the limiting consensus state achieved is not determined completely by the
dynamics, but depends on the initial system state as well. For such systems possessing a
contiimumn of equilibria, semistability [9], and not asymptotic stability, is the relevant no-
tion of stability. Semistability is the property whereby every trajectory that starts in a
neighborhood of a Lyapunov stable equilibriuin converges to a (possibly different) Lyapunov
stable equilibriuin. From a practical viewpoint, it is not sufficient to only guarantee that a
swarn couverges to a state of consensus since steady state convergence is not sufficient to
guarantee that small perturbations from the limiting state will lead to only small transient
excursions froin a state of consensus. It is also necessary to guarantee that the equilibrium

states representing consensus are Lyapunov stable, and consequently, semistable.

In this research [24], we develop distributed boundary control algorithms for addressing
thie consensus problem for an Eulerian swarm model. The proposed distributed boundary
controller architectures are predicated on the recently developed notion of system thermo-
dynamics [10] resulting in countroller architectures involving the exchange of information
between uniformly distributed swarins over an n-dimensional (not necessarily Euclidian)
space that guarantee that the closed-loop system is consistent with basic thermodynamic
principles. For our thermodynamically consistent model we further establish the existence
of a unique continuously differentiable entropy functional for all equilibrium and nonequi-
librium states of our systemn. Information consensus and semnistability are shown using the
well-known Sobolev embedding theorems and the notion of generalized (or weak) solutions.
Finally, since the closed-loop system is guaranteed to satisfy basic thermodynarnic prin-
ciples, robustness to individual agent failures and unplanned individual agent behavior is

automatically guaranteed.
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2.9. Semistability, Differential Inclusions, and Consensus Proto-
cols for Dynamical Networks with Switching Topology

Modern complex dynamical systems are highly interconnected and mutually interdepen-
dent. both physically and through a multitude of inforination and communication networks.
Distributed decision-making for coordination of networks of dynamic agents involving infor-
mation flow can be naturally captured by graph-theoretic notions. As noted in Section 2.8,
these dynamical network systems cover a very broad spectrum of applications including coop-
erative control of unmanned air vehicles (UAV’s), autonomous underwater vehicles (AUV’s),
distributed sensor networks, air and ground transportation systerms, swarms of air and space
vehicle formations, and congestion control in communication networks, to cite but a few
examples. Hence, it is not surprising that a considerable research effort has been devoted to

control of networks and control over networks in recent years.

Since commiumnication links among multiagent systens are often unreliable due to mul-
tipath effects and exogenous disturbances, the information exchange topologies in network
systems are often dynamic. In particular, link failures or creations in network multiagent
systeius result in switchings of the communication topology. This is the case, for example,
if information between agents is exchanged by means of line-of-sight sensors that experience
periodic communication dropouts due to agent motion. Variation in network topology in-
troduces control input discontinuities, which in turn give rise to discontinuous dynanical
systems. In addition, the communication topology may be time-varying. In this case, the
vector field defining the dynamical system is a discontinuous function of the state and time,
and hence, systeni stability can be analyzed using nonsmooth Lyapunov theory involving
concepts such as weak and strong stability notions, differential inclusions, and generalized
gradients of locally Lipschitz functions and proximal subdifferentials of lower semicontinuous

functions.

In many applications involving inultiagent systemns, groups of agents are required to agree
on certain quantities of interest. In particular, it is important to develop information con-
sensus protocols for networks of dynamic agents wherein a unique feature of the closed-loop
dynainics under any control algorithin that achieves consensus is the existence of a continuuni
of equilibria representing a state of equipartitioning or consensus. Under such dynamics, the
liliting consensus state achieved is not determined completely by the dynamics, but depends
on the initial systemn state as well. For such systems possessing a continuum of equilibria,

sernistability [9], and not asymptotic stability, is the relevant notion of stability.

To address agreement problems in switching networks with time-dependent and state-

dependent topologies, in this research [36,74] we extend the theory of semistability to dis-




continuous tinle-invariant and time-varying dynainical systems. In particular, we develop
necessary and sufficient conditions to guarantee weak and strong invariance of Fillipov solu-
tions under the assuiption that the discontinuous system vector field is uniformly bounded.
Moreover, we present Lyapunov-based tests for strong semistability, weak semistability, as

well as uniform semistability for autonomous and nonautonomous differential inclusions.

2.10. H,; Optimal Semistable Control for Linear Dynamical Sys-
tems

Dynamical network systems cover a very broad spectrum of applications including coop-
erative control of unimanned air vehicles, autonomous underwater vehicles, distributed sensor
networks, air and ground transportation systeins, swarms of air and space vehicle formations,
and congestion control in communication networks, to cite but a few examples. A unique
feature of the closed-loop dynamics under any control algorithm in dynamical networks is
the existence of a continuum of equilibria representing a desired state of convergence. Un-
der such dynamics, the desired limiting state is 1ot determined cownpletely by tlie system

dynamics, but depends on the initial system state as well [17,19].

The dependence of the limiting state on the initial state is not limited to dynamical
network systenis, it is also seen in the dynainics of compartinental systems which arise in
chiemical kinetics, and biomedical, environmental, economic, power, and thermodynamic
systemms. In all such systems possessing a continuum of equilibria, semistability, and not

asyniptotic stability, is the relevant notion of stability.

In this research [28,35], we use linear matrix inequalities (LMIs) to develop Ha opti-
mal semistable controllers for linear dynainical systems. Linear matrix inequalities provide
a powerful design frammework for linear control problems. Since LMIs lead to convex or
quasiconvex optimization problems, they can be solved very efficiently using interior-point
algorithms. Unlike the standard Hy optimal control problem, a complicating feature of the
H, optimal semistable stabilization problem is that the closed-loop Lyapunov equation guar-
anteeing semistability can adinit multiple solutions. An interesting feature of the proposed
approach, however, is that a least squares solution over all possible semistabilizing solutions
corresponds to the Hs optimal solution. It is shown that this least squares solution can be

characterized by a linear matrix inequality minimization problem.
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2.11. Finite-Time Stabilization for Nonlinear Impulsive Dynami-
cal Systems

The mathematical deseriptions of many hybrid dynamieal systems ean be characterized
by impulsive differential equations [1]. Impulsive dynarmieal systems can be viewed as a sub-
elass of liybrid systems and eonsist of thiree elements—namely, a eontinuous-time differential
equation, whieh governs the motion of the dynamieal system between impulsive or resetting
events; a differenee equation, whiech governs the way the system states are instantaneously
changed wlhen a resetting event oceurs; and a eriterion for determining when the states of
the system are to be reset. Since impulsive systenis ean involve iimpulses at variable times,
they are in general time-varying systems, wherein the resetting events are both a function
of time and the system’s state. In the case where the resetting events are defined by a
prescribed sequence of times which are independent of the system state, the equations are
known as tirne-dependent differential equations [1]. Alternatively, in the case where the re-
setting events are defined by a manifold in the state space that is independent of time, the

equations are autonomous and are known as state-dependent differential equations [1].

Finite-tiie stability implies Lyapunov stability and convergence of system trajectories
to an equilibriuin state in finite-time, and hence, is a stronger notion than asymptotie sta-
bility. For continuous-tinie dynamical systems, finite-tinie stability iimplies non-Lipschitzian
dynamics [9] giving rise to non-uniqueness of solutions in reverse time. Uniqueness of so-
lutions in forward time, however, ean be preserved in the ease of finite-tie convergence.
Finite-tiine eonvergenee to a Lyapunov stable equilibriuin for continuous-time systems, that
is. finite-time stability, was rigorously studied in [9] using Holder continuous Lyapunov func-

tious.

Finite-time stability of iinpulsive dynainieal systemns, however, has not been studied in
the litcrature. For impulsive dynamieal systems, it may be possible to reset the system states
to an equilibrium state, in which case finite-time convergenee of the system trajectories can
be achieved without the requirement for non-Lipschitzian dynamics. In addition, due to
system resettings, impulsive dynainieal systems may exhibit non-uniqueness of solutions in

reverse tiie even when the continuous-time dynaimics are Lipschitz continuous.

In this research [15], we develop sufficient conditions for finite-time stability of nonlinear
hnpulsive dynamical systenis. Furthermore, we present stability results using vector Lya-
punov fuuctions wherein finite-time stability of the impulsive system is shown via finite-time
stability of a hybrid comparison systemn. We use these results to further eonstruct hybrid
finite-time stabilizing controllers for impulsive dynamical systeins. In addition, we construct

decentralized finite-tiime stabilizers for large-seale impulsive dynamical systems.
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2.12. Neural Network Hybrid Adaptive Control for Nonlinear Un-
certain Impulsive Dynamical Systems

Modern complex engineering systems involve multiple modes of operation placing strin-
gent demands on controller design and implementation of increasing complexity. Such sys-
tems typically possess a multiechelon hierarchical hybrid control architecture characterized
by continuous-time dynamics at the lower levels of the hierarchy and discrete-time dynamics
at the higher levels of the hierarchy [1]. The lower-level units directly interact with the
dynamical system to be controlled while the higher-level units receive information from the
lower-level units as inputs and provide (possibly discrete) output commands which serve to
coordinate and reconcile the (sometimes competing) actions of the lower-level units. The hi-
erarchical controller organization reduces processor cost and controller complexity by break-
ing up the processing task into relatively small pieces and decomposing the fast and slow
control functions. Typically, the higher-level units perform logical checks that deteriine sys-
ten1 mode operation, while the lower-level units execute continuous-variable conimands for
a given system mode of operation. The mathematical description of many of these systems

can be characterized by impulsive differential equations [1].

The purpose of teedback control is to achieve desirable system performance in the face
of system uncertainty. To this end, adaptive control along with robust control theory have
been developed to address the problem of system uncertainty in control-system design. In
contrast to fixed-gain robust controllers, which maintain specified constants within the feed-
back control law to sustain robust performance, adaptive controllers directly or indirectly
adjust feedback gains to maintain closed-loop stability and improve performance in the face
of systemn uncertainties. Specifically, indirect adaptive controllers utilize parameter update
laws to identify unknown systemn parameters and adjust feedback gains to account for system
variation, while direct adaptive controllers directly adjust the controller gains in response
to plant variations. The inherent noulinearities and system uncertainties in hierarchical liy-
brid control systems and the increasingly stringent performance requirenients required for
controlling such modern complex embedded systemns necessitates the development of hybrid

adaptive nonlinear control methodologies.

Neural network-based adaptive control algorithins have been extensively developed in
the literature, wherein Lyapunov-like functions are used to ensure that the neural network
controllers can guarantee ultimate boundedness of the closed-loop system states rather than
closed-loop asymptotic stability. Ultimate boundness ensures that the plant states converge
to a nerghborhood of the origin [9]. The reason why stability in the seuse of Lyapunov is

not guaranteed stems from the fact that the uncertainties in the system dynamics cannot be
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perfectly captured by neural networks using the universal function approximation property
and the residual approximation error is characterized via a norm bound over a given com-
pact set. Ultimate boundedness guarantees, however, are often conservative since standard
Lyapunov-like theoremns that are typically used to show ultimate boundedness of the closed-
loop hybrid system states provide only sufficient conditions, while neural network controllers

may possibly achieve plant state convergence to an equilibrium point.

In this research [16], we develop a neural hybrid adaptive control framework for a class
of nonlinear uncertain nnpulsive dynamnical systems which ensures state convergence to a
Lyapunov stable equilibriuni as well as boundedness of the neural network weighting gains.
Specifically, the proposed frainework is Lyapunov-based and guarantees partial asymptotic
stability of the closed-loop hybrid systemn; that is, Lyapunov stability of the overall closed-
loop states and convergence of the plant state. The neuroadaptive controllers are constructed
without requiring explicit knowledge of the hybrid system dynainics other than the fact that
the plant dynamics are continuously differentiable and that the approximation error of the
unknown system nonlinearities lies i1 a sinall gain-type norm bounded conic sector over
a compact set. Hence, the overall neuroadaptive control fraimework captures the residual
approximation error inherent in linear parameterizations of system uncertainty via basis
functions. Furtherinore, the proposed neuroadaptive control architecture is modular in the
sense that if a nominal linear design model is available, then the neuroadaptive controller
can be augmented to the nominal design to account for system nonlinearities and system

uncertainty.

Finally, we emphasize that we do not impose any linear growth condition on the system
resetting (discrete) dynamnics. In the literature on classical (non-neural) adaptive control
theory for discrete-time systems, it is typically assumed that the nonlinear system dynamics
have the linear growth rate whicl is necessary in proving Lyapunov stability rather than
practical stability (ultimate boundedness). Our novel characterization of the system uncer-
tainties (i.e., the small gain-type bound on the norm of the modeling error) allows us to prove

asymptotic stability without requiring a linear growth condition on the systein dynamics.

2.13. Controller Synthesis with Guaranteed Closed-loop Phase
Constraints

The ability to address gain and phase uncertainties is essential for maximizing achievable
performance in controlling uncertain dynamical systeins. The small gain theorem guarantees
robust stability by requiring that the loop gain (including desired weighing functions for loop

shaping) be less than unity at all frequencies. The small gain theorem, however, does not
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make use of phase information in guaranteeing stability. To some extent, phase information
is accounted for by means of positivity theory. In this theory, a positive real plant and a
strictly positive real uncertainty are both assumed to have phase less than 90° so that the
loop transfer function has less than 180° of phase shift, hence guaranteeing robust stability
in spite of gain uncertainty. Other notable results addressing phase information mclude
concepts such as principal phases, multivariable phase margin, pliase spread, phase envelope,
phase matching, phase-sensitive structured singular value, and plant uncertainty templates.
With the exception of positivity theory all of the aforeinentioned methods are restricted
to frequency domain characterizations and are not amenable to state space formulations

necessary for developing controller synthesis methods with guaranteed phase constraints.

In this research [22], we present an analysis and synthesis approach for guaranteeing that
the phase of a single-input, single-output closed-loop transfer fumnction is contained in the
interval [—a, «] for a given a > 0 at all frequencies. Specifically, we first derive a sufficient
condition involving a frequency domain inequality for guaranteeing a given phase constraint.
Next, we use the Kalnan-Yakubovich-Popov (KYP) theorem to derive an equivalent time
domain condition. In the case where o = 7, we show that frequency and time domain
sufficient conditions specialize to the positivity theorem. Furthermore, using linear matrix
inequalities (LMIs), we develop a controller synthesis approach for guaranteeing a phase
constraint on the closed-loop transfer function. Finally, we extend this syutliesis approach

to address mixed gain and phase constraints on the closed-loop transfer function.

2.14. Adaptive Control for Nonlinear Uncertain Systems with Ac-
tuator Amplitude and Rate Saturation Constraints

In light of the increasingly complex and highly uncertain nature of dynamical systems re-
quiring controls, it is not surprising that reliable systein models for many high performance
engineering applications are unavailable. In the face of such high levels of systemn uncer-
tainty, robust controllers may unnecessarily sacrifice system perforinance, whereas adaptive
controllers are clearly appropriate since they can tolerate far greater system uncertainty
levels to improve systemn perforinance. However, an implicit assumption inherent in most
adaptive control frameworks is that the adaptive control law is implemented without amny
regard to actuator amplitude and rate saturation constraints. Of course, aiy electronie-
chanical control actuation device is subject to amplitude and/or rate constraints leading to
saturation nonlinearities enforcing limitations on control amplitudes and control rates. As
a cousequellice, actuator nonlinearities arise frequently in practice and can severely degrade

closed-loop system perforinance, and in some cases drive the systeni to instability. These
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effects are even more pronounced for adaptive controllers which continue to adapt when the
feedback loop has been severed due to the presence of actuator saturation causing unstable

controller modes to drift, which in turn leads to severe windup effects.

Many practical applications involve nonlinear dynamical systemns with simultaneous con-
trol amplitude and rate saturation. The presence of control rate saturation may further
exacerbate the problem of control amplitude saturation. For exawmple, in advanced tacti-
cal fighter aircraft with high maneuverability requirements, pilot induced oscillations can
cause actuator amplitude and rate saturation in the control surfaces, leading to catastrophic
failures.

In this research [26], we develop a direct adaptive control framework for adaptive tracking
of multivariable nonlinear uncertain systems with amplitude and rate saturation constraints.
Iu particular, we extend the Lyapunov-based direct adaptive control framework developed in
[11] to guarantee asymptotic stability of the closed-loop tracking system; that is, asymptotic
stability with respect to the closed-loop systemn states associated with the tracking error
dynamics in the face of actuator amplitude and rate saturation constraints. Specifically, a
reference (governor or supervisor) dynamical system is constructed to address tracking and
regulation by deriving adaptive update laws that guarantee that the error system dynarmics
are asymptotically stable, and the adaptive controller gains are Lyapunov stable. In the
case where the actuator amplitude and rate are liinited, the adaptive control signal to the
reference system is modified to effectively robustify the error dynainics to the saturation

constraints, thus guaranteeing asymptotic stability of the error states.

2.15. A New Neuroadaptive Control Architecture for Nonlinear
Uncertain Dynamical Systems

One of the primary reasons for the large interest in neural networks is their capability
to approximate a large class of continuous nonlinear maps froni the collective action of very
siimple, autonomous processing units interconnected in simple ways. Neural networks have
also attracted attention due to their inherently parallel and highly redundant processing
architecture that makes it possible to develop parallel weight update laws. This parallelism
makes it possible to effectively update a neural network on line. These properties make
neural networks a viable paradigm for adaptive system identification and control of complex
Inghly uncertain systems, and as a consequence the use of neural networks for identification

and control has becoine an active area of research.
The goal of adaptive and neuroadaptive control is to achieve system performance without

excessive reliance on system models. Both controller approaches directly or indirectly adjust

21

~




feedback controller gains and improve systemn performance in the face of system uncertaiity.
Specifically, indirect adaptive and neuroadaptive comntrollers utilize parameter update laws
to identify unknown system parameters and adjust feedback gains to account for systemn
variation, while direct adaptive and neuroadaptive controllers adjust the controller gains in

response to system variations.

The fundamental difference between adaptive control and neuroadaptive control can be
traced back to the modeling and treatinent of the system uncertainties. In particular, adap-
tive control is based on constant, linearly parameterized system uncertainty miodels of a
known structure but unknown variation. This uncertainty characterization allows for the
system nonlinearities to be parameterized by a finite linear combination of basis functions
within a class of function approximators such as rational functions, spline functions, radial
basis functions, sigmoidal functions, and wavelets. However, this linear parametrization of
basis functions camnnot, in general, exactly capture the unknown system parameters. In such
a case, the uncertainty is expressed in terms of a neural network involving a parameterized
nonlinearity. Hence, in contrast to adaptive control, neuroadaptive control is based on the
universal function approximation property, wherein any continuous nonlinear system uncer-
tainty can be approrimated arbitrarily closely on a compact set using a neural network with
appropriate weights . This difference in the modeling and treatment of the system uncertain-
ties results in the ability of adaptive controllers to guarantce asymptotic closed-loop system

stability versus ultimate boundness as is the case with neuroadaptive controllers [11].

To improve robustness and the speed of adaptation of adaptive and neuroadaptive con-
trollers several controller architectures have been proposed i the literature. These include
the o- and e-modification architectures used to keep the system parameter estimates from
growing without bound in the face of system uncertainty [40]. In this research [40], a new
neuroadaptive control architecture for nonlinear uncertain dynanical systems is developed.
Specifically, the proposed franiework involves a new and novel controller archiitecture involv-
ing additional terms, or Q-modification terms, in the update laws that are constructed using
a moving window of the integrated system uncertainty. The Q-modification terms can be
used to identify the ideal neural network system weights which can be used in the adaptive

law. In addition, these terms effectively suppress system umncertainty.

Even though the proposed approacl is reminiscent to the composite adaptive control
framework, the (-modification framework does not involve filtered versions of the control
input and system statc in the update laws. Rather, the update laws involve auxiliary terms
predicated on an estimate of the unknown neural network weights whicl in turn are char-

acterized by an auxiliary equation involving the integrated error dymaimics over a moving
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time interval. In this research [40], we eonsider veetor uncertainty structures with both lin-
car and nonlinear parameterizations. In addition, state and output feedback controllers are
developed. Finally, to illustrate the efficacy of the proposed approach we apply our results
to an aircraft model with wing rock dynamics as well as a spaceeraft model involving an
unknown moment of inertia matrix and compare our results with standard neuroadaptive

control metliods.

2.16. 'H, Suboptimal Estimation and Control for Nonnegative Dy-
namical Systems

Nonnegative dynamical systems involve dynamie states whose values are nonnegative.
A subclass of nonnegative dynamical systems are compartmental systems. Compartmental
systems involve dynamical models that are eharacterized by eonservation laws (e.g., mass,
energy, fluid, ete.) capturing the exchange of material between eoupled macroseopic sub-
systems known as compartments. These models are widespread in biological, physiological,
and ecological sciences as well as engineering systems such as queuing, large-seale, telecom-
munications, transportation, power, and network systems, to cite but a few examples. Since
nonnegative and eompartinental systems have specialized structures, special control law
strategies need to be developed that guarantee that the trajectories of the closed-loop plant
systemn states remain in the nonnegative orthant of the state space for nonnegative initial
conditions. In addition, for certain applications of monnegative systems, such as active con-

trol for clinical pharmacology, we require the control (source) inputs to be nonnegative.

Even though nonnegative systemns are often encountered in numerous application ar-
eas, nonnegative orthant stabilizability and holdability has received little attention in the
literature. In this researeh [27], we use linear matrix inequalities (LMIs) to develop H,
(sub)optimal estimators and controllers for nonnegative dynamical systems. Linear matrix
inequalities provide a powerful design framework for linear control problems. Since LMIs
lead to convex or quasiconvex optimization problems, they ean be solved very efficiently
using interior-point algoritlims. An intersting fcature of nonnegative orthant stabilizability
is that it can be formulated as a solution to an LMI problem. However, H, optimal non-
negative orthant stabilizability cannot, in general, be formulated as an LMI problem. In
this research [27], we formulate a series of generalized eigenvalue problems subject to a set
of LMI constraints for designing H, suboptinial estimators, static controllers, and dynamic

controllers for nonnegative dynaiical systeins.
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2.17. Adaptive Disturbance Rejection Control for Compartmental
Systems

As discussed in Section 2.16, nonnegative and compartmental systems are essential in
capturing the behavior of a wide range of dynamical systems involving dynainic states
whose values are nounegative. These systems are derived from mass and energy balance
considerations and are comprised of homogeneous interconnected microscopic subsysteins or
compartnients which exchange variable quantities of material via intercompartmental flow
laws. Since biological and physiological systems have nuinerous input, state, and output
properties related to conservation, dissipation, and transport of mass aid energy, nonnega-
tive and compartmental systems are remarkably effective in describing the phenomenotogicat
behavior of these dynaical systems. The range of applications of nonnegative and com-
partinental systems is not limited to biological and medical systems. Their usage includes
demographic, epidemic, ecological, economic, telecomnmunications, transportation, power,

and large-scale systems.

In a recent series by the Principal Investigator (see the references in [29]) a direct adap-
tive control framework for linear and nonlinear nonnegative and compartmental systeius was
developed. This framework is Lyapunov-based and guarantees partial asyinptotic set-point
regulation, that is, asymptotic set point stability with respect to the closed-loop system
states associated with the plant. In addition, the adaptive controllers guarantee that the
physical system states remain in the nonnegative orthant of the state space. In this re-
search [25], we develop a direct adaptive control framework for adaptive stabilization and
disturbance rejection for compartniental dynamical systems with exogenous system distur-
baices. The aiu challenge here is to construct nonlinear adaptive disturbance rejection
controllers without requiring knowledge of the system dynainics or the system disturbances
while guaranteeing that the physical system states remain in the nonnegative orthant of the

state space.

While such an adaptive control framework can have wide applicability in areas such as
econolnics, telecommunications, and power systems, its use in the specific field of anesthetic
pharmacology is particularly noteworthy. Specifically, during stress (such as hemorrhage)
1 an acute care enviromnent, such as the operating room, perfusion pressure falls and hy-
pertonic saline solutious are typically intravenously administered to regulate hemodynamic
effects and avoid hemorrhagic shock. This exogenous disturbance drives the system pharma-
cokinetics and pharmacodynamics and can be captured as a systein disturbance. In addition,
exogenous system disturbances can be used to capture unmodeled phiysiological and pharma-

cological systein dynainics. Although the proposed framework develops adaptive controllers
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for general compartmental systems with exogenous disturbances, the specific focus of the

research is on pharmacokinetic models with hemorrhage and hemodilution effects.

2.18. Neuroadaptive Output Feedback Control for Automated An-
esthesia with Noisy EEG Measurements

The dosing of most drugs is a process of empirical administration of a low dose with
observation of the biological effect and subsequent adjustment of the dose in the hopes of
achieving the desired effect. This is true of anesthetic drugs, just as it is of chronically
administered medications (for example, anti-hypertensive agents). In the acute environment
of the operating room and intensive care unit (ICU), this can result in inefficient, and possibly
even dangerous, titration of drug to the desired effect. There has been a long interest in use of
the electroencephalograph (EEG) as an objective, quantitative measure of consciousness that
could be used as a performance variable for closed-loop control of anesthesia [29]. Processed
electroencephalogramm algorithms have been extensively investigated as momnitors of the level
of consciousness in patients requiring surgical anesthesia [29]. However, the EEG is a complex
of multiple time series and in earlier work it was difficult to identify one single aspect of the

EEG signal that correlated with the clinical signs of anesthesia.

Subsequent to this early research there has been substantial progress in the developnient
of processed EEG monitors that analyze the raw data to extract a single measure of the
depth of anesthesia. The best known of these monitors is the bispectral or BIS monitor,
whicli calculates a single composite EEG measure that is well correlated with the depth of
anesthesia [29]. The BIS signal ranges from 0 (no cerebral electrical activity) to 100 (the
noral awake state). Available evidence indicates that a BIS signal less than 55 is associated
with lack of consciousness. While BIS monitoring has proven useful in the operating room
environment, there have been inconsistencies reported and attempts to extend BIS monitor-
ing for the evaluation of sedation outside of the operating room have been unsuccessful [29].
One of the key reasous for this is due to the fact that the signal-averaging algorithm within
the BIS momnitor ignores signal noise, and when tlere is excessive noise, the BIS monitor

does not generate a signal.

[t is widely appreciated that BIS monitoring, or for that matter, any EEG monitoring,
can be fraught with error because of the potential for outside interference to produce an
unfavorable signal-to-noise ratio yielding spurious results. Nonphysiologic artifactual signals
may be generated from sources external to the patient that include lights, electric cautery
devices, ventilators, paceniakers, patient warming systems, and electrical noise related to

the many different kinds of monuitors normally found in an operating room or ICU. Physio-
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logic movements such as eye moveinents, myogenic activity, perspiration, and ventilation can
produce artifactual increases in the BIS score. In particular, it is apparent that electromyo-
graphic (EMG) activity can spuriously increase the BIS score [29]. The co-administration
of neuronwscular blockade eliminates artifacts from nwscle movement, which can be su-
perimposed on the BIS score; and this undoubtedly contributes to the widespread use and
value of the BIS device during surgery. However, to extend this techuology outside of the
operating room, or for that matter, to nonparalyzed patients in the operating room, further
refinements are needed. In addition, if the BIS signal is to be used to quantify levels of
consciousness for feedback control in general anesthesia, then the observation noise needs to

be accounted for in the control system design process.

The challenge to the use of the BIS signal for closed-loop control of anesthesia is that
the relationships between drug dose and tissue concentration (pharmacokinetics) and be-
tween tissue coucentration and plhysiological effect (pharmacodynamics) is highly variable
between individuals. In addition, observation noise in the BIS signal results in feedback
measurement signals with high signal-to-noise ratios that need to be accounted for in the
control algorithin. Adaptive feedback controllers seem particularly promising given tlis in-
terpatient variability as well as BIS signal variation due to noise. In previous work, we
have used nonnegative and compartmental dynamical systems theory to develop adaptive
and neuroadaptive controllers for controlling the depth of anesthesia [49]. One of our initial
efforts was the development of a direct adaptive control frammework for uncertain nonlin-
ear nonnegative and compartmental systems with nonnegative control inputs [49]. This
framework is Lyapunov-based and guarantees partial asymptotic set-point regulation, that
is, asymptotic setpoint stability with respect to part of the closed-loop systein states asso-
ciated with the pliysiological state variables. In addition, the adaptive controllers, which
are constructed without requiring knowledge of the pliarmacokinetic and pharmacodynamic
parammeters, provide a nonnegative control input for stabilization with respect to a given set-
point in the nonnegative orthant. Subsequently, we also developed a neuroadaptive output
feedback control framework for uncertain nonlinear nonuegative and compartmental systems
with nonnegative control inputs [7]. This framework is also Lyapunov-based and guarantees
ultimate boundedness of the error signals corresponding to the physical systen: states in the

face of interpatient pharmacokinetic and pharmacodynamic variability.

In a recent paper [49] we presented numerical and clinical results that compares and
contrasts our adaptive control algorithin with our neural network adaptive control algoritlumn
for controlling the depth of anesthesia in the operating theater during surgery. Specifically
eleven clinical trials were perforined with our adaptive control algorithin and seven clinical

trials were perforrmed with our neural network algorithm at the Northeast Georgia Medical
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Center iir Gainesville, Georgia. The proposed automated anesthesia controllers demonstrated
excellent regulation of unconsciousness and allowed for a safe and effective administration
of the anesthetic agent propofol. However, the adaptive and neuroadaptive controllers pre-
sented i [49] did not account for measurement noise in the EEG signal. Clinical testing has
clearly demonstrated the need for developing adaptive and neuroadaptive controllers that

can address system measurement noise [49)].

In this research [37], we extend the neuroadaptive controller framework developed in (7]
to address ineasurement noise in the BIS signal. Specifically, we develop an output feedback
neural network adaptive controller that operates over a tapped delay line (TDL) of available
input and filtered output measurements. The neuroadaptive laws for the neural network
weights are constructed using a linear observer for the nominal normal form error system
dynamics. The proposed framework is Lyapunov-based and guarantees ultimate bounduess
of the error signals. In addition, the nmonnegative neuroadaptive controller guarantees that
the physiological system states remain in the nonnegative orthant of the state space. Fi-
nally, we present mumerical and clinical results for controlling thie depth of anesthesia in the
operating theater during surgery. The proposed automated anesthesia neuroadaptive con-
troller demonstrates excellent regulation of unconsciousness and allows for a safe and effective

administration of the anesthetic agent propofol in the face of noisy EEG measurements.

2.19. Direct Adaptive Control for a Mutli-Compartmental Model
of a Pressure-Limited Respirator and Lung Mechanics Sys-
tem

Meclranical ventilation of a patient with respiratory fatlure is one of the most common
lifc-saving procedures performed in the intensive care unit. However, mechanical ventilation
is pliysically uncomfortable due to the noxious interface between the ventilator and patient
and mechanical ventilation evokes substantial anxiety on the part of the patient. This will
often be manifested by the patient “fighting the ventilator.” In this situation, there is
dyssynchrony between the ventilatory effort of the patient and the ventilator. The patient
will attempt to exhale at the time the ventilator is trying to expand the lungs or the patient
will try to inhale when the ventilator is decreasing airway pressure to allow an exlialation.
Wlhen patient-ventilator dyssynchrony occurs, at the very least there is excessive work of
breathing with subsequent ventilatory muscle fatigue and in the worst case, elevated airway
pressures that can actually rupture lung tissue. In this situation, it is a very common
clinical practice to sedate patients to minimize “fighting the ventilator.” Sedative-hypnotic

agents act on the central nervous systeni to ameliorate the anxiety and discomfort associated
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with mmechanical ventilation and facilitate patient-ventilator synchrony. I this researcl, we

developed an adaptive feedback controller for alleviating the dyssynchrony.

In a recent paper [56), we extended the existing nodels for ventilation systeins, to obtain
a general mathematical model for the dynamic behavior of a multi-compartment respira-
tory system in response to an arbitrary applied inspiratory pressure. Specifically, we used
compartmental dynamical system theory to model and analyze the dynamics of a pressure-
limited respirator and lung mechanics system, and showed that the periodic orbit generated
by this system is globally asymptotically stable. Furthermore, we showed that the indi-
vidual compartmental volumes, and hence the total lung volume, converge to steady-state
end-inspiratory and end-expiratory values. In this research 73], first, we develop a model
reference direct adaptive controller framework where the plant and reference model dynam-
ics are switching and time-varying. Next, we apply the proposed adaptive framework to
the multi-compartmental model of a pressure-limited respirator and lung mechanics system.
Specifically, we develop an adaptive feedback controller that stabilizes a given limit cycle
corresponding to a respiratory pattern identified by the clinician as a plausible breathing
pattern. Finally, we provide simulations that quantify dyssynchrony in a controlled mechan-

ical ventilator model.

3. Research Personnel Supported

Faculty
Wassim M. Haddad, Principal Investigator

Graduate Students
Qing Hui, Ph. D.

Several other students (.Volyanskyy, J. J. Im, and H. Li) were involved in research
projects that were closely related to this program. Although none of these students were
financially supported by this program, their research did directly coutribute to the overall
research effort. Furthermore, one Ph. D. dissertation was completed under partial support

of this program; naiely

Q.Hui, Nonlinear Dynamaical Systemns and Control for Large-Scale, Hybrid and Net-
work Systems, August 2008.

Dr. Hui is presently an Assistant Professor of Mechanical Engineering at Texas Tech.
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4. Interactions and Transitions

4.1. Participation and Presentations

The following conferences were attended over the past three years.

American Control Conference, Minneapolis, MN, June 2006.

IEEE Conference on Decision and Control, San Diego, CA, December 2006.
American Control Conference, New York, NY, July 2007.

IEEE Conference on Decision and Control, New Orleans, LA, December 2007.
American Control Conference, Seattle, WA, June 2008.

IEEE Conference on Decision and Control, Cancun, Mexico, December 2008,

Furthermore, conference articles [44-74] were presented.

4.2. Transitions

Our work on adaptive and neuroadaptive control of drug delivery partially supported
under this program has transitioned to clinical studies at the Northeast Georgia Medical
Center in Gainesville, Georgia, under the direction of Dr. James M. Bailey (770-534-1312),
director of cardiac anesthesia and consultant in critical care medicine. To date, we have

performed over forty clinical trials.

In critical care niedicine it is current clinical practice to administer potent drugs that
profoundly influence levels of consciousness, respiratory, and cardiovascular function by man-
ual control based on the clinician’s experience and intuition. Open-loop control by clinical
personnel can be tedious, imprecise, titne-consuming, and sometimes of poor quality, de-
pending on the skills and judgment of the clinician. Military physicians may face the most
demanding of critical care situations when dealing with the causalities of hostile action and
in these situations, precise control of the dosing of drugs with potent cardiovascular and

central nervous system effects is critical.

It has been an aphorisin among anesthesiologists since World War II that “thiopental (a
conunon drug for the induction of anesthesia) killed more Americans at Pearl Harbor than
the enemy,” referring to the consequences of cardiovascular collapse induced by thiopental
in trauma patients. Furthermore, military medicine faces unique challenges compared to the
civilian sector. The necessity of triage has, sadly, been a not rare event in times of war due to
unexpected numbers of casualties overwhelming available resources and furthermore, health

care providers may be among the casualties. Because of the possibility of demands on health
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care providers that niay exceed local resources, we believe that it is crucial to investigate
the use of advanced control technology to extend the capabilities of the lealth care system
to liandle large numbers of casualties. Closed-loop control based on appropriate dynaimical
system models can improve thie quality of drug administration in surgery and the intensive

care unit, lessening the dependence of patient outcomne on the skills of the clinician.

This work was recently comnmunicated to Colonel Leopoldo C. Cancio (210-916-3301) of
the US Army Institute of Surgical Research in Fort Sam Houston, San Antonio, in order to
provide improvenients for combat casualty care in current and future battlefields. Transition

discussions are ongoing.
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