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Abstract 

 

Many design problems require the optimization of competing objective functions 

that may be too complicated to solve analytically. These problems are often modeled in a 

simulation environment where static input may result in dynamic (stochastic) responses 

to the various objective functions. System reliability, alloy composition, algorithm 

parameter selection, and structural design optimization are classes of problems that often 

exhibit such complex and stochastic properties. Since the physical testing and 

experimentation of new designs can be prohibitively expensive, engineers need adequate 

predictions concerning the viability of various designs in order to minimize wasteful 

testing. Presumably, an appropriate stochastic multi-objective optimizer can be used to 

eliminate inefficient designs through the analysis of simulated responses. This research 

develops an adaptation of Walston’s [56] Stochastic Multi-Objective Mesh Adaptive 

Direct Search (SMOMADS) and Paciencia’s NMADS [45] based on Kim and de Weck’s 

[34] Adaptive Weighted Sum (AWS) procedure and standard distance to a reference 

point methods.  This new technique is compared to standard heuristic based methods used 

to evaluate several real-world design problems. The main contribution of this paper is a 

new implementation of MADS for Mixed Variable and Stochastic design problems that 

drastically reduces dependence on subjective decision maker interaction. 

  



AFIT/GOR/ENS/09-01 

 v 

Acknowledgements 

I would like to thank Dr. James Chrissis for his insight and direction, and Capt 

Todd Paciencia for his foundational contributions.  This research could not have been 

accomplished without their generous support.



 

 vi 

Table of Contents 

Abstract .............................................................................................................................. iv 

Acknowledgements ............................................................................................................. v 

Table of Contents ............................................................................................................... vi 

List of Figures ................................................................................................................... vii 

List of Tables ..................................................................................................................... ix 

I. Introduction ............................................................................................................. 1 
1.1. Problem Setting ............................................................................................... 1 
1.2. Purpose of the Research ................................................................................. 3 

1.3. Problem Statement .......................................................................................... 4 
1.4. Overview ......................................................................................................... 4 

II. Literature Review.................................................................................................... 6 
2.1. Pareto Front Estimation ................................................................................. 6 
2.2. Optimality in the Presence of Uncertainty .................................................... 13 
2.3. Existing Optimization Techniques ................................................................ 18 
2.6. Four Classes of Design Problems................................................................. 26 

III. Methodology ..................................................................................................... 29 
3.1. Basic Approach ............................................................................................. 29 
3.2. Objective-wise Extreme Points ..................................................................... 30 
3.3. Gap Finding .................................................................................................. 33 
3.4. Gap Filling .................................................................................................... 36 
3.5. Dominance Filtering ..................................................................................... 42 

3.6. Parameter Investigation................................................................................ 42 
3.7. Summary ....................................................................................................... 49 

IV. Results and Analysis ......................................................................................... 51 
4.1. Case Study Formulations .............................................................................. 51 
4.2. Case Study Evaluation .................................................................................. 59 
4.3. Case Study Comparison ................................................................................ 85 
4.3. Summary ....................................................................................................... 91 

V. Summary, Conclusions and Recommendations .................................................... 92 
5.1. Summary ....................................................................................................... 92 
5.2. Conclusions ................................................................................................... 92 

5.3. Recommendations for Future Research ........................................................ 94 
APPENDIX A.  MATLAB

®
 Code.................................................................................... 97 

APPENDIX B.  AutoGAD Output ................................................................................. 115 

APPENDIX C.  Blue Dart Submission Form ................................................................. 120 

Bibliography ................................................................................................................... 123 



 

 vii 

List of Figures 

Figure 2.1:  Distance to r minimized by single point q on convex Pareto front ................. 9 
Figure 2.2:  Pareto front generation from aspiration A and reservation R ........................ 10 
Figure 2.3:  Points q1 and q2 generated via Adaptive Weighted Sum............................... 12 
Figure 2.4:  Point q1 satisfying c1 and dominated by q2 .................................................... 13 
Figure 2.5:  Generic R&S Procedure [45] ........................................................................ 17 
Figure 2.6:  General MVPS-RS Algorithm [52] ............................................................... 21 
Figure 2.7:  General MADS Algorithm [7] ...................................................................... 23 
Figure 2.8:  MVMADS-RS [45] ....................................................................................... 25 
Figure 2.9:  SMOMADS Algorithm [56] ......................................................................... 26 
Figure 3.1:  Upper and Lower Bounds for Bi-Objective Pareto front .............................. 33 

Figure 3.2:  Affine Transformation of the Objective Space ............................................. 33 
Figure 3.3:  Partitioning for Resolution Parameter 1 and 0.25 ......................................... 34 
Figure 3.4:  Gap Finding Algorithm ................................................................................. 36 
Figure 3.5:  Neighborhood Construction .......................................................................... 39 
Figure 3.6:  Notional Neighborhood Search ..................................................................... 40 
Figure 3.7:  Point q missed by Neighborhood Search ...................................................... 40 
Figure 3.8:  Update of Reference Point admits previously omitted q ............................... 42 
Figure 3.9:  Simulated Ellipsoid Pareto Front .................................................................. 43 
Figure 3.10:  Simulated Curled Sheath Pareto Front ........................................................ 44 
Figure 3.11:  Surface Estimations for Run 13................................................................... 46 
Figure 3.12:  Surface Estimations for Run 78................................................................... 46 
Figure 3.13:  Surface Estimations for Run 141................................................................. 46 
Figure 3.14:  Surface Estimations for Run 205................................................................. 47 

Figure 3.15:  Surface Estimation for 10,  0.20    ..................................................... 47 

Figure 3.16:  Surface Estimation for 10,  0.30    ..................................................... 48 

Figure 3.17:  ACPSE-SMVO Algorithm .......................................................................... 50 
Figure 4.1:  Alloy Composition Replication 1 Estimated Pareto Set ............................... 61 
Figure 4.2:  Alloy Composition Replication 1 Filtered Pareto Set ................................... 61 
Figure 4.3:  Alloy Composition Replication 2 Estimated Pareto Set ............................... 62 
Figure 4.4:  Alloy Composition Replication 2 Filtered Pareto Set ................................... 62 
Figure 4.5:  Alloy Composition Replication 3 Estimated Pareto Set ............................... 63 

Figure 4.6:  Alloy Composition Replication 3 Filtered Pareto Set ................................... 63 
Figure 4.7:  Alloy Composition Replication 4 Estimated Pareto Set ............................... 64 
Figure 4.8:  Alloy Composition Replication 4 Filtered Pareto Set ................................... 64 
Figure 4.9:  Alloy Composition Replication 5 Estimated Pareto Set ............................... 65 

Figure 4.10:  Alloy Composition Replication 5 Filtered Pareto Set ................................. 65 
Figure 4.11:  Gearbox Design Replication 1 Estimated Pareto Set .................................. 67 
Figure 4.12:  Gearbox Design Replication 1 Filtered Pareto Set ...................................... 67 

Figure 4.13:  Gearbox Design Replication 2 Estimated Pareto Set .................................. 68 
Figure 4.14:  Gearbox Design Replication 2 Filtered Pareto Set ...................................... 68 
Figure 4.15:  Gearbox Design Replication 3 Estimated Pareto Set .................................. 69 
Figure 4.16:  Gearbox Design Replication 3 Filtered Pareto Set ...................................... 69 



 

 viii 

Figure 4.17:  Gearbox Design Replication 4 Estimated Pareto Set .................................. 70 
Figure 4.18:  Gearbox Design Replication 4 Filtered Pareto Set ...................................... 70 
Figure 4.19:  Gearbox Design Replication 5 Estimated Pareto Set .................................. 71 
Figure 4.20:  Gearbox Design Replication 5 Filtered Pareto Set ...................................... 71 
Figure 4.21:  Gearbox Design Master Pareto Set with Two Regions ............................... 72 
Figure 4.22:  Algorithm Parameter Optimization Replication 1 Estimated Pareto Set .... 73 
Figure 4.23:  Algorithm Parameter Optimization Replication 1 Filtered Pareto Set ........ 74 
Figure 4.24:  Algorithm Parameter Optimization Replication 2 Estimated Pareto Set .... 74 
Figure 4.25:  Algorithm Parameter Optimization Replication 2 Filtered Pareto Set ........ 75 
Figure 4.26:  Algorithm Parameter Optimization Replication 3 Estimated Pareto Set .... 75 
Figure 4.27:  Algorithm Parameter Optimization Replication 3 Filtered Pareto Set ........ 76 
Figure 4.28:  Algorithm Parameter Optimization Replication 4 Estimated Pareto Set .... 76 

Figure 4.29:  Algorithm Parameter Optimization Replication 4 Filtered Pareto Set ........ 77 
Figure 4.30:  Algorithm Parameter Optimization Replication 5 Estimated Pareto Set .... 77 
Figure 4.31:  Algorithm Parameter Optimization Replication 5 Filtered Pareto Set ........ 78 
Figure 4.32:  Algorithm Parameter Optimization Pareto Set Projection 1 ....................... 78 
Figure 4.33:  Algorithm Parameter Optimization Pareto Set Projection 2 ....................... 79 
Figure 4.34:  Algorithm Parameter Optimization Pareto Set Projection 3 ....................... 79 
Figure 4.35:  Algorithm Parameter Optimization Pareto Set Projection 4 ....................... 80 
Figure 4.36:  System Reliability Replication 1 Estimated Pareto Set ............................... 81 
Figure 4.37:  System Reliability Replication 1 Filtered Pareto Set .................................. 81 
Figure 4.38:  System Reliability Replication 2 Estimated Pareto Set ............................... 82 
Figure 4.39:  System Reliability Replication 2 Filtered Pareto Set .................................. 82 
Figure 4.40:  System Reliability Replication 3 Estimated Pareto Set ............................... 83 
Figure 4.41:  System Reliability Replication 3 Filtered Pareto Set .................................. 83 

Figure 4.42:  System Reliability Replication 4 Estimated Pareto Set ............................... 84 
Figure 4.43:  System Reliability Replication 4 Filtered Pareto Set .................................. 84 
Figure 4.44:  Transformed Dulikravich (blue) and ACPSE-SMVO (red) Pareto Sets ..... 88 
Figure 4.45:  Projected Dulikravich (blue) and ACPSE-SMVO (red) Pareto Sets .......... 88 
Figure 4.46:  Projection Suggesting Distinct Surfaces ..................................................... 89 
Figure 4.47:  Dulikravich (blue) and ACPSE-SMVO (red) Pareto Sets on Original Axes

................................................................................................................................... 89 
Figure 4.48:  Compatible Reference Point in Bottom Right Corner ................................ 90 



 

 ix 

List of Tables 

Table 3.1:  Tested Algorithm Parameter Values ............................................................... 45 
Table 3.2:  Top Four Runs per Density Threshold ........................................................... 48 
Table 3.3:  Points Generate for   10  ............................................................................. 49 
Table 4.1:  Alloy Composition Data Set [25] ................................................................... 52 
Table 4.2:  Summary of Regression Fit ............................................................................ 53 
Table 4.3:  Algorithm Parameters as Optimization Variables .......................................... 56 
Table 4.4:  Algorithm Performance as Objective Functions............................................. 57 
Table 4.5:  Summary of Regression Fit ............................................................................ 57 
Table 4.6:  Alloy Composition Extreme Points ................................................................ 60 
Table 4.7:  Gearbox Design Extreme Points ..................................................................... 66 

Table 4.8:  Algorithm Parameter Optimization Extreme Points ....................................... 72 
Table 4.9:  System Reliability Extreme Points ................................................................. 80 
Table 4.10:  IOSO Generated Pareto Optimal Solutions [26] .......................................... 85 
Table 4.11:  Optimal Objective Function Values [10] ...................................................... 91 

 



 

 1 

ADAPTIVE PARETO SET ESTIMATION FOR STOCHASTIC MIXED VARIABLE 

DESIGN PROBLEMS 

I. Introduction 

1.1. Problem Setting 

 A scalar-valued function maps an n-dimensional vector to a scalar value (a one-

dimensional vector).  Vector-valued functions, on the other hand, map an n-dimensional 

design vector to an m-dimensional response vector (where m is greater than 1).  Thus, 

optimizing a single objective function involves finding the extrema of a scalar-valued 

function, whereas optimizing multiple objectives simultaneously involves finding the 

extrema of a vector-valued function.  Unfortunately, for vector-valued functions, there is 

often no single n-dimensional design vector in the feasible domain whose response vector 

contains the extrema in each of the m dimensions of the range.  That is, often a mapping 

will be better in one subset of objectives and worse in another.  Therefore, in multi-

objective optimization, the goal is to find the set of solutions that are non-dominated, 

known as the Efficient set, Pareto set, or Pareto front.  According to Paciencia’s [45] 

definition, a vector is in the set of non-dominated solutions if its response vector is not 

worse for every objective than the response vector of another solution in the set.  In most 

cases, it is practically impossible to generate the entire Pareto set.  Instead, various 

methods are used to approximate the set.  However, each of these approximation methods 

has its own limitations.  

If at least one element of the m-dimensional response vector exhibits randomness 

or uncertainty, the optimization problem is considered a stochastic optimization problem, 

and can be presented in the standard form given by Paciencia [45]: 
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 min  ( ) ( , )Z w F x w  (1.1a) 

subject to   

 ( , ) 0, 1, ,ig x w i M    (1.1b) 

 1n
x  (1.1c) 

 1n
w  (1.1d) 

where x represents the vector of deterministic design variables, w represents a vector of 

uncontrollable random variables, and all constraints are assumed to be deterministic.  

Commonly, the stochastic function F(x,w)  is replaced with an observation or 

mathematical expectation.  If the observation is assumed to be an unbiased estimator of 

the actual function, the response can be written as F(x,w)  f (x) w(x) , where f (x)  is 

some deterministic function and w (x)  is some random error function such that 

E[w(x)]  0 . 

 If at least one of the variables of the n-dimensional design vector is discrete or 

categorical, the optimization problem is considered a mixed variable problem.  In the 

case of mixed-variable problems, the set of design variables, , is decomposed into two 

subsets:  the set of continuous variables, 
c

, and the set of categorical and discrete 

variables, d .  If the set of categorical and discrete variables is mapped to a subset of 

integers, dn , where nd  represents the number of categorical and discrete variables, any 

solution vector, x , can be denoted as  ( , ) c dn nc dx x x     where cncx  , 

dndx  , and n  nc  nd  is the total number of design variables.  Incorporating the 

mixed variables with the stochastic optimization, the problem can be presented in the 

standard form given by Paciencia [45]: 
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 min E[F(x)]  E[ f (x) w(x)]  (1.2a) 

subject to   

 ( , ) 0, 1, ,ig x w i M    (1.2b) 

where  ( ) : c dn n mF x      such that F  F1,F2,...,Fm .  A solution x*  is Pareto 

optimal for the vector-valued function F  if there are no other feasible solutions that give 

a better response in all objectives.  For any Pareto optimal solution *x , there may exist 

feasible solutions that gives a better response in some objectives. 

 

1.2. Purpose of the Research 

 Walston [56] and Paciencia [45] developed implementations of Mesh Adaptive 

Direct Search with Ranking and Selection (MADS-RS) to solve mixed variable, 

stochastic multi-objective problems of the type described in Section 1.1.  However, 

Paciencia [45] concluded that the quality of an initial Pareto front approximation in 

Walston’s SMOMADS implementation was dependent upon the aspiration/reservation 

level ranges.  That is, the decision maker interaction with SMOMADS can affect the 

quality of the Pareto set determined by SMOMADS.  Additionally, Paciencia stated that 

“an algorithm that can identify gaps in n-dimensional space, likely based on indifference 

values, in an efficient and complete manner could be of great value”.  However, he also 

noted that since indifference values are not easy to determine, an algorithm “not based on 

indifference values would be useful as well”.  Finally, while the MADS-RS procedure 

has been evaluated on a set of standard test problems, these test problems may provide 

little insight into how well the MADS-RS procedure may perform in solving real-world 

design problems. 
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1.3. Problem Statement 

 This research was designed to improve or expand upon the methods developed in 

SMOMADS and NMADS.  Specifically, the Pareto front generation algorithm developed 

in this research makes use of the SMOMADS method of finding objective-wise optima, 

but diverges from SMOMADS in that it does not depend on decision maker input in 

selecting desirable or undesirable objective function values.  The Pareto front gap-finding 

algorithm developed in this research leverages the NMADS method of sorting Pareto 

optimal solutions one objective at a time, but searches for multiple neighbors, instead of 

performing the single-neighbor search used in NMADS. Additionally, this research 

incorporates Kim and de Weck’s [34] recently developed Adaptive Weighted Sum 

(AWS) method for multi-objective optimization into the MADS-RS algorithm developed 

by Abramson, et al. [1].  The AWS-inspired method replaces the SMOMADS aspiration 

and reservation level method of Pareto front determination (which requires a decision 

maker to select values of the multiple objective functions that are “ideal” or 

“unacceptable”) with an adaptive algorithm that automatically searches the objective 

function space to approximate the Pareto front.  Furthermore, a novel algorithm is used to 

identify gaps in the m-dimensional Pareto front.  Finally, this updated MADS algorithm 

is compared to existing methods for solving four common classes of real-world multi-

objective mixed variable stochastic design problems. 

1.4. Overview 

 This thesis is organized as follows.  Chapter II reviews past implementations of 

MADS-RS as well as other methods for solving multi-objective optimization problems.  
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Furthermore, the AWS method is reviewed in comparison to other methods of 

determining the Pareto front.  Finally, four classes of common design problems are 

discussed.  Chapter III presents an adaptive constraint Pareto set estimation algorithm 

based on AWS, and incorporates it into the MADS-RS framework.  Chapter IV presents 

the results of the new adaptive constraint implementations of MADS-RS and the analysis 

of its performance.  Chapter V presents the final conclusions and recommendations for 

future research. 
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II. Literature Review 

 With few exceptions, most multi-objective optimization techniques transform the 

multiple objective functions into a single objective and use some standard non-linear 

optimization technique to optimize the single objective problem.  In the case of stochastic 

optimization, some method of choosing a best solution in the presence of uncertainty 

must be employed.  Therefore, this chapter presents various methods of scalarizing the 

multiple objectives functions into a single objective function.  Then, methods for 

determining optimality in the presence of uncertainty are discussed.  Additionally, some 

recently developed optimization algorithms are reviewed, including their current 

implementations as SMOMADS and NMADS, developed by Walston [56] and Paciencia 

[45], respectively.  Finally, four classes of multi-objective design problems are described, 

along with techniques that have been used to solve them. 

2.1. Pareto Front Estimation 

 This section describes various common methods for generating or approximating 

the set of Pareto optimal solutions.  This is not meant to be a comprehensive description. 

2.1.1. Pareto Set Definition 

A Pareto optimal solution is defined by Erghott [28] as follows: 

Definition 2.1.1.  A solution to a multi-objective optimization problem of the form 

min  ( , ),  : m

x
F x w F


  is said to be Pareto optimal at the point x̂  if there is no x  

such that Fk (x)  Fk (x̂)  for k = 1,…,m  and Fi (x)  F(x̂)  for some {1, , }mi  . 

A solution is said to be dominated if it is not Pareto optimal. 
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 Since it is generally not possible to generate the complete set of Pareto optimal 

solutions, several techniques have been developed to estimate the Pareto set.  Paciencia 

[45] outlines several Pareto set quality metrics that have been developed. 

2.1.2. Weighted Sum 

 The simplest (often called naïve) approach to generating a Pareto optimal solution 

is to optimize a weighted sum of the multiple objective functions.  Often in this method, a 

vector of random weights 
1{ , , }m     is generated such that  i

i1

m

  1 and  i  0  for 

all 1, ,i m  .  These weights form the single-objective optimization problem of the 

form 

 
min Z(x)   iF̂i (x)

i1

m

 , (2.1) 

where F̂i (x)  may be some normalized version of the ith objective function (the objective 

functions may be normalized so only the random weights determine which objective will 

dominate the weighted sum).  Das and Dennis [21] demonstrate that for every unique 

random vector , solving (2.1) generates a Pareto optimal solution. 

While this is a very efficient generator, its principal limitation is that it cannot 

find Pareto optimal points in any non-convex portion of the Pareto front.  For a thorough 

explanation of this drawback, see Das and Dennis [21]. 

 2.1.3. Normal Boundary Intersection 

 Das and Dennis [22] describe a new method for generating the Pareto front, 

known as the Normal Boundary Intersection (NBI).  This method solves a series of 

single-objective formulations of the multi-objective optimization problem with an 
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additional equality constraint based on previously determined objective function values.  

The intersection of this new equality constraint and the boundary of the surface 

determined by feasible objective function values is added to the set of Pareto optimal 

solutions.  This is based on the idea that the intersection of the boundary of the set of 

feasible objective function values with a normal vector emanating from a point that can 

be represented as a convex combination of feasible objective function values towards the 

origin lies on the portion of the boundary that contains non-dominated points.  While NBI 

has been shown to generate an evenly distributed set of points on the Pareto front, it is not 

guaranteed to avoid selecting dominated solutions.  That is, if the boundary of feasible 

objective function values is not sufficiently convex, the point of intersection may be a 

dominated solution. 

 2.1.4. Distance to a Reference Point 

 Instead of optimizing a weighted sum of the multiple objective functions, Collette 

and Siarry [20], explain that the distance to a reference point method minimizes the 

distance from a feasible point in the objective space to some reference point, usually the 

vector whose elements equal the optimal values for the individual objectives, known as 

the utopia point.  While this method is capable of finding Pareto optimal solutions on 

non-convex regions of the Pareto front, Walston [56] explains its performance is highly 

dependent on the choice of reference point. 

As shown in Figure 2.1, this method may fail to include points, pi , on the Pareto 

front that a weighted sum method would find, since point q  is closer to reference point r

than all other points on the convex Pareto front.  
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Figure 2.1:  Distance to r minimized by single point q on convex Pareto front 

 

 2.1.5. Aspiration and Reservation Levels 

 The aspiration and reservation levels method is an interactive approach that takes 

decision maker input regarding acceptable (aspiration) and unacceptable (reservation) 

objective function values and uses that information to generate Pareto optimal solutions.  

As shown in Figure 2.2, points on the Pareto front can be found by varying the relative 

importance of the distance to a given point.  Using the utopia point U, any point between 

points D and E can be found, where D and E represent the objective function values 

obtained by optimizing each objective independently. Walston [56] demonstrates how 

using aspiration point A as a starting point and connecting it with a ray to the reservation 

point R, points along the Pareto front between B and C can be found.  According to 

Walston, this method “is based on the assumption that the decision maker has an idea of 
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what is desired for each objective, as well as what minimum, or maximum, values are 

acceptable.” 

 

Figure 2.2:  Pareto front generation from aspiration A and reservation R 

 In addition to the aspiration and reservation values assigned by the decision 

maker, this method also makes use of the nadir point, N.  Ehrgott, et al. [28], characterize 

the nadir point N my   by the component-wise supremum of all the Pareto optimal 

solutions: 

 : sup ( ),  1, , .N m

m
x Pareto

y f x m M


    (2.2) 

Since the utopia point is the objective-wise minimum over the feasible set, as 

shown in Figure 2.2, the nadir point can be estimated as the reflection of the utopia point 

opposite the Pareto front. 

In addition to requiring input from a knowledgeable decision maker, using 

aspiration and reservation levels to determine the Pareto front may become 

computationally expensive, since a new aspiration or reservation point must be selected 
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in order to generate a new Pareto-optimal solution.  Since it is impossible to sample every 

possible combination of aspiration and reservation levels, Paciencia [45] evaluates the 

use of several different experimental designs to select aspiration and reservation points 

that would generate a sufficient representation of the Pareto front.  

 2.1.6. Adaptive Weighted Sum 

 Generalizing their previous work in the bi-objective case, Kim and de Weck [34] 

developed the Adaptive Weighted Sum (AWS) method for multi-objective optimization. 

AWS begins by estimating the Pareto front using a typical weighted sum technique.  It 

then searches the resulting set of points for gaps that may indicate the existence of a non-

convex region in the Pareto front. 

In the bi-objective case, a gap is defined as the distance from one point, p1 , to its 

nearest neighbor, p2 .  If this distance is greater than some threshold value  , two new 

inequality constraints, c1 and c2 , that define a region slightly smaller than the region 

contained within p1  and p2  are added to the optimization problem.   A weighted sum is 

again used to optimize this adapted optimization problem.  If the gap represents a non-

convex region of the surface, as depicted in Figure 2.3, the weighted sum optimization 

produces two new points, 
1q  and 

2q , at the end points of the feasible region.   

If the distance between these new points is greater than the threshold value, the 

new points are used to define their own new constraints, and the process is repeated until 

the distance between the points produced by the AWS optimization problem is less than 

the threshold value.  This procedure is continued for each gap identified in the original 
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Pareto set.  Thus, the AWS method can estimate the actual Pareto front with arbitrarily 

good accuracy without permitting any dominated points into the estimated Pareto set. 

 

Figure 2.3:  Points q1 and q2 generated via Adaptive Weighted Sum 

 

Whereas inequality constraints are used to adapt the bi-objective weighted sum 

optimization problem, in the case of more than two objectives, the AWS method 

introduces an equality constraint to generate a new candidate for the Pareto set.  First, a 

standard weighted sum method is used to generate an initial set of Pareto optimal 

solutions. For simplicity, or if the entire feasible surface in the objective space is non-

convex, this initial set may be limited to the solutions corresponding to the components 

of the utopia point, that is, the points defined by the objective-wise minima.  A subset of 

these initial points can then be selected to define the hyper-plane containing the entire 

subset of points.  To generate a new solution, a line is constructed to emanate from the 
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nadir point and intersect the hyper-plane at a point interior to the defining subset.  The 

equation of this line is added as an equality constraint to adapt the optimization problem. 

 

Figure 2.4:  Point q1 satisfying c1 and dominated by q2 

However, as shown in Figure 2.4, since the solution to this equality-adapted 

optimization problem is not guaranteed to be non-dominated (that is, it is possible for a 

dominated solution to satisfy the new problem), each new point must be checked for 

dominance before being added to the Pareto set. 

2.2. Optimality in the Presence of Uncertainty 

For multi-objective optimization problems, if at least one objective (or element of 

the m-dimensional response vector) exhibits randomness or uncertainty, the optimization 

problem is considered a stochastic optimization problem, and can be presented in the 

standard form given by Paciencia [45]: 

 min Z(w)  F(x,w)  (2.3a) 

subject to   

 ( , ) 0, 1, ,ig x w i M    (2.3b) 
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 1n
x  (2.3c) 

 1n
w  (2.3d) 

where x represents the vector of deterministic design variables, w represents a vector of 

uncontrollable random variables, and all constraints are assumed to be deterministic.   

 2.2.1. Deterministic Approach 

The simplest method to handle the stochastic response vector is to substitute the 

uncertain vector with a deterministic value.  Commonly, the stochastic function F(x,w)  

is replaced with its observation or mathematical expectation.  If the observation is 

assumed to be an unbiased estimator of the actual function, the response can be written as 

F(x,w)  f (x) w(x) , where f (x)  is some deterministic function and w (x)  is some 

random error function such that E[w(x)]  0 .  Thus, according to Marti [42], the “true” 

value of the response, f (x) , is assumed to be given by E[F(x,w)] , and this value alone 

is used for optimality or improvement comparisons.  While straightforward, this method 

may be misleading in that it fails to reflect the variability present in each optimal solution 

produced. 

 2.2.2.  Approach 

 The   Approach is similar to the Deterministic Approach in that it selects a 

single representative value for the response vector.  However, in the   Approach, in 

order to avoid underestimating (in the case of a minimization problem) the response, the 

value used to represent the response at a given feasible solution x  is increased by a 

function of the variance of the observed response.  Mattson and Messac [44] formulate 

this representative value as: 
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 f (x)w (x)
 , (2.4) 

where 
2

w (x )  is the variance of w  at x  and   is some positive scalar. 

 2.2.3. Ranking and Selection 

 Instead of generating precise estimates of the stochastic response, Ranking and 

Selection (R&S) considers multiple candidates simultaneously. 

 Using the R&S formulation presented by Paciencia [45], let Xk  denote the kth 

element of a sequence of random vectors and xk  denote a realization of Xk .  For a finite 

set of candidate points 1{ , , }
cnC Y Y   with nc  2 , let fq  f Yq  E F Yq 



  denote 

the true mean of the response function F  at Yq  for each 1, , cq n  .  These means can 

be ordered as 
[1] [ ], ,

cnf f , where f
1 

 represents the minimum mean and f
nc   represents 

the maximum.  Denote by Y
q C  the candidate from C  with the qth lowest true 

objection function value. 

 Given some   0 , called the indifference zone parameter, no distinction is made 

between two candidate points whose true means satisfy f
2   f 1    .  In such a case, the 

method is indifferent in choosing either candidate as best.  The probability of correct 

selection (CS) is defined as 

   [1] [ ] [1]select ,  1, , 1 ,q cP CS P Y f f q n       
 

  (2.5) 

where   0,1  is the statistical significance level.  Because random sampling 

guarantees 
1

[ ]
c

P CS
n

 , the significance level must satisfy 0  1
1

nc
. 
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 Since the true objection function means are unavailable, it is necessary to use the 

sample means of  to select the best candidate.  For each {1, , }cq n  , let sq  be the 

total number of replications at Yq , and let Fqs 
s1

sq
 F Yqs ,Wqs  

s1

sq

 be the set of 

simulated responses, where Yqs 
s1

sq
 are the replications at candidate point Yq , and Wqs

 

are realizations of the random noise.  For each {1, , }cq n  , the sample mean F  is given 

by 

 
Fq 

1

sq
Fqs

s1

sq

 . (2.6) 

The sample means can be ordered and indexed, letting Ŷ
1  C  denote the candidate with 

the qth lowest estimated objection function value as determined by the R&S procedure.  

The candidate corresponding to the minimum mean response [1] [1]
ˆ arg( )Y F  is chosen as 

the best point.  A generic R&S procedure is shown in Figure 2.5.  Bechhofer, et al. [14], 

provide an in depth discussion of several methods used to determine 
qs  for the R&S 

procedure. 

F
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Ranking and Selection Procedure RS C,r ,r  

Inputs:  
1

{ , , }
c

n
C Y Y  , (0,1)r  , 0r  . 

Step 1.  For each Y
q
C , use an appropriate statistical technique to determine the 

number of samples s
q
 required to meet the probability of correct selection 

guarantee in (2.5), as a function of 
r , 

r  and response variation of Yq . 

Step 2.  For each {1, , }
c

q n  , obtain replicated responses Fqs , {1, , }
q

s s  , and 

compute the sample mean Fq , according to (2.6). 

Return:  Ŷ
[1]
 arg F

[1]
  

Figure 2.5:  Generic R&S Procedure [45] 
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2.3. Existing Optimization Techniques 

 This section describes the development of the Generalized Pattern Search (GPS) 

and Mesh Adaptive Direct Search (MADS) optimization techniques that are used in this 

research.  These optimization methods were selected for study because they have been 

shown to be able to converge to optimal solutions for stochastic problems.  Additionally, 

two recent implementations of these methods, SMOMADS and NMADS, are presented.  

SMOMADS and NMADS represent the foundational work upon which this research 

expands. 

 2.3.1. Generalized Pattern Search 

 Generalized pattern search (GPS) algorithms are defined through a finite set of 

directions used at each iteration.  The direction set and a step length parameter are used to 

generate a discrete set of points, or mesh, around the current iterate.  Paciencia [45] 

defines the mesh at iteration k to be 

 { : }D

k

nm

k k

x O

M x Dz z


   , (2.7) 

where Ok  is the set of points for which the objective function f  has been evaluated as of 

iteration k, k
m  is called the mesh size parameter, and D is a set of positive spanning 

directions for n .  Torczon and Trosset [55] state an additional restriction on D is that 

each direction ,  {1, , }j Dd D j n   , must be the product of some fixed nonsingular 

generating matrix 
n nG   and an integer vector 

n

jz  .  For bound and linearly 

constrained problems, the directions in D must be sufficiently rich to ensure that polling 

directions (directions used to obtain a poll set) can be chosen that conform to the 
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geometry of the constraint boundaries, and that these directions be used infinitely many 

times.  A finite set of trial points, called the poll set, is then chosen from the mesh, 

evaluated, and compared to the incumbent solution.  If improvement is found, the 

incumbent is replaced and the mesh is retained or coarsened by increasing the mesh size 

parameter k
m .  If not, the mesh is refined and a new set of trial points is selected. 

 Audet and Dennis [6] as well as Lewis and Torczon [36] have extended this 

approach to handle nonlinear constraints.  Furthermore, Audet and Dennis [5] extended 

GPS to handle mixed variable problems with bound constrains by including user-

specified discrete neighborhoods in the definition of the mesh.  Abramson et al. extended 

the mixed variable results of Audet and Dennis [5] to linear [1] and non-linear constraints 

[3]. 

 This method was applied with ranking and selection by Sriver [52] to address 

stochastic mixed-variable problems.  In this method, the poll set at each iteration is given 

by 
 
Pk (xk ) N(xk )U  where N (xk )  is a user-defined set of discrete neighbors around xk  and 

 Pk  xk  k (d,0) :d Dk
i , (2.8) 

where (d,0)  denotes that continuous variables have been partitioned and that the discrete 

variables remain unchanged.  The set of discrete neighbors is defined by a set-valued 

function N : 2 , where 2  denotes the power set of  .  By convention, x N(x)  

for each x , and it is assumed that N(x)  is finite.  A generic indifference-zone 

ranking and selection procedure RS Pk ,,  with indifference-zone parameter   and 

significance level   is used to select among points in the poll set for improved solutions 
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(see Figure 2.5).  Given a fixed rational number  1 and two integers m  1  and 

m  0 , the mesh size parameter k
m  is updated according to 

 k1

m  wkk
m , (2.9) 

where 

 {0,1, , },  if an improved mesh point is found

{ , 1, , 1},  otherwise.
k

m
w

m m



 




 




 (2.10) 

If no improvement is found, an extended poll step is conducted to search about any 

discrete neighbor y N(xk )  that satisfies f (xk )  f (y)  k , where k  is called the 

extended poll trigger.  Paciencia [45] explains how each neighbor satisfying this criteria, 

in turn, becomes the poll center, and the extended poll continues until either a better point 

than the current iterate is found, or else they are all worse than the extended poll center.  

Sriver [52] showed that this algorithm has an iteration subsequence with almost sure 

convergence to a stationary point “appropriately defined” in the mixed-variable domain.  

That is, as the number of iterations goes to infinity, the probability that the algorithm will 

converge to a stationary point in the mixed-variable domain grows to 1.  A general mixed 

variable pattern search with ranking and selection (General MVPS-RS) algorithm is 

shown in Figure 2.6 

 2.3.2. Mesh-Adaptive Direct Search 

 Mesh Adaptive Direct Search (MADS) was developed by Audet and Dennis for 

minimization of non-smooth function of the type  : nf     under general 

constraints 
nx    where  . 
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While MADS is similar to GPS in the generation of the mesh as well as the rules 

for updating the mesh, one key difference is that in MADS a separate poll size parameter 

k
p  is introduced which controls the magnitude of the distance between the incumbent 

A General MVPS-RS Algorithm 

 INITIALIZATION:  Let , , , , and .  Set the 

iteration and R&S counters  and , respectively. 

 

 SERCH STEP (OPTIONAL):  Employ a finite strategy to select a subset of candidate 

solutions,  defined in (2.8) for evaluation.  Use R&S procedure 

 to return the estimated best solution , update 

, , and .  If , the step is successful, update 

, , see (2.9)-(2.10), and , and repeat SEARCH STEP.  

Otherwise, proceed to POLL STEP.  

 

 POLL STEP:  Set extended poll trigger .  Use R&S procedure 

 to return the estimated best solution .  Update 

, , and .  If , the step is successful, update , 

, see (2.9)-(2.10), and , and return to SEARCH STEP.  Otherwise, 

proceed to EXTENDED POLL STEP. 

 

 EXTENDED POLL STEP:  For each discrete neighbor  that satisfies the 

extended poll trigger condition , set  and , and do the 

following. 

- Use R&S procedure  to return the estimated best solution .  

Update , , and .  If , set  and , 

and repeat this step.  Otherwise, set  and go to the next step 

- Use R&S procedure  to return the estimated best solution .  

Update , , and .  If , the step is successful, update 

, , see (2.9)-(2.10), and , and return to the SEARCH 

STEP.  Otherwise, repeat the extended poll trigger condition.  If no such discrete neighbors 

remain in , set , , and , and return to the 

SEARCH STEP. 

X0  
0
 0   0 

0
 0,1  

0
 0

k  0 r  0

S
k
 M

k
X
k

 

 RS Sk U Xk , r , r 
 
Ŷ

[1]
S

k
U X

k
 

 r1   r r1  r r  r  1 Ŷ[1]  Xk

Xk1  Ŷ[1]
k1  k k  k  1

k  

 RS Pk Xk U N Xk , r ,r  Ŷ[1]
 r1   r

r1  r r  r  1 Ŷ[1]  Xk Xk1  Ŷ[1]

k1  k k  k  1

Y N Xk 

F Y   F Xk  k j  1 Yk
j
 Y

RS P
k
Y
j

k ,r ,r  Ŷ[1]

 r1   r r1  r r  r  1 Ŷ[1]  Yk
j

Yk
j
 Ŷ[1] j  j  1

Zk  Yk
j

 RS Xk U Zk , r , r  Ŷ[1]

 r1   r r1  r r  r  1 Ŷ[1]  Zk

Xk1  Ŷ[1]
k1  k k  k  1

N Xk  Xk1  Xk k1  k k  k  1

Figure 2.6:  General MVPS-RS Algorithm [52] 
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solution and trial points generated for the poll step, and satisfies k
m  k

p  for all k such 

that limkK k
m  0 limkK k

p  0  for any infinite subset of indices K. 

 In MADS, the frame is defined to be 

 Pk  xk  k
md :d Dk  M k , (2.11) 

where Dk  is a positive spanning set such that 0 Dk  and for each d Dk  the following 

conditions must be met, according to Audet and Dennis [7]: 

 d  can be written as a non-negative integer combination of the direction in D: 

d  Du  for some vector Dk
n

u that may depend on the iteration number k, 

 the distance from the frame center xk  to a frame point xk  k
md :d Pk  is 

bounded above by a constant times the poll size parameter: 

k
m d  k

p max d ' :d 'D , 

 limits of the normalized sets Dk 
d

d
:d Dk









 are positive spanning sets. 

Since the mesh size parameter tends to decrease to zero at a faster rate than the 

poll size parameter, the set of directions Dk  used to define the MADS frame can be 

chosen from increasingly larger sets as a limit point is approached. 

The general MADS algorithm is shown in Figure 2.7.  The extended algorithm for 

stochastic mixed variable problems (MVMADS-RS) is shown in Figure 2.8. 
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 2.3.3. SMOMADS 

 Stochastic Multi-Objective Mesh Adaptive Direct Search (SMOMADS) was 

developed by Walston [56] to incorporate the aspiration/reservation method of multi-

objective scalarization with MVPS-RS or MVMADS-RS in order to solve stochastic, 

multi-objective mixed variable optimization problems.  The single objective scalarization 

is obtained from the aspiration and reservation levels for each objective, ai  and ri  

respectively, where {1, , }i m   and m  is the number of objectives in the original 

problem, via the following function: 

 
f   min(u)   ui

i1

m








. (2.12) 

The function ui , defined by 

 

ui 

 i wi  (ai  fi )1,

wi  (ai  fi )1,

i wi  (ri  fi )1,









fi  ai

ai  fi  ri

ri  fi

 (2.13) 

A General MADS Algorithm 

 INITIALIZATION:  Let x0  , 
m

0
 

p

0
, D,G, ,w


,  and w


satisfy the 

requirements of a MADS frame set given in (2.11).  Set the iteration counter k  0 . 

 

 SERCH AND POLL STEP:  Perform SEARCH and possibly the POLL step (or part 

of them) until an improved mesh point xk1  is found on the mesh M k , where M k  is 

defined as for GPS in (2.7). 

- OPTIONAL SEARCH:  Evaluate f  on a finite subset of trial points on the mesh 

M k . 

- LOCAL POLL:  Evaluate f  on the frame Pk , where Pk  is as given in (2.11). 

 

 PARAMETER UPDATE:  Update k1

m
 and k1

p
.  Set k  k  1  and go back to the 

SEARCH AND POLL STEP. 

 

Figure 2.7:  General MADS Algorithm [7] 
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is a strictly monotone function of the response vector components fi , known as a 

component achievement function.  Walston [56] showed that minimizing (2.12) will 

produce Pareto optimal solutions nearest the aspiration level (as described in Section 

2.1.5.).  However, due to the wide range of possible aspiration and reservation levels, 

Paciencia [45] describes how in it may be difficult to adequately represent the Pareto 

front without exploring a very large number of combinations of aspiration and reservation 

levels.  Figure 2.10 shows a notional example of the SMOMADS algorithm. 

 2.3.4. NMADS 

 Paciencia [45] expanded the bi-MADS method developed by Audet, et al. [9], to 

explore the Pareto front for m multiple objectives.  This new method uses a distance-to-a-

reference point method for multi-objective scalarization, and optimizes the resulting 

single-objective problem with the MADS technique.  Then, a gap finding algorithm is 

used to search for gaps in the current Pareto set.  The gap finding algorithm attempts to 

determine if any given point in the current Pareto set is surrounded by other points in the 

set.  Given a vector of indifference values (similar to the level of detail desired in each 

objective in the Pareto front)  , each point in the set (except the points corresponding to 

extreme values in each objective) should have another point within  i  and  i (above 

and below) in each objective i. 
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 Figure 2.8:  MVMADS-RS [45]  

 

A General MVMADS-RS Algorithm 

 INITIALIZATION:  Let X0  , 
m

0
 

p

0
,   0 , 

0
 0,1  , and 

0
 0 .  Set the 

iteration and R&S counters k  0  and r  0 , respectively. 

 

 SERCH STEP (OPTIONAL):  Employ a finite strategy to select a subset of candidate 

solutions, S
k
 M

k
X
k

   defined in (2.8) for evaluation.  Use R&S procedure 

 RS Sk U Xk , r , r  to return the estimated best solution 
 
Ŷ

[1]
S

k
U X

k
 , update 

 r1   r , r1  r , and r  r  1 .  If Ŷ[1]  Xk , the step is successful, update Xk1  Ŷ[1]

, 
p

k1  
p

k
, 

m

k1  
m

k
and k  k  1 , and repeat SEARCH STEP.  Otherwise, proceed to 

POLL STEP.  

 

 POLL STEP:  Set extended poll trigger k   .  Use R&S procedure 

 RS Pk Xk U N Xk , r ,r   to return the estimated best solution Ŷ[1]
.  Update  r1   r , 

r1  r , and r  r  1 .  If Ŷ[1]  Xk , the step is successful, update Xk1  Ŷ[1]
, 


p

k1  
p

k
, 

m

k1  
m

k
and k  k  1 , and return to SEARCH STEP.  Otherwise, proceed 

to EXTENDED POLL STEP. 

 

 EXTENDED POLL STEP:  For each discrete neighbor Y N Xk  that satisfies the 

extended poll trigger condition F Y   F Xk  k , set j  1  and Yk
j
 Y , and do the 

following. 

- Use R&S procedure RS P
k
Y
j

k ,r ,r  to return the estimated best solution Ŷ[1]
.  

Update  r1   r , r1  r , and r  r  1 .  If Ŷ[1]  Yk
j
, set Yk

j
 Ŷ[1]  and j  j  1 , 

and repeat this step.  Otherwise, set Zk  Yk
j
 and go to the next step 

- Use R&S procedure  RS Xk U Zk , r , r  to return the estimated best solution Ŷ[1]
.  

Update  r1   r , r1  r , and r  r  1 .  If Ŷ[1]  Zk , the step is successful, update 

Xk1  Ŷ[1]
, 

p

k1  
p

k
, 

m

k1  
m

k  
and k  k  1 , and return to the SEARCH STEP.  

Otherwise, repeat the extended poll trigger condition.  If no such discrete neighbors remain 

in N Xk , set Xk1  Xk , 
p

k1  
p

k
, 

m

k1  
m

k  
and k  k  1 , and return to the 

SEARCH STEP. 
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Figure 2.9:  SMOMADS Algorithm [56] 

 

 To detect if each point is surrounded, the current Pareto set is sorted one objective 

at a time.  The points corresponding to the maximum and minimum in each objective are 

identified as extreme points.  Then, a one-dimensional search of the objective space is 

conducted in which differences in the objective function values are compared to the 

respective indifference value for that objective.  If differences in objective function value 

between points are larger than  i , the closest point above or below the current point is 

found.  If the difference in objective function value for that point and the current is also 

larger than  i , a gap is considered to be found.  This point is then used as a starting point 

in the MADS method in order to fill the gap. 

2.6. Four Classes of Design Problems 

 This section describes four classes of design problems that represent real-world 

applications of multi-objective stochastic mixed-variable optimization.  

 2.6.1. System Reliability Optimization 

 This class of problems is usually characterized by the competing objectives of 

increasing reliability, availability, or a similar metric, while minimizing overall cost, 

SMOMADS Algorithm 
 Generate a set of Aspiration/Reservation levels. 

 

 For each choice of Aspiration/Reservation levels, combine the objective functions into an 

achievement scalarization function, and solve using MVMADS-RS or MVPS-RS. 

 

 In the case of stochastic problems, because the solution converges to an efficient point with 

probability one in infinite iterations, check to ensure that a point is non-dominated before 

adding to the efficient set by comparing to solutions found thus far. 
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weight, etc. Since component reliability cannot be known with absolute certainty, and 

system performance is usually modeled in a simulation environment, system reliability 

optimization is an instance of stochastic optimization.  Additionally, some design 

variables are likely to be discrete or categorical (such as number and type of 

components), while others are continuous (such as cost and weight).   To solve this class 

of problems, usually some form of robust parameter optimization is applied in which an 

additional objective is included to minimize performance variance.  A specific example 

of this class is investigated in Chapter IV. 

 2.6.2. Alloy Composition 

 Alloy composition optimization problems are used to predict viable or promising 

chemical experiments.  Usually, the competing objectives include maximizing alloy 

strength at high temperature while minimizing weight, cost, etc.  Given a set of 

experimental results from previously tested chemical compositions, the goal of the 

optimization problem is to use stochastic multi-objective optimization techniques to 

identify a boundary to the Pareto front in order to predict dominated compositions that 

would thus be not worthwhile to construct and test in the laboratory. 

 Since the designs under test include categorical variables such as specific metal or 

chemical component as well as continuous variables such as amount by weight, alloy 

composition optimization is studied further in Chapter IV. 

 2.6.3. Algorithm Parameter Selection 

 Algorithm parameter selection refers to a class of problems in which the goal is to 

improve the performance of a parameter-based meta-heuristic (such as Tabu Search or 
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Simulated Annealing) or some stochastic algorithm.  While many parameters may be 

discrete (such as maximum iterations), some may be categorical (such as type of cross-

over for a Genetic Algorithm) or continuous (such as temperature or cooling for 

Simulated Annealing).  Since there are many measures of algorithm performance 

(including time to completion, accuracy of result, etc.), there is usually no single set of 

parameter values that will simultaneously optimize all performance measures.  

Furthermore, since these algorithms themselves are stochastic in nature, their 

performance should not be optimized using deterministic techniques.  However, since it 

is common to apply response surface methodology or robust parameter design techniques 

to this class of problems, a specific instance of this class is presented in Chapter IV to 

compare current results to those obtained using a method such as MVMADS-RS. 

 2.6.4. Structural Design 

 Structural design problems involve optimizing competing objectives such as 

minimum weight or volume and maximum load supported in order to design a support 

structure or gearbox.  Design variables include component lengths, component offset or 

separation, and the number of components or sub-structures.  Since these variables can be 

grouped into discrete or continuous sets (depending on the problem), structural design 

problems may be considered mixed-variable in nature.  Additionally, if any of the 

objective functions cannot be measured with complete certainty, a structural design 

problem may require stochastic optimization techniques.  Therefore, an instance of the 

gearbox design problem is investigated in Chapter IV. 
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III. Methodology 

 This chapter outlines the basic approach used to approximate the Pareto optimal 

set for stochastic mixed-variable design problems as well as the development of a 

suitable test implementation of this new method.  The algorithms described in this 

chapter were designed to improve or expand upon the methods developed in SMOMADS 

and NMADS, while using the same MADS-based optimization technique.  Specifically, 

the Pareto front generation algorithm developed in this chapter makes use of the 

SMOMADS method of finding objective-wise optima, but diverges from SMOMADS in 

that there is no use of decision maker input in selecting desirable or undesirable objective 

function values.  The Pareto front gap-finding algorithm developed in this chapter 

leverages the NMADS method of sorting Pareto optimal solutions one objective at a time, 

but searches for multiple neighbors, instead of performing the single neighbor search 

used in NMADS.  

3.1. Basic Approach 

 The basic approach used to approximate the Pareto optimal set for a stochastic 

mixed-variable problem is to use MVMADS-RS or MVPS-RS to find the objective-wise 

extrema and to use adaptive constraint generation and multi-objective scalarization until 

enough Pareto optimal responses have been generated so that the approximated Pareto 

front satisfies some minimum density and resolution.  Although this approach is similar 

to the approach developed by Paciencia [45], the algorithms developed in this chapter are 

unique, and they will be contrasted to previously developed methods. 
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3.2. Objective-wise Extreme Points 

 The first step in this process is to determine the utopia point for the multi-

objective minimization problem.  Using MVMADS-RS or MVPS-RS, each one of the m 

multiple objectives is independently optimized.  For a single objective function, Fi (x) , 

where {1, , }i m  , if *

ix  is the optimal solution to , and the minimal objective 

function value Fi
*(x)  is given by Fi

*(x)  Fi(xi
*) , then the column vector F i*  

corresponding to this solution in the m-dimensional objective space is given by 

 * * * *

1 2( ), ( ), , ( ) .
T

i

i i m iF F x F x F x     (3.1) 

Since {1, , }i m  , Fi(xi
*)  Fi

*(x)  is an element of F i* .  Furthermore, since Fi (xi
*)  is 

optimal, then 

 *( ) ( ),  ,i i iF x F x x    (3.2) 

where   is the feasible region of the original multi-objective optimization problem.  

Therefore, there is no x  such that Fi(x)  Fi (xi
*) , and F i*  is Pareto optimal by 

Definition 2.1.1.  Thus, the objective-wise extreme points of the Pareto front are given by 

(3.1) for {1, , }i m  . 

 These extreme points are used to set bounds on the region to search for Pareto 

optimal solutions within the objective space.  Let U  be the matrix composed of the 

objective-wise extreme column vectors such that 

 * *

1 1 1

1* *

* *

1

( ) ( )

, ,

( ) ( )

m

m

m m m

F x F x

U F F

F x F x

 
 

     
 
 



   



. (3.3) 

Thus, the upper bound bu  for each objective function Fj  in the Pareto set is given by 

Fi (x)
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 * *

1max{ ( ), , ( )},  {1, , }u

j j j mb F x F x j m    (3.4) 

and the lower bound bl  for each objective function Fj  in the Pareto set is given by 

 * *

1min{ ( ), , ( )},  {1, , }.l

j j j mb F x F x j m    (3.5) 

For example, Figure 3.1 shows bu  and bl  for a bi-objective case. 

 3.2.1. Re-Orienting the Objective Space 

Once the objective-wise upper and lower bounds of the Pareto front are known, 

they can be used to begin searching the objective space for more Pareto optimal 

solutions.  However, in some instances, it may be useful to re-orient the objective space 

with an affine transformation so that the lower bound of each objective function is at the 

origin, O  0 , of the projected space.  An affine transformation is a transformation with 

all the characteristics of a linear transformation, except that the origin of the original 

vector space is not mapped to the origin of the transformed space.  This is especially 

helpful if the feasible region of some objectives is in the positive axis direction, while the 

feasible region of other objectives is in the negative axis direction. 

If the objective-wise extreme points are linearly independent, they can be used as 

a basis set for the objective vector space, and an affine transformation can be constructed 

so that all points in the objective space can be written as coordinates in relation to the 

objective-wise extreme vectors.  This affine transformation is constructed by finding the 

appropriate offset point, XO , that will become the origin of the transformed vector space.  

The appropriate offset point must satisfy 

 * *( ) ( ) 0,   , {1, , }  i T j

O OF X F X i j m i j       . (3.6) 
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That is, the vector defined as the difference vector between an objective-wise extreme 

point and the offset point must be orthogonal to the difference vector from all other 

objective-wise extreme points and the offset point.  This point solves the optimization 

problem 

 
min  F i*  X0 

T

F j*  X0 





2

i1

m

  (3.7a) 

subject to   

 
*

1

( ),  1, , .
m

i i j

j

mx F x i m


     (3.7b) 

The inequality (3.7b) guarantees that the objective-wise extreme points will be mapped to 

the positive coordinate axes in the transformed space. 

 If the objective-wise extreme points are linearly independent, then normalizing 

the vector components of the matrix U  given in (3.3) gives the change of coordinates 

matrix,  

 
1* *

1* *

1 1
, , m

O m
I F F

F F

 
 
  

 , (3.8) 

and the vector of new coordinates, pO , of any point p  from the original objective space is 

given by 

 pO  IO
1 p  XO . (3.9) 

Figure 3.2 illustrates the affine transformation and change of coordinates process. 

It is important to note that if this affine transformation process is used to re-orient 

the objective space, all distances and angles between points in the original space will be 

maintained, so the shape of the Pareto front will remain unchanged through the 

transformation. 
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Figure 3.1:  Upper and Lower Bounds for Bi-Objective Pareto front 

 

 

 

Figure 3.2:  Affine Transformation of the Objective Space 

 

3.3. Gap Finding 

 After the extreme points of the Pareto front have been discovered, the current 

Pareto set is checked for some threshold density of points within some resolution 

tolerance.  This resolution tolerance is a function of the upper and lower bounds as 

formulated in (3.4) and (3.5), respectively. 
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 3.3.1. Resolution Tolerance 

 In this formulation, the Pareto front resolution parameter,  , describes the 

number of sub-intervals of length   bi
l  bi

u  into which the objective space will be 

partitioned between the upper and lower bounds in each direction.  The number of 

partitions is equal to 1 /  .  For example, Figure 3.3 shows if   1 , then each direction 

will have only one partition between bu  and bl , but for   0.25 , each direction will 

have four partitions of equal size between bu  and bl .  The effect this resolution tolerance 

has on Pareto front approximation is evaluated in Section 3.6. 

 

Figure 3.3:  Partitioning for Resolution Parameter 1 and 0.25 

 

 3.3.2. Density Threshold 

 The density threshold   refers to the minimum number of Pareto optimal points 

desired within some resolution-related neighborhood in the objective space projected 

onto each m  1  dimensional sub-space, where m is the number of objectives in the 

multi-objective optimization problem.  That is, when the Pareto set is projected onto each 
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sub-space of dimension m  1 , every member p  of the projected Pareto set should have 

at least   other members of the projected Pareto set within some distance r
i

 .  Formally, 

the density threshold is stated as 

 { : ( ) } ,   , ,i

i Eq q p Q r q p S       (3.10) 

where SE  is the Pareto set, Qi  is the matrix that projects the Pareto set onto the m  1  

dimensional objective space that does not include the Fi  objective direction, and r
i

  is 

given by 

 min{ ,   {1, , }  }i l u

j jr b b j m j i        (3.11) 

That is, r
i

  is the smallest partition length of the m  1  objective directions onto which 

the Pareto set SE  has been projected.  The effect these density threshold parameters have 

on approximating the Pareto front is discussed further in Section 3.6. 

 3.3.3. Gap Existence 

 If the density threshold is not met, a gap is considered to exist, and the gap filling 

algorithm must be used. Note the gap-finding technique presented here differs from that 

presented by Paciencia [45] in that he uses a one-dimensional gap finding algorithm that 

looks “above” and “below” each member of the Pareto set in one objective direction at a 

time to find a single nearest neighbor in that direction, while the method presented here 

partitions the objective space and uses the partition sizes to generate an m  1  

dimensional neighborhood that must contain some sufficient number of elements from 

the Pareto set SE .  An example of the density threshold gap-finding algorithm is shown 

in Figure 3.4. 
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3.4. Gap Filling 

 Once a gap has been determined around some member p  of the Pareto set SE

using the density threshold algorithm, a search neighborhood is constructed around p , 

and a series of scalarized optimization problems are solved iteratively using MVMADS-

RS or MVPS-RS to increase the density of Pareto optimal points q SE  around p .  This 

gap filling algorithm uses an adaptive constraint formation that is based on the AWS for 

bi-objective problems developed by Kim and de Weck [34].  However, while AWS and 

the method presented in this section generate similar adaptive constraints for each sub-

problem, the AWS sub-problem is to minimize a conventional weighted sum of the 

objective functions, while the sub-problem for the method presented here is to minimize 

the distance to a reference point. 

 

 

Figure 3.4:  Gap Finding Algorithm 

 

Density Threshold Gap Finding 
Step 0.  Initialize algorithm parameters, including Pareto set SE , test 

point p SE , bounds bu  and bl , resolution parameter   and 

density threshold  . 

Step 1.  For each objective direction i  project SE  onto the sub-space 

that does not contain direction i  and set 

arg min ,   {1, , }  { }i l u

j j
r b b j m j i


     
 

Count the number of points q SE  satisfying 

q  p Qi  r
i .  

Step 2.  If q : q  p Qi  r
i   , a gap exists at p.  

Step 3.  Update p  and return to Step 1. Stop when all points have been 

evaluated 
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 3.4.1. Neighborhood Construction 

 For each point p SE , if there exists some {1, , }i m  such that (3.10) is not 

satisfied, determine the objective direction îp  in which p  is “longest”.  That is, given the 

set p{}
 defined by the elements of the vector 1( ), , ( )p m pp F x F x     such that 

 
{} 1{ ( ), , ( )},p m pp F x F x   (3.12) 

îp  is given by 

 
{}

ˆ arg max{ }.pi p  (3.13) 

 After îp  has been determined, define the set S pE  SE  such that 

 \ .p

E E ES S p S   (3.14) 

 For all {1, , }j m   such that j  îp , define the point q j SE
p

 
such that 

 ( ) arg max{ ( ),   }.
j

p

j q j q EF x F x q S    (3.15) 

Define the set Np  of neighborhood vectors N p

j  q j  such that 

  ˆ,   {1, , }  .j

p p pN N j m j i      (3.16) 

Figure 3.5 gives an example of the neighborhood construction. 

 3.4.2. Neighborhood Search 

 For each member N p

j
 of the neighborhood set Np , an initial reference point, R j0 , 

is defined such that 

 
R j0  p  F̂ip

(xp ) F̂ip
(x
Np
j ) eîp

,  (3.17) 

where 
1

ˆ ˆ ˆ, ,
p p p

m

i i i
e e e 

 
  is the identity element vector such that 
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ek
îp


1  if k  îp

0  otherwise







.  (3.18) 

The idea is to replace the maximal component value of p  with the corresponding 

component value from N p

j
 in order to generate the reference point R0

j .  This reference 

point is updated iteratively based on the set of Pareto optimal solutions discovered using 

the initial reference point. 

 

 Given the initial reference point R j0  defined from the neighbor vector N p

j
, a series 

of adaptive scalarized optimization problems is constructed: 

 min  R jt Y (x)  (3.19a) 

subject to   

 Y
îp

(x) Y k  
îp  

(3.19b) 

 Y
îp

(x) V
îp  (3.19c) 

 ( ) ,  1, ,u

i i iY x b i m   
 

(3.19d) 

 ( ) ,  1, ,l

i iY x b i m  
 

(3.19e) 

 x ,
 

(3.19f) 

where 

 

Y k 

F
îp

(xp )    if t  0

Y
îp

(xk1

* )  if t  0









,  (3.20) 

 
1 1 , , ,l u l u

m mb b b b        
 


 

(3.21) 

   0,1 ,
 

(3.22) 

   0,1 ,  (3.23) 
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 V  Rt
j .  (3.24) 

Since  determines the maximum feasible value in the îp  direction, it is referred to as the 

ceiling parameter, while the value used to determine the maximum feasible value in all 

other directions, , is referred to as the boundary parameter.  

 Once an optimal solution xk
*  to (3.19a) has been found, it is added to the set GE

p , 

the Pareto optimal points surrounding p .  All iterative constraints are updated, and the 

resulting optimization problem is solved.  This process continues until 

 Y k  
îp
V

îp
. (3.25) 

Figure 3.6 depicts a notional example of this neighborhood search. 

 

 

 

Figure 3.5:  Neighborhood Construction 
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Figure 3.6:  Notional Neighborhood Search 

 

 This series of searches may fail to find Pareto optimal points in the neighborhood, 

depending on the shape of the actual Pareto front.  Figure 3.7 shows how a neighboring 

Pareto optimal solution could be missed by the search. 

 

Figure 3.7:  Point q missed by Neighborhood Search 
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 In an effort to find points that may have been missed in the preceding series of 

searches, once the termination criteria (3.25) is met, a new reference point Rt1

j  is 

determined based on the set GE
p  such that 

 
R jt1  p  F̂ip

(xp ) g
Rt
j

îp
e
îp

,  (3.26) 

where 

 
ˆ

ˆ ˆ arg max{ ( ),   }
j

t

p

R p p

E g Ei
g g G g F x g G      (3.27) 

That is, g
Rt
j

 is the member of GE
p  with the largest îp  component value in the set.  This 

process of updating Rt
j  is continued (and all new points are added to GE

p ) until 

 
F̂
ip

(xp ) gîp
Rt
j

   b
îp

l  b
îp

u . (3.28) 

Figure 3.8 displays a notional update of Rt
j . 

 Once the termination criterion (3.28) is met, all members of GE
p  are added to the 

set GE  of all gap filling Pareto optimal points.  Additionally, if there are more than three 

points in GE
p , the three points representing the minimum, maximum and median îp  

component values are selected to replace p  in the set SE , and p  is added to the set GE .  

Finally, all constraints and variables of the minimization sub-problem are reset to their 

initial values, and the process is continued for all remaining neighborhood vectors of Np .  

The Pareto front estimation is considered complete when only one point fails to satisfy 

the neighborhood density threshold (3.10). 
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Figure 3.8:  Update of Reference Point admits previously omitted q 

 

3.5. Dominance Filtering 

 If the true optimal solution is found for (3.19a), no dominated point will be 

admitted to the set of Pareto optimal solutions using the adaptive constraint method 

developed in Section 3.4.  However, since MVMADS-RS and MVPS-RS estimate best 

solutions for stochastic problems, it is possible to terminate the MVMADS-RS or MVPS-

RS search with a sub-optimal solution, thus generating a dominated point in the adaptive 

constraint gap filling algorithm.  Therefore, all generated points in the set GE  must be 

checked to see if they are dominated by any other point in the set, and all dominated 

points must be removed from GE . 

3.6. Parameter Investigation 

 This section describes a brief investigation to determine appropriate parameter 

settings for the gap checking and gap filling algorithms described in Sections 3.3 and 3.4, 
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respectively.  The parameters studied include the Density Threshold, , the resolution 

parameter,  , and the adaptive constraint parameters,   and  . 

 In order to determine the effect of these parameters, the gap checking and gap 

filling algorithms were applied with varying parameter values to two known surfaces and 

the optimization sub-problems were evaluated using the MATLAB
®

 Optimization 

toolbox to simulate the performance of MVMADS-RS and MVPS-RS. 

 The first test surface is the non-negative portion of a three-dimensional ellipsoid 

given by 

 x2

25

y2

25
 z2  1.  (3.29) 

Figure 3.9 shows the ellipsoid region.  This surface was investigated to evaluate 

algorithm performance in estimating a Pareto front that is entirely non-convex. 

 

 

Figure 3.9:  Simulated Ellipsoid Pareto Front 
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 The second test surface is a non-negative three-dimensional curled sheath given 

by 

 
 (3.30) 

Figure 3.10 shows the region of interest.  This surface was investigated to evaluate 

algorithm performance in estimating a Pareto front that contains both convex and non-

convex regions. 

 

 

Figure 3.10:  Simulated Curled Sheath Pareto Front 

 

 Table 3.1 displays the values assigned to each parameter of interest that were used 

to estimate both test surfaces.  There are four parameters with four possible values each, 

giving a total of 256 unique algorithm implementations (or runs).  The range of values for 

each parameter was empirically derived from initial experiments used to test the 

algorithm as it was being developed. 

z 
1

100
x  5 

2
y  5 

2
 x2y2




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Table 3.1:  Tested Algorithm Parameter Values 

Name Parameter Symbol Tested Values 

Density Threshold   2,  4,  6,  8 

Resolution Parameter   0.10,  0.15,  0.20,  0.25 

Ceiling Parameter   0.60,  0.65,  0.70,  0.75 

Boundary Parameter   0.20,  0.30,  0.40,  0.50 

 

 For the purposes of this research, the basic measure of algorithm performance is 

the total number of points generated.  However, since the Density Threshold value 

directly determines how many points should be generated, for each Density Threshold 

value, the four runs that generated the most points for the ellipsoid test surface and the 

four runs that generated the most points for the curled sheath test surface were selected.  

Table 3.2 displays the four maximum point generating runs for each surface and Density 

Threshold value.  The highlighted rows represent parameter combinations that resulted in 

a maximal number of points produced for both surfaces at some Density Threshold value 

(referred to as best-in-common).  This indicates that the parameter combination 

corresponding to that row may be appropriate for estimating both convex and non-convex 

Pareto fronts.  Figures 3.11 through 3.14 show the surface estimations corresponding to 

the best-in-common runs.  

 Table 3.2 indicates that for Density Threshold values {2,6,8}  , the best-in-

common parameter combinations were identical, with 

0.10,  0.75,  0.20.      

For 4  , the best-in-common parameter combination was given by 

0.10,  0.75,  0.30,      

differing from the other best-in-common values only in the Boundary Parameter value. 



 

 46 

 

 

Figure 3.11:  Surface Estimations for Run 13 

 

 

Figure 3.12:  Surface Estimations for Run 78 

 

Figure 3.13:  Surface Estimations for Run 141 
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Figure 3.14:  Surface Estimations for Run 205 

 

 Figures 3.11 through 3.14 indicate that overall coverage of the Pareto front 

improves at the best-in-common settings as Density Threshold increases.  Therefore, two 

more experiments were conducted with 10,  0.10,  0.75     , and   0.20,0.30  

to look for increased point coverage.  However, there was no noticeable improvement in 

coverage compared to the   8  best-in-common runs.  The results for these runs are 

displayed in Table 3.3, and the surface estimations are shown in Figures 3.15 and 3.16. 

 

 

Figure 3.15:  Surface Estimation for 10,  0.20    
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Figure 3.16:  Surface Estimation for 10,  0.30    

 

Table 3.2:  Top Four Runs per Density Threshold 

  Surface Run       Points 

2 

Ellipsoid 

5 0.10 0.65 0.20 336 

15 0.10 0.75 0.40 399 

13 0.10 0.75 0.20 408 

6 0.10 0.65 0.30 440 

Curled 

Sheath 

25 0.15 0.70 0.20 68 

11 0.10 0.70 0.40 68 

14 0.10 0.75 0.30 71 

13 0.10 0.75 0.20 96 

4 

Ellipsoid 

74 0.10 0.70 0.30 782 

78 0.10 0.75 0.30 830 

73 0.10 0.70 0.20 845 

69 0.10 0.65 0.20 910 

Curled 

Sheath 

80 0.10 0.75 0.50 118 

78 0.10 0.75 0.30 119 

79 0.10 0.75 0.40 130 

76 0.10 0.70 0.50 138 

6 

Ellipsoid 

130 0.10 0.60 0.30 1301 

141 0.10 0.75 0.20 1418 

137 0.10 0.70 0.20 1438 

129 0.10 0.60 0.20 1539 

Curled 

Sheath 

134 0.10 0.65 0.30 167 

140 0.10 0.70 0.50 190 

141 0.10 0.75 0.20 193 

138 0.10 0.70 0.30 209 
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  Surface Run       Points 

8 

Ellipsoid 

202 0.10 0.70 0.30 1691 

205 0.10 0.75 0.20 1894 

197 0.10 0.65 0.20 1938 

193 0.10 0.60 0.20 1999 

Curled 

Sheath 

199 0.10 0.65 0.40 230 

208 0.10 0.75 0.50 261 

206 0.10 0.75 0.30 266 

205 0.10 0.75 0.20 276 

 

Table 3.3:  Points Generate for   10  

  
    Surface   Points 

10 0.10 0.75 

Ellipsoid 0.20 2566 

0.30 2273 

Curled Sheath 0.20 250 

0.30 312 

 

 The parameter values for the algorithms that are used in Chapter IV are based on 

the experimental results from Section 3.6.  The final Adaptive Constraint Pareto Set 

Estimation for Stochastic Mixed Variable Optimization (ACPSE-SMVO) algorithm is 

shown in Figure 3.17.  

3.7. Summary 

 This chapter developed the algorithms and techniques that were used to estimate 

the Pareto front for the problems that were researched.  The basic idea is to optimize each 

objective function one at a time and use the resulting points as bounds on the area to 

search adaptively for more Pareto optimal solutions.  Chapter IV presents the results of 

applying the methodology and the specific algorithm parameters developed in this 

chapter to four mixed variable, stochastic multi-objective optimization problems. 
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Figure 3.17:  ACPSE-SMVO Algorithm 

Final ACPSE-SMVO Algorithm 

 INITIALIZATION:  Determine m  objective-wise extreme points p S
E

 and b
u
,b

l  for 

S
E

.  Set   6 ,   0.10 , 0.75  ,   0.20 , G
E
  . 

 GAP CHECK:  If S
E
 1 , proceed to TERMINATION.  Otherwise, for each objective 

function , 1, ,{ }
i

F i m  , determine Q
i
, the matrix that projects S

E
onto the m  1  

dimension objective space that does not include the F
i
 objective direction, and set 

min ,   {1, , }  { }i l u
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r b b j m j i

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E
UG

E
,  q  p,  and q  p Q
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
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o If 
p
  proceed to GAP FILL.  Otherwise, remove p  from S

E
, set 

 GE
 G

E
U p  , and continue GAP CHECK. 

  GAP FILL:  Determine î
p
 and construct search neighborhood N

p
 (see Section 3.4.1) 

o For each N
p

j
N

p
, determine R

j

0
 according to (3.13). 

o Given R
j

0
,  ,  , and  , perform optimization series (3.15) and construct G

E

p
 until 

criteria (3.24) is met.  Remove p  from S
E

 and set  GE
 G

E
U p  . 
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E

p
 3 , set  SE  SE UG

E

p
.  Otherwise, set , ,{ }p

E E E
S S q q q G 

 
   , where 

, ,
p

E
q q q G
 
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î
p
 component values in G

E

p
. 

o Set  GE
 G

E
UG

E

p
 and proceed to GAP CHECK. 

 TERMINATION:  Remove all dominated points from G
E

 and return final Pareto set 

estimation, G
E

. 
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IV. Results and Analysis 

 This chapter presents the results of applying the ACPSE-SMVO algorithm 

developed in Chapter III to four optimization problems:  an alloy composition problem, a 

gearbox design problem, an algorithm parameter optimization problem, and a system 

reliability problem.  For each case, the background information and analysis and the 

ultimate optimization problem formulation are presented.  Finally, the optimization 

results are analyzed. 

4.1. Case Study Formulations 

 4.1.1. Alloy Composition Problem 

 The alloy composition problem presented here is based on the data and studies 

performed by Dulikravich, et al. [24,25,26,27].  Their study involved analyzing the 

melting temperature T1 , glass transition temperature Tg , and density,  ,of 53 different 

alloy compositions in order to predict a combination of seven different alloy compounds 

that would maximize T1  and Tg , and minimize  . 

 To formulate the optimization problem, the 53 data points were used to generate a 

regression function for the three responses based on the seven different compound 

variables.  The 53 data points are shown in Table 4.1.  The value of each variable 

represents the percentage by weight of the compound in the resulting alloy; therefore, the 

decision variables are inherently continuous.  However, one of the variables occurs at 

only three levels, so it was treated as a discrete variable with allowable values at 0, 16.5, 

and 16.8. 
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 A stepwise regression was performed in JMP version 8.0 for each response.  

Table 4.2 summarizes the fit of the resulting regression models for each response (the 

model regression equations are provided in Appendix A as they appeared in the 

MATLAB
®

 code used for this research).  The error in the regression model was used to 

define a normally distributed random variable with a mean of zero and a standard 

deviation equal to the root-mean-square error (RMSE) of the regression model.  This 

random variable, ~ (0, )i iN RMSE , was used to represent the stochastic element in the 

mixed variable optimization problem. 

 The formulation of the alloy composition optimization problem is given by 

 min  T1(x)  1,Tg (x)  2 ,(x)  (4.1a) 

subject to   

 
xi  100

i1

7


 

(4.1b) 

 xi  0
 

(4.1c) 

 

Table 4.1:  Alloy Composition Data Set [25] 

x1  x2  x3  x4  x5  x6  x7  F1  F2  F3  

% Zr %Cu %Al %La %Cu,Ni %Pd %Si T1  gT    

50 36 14 0 0 0 0 724 1188 6.8636 

50 38 12 0 0 0 0 722 1170 6.9888 

50 40 10 0 0 0 0 714 1176 7.114 

50 43 7 0 0 0 0 703 1181 7.3018 

49 44 7 0 0 0 0 704 1184 7.3262 

48 45 7 0 0 0 0 708 1186 7.3506 

49 45 6 0 0 0 0 704 1187 7.3888 

48 46 6 0 0 0 0 706 1192 7.4132 

49 46 5 0 0 0 0 701 1195 7.4514 

49 47 4 0 0 0 0 697 1208 7.514 

45 49 6 0 0 0 0 717 1178 7.4864 

45 50 5 0 0 0 0 714 1185 7.549 

44 51 5 0 0 0 0 719 1189 7.5734 

45 48 7 0 0 0 0 720 1188 7.4238 

45 47 8 0 0 0 0 722 1195 7.3612 
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x1  x2  x3  x4  x5  x6  x7  F1  F2  F3  

% Zr %Cu %Al %La %Cu,Ni %Pd %Si T1  gT    

46 49 5 0 0 0 0 711 1193 7.5246 

47 49 4 0 0 0 0 704 1204 7.5628 

54 38 8 0 0 0 0 692 1190 7.1416 

56 36 8 0 0 0 0 685 1212 7.0928 

52 38 10 0 0 0 0 705 1163 7.0652 

54 36 10 0 0 0 0 698 1176 7.0164 

54 40 6 0 0 0 0 684 1216 7.2668 

0 0 12.4 70 17.6 0 0 403 759 6.216 

0 0 13.2 68 18.8 0 0 407 742 6.2212 

0 0 14 66 20 0 0 405 674 6.2265 

0 0 14.6 64.6 20.8 0 0 414 696 6.2277 

0 0 15.2 63.1 21.7 0 0 420 699 6.2316 

0 0 15.7 62 22.3 0 0 422 722 6.2308 

0 0 15.9 61.4 22.7 0 0 426 729 6.2348 

0 0 16.3 60.5 23.2 0 0 423 727 6.2347 

0 0 16.6 59.6 23.8 0 0 426 743 6.2408 

0 0 17 58.6 24.4 0 0 431 764 6.2434 

0 0 17.5 57.6 24.9 0 0 435 783 6.2399 

0 0 17.9 56.5 25.6 0 0 440 813 6.2452 

0 0 18.4 55.4 26.2 0 0 436 844 6.2444 

0 0 20.5 50.2 29.3 0 0 435 930 6.2568 

0 0 14 70 16 0 0 404 763 6.1166 

0 0 14 68 18 0 0 405 724 6.1716 

0 0 14 66 20 0 0 405 674 6.2265 

0 0 14 64 22 0 0 411 715 6.2814 

0 0 14 62 24 0 0 417 738 6.3363 

0 0 14 59 27 0 0 422 773 6.4187 

0 0 14 57 29 0 0 427 815 6.4736 

0 2 0 0 0 81.5 16.5 633 1097.3 10.3624 

0 4 0 0 0 79.5 16.5 635 1086 10.3011 

0 6 0 0 0 77.5 16.5 637 1058.1 10.2398 

0 8.2 0 0 0 75 16.8 645 1135.9 10.1434 

0 10.2 0 0 0 73 16.8 652 1153.6 10.0821 

0 36 14 50 0 0 0 428 862.7 6.6846 

0 26 14 60 0 0 0 404 785.6 6.4048 

0 20 14 66 0 0 0 395 731 6.2369 

0 14 14 72 0 0 0 391 792.7 6.069 

0 10 14 76 0 0 0 361 825.5 5.9571 

Table 4.2:  Summary of Regression Fit 

T1 Regression Model   

RSquare 0.99548 

RSquare Adj 0.993973 

Root Mean Square Error 16.56018 

Mean of Response 971.9132 

Observations 53 

    

 Tg Regression Model   

RSquare 0.999394 

RSquare Adj 0.999231 

Root Mean Square Error 3.965904 

Mean of Response 557.5283 

Observations (or Sum Wgts) 53 
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 Density Regression Model   

RSquare 1 

RSquare Adj 1 

Root Mean Square Error 0.000018 

Mean of Response 7.067474 

Observations (or Sum Wgts) 53 

 

 4.1.2. Gearbox Design Problem 

 The gearbox design problem presented here is based on the dual-shaft problem 

formulated by Azarm, et al. [10].  Their summary states that the first objective is to 

minimize the gearbox volume, while the second and third objectives are to minimize the 

stresses on the first and second shafts, respectively. The formulation of the gearbox 

design optimization problem is given by 

 min F1(x),F2(x),F3(x)  (4.2a) 

subject to   

 2.6  x1  3.6,
 

(4.2b) 

 0.7  x2  0.8,
 

(4.2c) 

 17  x3  28,
 

(4.2d) 

 7.3  x4  8.3,
 

(4.2e) 

 7.3  x5  8.3,
 

(4.2f) 

 2.9  x6  3.9,
 

(4.2g) 

 5.0  x7  5.5,
 

(4.2h) 

 27x1

1x2

1x3

1 1 0,
 

(4.2i) 

 397.5x1

1x2

1x3

2 1 0,
 

(4.2j) 

 5x2

1x3

1x4

3x6

4 1 0,
 

(4.2k) 

 50x2

1x3

1x5

3x7

4 1 0,
 

(4.2l) 

 40x2x3 1 0,
 

(4.2m) 
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 12x1 / x2 1 0,
 

(4.2n) 

 1 5x1 / x2  0,
 

(4.2o) 

 1.9 x4 1.5x6 1 0,
 

(4.2p) 

 1.9 x5 1.1x7 1 0,
 

(4.2q) 

where x1  is the gear face width (cm), x2  is the teeth module (cm), x3  is the number of 

teeth of pinion (discrete value), x4  is the distance between bearings 1 (cm), x5  is the 

distance between bearings 2 (cm), x6  is the diameter of shaft 1 (cm), and x7  is the 

diameter of shaft 2 (cm).  The constraint (4.2i) is the upper bound of the bending stress of 

the gear tooth, constraint (4.2j) is the upper bound of the contact stress of the gear tooth, 

constraints (4.2k) and (4.2l) are the upper bounds of the transverse deflection of the two 

shafts, constraints (4.2m) - (4.2o) are the dimensional restrictions based on space, and 

constraints (4.2p) and (4.2q) are empirically-based design requirements on the shafts.  

Finally, the objective functions are defined as 

   
   

2 2 2 2

4 6 5 7 1 2 3 3

1
2 2 3 3

1 6 7 6 7

0.7854 3.333 14.93 43.09
( )

1.508 7.477

x x x x x x x x
F x

x x x x x

   

   

, (4.3a) 

 

F2 (x)  1 2 

745x4

x2x3








2

1.69 107

0.1x3

6

,
 

(4.3b) 

 

F3(x)  1 3 

745x5

x2x3








2

1.575 107

0.1x3

7

, 
(4.3c) 

where  2
 and  3

 are both normally distributed random variables with a mean of zero and 

a standard deviation of 0.01. 
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 4.1.3. Algorithm Parameter Optimization Problem 

 The algorithm parameter optimization problem studied in this research is based on 

the AutoGAD algorithm developed by Johnson [33].  Table 4.3 gives the algorithm’s 

parameters and their ranges.  Table 4.4 gives the algorithm performance measures that 

are the optimization problem objective functions.  A D-optimal design was developed by 

Davis [23] to investigate the relationship between the parameter settings and the 

algorithm performance measures.   His results (displayed in Appendix B) were used to 

perform a stepwise regression in JMP version 8.0 to model each response as a function of 

the parameters.  Table 4.5 summarizes the fit of the resulting regression models for each 

response (the model regression equations are provided in Appendix A as they appeared in 

the MATLAB
®

 code used for this research).  The error in the regression model was used 

to define a normally distributed random variable with a mean of zero and a standard 

deviation equal to the root mean square error of the regression model.  This random 

variable was used to represent the stochastic element in the mixed variable optimization 

problem. 

Table 4.3:  Algorithm Parameters as Optimization Variables 

x  Parameter Type Range 

x1
 Dimension Adjust Discrete [-2, 2] 

x2
 Max Score Threshold Continuous [6, 14] 

x3
 Bin Width SNR Continuous [0.01, 0.1] 

x4
 PT SNR Threshold Continuous [1, 6] 

x5
 Bin Width Identify Continuous [0.01, 0.1] 

x6
 Smooth Iterations High Discrete [50, 150] 
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x  Parameter Type Range 

x7
 Smooth Iterations Low Discrete [5, 45] 

x8
 Low SNR Continuous [4, 14] 

x9
 Window Size Discrete [1, 9] 

x10
 Threshold Both Sides Categorical [0, 1] 

x11
 Clean Signal Categorical [0, 1] 

Table 4.4:  Algorithm Performance as Objective Functions 

F  Performance Measure Units Range 

F1
 Time to completion Seconds [0, ) 

F2
 False Positive Fraction (FPF) N/A [0, 1] 

F3
 True Positive Fraction (TPF) N/A [0, 1] 

F4
 Total Fraction of Positives (TFP) N/A [0, 1] 

Table 4.5:  Summary of Regression Fit 

Time Regression Model   

RSquare 0.998666 

RSquare Adj 0.994182 

Root Mean Square Error 2.839837 

Mean of Response 19.92367 

Observations 158 

    

FPF Regression Model   

RSquare 0.954398 

RSquare Adj 0.914768 

Root Mean Square Error 0.006655 

Mean of Response 0.010716 

Observations (or Sum Wgts) 158 

  

 TPF Regression Model   

RSquare 0.965074 

RSquare Adj 0.921666 

Root Mean Square Error 0.115054 

Mean of Response 0.640272 

Observations (or Sum Wgts) 158 

  

TFP Regression Model   

RSquare 0.919272 

RSquare Adj 0.852624 

Root Mean Square Error 0.16359 

Mean of Response 0.502776 

Observations (or Sum Wgts) 158 
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 4.1.4. System Reliability Optimization 

 The system reliability optimization problem studied in this research is a notional 

example based on the problems presented by Coit, et al. [18].  For this problem, the goal 

is to maximize the reliability of a system with two sub-systems in series, each consisting 

of a variable number of components in parallel, to minimize the cost of the system, and to 

minimize the total weight of the system.  Since the basic reliability system can be 

formulated as a 0-1 integer programming problem, two continuous variables were 

included to force a mixed-variable formulation.  Additionally, an artificial noise 

component was added to the reliability objective function to simulate the stochastic 

nature of an actual component reliability optimization problem.  The system reliability 

optimization problem is given as 

  1 2 3min  ( ), ( ), ( )F x F x F x  (4.4a) 

subject to   

 0  x1  3,
 

(4.4b) 

 0  x2  3,
 

(4.4c) 

 0  x3  2,
 

(4.4d) 

 0  x4  3,
 

(4.4e) 

 0  x5  3,
 

(4.4f) 

 0  x6  2,
 

(4.4g) 

 0  x7  50,
 

(4.4h) 

 0  x8  50,
 

(4.4i) 

where x1
 is the number of components of type 1 in sub-system 1, x2

 is the number of 

components of type 2 in sub-system 1, x3
 is the number of components of type 3 in sub-

system 1, x4
 is the number of components of type 1 in sub-system 2, x5

 is the number of 
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components of type 2 in sub-system 2, x6
 is the number of components of type 3 in sub-

system 2, x7
 is the operating temperature of sub-system 1, and x8

 is the operating 

temperature of sub-system 2.  Finally, the objective functions are defined as 

 3 5 61 2 4

1 1,1 2,1 3,1 1,2 2,2 3,2( ) ((1 ) (1 ) (1 ) )((1 ) (1 ) (1 ) )
x x xx x x

F x R R R R R R       , (4.5a) 

 F2(x)  1 2 
50  x7  x1  x2  x3  50  x7 

2
x4  x5  x6 

5 x1  x4 10 x2  x5  20 x3  x6 















,
 

(4.5b) 

 F3(x)  1 3  20 x1  x4 10 x2  x5  5 x3  x6  , (4.5c) 

where F1
 is the unreliability of the system, F2

 is the total system cost, F3
 is the total 

system weight,  2
 and  3

 are both normally distributed random variables with a mean of 

zero and a standard deviation of 0.005, and Ri, j  is the mean reliability of component i in 

sub-system j given as a function of the sub-system operating temperature such that 

 R1,1  0.8  0.001x7
, (4.6a) 

 R2,1  0.85  0.001x7
,
 

(4.6b) 

 R3,1  0.89  0.005x7
, (4.6c) 

 R1,2  0.8  0.001x8
,

 
(4.6d) 

 R2,2  0.85  0.001x8
,

 
(4.6e) 

 R3,2  0.89  0.005x8
.

 
(4.6f) 

4.2. Case Study Evaluation 

 The ACPSE-SMVO method (described in Chapter III) was applied to each of the 

four test problems described in Section 4.1 to estimate their respective Pareto optimal 

fronts.  For each problem, the objective-wise optima were estimated for each objective 

function using Abramson’s [2] NOMADm MATLAB
®

 implementation of MVMADS-

RS.  For the Alloy Composition and Algorithm Parameter optimization problems, the 
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objective-wise optima were used to re-orient the objective space using the affine 

transformation described in Section 3.2.1.  After the objective-wise optima were 

estimated, the ACPSE-SMVO process was continued until either 200 estimated Pareto 

optimal solutions had been found, or the objective space density threshold had been met.  

Finally, the set of estimated Pareto optimal solutions was filtered to remove all dominated 

points. 

 4.2.1. Alloy Composition Problem 

 The ACPSE-SMVO process was completed five times for the Alloy Composition 

problem.  The objective-wise extreme points for each replication are given in Table 4.6.  

Figures 4.1 - 4.10 display the estimated and filtered Pareto sets for each replication. 

 Although the plots for the replications appear to vary greatly in estimating the 

Pareto front for the Alloy Composition problem, the points generated for each replication 

seem to be all estimating a planar triangle in the objective space, with vertices at the 

estimated objective-wise extreme points. 

Table 4.6:  Alloy Composition Extreme Points 

Replication -T1 -Tg   

1 

-156505.1103 -6109.48505 7.667573253 

-135466.4663 -6456.405323 7.835653776 

0 0 2.63636809 

2 

-156282.5365 -3978.948826 6.944260729 

-156233.1607 -3994.836093 6.941744748 

0 0 2.63636809 

3 

-156326.9172 -5221.777148 5.825269187 

-156205.2871 -5281.644979 5.816981886 

0 0 2.637323064 

4 

-156626.9106 -5081.340907 7.60019441 

-156083.0101 -5224.865222 5.814228964 

0 0 2.63636809 

5 -156285.7669 -4000.42395 6.941473361 
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Replication -T1 -Tg   

-1185.513279 -4177.312583 7.843737884 

0 0 2.657931848 

 

 

Figure 4.1:  Alloy Composition Replication 1 Estimated Pareto Set 

 

 

Figure 4.2:  Alloy Composition Replication 1 Filtered Pareto Set 
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Figure 4.3:  Alloy Composition Replication 2 Estimated Pareto Set 

 

Figure 4.4:  Alloy Composition Replication 2 Filtered Pareto Set 
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Figure 4.5:  Alloy Composition Replication 3 Estimated Pareto Set 

 

Figure 4.6:  Alloy Composition Replication 3 Filtered Pareto Set 
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Figure 4.7:  Alloy Composition Replication 4 Estimated Pareto Set 

 

Figure 4.8:  Alloy Composition Replication 4 Filtered Pareto Set 
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Figure 4.9:  Alloy Composition Replication 5 Estimated Pareto Set 

 

Figure 4.10:  Alloy Composition Replication 5 Filtered Pareto Set 
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 4.2.2. Gearbox Design Problem 

 The ACPSE-SMVO process was completed five times for the Gearbox Design 

problem.  The objective-wise extreme points for each replication are given in Table 4.7.  

Figures 4.11 – 4.20 display the estimated and filtered Pareto sets for each replication. 

Table 4.7:  Gearbox Design Extreme Points 

Replication Volume Stress 1 Stress 2 

1 

2379.091562 1681.458775 853.3359867 

2948.241488 1668.682313 956.8364233 

2907.900311 1678.372485 763.8310525 

2 

2525.590227 1691.26222 928.8753356 

3338.93746 1667.845363 886.5397223 

2871.051741 1694.905633 766.0451259 

3 

2420.578331 1683.297334 971.6242271 

2982.888272 1668.720697 892.506765 

2986.925049 1691.64357 763.1128618 

4 

2460.505591 1698.416374 943.8695953 

3222.279822 1675.338632 843.9620105 

2759.516806 1691.429411 759.758313 

5 

2447.505962 1692.214839 917.4229836 

2990.712725 1670.539656 829.4049937 

2916.60226 1690.416531 760.3073499 

 

 The plots for the replications appear to vary greatly across the replications:  some 

estimating a three-dimensional convex curled sheath, others approximating a non-convex 

curled sheath, and another estimating a planar triangle.  However, the plot that appears to 

be estimating a planar triangle may actually be estimating the bottom curve and top 

“crest” of the same curled sheath being estimated by other plots. 

To investigate the variability across the replications, the filtered Pareto sets from 

all five replications were combined into a “master” set that was subsequently filtered to 

remove any resulting dominated points.  The plot of this filtered master set is shown in 
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Figure 4.21.  The master set appears to approximate a front with two distinct regions, one 

circled in green on the lower left of Figure 4.21 and the other circled in black.  If the 

actual Pareto front is as discontinuous as the master set appears to be, this may explain 

why the Gearbox Design Pareto sets varied so drastically across the replications. 

 

Figure 4.11:  Gearbox Design Replication 1 Estimated Pareto Set 

 

Figure 4.12:  Gearbox Design Replication 1 Filtered Pareto Set 
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Figure 4.13:  Gearbox Design Replication 2 Estimated Pareto Set 

 

 

Figure 4.14:  Gearbox Design Replication 2 Filtered Pareto Set 
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Figure 4.15:  Gearbox Design Replication 3 Estimated Pareto Set 

 

 

Figure 4.16:  Gearbox Design Replication 3 Filtered Pareto Set 
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Figure 4.17:  Gearbox Design Replication 4 Estimated Pareto Set 

 

 

Figure 4.18:  Gearbox Design Replication 4 Filtered Pareto Set 
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Figure 4.19:  Gearbox Design Replication 5 Estimated Pareto Set 

 

 

Figure 4.20:  Gearbox Design Replication 5 Filtered Pareto Set 
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Figure 4.21:  Gearbox Design Master Pareto Set with Two Regions 

 

 4.2.3. Algorithm Parameter Optimization Problem 

 The ACPSE-SMVO process was completed five times for the Algorithm 

Parameter Optimization problem.  The objective-wise extreme points for each replication 

are given in Table 4.8.  Figures 4.22 – 4.31 display the estimated and filtered Pareto sets 

for each replication, projected onto the sub-space of the first three objectives.  Figures 

4.32 – 4.35 display the filtered Pareto set of all replications combined, projected onto all 

four sub-spaces. 

Table 4.8:  Algorithm Parameter Optimization Extreme Points 

Replication FPF -TPF Time -TFP 

1 

0 -1 22.28691413 -0.952489225 

0.013849069 -1 0 -1 

0 -1 0 -1 

0.068240196 0 58.99805124 -1 

2 
0 -0.365103331 0 -0.624316924 

0 -1 14.70248504 -1 
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Replication FPF -TPF Time -TFP 

0.012178492 -1 0 -1 

0.072040748 0 65.56160718 -1 

3 

0 -0.526293336 27.82307318 -0.529289615 

0 -1 0 -1 

0 -0.728498782 0 -0.73631103 

0.064546375 0 69.17977705 -1 

4 

0 -1 15.8967135 -0.590042969 

0 -1 0 -1 

0.017199261 -1 0 -1 

0.069804593 0 69.41282045 -1 

5 

0 -0.895466518 6.251030822 -0.539900539 

0 -1 72.31698138 -1 

0 -0.137773106 0.139318505 -1 

0.075744837 0 64.10370994 -1 

 

 The plots of the three-dimensional projection of the estimated Pareto set appear 

consistent across all replications.  The projected Pareto front appears to be a concave 

“heel”, similar to the bottom eighth of a sphere. 

Figure 4.22:  Algorithm Parameter Optimization Replication 1 Estimated Pareto Set 
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Figure 4.23:  Algorithm Parameter Optimization Replication 1 Filtered Pareto Set 

  

Figure 4.24:  Algorithm Parameter Optimization Replication 2 Estimated Pareto Set 
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Figure 4.25:  Algorithm Parameter Optimization Replication 2 Filtered Pareto Set 

 

 

Figure 4.26:  Algorithm Parameter Optimization Replication 3 Estimated Pareto Set 
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Figure 4.27:  Algorithm Parameter Optimization Replication 3 Filtered Pareto Set 

 

 

Figure 4.28:  Algorithm Parameter Optimization Replication 4 Estimated Pareto Set 
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Figure 4.29:  Algorithm Parameter Optimization Replication 4 Filtered Pareto Set 

 

 

Figure 4.30:  Algorithm Parameter Optimization Replication 5 Estimated Pareto Set 
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Figure 4.31:  Algorithm Parameter Optimization Replication 5 Filtered Pareto Set 

 

Figure 4.32:  Algorithm Parameter Optimization Pareto Set Projection 1 
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Figure 4.33:  Algorithm Parameter Optimization Pareto Set Projection 2 

 

 

Figure 4.34:  Algorithm Parameter Optimization Pareto Set Projection 3 
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Figure 4.35:  Algorithm Parameter Optimization Pareto Set Projection 4 

 

 4.2.4. System Reliability Problem 

 The ACPSE-SMVO process was completed four times for the System Reliability 

problem.  The objective-wise extreme points for each replication are given in Table 4.9.  

Figures 4.36 – 4.43 display the estimated and filtered Pareto sets for each replication. 

Table 4.9:  System Reliability Extreme Points 

Replication Unreliability Cost Weight 

1 

3.95886E-19 925397.6218 290.230489 

5.832E-06 105.3103891 105.7286258 

5.82533E-06 105.7411821 104.446037 

2 

1.45466E-18 716990.0438 289.6193566 

0.0625 9.990128026 40.3932388 

0.0547536 71.04343095 39.96006224 

3 

1.559E-11 15103.84759 170.025366 

0.0625 10.07472107 39.73246985 

0.11523 53.69702519 9.943238729 

4 

1.65313E-13 19713.60355 200.4267172 

0.0625 9.971925081 40.4318991 

0.020708625 114.6073867 14.92594576 
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 The plots of the estimated and filtered Pareto sets for the System Reliability 

problem appear unique from the other problems in that the estimated Pareto front appears 

to be a parameterized two-dimensional function, rather than an m-dimensional surface.  

This is probably due to the close relationship between the second (Cost) and third 

(Weight) objectives, indicating that the second and third objectives do not compete with 

each other in the multi-objective optimization problem.  

 

 

Figure 4.36:  System Reliability Replication 1 Estimated Pareto Set 

 

 

Figure 4.37:  System Reliability Replication 1 Filtered Pareto Set 
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Figure 4.38:  System Reliability Replication 2 Estimated Pareto Set 

 

 

Figure 4.39:  System Reliability Replication 2 Filtered Pareto Set 
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Figure 4.40:  System Reliability Replication 3 Estimated Pareto Set 

 

 

Figure 4.41:  System Reliability Replication 3 Filtered Pareto Set 
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Figure 4.42:  System Reliability Replication 4 Estimated Pareto Set 

 

 

Figure 4.43:  System Reliability Replication 4 Filtered Pareto Set 
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4.3. Case Study Comparison 

 The Alloy Composition and Gearbox Design problems have been previously 

studied, so some comparison can be made between the results from the ACPSE-SMVO 

process and previously published results. 

 4.3.1. Alloy Composition Problem 

 The Alloy Composition Problem presented in Chapter IV is based on the work by 

Dulikravich, et al. [24,25,26,27].  Their estimated Pareto set is presented in Table 4.10.  

The objective function values are based on an Artificial Neural Network (ANN) model 

constructed to predict 
1T , 

gT , and   based on the same 53 data points presented in Table 

4.1.  These multiple objective functions were then optimized using the Indirect 

Optimization based upon Self-Organization (IOSO) algorithm.  The IOSO algorithm is 

described by Dulikravich, et al.[26], as a “semi-stochastic multi-objective optimization 

algorithm incorporating aspects of a selective search on a continuously updated multi-

dimensional response surface.”  

Table 4.10:  IOSO Generated Pareto Optimal Solutions [26] 

x1  x2  x3  x4  x5  x6  x7  F1  F2  F3  

% Zr %Cu %Al %La %Cu,Ni %Pd %Si T1  gT    

57.999 30.77 0.002 0.001 0 0.001 11.227 673.5 1232.7 6.799 

53.33 29.935 0.77 0 0 0 15.964 675.1 1230.7 6.552 

56.866 38.133 4.974 0 0 0 0.022 679.1 1222.5 7.26 

50.227 47.223 1.06 0 0 0 1.489 694.3 1213.3 7.569 

39.138 46.942 2.272 0 0.001 0.001 11.645 705.5 1204.7 7.09 

32.645 50.993 11.075 0.001 0 0.001 5.282 730.1 1197.5 7.119 

38.96 50.384 9.723 0 0 0 0.931 727.7 1196.3 7.335 

48.256 34.613 16.486 0 0 0 0.643 727 1193.4 6.705 

40.999 43.022 15.859 0.001 0 0.001 0.117 726.4 1190.3 6.955 

37.97 41.55 15.124 0.001 0 0 5.344 726.1 1189.2 6.73 



 

 86 

44.287 50.864 4.847 0 0 0 0 718.7 1189 7.577 

0.393 17.233 0.216 0.064 0 73.758 8.334 653.5 1157.1 10.64 

0.001 0 1.053 2.568 0.008 81.017 15.353 632.1 1095.4 10.285 

0.5 0.134 0.223 9.268 0.024 81.111 8.731 631.6 1093 10.582 

3.368 0.546 1.437 12.258 0.036 81.5 0.853 631.3 1091.5 10.888 

0.005 8.134 6.062 4.713 0.321 70.319 10.449 638.5 1060.1 9.905 

0.006 5.965 0.008 0 0 77.33 16.689 637.1 1058.8 10.215 

0 0.032 19.88 45 29.282 0 5.805 434.9 934.5 6.055 

0 1.449 20.497 41.613 26.367 0 10.074 435.1 920.3 5.83 

0 36.014 13.996 49.973 0.002 0 0.008 428 862.5 6.684 

0 0.001 16.255 50.1 28.67 0 4.971 432.9 830.5 6.197 

0 25.735 15.3 42.81 2.378 0 13.77 417.1 827.1 5.888 

0 0.001 13.918 56.909 29.09 0 0.08 427 815.8 6.478 

0 9.318 16.13 63.464 0 0 11.087 389.5 796.5 5.438 

0 26.62 13.917 59.456 0 0 0 404.8 789.1 6.426 

0 0.0137 12.416 70.057 17.513 0 0.001 402.9 759.3 6.216 

0 0.001 19.297 59.59 20.46 0 0.651 426.4 739.3 6.032 

0 5.422 18.15 50.853 17.858 0 7.717 423 724.7 5.881 

 

In order to compare the ACPSE-SMVO results to those from Dulikravich, et al., 

the 23 estimated Pareto optimal solutions from Table 4.10 were used to predict 
1T , 

gT , 

and   using the Alloy Composition regression model described in Section 4.1.1.  

However, these 23 estimated Pareto optimal solutions indicate that Dulikravich, et al., 

considered all variables to be continuous.  Therefore, the Alloy Composition regression 

model was adjusted to assign all values of %Si from the Dulikravich data to a “High”, 

“Medium”, or “Low” setting, corresponding to the discrete values of 16.8, 16.5, and 0 

used in the ACPSE-SMVO method.  The %Si assignment function is given as 

  if  % 10

%  if  5.0<% 10

 if  % 5.0

Dulikravich

regression Dulikravich

Dulikravich

High Si

Si Medium Si

Low Si




 
 

 (4.1a) 
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The predicted objective function values were then re-oriented with the affine 

transformation method described in Section 3.2.1, using the Extreme Points from 

Replication 1 (displayed in Table 4.6) as the transformation basis.  Finally, these 

predicted and re-oriented objective function values based on the 23 Pareto optimal 

solutions from Dulikravich, et al., were plotted along with the combined and re-filtered 

Pareto sets from Replications 1 through 5 of Section 4.2.1.  This plot is shown in Figure 

4.44. 

When the combined plot was projected onto the first two dimensions, as shown in 

Figure 4.45, the transformed Dulikravich-based Pareto set and the ACPSE-SMVO Pareto 

set appeared to estimate the same front.  However, in another two-dimensional 

projection, shown in Figure 4.46, most of the Dulikravich-based points appear dominated 

with respect to the transformed origin.  This suggests that the set of Pareto optimal 

solutions found using ACPSE-SMVO dominate many of the solutions found using the 

IOSO method. 

However, when no affine transformation is performed, the plot of the two sets 

(shown in Figure 4.47) suggests that there may exist some reference point that allows 

both sets to be non-dominated.  This compatible reference point would exist in the 

extreme lower-right region of Figure 4.48.  Although they are not conclusive, these plots 

suggest that the ACPSE-SMVO process and the Dulikravich solutions may have 

estimated the same Pareto front, and that both approaches discovered Pareto optimal 

solutions that the other was not able to find. 
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Figure 4.44:  Transformed Dulikravich (blue) and ACPSE-SMVO (red) Pareto Sets 

 

 

 

 

Figure 4.45:  Projected Dulikravich (blue) and ACPSE-SMVO (red) Pareto Sets 
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Figure 4.46:  Projection Suggesting Distinct Surfaces 

 

 
 

Figure 4.47:  Dulikravich (blue) and ACPSE-SMVO (red) Pareto Sets on Original Axes 
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Figure 4.48:  Compatible Reference Point in Bottom Right Corner 

 

 4.3.2.  Gearbox Design Problem 

 The Gearbox Design solutions presented by Azarm, et al. [10], are not intended to 

estimate the Pareto optimal set (nor was the problem solved as a stochastic optimization 

problem) but they can be used as a reference to compare individual Pareto optimal 

solutions obtained from the ACPSE-SMVO process.  The final objective function values 

obtained by Azarm, et al., are shown in Table 4.11. From Table 4.7, the best Volume 

result obtained from the ACPSE-SMVO process is 2379.1, approximately 1.25% greater 

than the minimum Volume obtained by Azarm, et al. However, all Stress 1 and Stress 2 

values from the ACPSE-SMVO process outperform the Stress 1 and Stress 2 values from 

Table 4.11.  

For Stress 1, the best value from Table 4.7 is 1.9% smaller than the Stress 1 value 

in Table 4.11, the worst value is only 0.09% smaller than the Stress 1 value in Table 4.11, 

and the average value from Table 4.7 is 1.1% smaller than the Stress 1 value in Table 
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4.11.  For Stress 2, the best value from Table 4.7 is 21.8% smaller than the Stress 2 value 

in Table 4.11, the worst value is only 0.04% smaller than the Stress 2 value in Table 4.11, 

and the average value from Table 4.7 is 11.89% smaller than the Stress 2 value in Table 

4.10. 

Table 4.11:  Optimal Objective Function Values [10] 

Volume Stress 1 Stress 2 

2350 1700 972 

 

4.3. Summary 

 For three out of the four problems studied, the estimated and filtered Pareto sets 

appear fairly densely populated, indicating the ACPSE-SMVO was successful in 

adaptively and automatically searching for and finding Pareto optimal solutions within 

the bounds set by the objective-wise optima. 

 The estimated Pareto set for the Alloy Composition problem was compared to the 

results from Dulikravich, et al. [26], and shown to either dominate those previous 

solutions, or perhaps estimate a region of the actual Pareto front that was not discovered 

by previous research. 

 While the Gearbox Design problem did not produce a densely populated Pareto 

front, when compared to previously obtained optimal solutions, the objective-wise optima 

are just as good or better.  This indicates that the optimization process within ACPSE-

SMVO is performing adequately, and that the low density of the estimated front may not 

be due to the ACPSE-SMVO algorithm, but the complex shape of the actual feasible 

region defined by the various constraints.
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V. Summary, Conclusions and Recommendations 

 This chapter summarizes this research, presents some final conclusions, addresses 

known issues, and provides recommendations for future improvements or extensions of 

this research. 

5.1. Summary 

 This research reviewed the current state of multi-objective optimization for mixed 

variable stochastic design problems, with particular emphasis on developments in the 

area of Mixed Variable Mesh Adaptive Direct Search with Ranking and Selection 

(MVMADS-RS).  Using the MVMADS-RS optimization framework, a novel approach to 

Pareto set estimation was developed based on the SMOMADS method of objective-wise 

optima determination, the NMADS method of gap detection and the Adaptive Weighted 

Sum (AWS) method for constructing neighborhood searches.  This new method, called 

Adaptive Constraint Pareto Set Estimation for Stochastic Mixed Variable Optimization 

(ACPSE-SMVO), was parameterized for robust performance across convex and non-

convex surfaces, and was then applied to four test cases, representing distinct classes of 

real-world design problems. 

5.2. Conclusions 

 The adaptive constraint generation method developed in this research was 

demonstrated to eliminate, or at least drastically reduce, the need for decision maker 

input in estimating the Pareto front of multiple classes of stochastic, mixed-variable 

multi-objective optimization problems.  Additionally, the sub-space density method of 
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Pareto front gap finding proved to be a promising method of automatically detecting 

regions to search for Pareto optimal solutions. 

However, the density threshold method still requires arbitrary, or at least 

subjective, parameter selection.  For example, the full factorial design used in this 

research to select appropriate parameter values for the ACPSE-SMVO process only 

resulted in a “best guess” at good values, and applying ACPSE-SMVO at those values 

did not always produce densely populated Pareto fronts. 

 Additionally, one of the most promising features of the adaptive constraint 

method developed in Chapter III was that its formulation seemed to preclude dominated 

points from entering the estimated Pareto set.  When implemented, however, dominated 

points were admitted into the set, and a final dominance filter had to be applied.  It is 

unclear if this is due to the adaptive constraint formulation or if it is caused by the 

stochastic optimization step of the ACPSE-SMVO process.  In order to be considered a 

robust method for Pareto set estimation, the ACPSE-SMVO process must be shown to 

admit no dominated points when applied to deterministic optimization problems. 

 Finally, the affine transformation developed in Chapter III proved useful in 

generating a more understandable Pareto front for problems with both minimization and 

maximization objectives.  However, the affine transformation failed to properly re-orient 

the objective space of problems that had no maximization functions, so these problems 

had to be evaluated in their original objective space. 
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5.3. Recommendations for Future Research 

 5.3.1.  Adaptive Constraint Method and Dominated Points 

 Since the implementation of ACPSE-SMVO resulted in some dominated points 

being selected for the estimated Pareto front, further study is required to determine if this 

is due to the adaptive formulation of the constraints or simply caused by the stochastic 

nature of the optimization step.  An attempt should be made to mathematically 

demonstrate that the adaptive constraint formulation developed in Chapter III will admit 

no dominated points given a deterministic optimization step.  If the adaptive constraint 

method is shown to reject dominated solutions for all deterministic problems, it should 

follow that dominated points are admitted simply due to the estimation error of the 

stochastic optimization step. 

 5.3.2.  ACPSE-SMVO Process 

 Although an attempt was made to determine the best parameter settings for the 

ACPSE-SMVO process, the results presented in Chapter IV suggest that there is room for 

improvement.  A more rigorous experiment of parameter settings across a broader range 

of test surfaces might yield more robust parameters.  Additionally, the use of the 

minimum, median, and maximum gap filling points to replace the Pareto optimal gap 

generator is arbitrary.  A different method of gap generator replacement should be studied 

and compared to the current method. 

 Additionally, it may be feasible to decrease the amount of time necessary to 

complete the optimization step of the ACPSE-SMVO process.  Since the ACPSE-SMVO 

process constructs a series of search neighborhoods based on two-objectives, it may be 
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possible to apply bi-objective optimization techniques to the ACPSE-SMVO process, 

instead of relying on complex and time consuming multiple-objective techniques.  

Furthermore, the use of surrogate functions should also be studied as a method of 

decreasing the number of iterations needed to complete the gap-filling step of the 

ACPSE-SMVO process.  

 5.3.3.  MVMADS-RS 

 The standard Ranking & Selection procedure used in this research and described 

in Section 2.2.3 could be updated to use more recently developed selection methods.  The 

sequential selection procedures developed by Pichitlamken, et al. [46], and by Chick and 

Inoue [18] may be able to reduce the number of function evaluations required for the 

R&S portion of the MVMADS technique. The quantile method developed by Bekki, et 

al. [15], could also be incorporated to the MVMADS method as an alternative to the 

standard R&S procedure. 

 5.3.4.  Algorithm Parameter Optimization Problem 

 There are two main areas of improvement concerning the ACPSE-SMVO 

investigation of the AutoGAD performance measure Pareto front.  First, generating a 

regression model to fit the results of a test design (as performed for this research) is 

unnecessary.  Instead of using a regression model as an objective function, AutoGAD 

performance could be directly measured by running the algorithm at the parameter 

settings selected by MVMADS-RS and the ACPSE-SMVO.  While this would increase 

the time necessary to complete the optimization step of the ACPSE-SMVO process, it 

would provide optimal values based on actual performance, rather than predicted values.  



 

 96 

The second area for improvement is to validate the Pareto optimal solutions based on the 

regression model by running AutoGAD at the parameter settings that are predicted to 

belong in the Pareto set.  However, both of these areas for improvement require 

knowledge concerning the automatic updating of AutoGAD parameters and algorithm 

execution that is beyond the scope of this research.  
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APPENDIX A.  MATLAB
®
 Code 

Regression Model Objective Functions for Algorithm Parameter Optimization  

function [XX,YY]=ObjFunc(x,p) 
  
%XX(1)=FPF: Minimize; 
%XX(2)=TFP: Maximize; 
%XX(3)=TIME: Minimize; 
%XX(4)=TPF: Maximize; 
%p{1}=Dim Adj 
%x(2)=Max Score 
%x(3)=Bin width SNR 
%x(4)=PT SNR thresh 
%x(5)=Bin Width Ident 
%x(6)=Smooth iter hi 
%x(7)=Smooth iter lo 
%x(8)=Low SNR 
%x(9)=Window Size 
%p{2}=Threshold Both Sides 
%p{3}=Clean Signal 
  
x(6)=round(x(6)); 
x(7)=round(x(7)); 
x(9)=round(x(9)); 
   
noise(1)= 0.006655*randn; 
XX(1)=(... 
    0.0256894114702926... 
    + -0.0805017213692844*x(3)... 
    + -0.155362540913017*x(5)... 
    + -0.000238838141475098*x(8)... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*0.0261666947382813)... 
    + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*0.0211002302462076)... 
    + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*-0.0000145388227577559)... 
    + (x(2)-10.1757587359102)*((x(7)-24.746835443038)*0.0000599450479063906)... 
    + (x(2)-10.1757587359102)*((x(9)-4.72784810126582)*-0.000336878794516759)... 
    + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*0.0372393225712019)... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*3.90561673756179)... 
    + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*0.000907974806650315)... 
    + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*0.00354180766250731)... 
    + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*-0.00116189700958767)... 
    + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*0.00430770537399931)... 
    + (x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*-0.00925528299002467)... 
    + (x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*-0.0199601034951385)... 
    + (x(6)-103.03164556962)*((x(7)-24.746835443038)*-0.0000038570725140484)... 
    + (x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.0000077890598086508)... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*0.249303506493041))... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(7)-24.746835443038)*-0.00127033198999695))... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*-0.00674816865359704))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(6)-103.03164556962)*-0.0000054211855470922))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(7)-24.746835443038)*-0.0000109035024164093))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(9)-4.72784810126582)*0.0000328074068201622))... 
    + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*((x(6)-103.03164556962)*-0.000381660196391127))... 
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    + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.0000049073687867604))... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*((x(6)-103.03164556962)*-0.0360774888548907))... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*-0.209991434825651))... 
    + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.000245690791925806))... 
    + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.000731478427519515))... 
    + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*((x(6)-103.03164556962)*-0.000907736414737403))... 
    + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*((x(7)-24.746835443038)*0.0000005648808451628))... 
    + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.0000085179179207463))... 
    + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*((x(9)-4.72784810126582)*0.0000134656719077507))... 
    + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*0.0000738058078761663))... 
    + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*((x(9)-4.72784810126582)*0.000434017368622722))... 
    + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*((x(8)-8.95158620211076)*-0.00133604609305646))... 
    + (x(6)-103.03164556962)*((x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.0000005431002695669))... 
    + (x(7)-24.746835443038)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*-0.0000030716744510132))... 
    ); 
  
if isequal(p{1},2) 
    XX(1)=XX(1)+(... 
        (x(3)-0.0557025001720556)*-0.0955747164287934... 
        + (x(4)-3.55601517830807)*0.000623781761495857... 
        + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*0.0293501576114639)... 
        + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*-0.0000239255643907588)... 
        + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*0.0433021094372379)... 
        + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*2.94240349906786)... 
        + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*-0.0126273178124193)... 
        + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*-0.000521804332560101)... 
        + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*0.00385445399656002)... 
        + (x(6)-103.03164556962)*((x(7)-24.746835443038)*-0.000002194994844654)... 
        + (x(7)-24.746835443038)*((x(8)-8.95158620211076)*-0.0000745681075927964)... 
        + (x(7)-24.746835443038)*((x(9)-4.72784810126582)*0.0000642559545488319)... 
        ); 
else 
    XX(1)=XX(1)-(... 
        (x(3)-0.0557025001720556)*-0.0955747164287934... 
        + (x(4)-3.55601517830807)*0.000623781761495857... 
        + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*0.0293501576114639)... 
        + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*-0.0000239255643907588)... 
        + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*0.0433021094372379)... 
        + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*2.94240349906786)... 
        + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*-0.0126273178124193)... 
        + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*-0.000521804332560101)... 
        + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*0.00385445399656002)... 
        + (x(6)-103.03164556962)*((x(7)-24.746835443038)*-0.000002194994844654)... 
        + (x(7)-24.746835443038)*((x(8)-8.95158620211076)*-0.0000745681075927964)... 
        + (x(7)-24.746835443038)*((x(9)-4.72784810126582)*0.0000642559545488319)... 
        ); 
end 
  
if isequal(p{2},0) 
    XX(1)=XX(1)+(... 
        -0.00349643817808737... 
        + (x(9)-4.72784810126582)*-0.000802253501553507... 
        + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*0.000404671755300744)... 
        + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*0.0159943145956149)... 
        + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*0.0274185955008617)... 
        + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*-0.00185816635893043)... 
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        + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*0.00489270610250974)... 
        + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*-0.000206649491504432)... 
        + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*0.00461893164812979)... 
        + (x(6)-103.03164556962)*((x(7)-24.746835443038)*-0.0000036038261148686)... 
        + (x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.0000150332373369121)... 
        + (x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.0000665068574050734)... 
        ); 
else 
    XX(1)=XX(1)-(... 
        -0.00349643817808737... 
        + (x(9)-4.72784810126582)*-0.000802253501553507... 
        + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*0.000404671755300744)... 
        + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*0.0159943145956149)... 
        + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*0.0274185955008617)... 
        + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*-0.00185816635893043)... 
        + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*0.00489270610250974)... 
        + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*-0.000206649491504432)... 
        + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*0.00461893164812979)... 
        + (x(6)-103.03164556962)*((x(7)-24.746835443038)*-0.0000036038261148686)... 
        + (x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.0000150332373369121)... 
        + (x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.0000665068574050734)... 
        );         
end 
  
if isequal(p{3},0) 
    XX(1)=XX(1)+(... 
        (x(2)-10.1757587359102)*-0.000364013706398382... 
        + (x(3)-0.0557025001720556)*-0.068782342691512... 
        + (x(5)-0.0557406029241196)*-0.141028110138679... 
        + (x(7)-24.746835443038)*0.000169992054271948... 
        + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*0.000416982976333291)... 
        + (x(2)-10.1757587359102)*((x(9)-4.72784810126582)*0.000263200632500861)... 
        + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*-0.00669637224106221)... 
        + (x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*-0.0222149173543354)... 
        + (x(4)-3.55601517830807)*((x(9)-4.72784810126582)*-0.00046086769699504)... 
        + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.0000159132598163982)... 
        ); 
else 
    XX(1)=XX(1)-(... 
        (x(2)-10.1757587359102)*-0.000364013706398382... 
        + (x(3)-0.0557025001720556)*-0.068782342691512... 
        + (x(5)-0.0557406029241196)*-0.141028110138679... 
        + (x(7)-24.746835443038)*0.000169992054271948... 
        + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*0.000416982976333291)... 
        + (x(2)-10.1757587359102)*((x(9)-4.72784810126582)*0.000263200632500861)... 
        + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*-0.00669637224106221)... 
        + (x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*-0.0222149173543354)... 
        + (x(4)-3.55601517830807)*((x(9)-4.72784810126582)*-0.00046086769699504)... 
        + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.0000159132598163982)... 
        );         
end 
  
XX(1)=XX(1)+noise(1); 
     
noise(2)=0.16359*randn; 
XX(2)=(... 
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    0.165578044367919... 
    + -0.0129808651503392*x(4)... 
    + 4.08235109484774*x(5)... 
    + 0.000886940955334082*x(6)... 
    + -0.00281165281765342*x(7)... 
    + 0.0280914163084165*x(9)... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*-0.845255954588247)... 
    + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*-0.260120520808717)... 
    + (x(2)-10.1757587359102)*((x(9)- 4.72784810126582)*0.00293808193358571)... 
    + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*0.00120690202051978)... 
    + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*-0.00631506499336382)... 
    + (x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*0.236240751806905)... 
    + (x(6)-103.03164556962)*((x(9)-4.72784810126582)*0.000717415247481852)... 
    + (x(7)-24.746835443038)*((x(8)-8.95158620211076)*-0.000686940106098636)... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*0.152615053296013))... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*-13.0217827230349))... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*0.0484705571014071))... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*-0.134211248704195))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*0.0986298966339441))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(6)-103.03164556962)*0.00015777415278073))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(7)-24.746835443038)*0.000297503681216606))... 
    + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*((x(6)-103.03164556962)*-0.00801843991472878))... 
    + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*0.0498651870058177))... 
    + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*((x(7)-24.746835443038)*-0.0000156963278183928))... 
    + (x(2)-10.1757587359102)*((x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.000138472705449725))... 
    + (x(2)-10.1757587359102)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*0.00118580498670985))... 
    + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*((x(8)-8.95158620211076)*0.0746216481290795))... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*((x(6)-103.03164556962)*0.585702796341571))... 
    + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.00719726549853942))... 
    + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*((x(9)-4.72784810126582)*0.0258753920728689))... 
    + (x(4)-3.55601517830807)*((x(5)- 0.0557406029241196)*((x(6)-103.03164556962)*0.0105448927965717))... 
    + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.000246945490772528))... 
    + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.000665078533093979))... 
    + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*-0.00126305545030453))... 
    + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.00336310826013376))... 
    ); 
  
if isequal(p{1},2) 
    XX(2)=XX(2)+(... 
        -0.100444017204813... 
        +(x(2)-10.1757587359102)*0.0318821568353435... 
        +(x(3)-0.0557025001720556)*-0.856863381576973... 
        +(x(2)-10.1757587359102)*((x(9)-4.72784810126582)*0.00261205921903866)... 
        +(x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*-0.414308785796218)... 
        +(x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*0.44189361816745)... 
        +(x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*-0.373373201973405)... 
        +(x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*-0.641177294911055)... 
        +(x(6)-103.03164556962)*((x(7)-24.746835443038)*0.000116620377679345)... 
        +(x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.000539889681160408)... 
        +(x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.00149930830087245)... 
        ); 
else 
    XX(2)=XX(2)-(... 
        -0.100444017204813... 
        +(x(2)-10.1757587359102)*0.0318821568353435... 
        +(x(3)-0.0557025001720556)*-0.856863381576973... 
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        +(x(2)-10.1757587359102)*((x(9)-4.72784810126582)*0.00261205921903866)... 
        +(x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*-0.414308785796218)... 
        +(x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*0.44189361816745)... 
        +(x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*-0.373373201973405)... 
        +(x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*-0.641177294911055)... 
        +(x(6)-103.03164556962)*((x(7)-24.746835443038)*0.000116620377679345)... 
        +(x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.000539889681160408)... 
        +(x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.00149930830087245)... 
        ); 
end 
  
if isequal(p{2},0) 
    XX(2)=XX(2)+(... 
        0.0799932960602052... 
        +(x(3)-0.0557025001720556)*(0.612668774978395)... 
        +(x(4)-3.55601517830807)*(-0.0274762666517147)... 
        +(x(7)-24.746835443038)*(-0.00313608589066527)... 
        +(x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*-0.517349086412935)... 
        +(x(3)-0.0557025001720556)*((x(6)-103.03164556962)*-0.0164044791116466)... 
        +(x(4)-3.55601517830807)*((x(9)-4.72784810126582)*-0.00322210425384521)... 
        +(x(5)-0.0557406029241196)*((x(6)-103.03164556962)*-0.0417626628623927)... 
        +(x(5)-0.0557406029241196)*((x(7)-24.746835443038)*-0.0956595935930405)... 
        +(x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.000325127534930812)... 
        +(x(7)-24.746835443038)*((x(8)-8.95158620211076)*-0.000774019087293837)... 
        +(x(8)-8.95158620211076)*((x(9)-4.72784810126582)*-0.00193244787157434)... 
        ); 
else 
    XX(2)=XX(2)-(... 
        0.0799932960602052... 
        +(x(3)-0.0557025001720556)*(0.612668774978395)... 
        +(x(4)-3.55601517830807)*(-0.0274762666517147)... 
        +(x(7)-24.746835443038)*(-0.00313608589066527)... 
        +(x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*-0.517349086412935)... 
        +(x(3)-0.0557025001720556)*((x(6)-103.03164556962)*-0.0164044791116466)... 
        +(x(4)-3.55601517830807)*((x(9)-4.72784810126582)*-0.00322210425384521)... 
        +(x(5)-0.0557406029241196)*((x(6)-103.03164556962)*-0.0417626628623927)... 
        +(x(5)-0.0557406029241196)*((x(7)-24.746835443038)*-0.0956595935930405)... 
        +(x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.000325127534930812)... 
        +(x(7)-24.746835443038)*((x(8)-8.95158620211076)*-0.000774019087293837)... 
        +(x(8)-8.95158620211076)*((x(9)-4.72784810126582)*-0.00193244787157434)... 
        ); 
end 
  
if isequal(p{3},0) 
    XX(2)=XX(2)+(... 
        0.167498386946838... 
        +(x(3)-0.0557025001720556)*(1.78334347248485)... 
        +(x(5)-0.0557406029241196)*(1.48635412636791)... 
        +(x(9)-4.72784810126582)*(-0.0304321776978525)... 
        +(x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*32.0081709514872)... 
        +(x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*-0.736576657140496)... 
        +(x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*-0.54616688237893)... 
        +(x(4)-3.55601517830807)*((x(6)-103.03164556962)*0.000976447597367798)... 
        +(x(4)-3.55601517830807)*((x(8)-8.95158620211076)*0.00587143486896801)... 
        +(x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*0.525907138371367)... 
        +(x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.000410709791663283)... 
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        +(x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.000209578061445395)... 
        +(x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.00155420212016607)... 
        +(x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.00127536741797038)... 
        ); 
else 
    XX(2)=XX(2)-(... 
        0.167498386946838... 
        +(x(3)-0.0557025001720556)*(1.78334347248485)... 
        +(x(5)-0.0557406029241196)*(1.48635412636791)... 
        +(x(9)-4.72784810126582)*(-0.0304321776978525)... 
        +(x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*32.0081709514872)... 
        +(x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*-0.736576657140496)... 
        +(x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*-0.54616688237893)... 
        +(x(4)-3.55601517830807)*((x(6)-103.03164556962)*0.000976447597367798)... 
        +(x(4)-3.55601517830807)*((x(8)-8.95158620211076)*0.00587143486896801)... 
        +(x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*0.525907138371367)... 
        +(x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.000410709791663283)... 
        +(x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.000209578061445395)... 
        +(x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.00155420212016607)... 
        +(x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.00127536741797038)... 
        ); 
end 
  
XX(2)=-1*(XX(2)+noise(2)); 
  
noise(3)=2.839837*randn; 
XX(3)=(... 
    45.7149627856836... 
    + -2.31144399533137*x(2)... 
    + -3.00415850485113*x(4)... 
    + 154.704094122475*x(5)... 
    + -0.0431968769158141*x(6)... 
    + 0.240174245048667*x(7)... 
    + -0.393162278304518*x(8)... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*-1.52879418328491)... 
    + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*-0.0380428252396837)... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*-1429.88552945108)... 
    + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*7.11443835425053)... 
    + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*-46.5633873826699)... 
    + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*-103.487955222288)... 
    + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*0.105251687946118)... 
    + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*-0.478098099612669)... 
    + (x(4)-3.55601517830807)*((x(9)-4.72784810126582)*-0.77467604974633)... 
    + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*-7.3840772841507)... 
    + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*-8.40901667311317)... 
    + (x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*55.658273194977)... 
    + (x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*-91.8026355045603)... 
    + (x(6)-103.03164556962)*((x(7)-24.746835443038)*-0.00464627455117163)... 
    + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.00318496435826446)... 
    + (x(7)-24.746835443038)*((x(8)-8.95158620211076)*-0.034239391626387)... 
    + (x(7)-24.746835443038)*((x(9)-4.72784810126582)*0.0638609917820322)... 
    + (x(8)-8.95158620211076)*((x(9)-4.72784810126582)*-0.089511430949877)... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*-962.494474014905))... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(7)-24.746835443038)*1.16459536146175))... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*3.418210017844))... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*-23.7212757458549))... 
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    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(6)-103.03164556962)*-0.00292921669633108))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(7)-24.746835443038)*0.0752396147254257))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(8)-8.95158620211076)*-0.0437276636644996))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(9)-4.72784810126582)*-0.184582567367813))... 
    + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*((x(7)-24.746835443038)*0.504068583898552))... 
    + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*16.2225700776081))... 
    + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*((x(7)-24.746835443038)*0.00102049763874207))... 
    + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.00233911734990856))... 
    + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*((x(9)-4.72784810126582)*0.00516090300176989))... 
    + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*-1236.64449534935))... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*((x(6)-103.03164556962)*53.8305182295834))... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*((x(7)-24.746835443038)*-165.289306701291))... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*528.943878927993))... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*635.404493219827))... 
    + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.215503190481792))... 
    + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*((x(9)-4.72784810126582)*0.557035587356886))... 
    + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*((x(9)-4.72784810126582)*-1.93555788446261))... 
    + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*((x(7)-24.746835443038)*-2.18225375658647))... 
    + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*5.74407990803628))... 
    + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.0301612327126137))... 
    + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.108307552308221))... 
    + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*0.126379074190482))... 
    + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.295821026038062))... 
    + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.695484440527229))... 
    + (x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*-3.82411019490071))... 
    + (x(6)-103.03164556962)*((x(7)-24.746835443038)*((x(8)-8.95158620211076)*-0.000665991141949981))... 
    + (x(6)-103.03164556962)*((x(7)-24.746835443038)*((x(9)-4.72784810126582)*0.00314784482738907))... 
    + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*0.00593970451475243))... 
    + (x(7)-24.746835443038)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*0.0419979234305606))... 
    ); 
  
if isequal(p{1},2) 
    XX(3)=XX(3)+(... 
        (x(2)-10.1757587359102)*-2.42096142740308... 
        + (x(4)-3.55601517830807)*-0.401314661370035... 
        + (x(5)-0.0557406029241196)*-72.3153991784875... 
        + (x(7)-24.746835443038)*0.430113567257772... 
        + (x(8)-8.95158620211076)*-0.457088752409798... 
        + (x(9)-4.72784810126582)*0.342108469251351... 
        + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*16.3363348983188)... 
        + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*15.3765019176104)... 
        + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*0.073049934106511)... 
        + (x(2)-10.1757587359102)*((x(7)-24.746835443038)*0.0664514296427968)... 
        + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*-2.51487829474736)... 
        + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*-14.3229806662654)... 
        + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*-30.6383776830326)... 
        + (x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*13.8393774937646)... 
        + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*118.79863927424)... 
        + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*-0.0174400902430602)... 
        + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*0.412614603680372)... 
        + (x(4)-3.55601517830807)*((x(9)-4.72784810126582)*0.275661305045246)... 
        + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*-5.59632018259808)... 
        + (x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*4.19636212466563)... 
        + (x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*35.7786673689535)... 
        + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.0208374768478553)...         
        ); 
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else 
    XX(3)=XX(3)-(... 
        (x(2)-10.1757587359102)*-2.42096142740308... 
        + (x(4)-3.55601517830807)*-0.401314661370035... 
        + (x(5)-0.0557406029241196)*-72.3153991784875... 
        + (x(7)-24.746835443038)*0.430113567257772... 
        + (x(8)-8.95158620211076)*-0.457088752409798... 
        + (x(9)-4.72784810126582)*0.342108469251351... 
        + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*16.3363348983188)... 
        + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*15.3765019176104)... 
        + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*0.073049934106511)... 
        + (x(2)-10.1757587359102)*((x(7)-24.746835443038)*0.0664514296427968)... 
        + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*-2.51487829474736)... 
        + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*-14.3229806662654)... 
        + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*-30.6383776830326)... 
        + (x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*13.8393774937646)... 
        + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*118.79863927424)... 
        + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*-0.0174400902430602)... 
        + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*0.412614603680372)... 
        + (x(4)-3.55601517830807)*((x(9)-4.72784810126582)*0.275661305045246)... 
        + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*-5.59632018259808)... 
        + (x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*4.19636212466563)... 
        + (x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*35.7786673689535)... 
        + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.0208374768478553)...         
        ); 
end 
  
if isequal(p{2},0) 
    XX(3)=XX(3)+(... 
        + (x(3)-0.0557025001720556)*-79.6007832726288... 
        + (x(4)-3.55601517830807)*-3.37934355176912... 
        + (x(6)-103.03164556962)*0.0561870659818837... 
        + (x(7)-24.746835443038)*0.0883614952268015... 
        + (x(8)-8.95158620211076)*-0.431410435908149... 
        + (x(9)-4.72784810126582)*-1.23832799208976... 
        + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*106.362636381367)... 
        + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*2.5362235870835)... 
        + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*-0.0229798753435252)... 
        + (x(2)-10.1757587359102)*((x(8)-8.95158620211076)*0.347860472727556)... 
        + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*0.657335735553628)... 
        + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*-1.97216332257642)... 
        + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*50.9085875433265)... 
        + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*88.0183452801527)... 
        + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*3.57541792186564)... 
        + (x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*39.2229753181889)... 
        + (x(6)-103.03164556962)*((x(7)-24.746835443038)*-0.0031896630936398)... 
        + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.00722320469816253)... 
        + (x(6)-103.03164556962)*((x(9)-4.72784810126582)*0.0601431356896265)... 
        + (x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.0209593969894853)... 
        + (x(8)-8.95158620211076)*((x(9)-4.72784810126582)*0.177493073191604)... 
        ); 
else 
    XX(3)=XX(3)-(... 
        + (x(3)-0.0557025001720556)*-79.6007832726288... 
        + (x(4)-3.55601517830807)*-3.37934355176912... 
        + (x(6)-103.03164556962)*0.0561870659818837... 
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        + (x(7)-24.746835443038)*0.0883614952268015... 
        + (x(8)-8.95158620211076)*-0.431410435908149... 
        + (x(9)-4.72784810126582)*-1.23832799208976... 
        + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*106.362636381367)... 
        + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*2.5362235870835)... 
        + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*-0.0229798753435252)... 
        + (x(2)-10.1757587359102)*((x(8)-8.95158620211076)*0.347860472727556)... 
        + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*0.657335735553628)... 
        + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*-1.97216332257642)... 
        + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*50.9085875433265)... 
        + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*88.0183452801527)... 
        + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*3.57541792186564)... 
        + (x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*39.2229753181889)... 
        + (x(6)-103.03164556962)*((x(7)-24.746835443038)*-0.0031896630936398)... 
        + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.00722320469816253)... 
        + (x(6)-103.03164556962)*((x(9)-4.72784810126582)*0.0601431356896265)... 
        + (x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.0209593969894853)... 
        + (x(8)-8.95158620211076)*((x(9)-4.72784810126582)*0.177493073191604)... 
        ); 
end 
  
     
if isequal(p{3},0) 
    XX(3)=XX(3)+(... 
        1.12079151663465... 
        + (x(3)-0.0557025001720556)*-133.17527743101... 
        + (x(6)-103.03164556962)*-0.384488851757642... 
        + (x(7)-24.746835443038)*0.301762343037636... 
        + (x(8)-8.95158620211076)*0.535950903868837... 
        + (x(9)-4.72784810126582)*-1.22269252186118... 
        + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*-1.16015146692986)... 
        + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*73.7966751036054)... 
        + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*-0.0213032007120818)... 
        + (x(2)-10.1757587359102)*((x(8)-8.95158620211076)*-0.476845188733536)... 
        + (x(2)-10.1757587359102)*((x(9)-4.72784810126582)*-0.329431264149946)... 
        + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*-45.2385755952501)... 
        + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*4.66368504029263)... 
        + (x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*139.346645238898)... 
        + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*-0.0124653320242662)... 
        + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*-0.127077131762122)... 
        + (x(6)-103.03164556962)*((x(7)-24.746835443038)*0.00740386697861435)... 
        + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.106606235064834)... 
        + (x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.0305827320558507)... 
        + (x(7)-24.746835443038)*((x(8)-8.95158620211076)*-0.0364888306192935)... 
        + (x(7)-24.746835443038)*((x(9)-4.72784810126582)*0.101790107791787)... 
        ); 
else 
    XX(3)=XX(3)-(... 
        1.12079151663465... 
        + (x(3)-0.0557025001720556)*-133.17527743101... 
        + (x(6)-103.03164556962)*-0.384488851757642... 
        + (x(7)-24.746835443038)*0.301762343037636... 
        + (x(8)-8.95158620211076)*0.535950903868837... 
        + (x(9)-4.72784810126582)*-1.22269252186118... 
        + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*-1.16015146692986)... 
        + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*73.7966751036054)... 
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        + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*-0.0213032007120818)... 
        + (x(2)-10.1757587359102)*((x(8)-8.95158620211076)*-0.476845188733536)... 
        + (x(2)-10.1757587359102)*((x(9)-4.72784810126582)*-0.329431264149946)... 
        + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*-45.2385755952501)... 
        + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*4.66368504029263)... 
        + (x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*139.346645238898)... 
        + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*-0.0124653320242662)... 
        + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*-0.127077131762122)... 
        + (x(6)-103.03164556962)*((x(7)-24.746835443038)*0.00740386697861435)... 
        + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.106606235064834)... 
        + (x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.0305827320558507)... 
        + (x(7)-24.746835443038)*((x(8)-8.95158620211076)*-0.0364888306192935)... 
        + (x(7)-24.746835443038)*((x(9)-4.72784810126582)*0.101790107791787)... 
        ); 
end 
  
XX(3)=XX(3)+noise(3); 
  
noise(4)=0.115054*randn; 
XX(4)=(... 
    0.662789842196492... 
    + -0.00866473634318355*x(2)... 
    + -2.02695967600563*x(3)... 
    + -1.81170568580437*x(5)... 
    + 0.000585949630377693*x(6)... 
    + 0.00400179610128431*x(8)... 
    + 0.0327145563420182*x(9)... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*-0.771226529564022)... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*-0.00227883906367036)... 
    + (x(2)-10.1757587359102)*((x(7)-24.746835443038)*0.000393632643786534)... 
    + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*0.191226881676559)... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*16.9428211281166)... 
    + (x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*0.240560397997758)... 
    + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*-1.10594609099351)... 
    + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*-0.000494173749224278)... 
    + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*0.00185403380612153)... 
    + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*0.00988551246296919)... 
    + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*0.0750176644079506)... 
    + (x(6)-103.03164556962)*((x(9)-4.72784810126582)*0.000194126565383995)... 
    + (x(8)-8.95158620211076)*((x(9)-4.72784810126582)*0.00421323177313059)... 
    + (x(2)-10.1757587359102)*((x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*-2.6134104933345))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*0.126178438788599))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(6)-103.03164556962)*0.000129529899101966))... 
    + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*((x(8)-8.95158620211076)*0.00203618920256686))... 
    + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*((x(7)-24.746835443038)*-0.0422685000157967))... 
    + (x(2)-10.1757587359102)*((x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*-0.0255192924888868))... 
    + (x(2)-10.1757587359102)*((x(6)-103.03164556962)*((x(9)-4.72784810126582)*-0.000164916508402042))... 
    + (x(2)-10.1757587359102)*((x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.000174762975207503))... 
    + (x(2)-10.1757587359102)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*-0.000716102285301043))... 
    + (x(3)-0.0557025001720556)*((x(4)-3.55601517830807)*((x(8)-8.95158620211076)*0.280933194479036))... 
    + (x(3)-0.0557025001720556)*((x(5)-0.0557406029241196)*((x(6)-103.03164556962)*1.0337524461506))... 
    + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*((x(7)-24.746835443038)*-0.00169976812511343))... 
    + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.00429744017521218))... 
    + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*((x(9)-4.72784810126582)*0.00470302489292601))... 
    + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.00923517180681528))... 
    + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*((x(9)-4.72784810126582)*0.0332216585406472))... 
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    + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*0.0684378063280906))... 
    + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*((x(7)-24.746835443038)*-0.0248700491577205))... 
    + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*((x(8)-8.95158620211076)*0.000162823994515373))... 
    + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*((x(9)-4.72784810126582)*0.0000768657652452225))... 
    + (x(4)-3.55601517830807)*((x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.000853628886501693))... 
    + (x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*((x(9)-4.72784810126582)*-0.0793741689770156))... 
    + (x(6)-103.03164556962)*((x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.0000158997056323332))... 
    + (x(6)-103.03164556962)*((x(7)-24.746835443038)*((x(9)-4.72784810126582)*-0.0000101649680209043))... 
    ); 
if isequal(p{1},2) 
    XX(4)=XX(4)+(... 
        + (x(2)-10.1757587359102)*0.00806274348580709... 
        + (x(4)-3.55601517830807)*-0.0180914133284487... 
        + (x(6)-103.03164556962)*-0.000953346512619605... 
        + (x(7)-24.746835443038)*-0.000912241469116581... 
        + (x(9)-4.72784810126582)*0.0135014087576002... 
        + (x(2)-10.1757587359102)*((x(4) -3.55601517830807)*0.00451972642003055)... 
        + (x(2)-10.1757587359102)*((x(5) -0.0557406029241196)*-0.380196340906971)... 
        + (x(3)-0.0557025001720556)*((x(8) -8.95158620211076)*0.651338440118295)... 
        + (x(3)-0.0557025001720556)*((x(9) -4.72784810126582)*-0.759817023661298)... 
        + (x(4)-3.55601517830807)*((x(5) -0.0557406029241196)*-0.470078182808422)... 
        + (x(4)-3.55601517830807)*((x(7) -24.746835443038)*-0.00139001828288159)... 
        + (x(4)-3.55601517830807)*((x(9) -4.72784810126582)*-0.00718031559859441)... 
        + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*0.0703174374349332)... 
        + (x(5)-0.0557406029241196)*((x(9) -4.72784810126582)*-0.291654642539285)... 
        + (x(6)-103.03164556962)*((x(7) -24.746835443038)*0.0000923502745840698)... 
        + (x(7)-24.746835443038)*((x(8) -8.95158620211076)*0.000411998835257628)... 
        + (x(7)-24.746835443038)*((x(9) -4.72784810126582)*-0.000839022274019635)... 
        ); 
else 
    XX(4)=XX(4)-(... 
        + (x(2)-10.1757587359102)*0.00806274348580709... 
        + (x(4)-3.55601517830807)*-0.0180914133284487... 
        + (x(6)-103.03164556962)*-0.000953346512619605... 
        + (x(7)-24.746835443038)*-0.000912241469116581... 
        + (x(9)-4.72784810126582)*0.0135014087576002... 
        + (x(2)-10.1757587359102)*((x(4) -3.55601517830807)*0.00451972642003055)... 
        + (x(2)-10.1757587359102)*((x(5) -0.0557406029241196)*-0.380196340906971)... 
        + (x(3)-0.0557025001720556)*((x(8) -8.95158620211076)*0.651338440118295)... 
        + (x(3)-0.0557025001720556)*((x(9) -4.72784810126582)*-0.759817023661298)... 
        + (x(4)-3.55601517830807)*((x(5) -0.0557406029241196)*-0.470078182808422)... 
        + (x(4)-3.55601517830807)*((x(7) -24.746835443038)*-0.00139001828288159)... 
        + (x(4)-3.55601517830807)*((x(9) -4.72784810126582)*-0.00718031559859441)... 
        + (x(5)-0.0557406029241196)*((x(7)-24.746835443038)*0.0703174374349332)... 
        + (x(5)-0.0557406029241196)*((x(9) -4.72784810126582)*-0.291654642539285)... 
        + (x(6)-103.03164556962)*((x(7) -24.746835443038)*0.0000923502745840698)... 
        + (x(7)-24.746835443038)*((x(8) -8.95158620211076)*0.000411998835257628)... 
        + (x(7)-24.746835443038)*((x(9) -4.72784810126582)*-0.000839022274019635)... 
        ); 
end 
  
if isequal(p{2},0) 
    XX(4)=XX(4)+(... 
       + (x(4)-3.55601517830807)*-0.0100341113261308... 
       + (x(7)-24.746835443038)*-0.00392353331349028... 
       + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*0.098518552959542)... 
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       + (x(4)-3.55601517830807)*((x(9)-4.72784810126582)*0.00922435480034716)... 
       + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*-0.0137131165360334)... 
       + (x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*0.417674895700106)... 
       + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.000514116029582448)... 
       + (x(8)-8.95158620211076)*((x(9)-4.72784810126582)*-0.00282999736705026)... 
       );        
else 
    XX(4)=XX(4)-(... 
       + (x(4)-3.55601517830807)*-0.0100341113261308... 
       + (x(7)-24.746835443038)*-0.00392353331349028... 
       + (x(3)-0.0557025001720556)*((x(7)-24.746835443038)*0.098518552959542)... 
       + (x(4)-3.55601517830807)*((x(9)-4.72784810126582)*0.00922435480034716)... 
       + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*-0.0137131165360334)... 
       + (x(5)-0.0557406029241196)*((x(9)-4.72784810126582)*0.417674895700106)... 
       + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.000514116029582448)... 
       + (x(8)-8.95158620211076)*((x(9)-4.72784810126582)*-0.00282999736705026)... 
       );     
end 
  
if isequal(p{3},0) 
    XX(4)=XX(4)+(... 
        + 0.151677058248746... 
        + (x(3)-0.0557025001720556)*1.77723281825986... 
        + (x(4)-3.55601517830807)*-0.0106386599832117... 
        + (x(5)-0.0557406029241196)*0.683506911461439... 
        + (x(9)-4.72784810126582)*-0.0179980048351728... 
        + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*0.00853000698695022)... 
        + (x(2)-10.1757587359102)*((x(7)-24.746835443038)*-0.000906326458817658)... 
        + (x(2)-10.1757587359102)*((x(8)-8.95158620211076)*-0.00234762030570042)... 
        + (x(2)-10.1757587359102)*((x(9)-4.72784810126582)*0.0104392305842542)... 
        + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*0.0402758463681714)... 
        + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*0.210690450257682)... 
        + (x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*-0.755949908435926)... 
        + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*-0.471328207210384)... 
        + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*0.000681870964039866)... 
        + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*0.00405050894732)... 
        + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*0.0471105814702395)... 
        + (x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*0.546098962371161)... 
        + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.000309445664711597)... 
        + (x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.00144953972114957)... 
        );     
else 
    XX(4)=XX(4)-(... 
        + 0.151677058248746... 
        + (x(3)-0.0557025001720556)*1.77723281825986... 
        + (x(4)-3.55601517830807)*-0.0106386599832117... 
        + (x(5)-0.0557406029241196)*0.683506911461439... 
        + (x(9)-4.72784810126582)*-0.0179980048351728... 
        + (x(2)-10.1757587359102)*((x(4)-3.55601517830807)*0.00853000698695022)... 
        + (x(2)-10.1757587359102)*((x(7)-24.746835443038)*-0.000906326458817658)... 
        + (x(2)-10.1757587359102)*((x(8)-8.95158620211076)*-0.00234762030570042)... 
        + (x(2)-10.1757587359102)*((x(9)-4.72784810126582)*0.0104392305842542)... 
        + (x(3)-0.0557025001720556)*((x(6)-103.03164556962)*0.0402758463681714)... 
        + (x(3)-0.0557025001720556)*((x(8)-8.95158620211076)*0.210690450257682)... 
        + (x(3)-0.0557025001720556)*((x(9)-4.72784810126582)*-0.755949908435926)... 
        + (x(4)-3.55601517830807)*((x(5)-0.0557406029241196)*-0.471328207210384)... 
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        + (x(4)-3.55601517830807)*((x(6)-103.03164556962)*0.000681870964039866)... 
        + (x(4)-3.55601517830807)*((x(8)-8.95158620211076)*0.00405050894732)... 
        + (x(5)-0.0557406029241196)*((x(6)-103.03164556962)*0.0471105814702395)... 
        + (x(5)-0.0557406029241196)*((x(8)-8.95158620211076)*0.546098962371161)... 
        + (x(6)-103.03164556962)*((x(8)-8.95158620211076)*-0.000309445664711597)... 
        + (x(7)-24.746835443038)*((x(8)-8.95158620211076)*0.00144953972114957)... 
        );          
end 
  
XX(4)=-1*(XX(4)+noise(4)); 
  
if XX(1)<0; 
    XX(1)=0; 
end 
if XX(3)<0; 
    XX(3)=0; 
end 
if XX(2)>0; 
    XX(2)=0; 
end 
if XX(4)>0; 
    XX(4)=0; 
end 
if XX(1)>1; 
    XX(1)=1; 
end 
if XX(2)<-1; 
    XX(2)=-1; 
end 
if XX(4)<-1; 
    XX(4)=-1; 
end 
YY=XX; 
YY(2)=-1*XX(2); 
YY(4)=-1*XX(4); 
return     
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Regression Model Objective Functions for Alloy Composition 

function [XX,YY]=alloyObjFunc(x,p) 
  
%x(1)=Zr 
%x(2)=Cu 
%x(3)=Al 
%x(4)=La 
%x(5)=Cu,Ni 
%x(6)=Pd 
%p(1)=Si 
noise(1)=3.965904*randn; 
    XX(1)=662.510024591388 -3.43114455035605*x(4) + (x(1)-20.3584905660377)*((x(2)-
20.7056603773585)*0.125590764945869) + (x(2)-20.7056603773585)*((x(4)-30.6320754716981)*-
0.0245239528558381) + (x(3)-10.4377358490566)*((x(5)-9.00566037735849)*-0.353747895035932)+ (x(4)-
30.6320754716981)*((x(5)-9.00566037735849)*0.0192651005300172); 
    if isequal(p,{'H'}) 
        XX(1)=XX(1) + (x(2)-20.7056603773585)*(-1868.78692225644) + (x(3)-10.4377358490566)*(-9916.67570077209) 
+ (x(6)-7.29245283018868)*(-1874.09254189245); 
    end 
    if isequal(p,{'L'}) 
        XX(1)=XX(1) + (x(2)-20.7056603773585)*(1.90597750742905) + (x(3)-10.4377358490566)*(6.23475623467384) + 
(x(6)-7.29245283018868)*(10.0172161940532); 
    end 
    if isequal(p,{'M'}) 
        XX(1)=XX(1) + (x(2)-20.7056603773585)*(1866.88094474901) + (x(3)-10.4377358490566)*(9910.44094453742) + 
(x(6)-7.29245283018868)*(1864.0753256984); 
    end 
    XX(1)=-1*(XX(1)+noise(1)); 
    YY(1)=XX(1); 
 
noise(2)=16.56018*randn; 
    XX(2)=2562.00152741729 -152.580856107031*x(3) -3.71158027025736*x(4)+ (x(1)-20.3584905660377)*((x(2)-
20.7056603773585)*-0.670385666856341) + (x(1)-20.3584905660377)*((x(3)-10.4377358490566)*-
3.21324447564255) + (x(1)-20.3584905660377)*((x(5)-9.00566037735849)*-1.46846246552511) + (x(2)-
20.7056603773585)*((x(3)-10.4377358490566)*-1.07635463033817) + (x(2)-20.7056603773585)*((x(4)-
30.6320754716981)*-0.603448527190867) + (x(2)-20.7056603773585)*((x(6)-7.29245283018868)*-
0.575672006041501) + (x(3)-10.4377358490566)*((x(4)-30.6320754716981)*-2.744659435206) + (x(3)-
10.4377358490566)*((x(5)-9.00566037735849)*-2.20178804726434) + (x(4)-30.6320754716981)*((x(5)-
9.00566037735849)*-0.881030796432491); 
    if isequal(p,{'H'}) 
        XX(2)=XX(2)+(x(3)-10.4377358490566)*(-88.0363292870266); 
    end 
  
    if isequal(p,{'L'}) 
        XX(2)=XX(2)+(x(3)-10.4377358490566)*(167.228480366726); 
    end 
  
    if isequal(p,{'M'}) 
        XX(2)=XX(2)+(x(3)-10.4377358490566)*(-79.1921510796991); 
    end 
    XX(2)=-1*(XX(2)+noise(2)); 
    YY(2)=XX(2); 
 
   XX(3)=7.74549394593709 + -0.0630035413934196*x(3) + (x(1)-20.3584905660377)*((x(4)-
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30.6320754716981)*0.000843976498489926) + (x(1)-20.3584905660377)*((x(6)-7.29245283018868)*-
0.000144126156888867) + (x(2)-20.7056603773585)*((x(5)-9.00566037735849)*0.0000445452387552537) + (x(3)-
10.4377358490566)*((x(4)-30.6320754716981)*-0.0000000927103338128); 
    if isequal(p,{'H'}) 
        XX(3)=XX(3)+(x(4)-30.6320754716981)*(0.00592447215213463)+(x(6)-
7.29245283018868)*(0.0273146497007321); 
    end 
  
    if isequal(p,{'L'}) 
        XX(3)=XX(3)+(x(4)-30.6320754716981)*(-0.011199450354896)+(x(6)-7.29245283018868)*(-
0.0546292994031862); 
    end 
  
    if isequal(p,{'M'}) 
        XX(3)=XX(3)+(x(4)-30.6320754716981)*(0.00527497820276136)+(x(6)-
7.29245283018868)*(0.0273146497024542); 
    end 
    if XX(3)<0; 
        XX(3)=0; 
    end 
    YY(3)=XX(3); 
    for i=1:2 
        if XX(i)>0 
            XX(i)=0; 
            YY(i)=0; 
        end 
    end 
return     
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Objective Function Equations for Gearbox Design 
 
function [XX,YY]=ObjFunc(x,p) 
  
%XX(1)=Minimize volume; 
%XX(2)=Minimize stress in shaft 1; 
%XX(3)=Minimize stress in shaft 2; 
%p{1}=Number of teeth of pinion 
%x(1)=Gear face width 
%x(2)=Teeth module 
%x(3)=Distance between bearings on shaft 1 
%x(4)=Distance between bearings on shaft 2 
%x(5)=Diameter of shaft 1 
%x(6)=Diameter of shaft 2 
%noise=Random noise as a percentage of objective function value 
  
noise(1)=0; 
noise(2)=.005; 
noise(3)=.005; 
  
XX(1)=(... 
    .7854*x(1)*(x(2)^2)... 
    *(((round(x(7))^2)*(4/3))+14.9334*(round(x(7)))-43.0934)... 
    -1.508*((x(5)^2)+(x(6)^2))... 
    +7.477*((x(5)^3)+(x(6)^3))... 
    +0.7854*((x(3))*(x(5)^2)+(x(4))*(x(6)^2))... 
    ); 
  
XX(1)=XX(1)+noise(1)*XX(1)*randn; 
     
XX(2)=(... 
    (1/(.1*x(5)^3))... 
    *sqrt(... 
    (((745*x(3))/(x(2)*p{1}))^2)... 
    +(1.69*(10^7))... 
    )... 
    ); 
  
XX(2)=XX(2)+noise(2)*XX(2)*randn; 
  
XX(3)=(... 
    (1/(.1*x(6)^3))... 
    *sqrt(... 
    (((745*x(4))/(x(2)*p{1}))^2)... 
    +(1.575*(10^8))... 
    )... 
    ); 
  
XX(3)=XX(3)+noise(3)*XX(3)*randn; 
  
YY=XX; 
  
return     
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Objective Function Equations for System Reliability 

 
function [XX,YY]=ObjFunc(x,p) 
  
%XX(1)=Minimize unreliability (1 - Reliability); 
%XX(2)=Minimize Design Cost; 
%XX(3)=Minimize Design Weight; 
%x(1)=Number of type 1 components in sub-system 1 
%x(2)=Number of type 2 components in sub-system 1 
%x(3)=Number of type 3 components in sub-system 1 
%x(4)=Number of type 1 components in sub-system 2 
%x(5)=Number of type 2 components in sub-system 2 
%x(6)=Number of type 3 components in sub-system 2 
%x(7)=Operating temperature of sub-system 1 
%x(8)=Operating temperature of sub-system 2 
%R(1)=Reliability of type 1 component as a function of operating 
%temperature 
%R(2)=Reliability of type 2 component as a function of operating 
%temperature 
%Q(i)=Unreliability of sub-system i 
%noise=Random noise as a percentage of objective function value 
  
for i=1:9 
    x(i)=round(x(i)); 
end 
  
noise(1)=0; 
noise(2)=.005; 
noise(3)=.005; 
if (sum(x(1:3))>0)&&(sum(x(4:6))>0)&&(sum(x(7:10))>0) 
for i=1:3 
    R(1)=.8-.001*x(9+i); 
    R(2)=.85-.001*x(9+i); 
    R(3)=.89-.005*x(9+i); 
    Q(i)=((1-R(1))^x(3*i-2))*((1-R(2))^x(3*i-1))*((1-R(3))^x(3*i)); 
end 
XX(1)=Q(1)*Q(2)*Q(3); 
XX(1)=XX(1)+norm(noise(1)*XX(1)*randn); 
     
XX(2)=(... 
    (x(1)+x(2)+x(3))*(50-x(10))... 
    + (x(4)+x(5)+x(6))*((50-x(11))^2)... 
    + (x(7)+x(8)+x(9))*((50-x(12))^3)... 
    + 5*(x(1)+x(4)+x(7))... 
    + 10*(x(2)+x(5)+x(8))... 
    + 20*(x(3)+x(6)+x(9))... 
    ); 
  
XX(2)=XX(2)+noise(2)*XX(2)*randn; 
  
XX(3)=(... 
    20*(x(1)+x(4)+x(7))... 
    + 10*(x(2)+x(5)+x(8))... 
    + 5*(x(3)+x(6)+x(9))... 
    ); 
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XX(3)=XX(3)+noise(3)*XX(3)*randn; 
else 
    XX(1)=1; 
    XX(2)=Inf; 
    XX(3)=Inf; 
end 
  
YY=XX; 
  
return     
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APPENDIX B.  AutoGAD Output 

AutoGAD Output data from D-optimal design performed by Matthew Davis [23]. 
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2 14.00 0.01 1.00 0.10 128 45 14.00 9 1 1 122.5947 0.8355 0.0010 0.8696 

2 14.00 0.10 6.00 0.10 50 5 14.00 9 0 0 2.9468 0.8585 0.0006 0.9726 

2 7.78 0.10 1.00 0.01 150 45 10.67 9 1 1 2.9306 1.0000 0.0000 1.0000 

2 14.00 0.10 1.00 0.06 50 5 4.00 1 1 0 2.2418 0.9572 0.0016 0.9405 

2 6.89 0.10 1.00 0.10 94 45 11.78 1 0 1 29.4813 0.0000 0.0000 0.0000 

2 6.00 0.01 1.00 0.10 150 45 4.00 1 0 0 115.0929 0.8845 0.0051 0.5501 

2 6.00 0.01 1.00 0.07 73 5 4.00 1 0 1 75.7169 0.0000 0.0000 0.0000 

2 6.00 0.01 1.00 0.10 50 5 14.00 9 1 0 2.7026 1.0000 0.0060 0.0000 

2 14.00 0.01 6.00 0.07 150 45 14.00 1 0 0 2.37 1.0000 0.0000 1.0000 

2 14.00 0.10 6.00 0.01 150 5 14.00 1 0 1 20.3574 0.0000 0.0000 0.0000 

2 7.78 0.01 6.00 0.01 94 45 14.00 1 1 1 13.8299 0.0000 0.0000 0.0000 

2 6.00 0.10 2.67 0.10 50 45 4.00 9 0 0 4.2561 0.0085 0.0021 0.0165 

2 6.00 0.01 6.00 0.10 50 5 4.00 1 1 1 3.8197 1.0000 0.0000 1.0000 

2 6.00 0.10 1.00 0.01 50 5 14.00 1 0 1 2.174 1.0000 0.0000 1.0000 

2 14.00 0.10 6.00 0.10 50 45 14.00 5 1 0 3.7498 0.4208 0.0000 0.9977 

2 12.22 0.01 6.00 0.01 150 5 4.00 1 0 0 1.8924 0.9545 0.0661 0.1355 

2 6.00 0.08 1.00 0.01 150 5 14.00 1 1 1 15.7267 0.0000 0.0000 0.0000 

2 6.00 0.06 6.00 0.02 117 9 14.00 9 1 0 60.5903 0.9048 0.0311 0.1378 

2 14.00 0.03 1.00 0.01 150 5 4.00 4 0 1 3.0282 0.9790 0.0113 0.7949 

2 6.00 0.10 1.00 0.01 50 45 14.00 1 0 0 3.9133 0.9679 0.0230 0.6284 

2 6.00 0.01 6.00 0.10 150 45 14.00 9 1 0 4.6393 0.5149 0.0016 0.5628 

2 14.00 0.10 6.00 0.01 150 45 4.00 1 0 1 161.5426 0.0000 0.0000 0.0000 

2 14.00 0.10 1.00 0.10 150 5 7.33 9 1 0 73.0666 0.8165 0.0038 0.5287 

2 14.00 0.10 1.00 0.01 150 27 14.00 1 1 1 20.398 0.0000 0.0000 0.0000 

2 6.00 0.10 1.00 0.01 150 5 4.00 9 0 1 115.3771 0.9723 0.0158 0.4145 

2 14.00 0.01 6.00 0.01 50 45 4.00 1 0 1 2.0915 1.0000 0.0000 1.0000 

2 14.00 0.10 1.00 0.01 50 45 14.00 1 0 1 17.643 0.0000 0.0000 0.0000 

2 6.00 0.07 1.00 0.10 150 5 4.00 1 1 1 20.3076 0.0000 0.0000 0.0000 

2 14.00 0.01 6.00 0.10 50 5 14.00 9 1 0 1.862 1.0000 0.0000 1.0000 

2 14.00 0.10 1.00 0.10 50 5 14.00 9 1 1 4.9518 0.0000 0.0016 0.0000 

2 6.00 0.01 3.22 0.01 50 5 8.51 1 1 0 3.262 1.0000 0.0720 0.3555 

2 14.00 0.01 1.00 0.01 50 5 14.00 1 0 0 114.0148 0.9695 0.0357 0.1854 
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2 14.00 0.01 1.00 0.10 106 45 4.00 9 0 1 2.2467 1.0000 0.0000 1.0000 

2 14.00 0.01 3.22 0.08 50 5 4.00 1 1 0 3.1197 0.5200 0.0003 0.9820 

2 14.00 0.01 1.00 0.01 150 5 4.00 6 1 0 1.8657 1.0000 0.0000 1.0000 

2 6.00 0.10 1.00 0.10 150 5 4.00 9 1 0 3.1028 0.9126 0.0011 0.9534 

2 14.00 0.01 6.00 0.10 150 5 14.00 1 1 1 15.3021 0.0000 0.0000 0.0000 

2 8.67 0.01 6.00 0.06 150 45 4.00 9 0 1 6.3434 0.6726 0.0008 0.9610 

2 10.43 0.06 1.00 0.10 150 5 14.00 9 0 0 3.4368 0.4479 0.0009 0.9450 

2 14.00 0.10 6.00 0.01 50 45 7.35 9 0 1 3.0129 0.6505 0.0177 0.2966 

2 6.00 0.01 3.22 0.01 150 5 14.00 9 0 0 2.4645 1.0000 0.1135 0.0000 

2 14.00 0.04 1.00 0.01 50 45 7.33 1 1 0 4.9915 0.0000 0.0186 0.0000 

2 14.00 0.10 1.00 0.03 150 45 14.00 9 1 1 2.4199 1.0000 0.0000 1.0000 

2 14.00 0.10 1.00 0.10 150 45 4.00 1 0 0 2.4057 0.7971 0.0035 0.6587 

2 6.00 0.10 6.00 0.10 50 32 4.00 1 1 0 2.7378 0.7820 0.0125 0.3377 

2 6.00 0.10 6.00 0.10 150 5 4.00 1 0 0 4.2006 0.4293 0.0010 0.9389 

2 14.00 0.10 1.00 0.01 150 5 4.00 1 1 0 4.0828 1.0000 0.0000 1.0000 

2 14.00 0.10 6.00 0.10 150 40 10.25 1 1 1 9.542 0.0000 0.0000 0.0000 

2 6.00 0.01 1.00 0.01 50 5 4.00 9 0 0 2.1665 0.9568 0.1120 0.0888 

2 6.00 0.01 6.00 0.01 50 45 4.00 9 1 0 114.0467 0.9757 0.0966 0.0811 

2 6.00 0.01 1.00 0.10 50 45 4.00 1 1 0 2.083 1.0000 0.0014 0.0000 

2 6.00 0.01 6.00 0.01 50 5 14.00 5 0 0 4.4018 0.8275 0.0317 0.1034 

2 14.00 0.10 6.00 0.01 150 45 4.00 1 0 1 161.8296 0.0000 0.0000 0.0000 

2 6.00 0.10 5.44 0.10 150 5 14.00 9 0 1 3.9271 0.7688 0.0035 0.6833 

2 12.22 0.01 6.00 0.10 50 32 8.44 9 0 0 78.1869 0.7949 0.0024 0.6294 

2 6.00 0.10 6.00 0.10 50 5 14.00 1 1 0 114.2106 0.8906 0.0063 0.4949 

2 14.00 0.10 6.00 0.01 50 5 4.00 1 1 1 3.6441 0.0000 0.0000 0.0000 

2 14.00 0.01 6.00 0.01 150 45 4.00 9 1 1 68.5278 0.7101 0.0121 0.3135 

2 14.00 0.01 6.00 0.01 150 45 14.00 9 0 0 3.4453 0.9663 0.0053 0.8741 

2 6.00 0.10 6.00 0.01 83 45 4.00 1 0 0 2.4833 1.0000 0.0103 0.0000 

2 8.64 0.10 4.89 0.10 150 5 14.00 1 1 0 2.0776 1.0000 0.0000 1.0000 

2 6.00 0.01 6.00 0.10 150 5 6.36 9 0 1 2.0125 1.0000 0.0011 0.0000 

2 14.00 0.01 1.00 0.01 50 45 4.00 3 1 0 2.3949 0.9581 0.0879 0.1139 

2 6.00 0.10 6.00 0.01 150 45 14.00 1 1 0 2.2803 1.0000 0.0413 0.4575 

2 14.00 0.01 1.00 0.10 150 45 14.00 1 1 0 3.1524 0.9093 0.0005 0.9761 

2 14.00 0.01 1.00 0.10 50 45 14.00 9 1 1 4.9425 0.6561 0.0003 0.9850 

2 14.00 0.03 6.00 0.01 50 5 4.00 9 1 1 2.6556 1.0000 0.0000 1.0000 

2 6.00 0.10 1.00 0.01 150 5 4.00 9 0 1 114.5794 0.9675 0.0153 0.4408 

2 6.00 0.10 1.00 0.07 150 45 4.00 5 1 1 7.6229 0.4730 0.0025 0.8761 
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2 6.00 0.01 6.00 0.10 150 45 4.00 1 1 0 64.2793 0.7922 0.0048 0.4519 

2 6.00 0.10 6.00 0.10 150 45 14.00 9 0 1 3.3736 1.0000 0.0012 0.0000 

2 14.00 0.10 1.00 0.10 83 45 14.00 7 0 0 25.6183 1.0000 0.0000 1.0000 

2 6.00 0.01 6.00 0.10 150 5 6.36 9 0 1 2.2722 1.0000 0.0000 1.0000 

2 14.00 0.01 6.00 0.10 50 45 14.00 1 0 1 10.3465 0.0000 0.0000 0.0000 

2 10.44 0.01 1.00 0.10 150 18 4.00 9 1 1 3.0974 0.6364 0.0037 0.6203 

2 6.00 0.01 1.00 0.01 150 45 14.00 1 0 1 48.7212 0.0000 0.0000 0.0000 

-2 12.22 0.10 2.11 0.01 139 5 14.00 9 1 1 3.8639 0.9377 0.0099 0.7861 

-2 14.00 0.10 1.00 0.10 50 45 6.22 9 0 0 99.8503 0.8638 0.0007 0.9000 

-2 14.00 0.10 1.00 0.10 150 5 14.00 1 0 1 112.049 0.0000 0.0000 0.0000 

-2 14.00 0.01 1.00 0.01 150 45 14.00 9 1 0 2.1229 0.9545 0.0815 0.1128 

-2 6.00 0.09 1.00 0.10 50 5 4.00 1 1 1 8.6633 0.0000 0.0000 0.0000 

-2 6.00 0.10 3.78 0.01 50 5 4.00 6 1 0 1.162 1.0000 0.0000 1.0000 

-2 14.00 0.01 6.00 0.10 94 5 14.00 9 0 1 2.5694 1.0000 0.0000 1.0000 

-2 6.00 0.01 6.00 0.01 107 5 14.00 1 1 1 5.3885 1.0000 0.0000 1.0000 

-2 14.00 0.10 6.00 0.10 50 45 14.00 9 1 0 2.6648 0.6959 0.0013 0.7203 

-2 14.00 0.10 1.00 0.01 50 45 14.00 9 0 0 26.0713 1.0000 0.0000 1.0000 

-2 6.00 0.10 6.00 0.01 50 45 14.00 1 1 1 3.3168 0.0000 0.0000 0.0000 

-2 14.00 0.07 6.00 0.01 150 45 4.00 9 1 1 7.257 0.0000 0.0000 0.0000 

-2 11.66 0.10 1.00 0.01 150 45 6.56 2 0 1 8.0544 0.0000 0.0074 0.0000 

-2 14.00 0.03 1.00 0.10 150 5 4.00 9 1 0 24.5681 1.0000 0.0000 1.0000 

-2 14.00 0.01 6.00 0.01 150 14 12.89 9 0 1 102.466 0.9288 0.0057 0.6784 

-2 11.23 0.01 6.00 0.02 50 5 4.00 1 0 1 8.9165 0.0000 0.0000 0.0000 

-2 14.00 0.01 4.89 0.10 150 45 14.00 5 1 1 1.2539 1.0000 0.0000 1.0000 

-2 6.00 0.06 6.00 0.10 50 45 8.44 5 1 0 1.6472 0.9011 0.0011 0.9527 

-2 6.00 0.07 1.56 0.01 106 45 14.00 9 0 1 5.241 0.6205 0.0067 0.8036 

-2 6.00 0.01 6.00 0.01 50 5 14.00 9 1 1 2.1245 0.8049 0.0552 0.1558 

-2 10.47 0.06 6.00 0.10 150 5 4.00 9 0 1 2.513 0.7661 0.0008 0.8397 

-2 6.00 0.10 6.00 0.01 50 5 4.00 9 0 1 2.9034 0.9163 0.0117 0.7462 

-2 14.00 0.01 6.00 0.04 50 45 4.00 9 1 1 3.4 0.8580 0.0000 1.0000 

-2 14.00 0.01 1.00 0.10 50 5 7.33 1 0 1 1.1967 1.0000 0.0000 1.0000 

-2 13.11 0.01 1.00 0.01 150 5 14.00 1 0 0 2.5269 0.9561 0.0056 0.8669 

-2 6.00 0.01 1.00 0.10 150 45 4.00 1 1 1 22.7063 0.0000 0.0000 0.0000 

-2 6.00 0.10 6.00 0.06 50 5 14.00 9 0 0 2.4379 0.4512 0.0016 0.9077 

-2 6.00 0.10 1.00 0.01 116 5 14.00 9 0 0 5.652 0.0170 0.0144 0.0048 

-2 6.00 0.01 6.00 0.01 150 45 4.00 9 1 1 2.1729 1.0000 0.0284 0.0000 

-2 6.00 0.01 2.67 0.01 150 45 4.00 9 1 0 5.4065 0.0170 0.0150 0.0046 
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-2 14.00 0.10 6.00 0.01 50 45 10.67 1 1 0 1.3248 1.0000 0.0000 1.0000 

-2 6.00 0.01 6.00 0.01 150 5 14.00 9 0 0 2.1182 0.9838 0.0204 0.6009 

-2 14.00 0.01 6.00 0.10 139 45 4.00 1 0 0 7.4978 0.0000 0.0004 0.0000 

-2 6.00 0.10 1.00 0.10 50 45 14.00 9 1 1 3.0995 0.5203 0.0002 0.9506 

-2 14.00 0.01 1.00 0.01 50 5 14.00 1 1 1 1.7164 1.0000 0.0000 1.0000 

-2 14.00 0.10 1.00 0.10 150 45 14.00 3 1 0 6.8088 0.0000 0.0000 0.0000 

-2 14.00 0.10 6.00 0.10 50 5 4.00 9 1 0 3.0377 0.0000 0.0000 0.0000 

-2 14.00 0.10 1.00 0.01 50 5 4.00 1 0 1 12.753 0.0000 0.0000 0.0000 

-2 14.00 0.01 6.00 0.01 106 23 4.00 9 1 0 2.1696 0.9928 0.0242 0.5661 

-2 6.00 0.10 1.00 0.10 150 45 14.00 1 1 0 2.2943 1.0000 0.0000 1.0000 

-2 14.00 0.07 6.00 0.06 150 45 4.00 1 1 0 2.6914 0.4579 0.0006 0.9657 

-2 6.00 0.10 1.00 0.01 150 45 14.00 9 1 0 88.194 0.9659 0.0527 0.1293 

-2 6.00 0.01 1.00 0.01 50 5 14.00 9 0 0 2.7577 0.8844 0.0859 0.0551 

-2 9.56 0.10 6.00 0.01 150 45 14.00 5 0 0 1.6474 0.9609 0.0555 0.1604 

-2 14.00 0.10 1.00 0.10 150 45 7.33 9 0 1 3.349 0.5932 0.0000 1.0000 

-2 6.00 0.01 1.00 0.10 150 5 8.44 1 1 0 1.8088 0.8288 0.0052 0.5874 

-2 6.00 0.01 2.63 0.10 50 45 14.00 1 1 1 15.5156 0.0000 0.0000 0.0000 

-2 6.00 0.10 6.00 0.10 50 45 4.00 1 0 1 1.2303 1.0000 0.0000 1.0000 

-2 6.00 0.01 1.00 0.10 50 45 4.00 9 1 1 8.5107 0.1568 0.0010 0.3814 

-2 6.00 0.10 1.00 0.01 50 45 4.00 1 0 0 2.1368 0.9838 0.0267 0.5369 

-2 6.00 0.10 6.00 0.01 150 5 10.67 1 0 1 3.4011 0.0000 0.0000 0.0000 

-2 14.00 0.01 5.44 0.01 150 5 14.00 1 1 0 5.7714 0.0170 0.0153 0.0045 

-2 14.00 0.01 6.00 0.10 50 45 4.00 9 0 0 2.0116 0.8194 0.0041 0.6413 

-2 14.00 0.10 1.00 0.01 150 5 4.00 9 1 0 1.5736 0.9489 0.0775 0.1172 

-2 14.00 0.01 6.00 0.10 150 5 14.00 1 0 0 2.799 0.6351 0.0011 0.7402 

-2 6.00 0.01 2.67 0.10 150 45 4.00 9 0 0 2.6997 0.4518 0.0011 0.9343 

-2 14.00 0.10 6.00 0.01 50 45 4.00 6 0 0 3.1509 0.8061 0.0085 0.3393 

-2 14.00 0.01 6.00 0.10 94 5 14.00 9 0 1 1.6816 1.0000 0.0000 1.0000 

-2 6.00 0.10 1.00 0.01 50 32 4.00 9 1 1 4.3013 0.6986 0.0039 0.5509 

-2 6.00 0.01 1.00 0.01 50 18 4.00 1 0 0 2.6287 1.0000 0.0533 0.0000 

-2 6.00 0.02 6.00 0.09 150 40 12.75 1 0 0 2.9558 0.4794 0.0013 0.9295 

-2 14.00 0.10 1.00 0.10 50 5 4.00 5 0 0 2.7715 0.4518 0.0000 0.9979 

-2 6.00 0.10 6.00 0.10 150 32 4.00 1 1 1 133.8812 0.0000 0.0000 0.0000 

-2 14.00 0.10 5.44 0.10 150 5 4.00 1 0 0 2.9141 0.8642 0.0005 0.9765 

-2 6.00 0.10 6.00 0.01 50 5 14.00 1 1 0 2.5646 1.0000 0.0000 1.0000 

-2 14.00 0.01 6.00 0.10 150 5 4.00 1 0 1 3.2137 0.0000 0.0000 0.0000 

-2 14.00 0.10 6.00 0.10 150 5 14.00 1 1 1 6.9816 0.0000 0.0000 0.0000 
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-2 14.00 0.01 6.00 0.01 50 45 14.00 1 0 0 1.8728 0.9818 0.0177 0.6275 

-2 14.00 0.06 6.00 0.10 50 5 14.00 1 0 1 4.7273 0.0000 0.0000 0.0000 

-2 6.00 0.10 1.00 0.07 150 5 4.00 1 0 1 1.7776 1.0000 0.0000 1.0000 

-2 14.00 0.10 1.00 0.10 150 5 14.00 1 0 1 128.5538 0.0000 0.0000 0.0000 

-2 6.00 0.10 6.00 0.10 50 45 4.00 1 0 1 1.2963 1.0000 0.0000 1.0000 

-2 11.33 0.10 1.00 0.10 50 5 4.00 1 0 1 2.227 0.0000 0.0000 0.0000 

-2 6.00 0.10 6.00 0.01 150 5 10.67 1 0 1 3.5503 0.0000 0.0000 0.0000 

-2 13.11 0.01 6.00 0.10 50 45 14.00 1 1 0 100.3038 0.8638 0.0019 0.7561 

-2 6.00 0.01 1.00 0.08 50 14 14.00 5 0 1 3.6425 0.8598 0.0000 1.0000 

-2 14.00 0.10 6.00 0.10 50 45 4.00 1 1 1 1.7261 1.0000 0.0000 1.0000 

-2 6.00 0.01 1.00 0.10 150 9 14.00 9 1 1 2.1864 1.0000 0.0000 1.0000 

-2 14.00 0.01 1.00 0.03 150 32 4.00 1 1 0 2.3232 0.7826 0.0056 0.4257 

-2 6.00 0.01 1.00 0.01 50 45 14.00 9 1 0 2.2723 0.9801 0.0393 0.5054 

-2 14.00 0.10 6.00 0.01 150 28 4.00 9 0 0 1.345 1.0000 0.0000 1.0000 

-2 14.00 0.01 1.00 0.01 50 5 4.00 9 1 0 95.7794 0.9653 0.0538 0.1250 
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APPENDIX C.  Blue Dart Submission Form 

Blue Dart Submission Form 

 
First Name:   Christopher     Last Name:   Arendt 

 

Rank (Military, AD, etc.):  CAPT / AD Designator AFIT/GOR/ENS/09-01 

 

Student’s Involved in Research for Blue Dart:  Christopher Arendt 

 

Position/Title:  Master’s Student 

 

Phone Number:  _________________   E-mail:  christopher.arendt@afit.edu 

 

School/Organization:  Air Force Institute of Technology 

 

Status:   [X] Student     [ ] Faculty     [ ] Staff     [ ] Other 

 

Optimal Media Outlet (optional):  ____________________________________________ 

 

Optimal Time of Publication (optional):  ______________________________________ 

 

General Category / Classification:   

[ ] core values       [ ] command       [ ] strategy      

[ ] war on terror       [ ] culture & language     [ ] leadership & ethics      

[ ] warfighting       [ ] international security    [ ] doctrine      

[X] other (specify):  Acquisitions 

 

Suggested Headline:  Efficient Remedy for Acquisition Ailments 

 

Keywords:  simulation based test & evaluation, trade-off analysis, efficiency 

 

Blue Dart Text: 

 

Many in Congress and the press have attacked the Department of Defense 

acquisition process as bloated, out-dated, wasteful and inefficient.  These critics have 

singled out the Air Force for particularly harsh criticism due to the staggering price-tags 

associated with the acquisitions of the F-22 and the Joint Strike Fighter as well as its 

seeming unwillingness to embrace this new era of transition and change. 

 

In addition, the Air Force embarrassed itself with its handling of the high profile 

Tanker Lease acquisition program.  In fact, the Secretary of Defense was so unimpressed 
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with the Air Force’s attempts to find a new lead developer for the Tanker, that he decided 

the Air Force will no longer be the Acquisition Executive for its own future aircraft. 

 

Clearly, the Air Force must adapt quickly and decisively to remedy its real and 

perceived failures in the Defense Acquisition process.  Since the Defense Acquisition 

University estimates that nearly 80% of an acquisition’s total costs have been built in to 

the program before it even enters Operational Test & Evaluation, the Air Force would do 

well to find a way to increase efficiency and lower costs very early in the acquisitions 

process. 

 

In many cases, Air Force acquisition programs begin as research projects at the 

Air Force Research Laboratory, where immature designs progress through a series of 

tests and experiments.  Since the physical testing and experimentation of new designs can 

be prohibitively expensive, the Air Force has pushed for simulation-based acquisitions in 

which engineers obtain physical results from a small sub-set of possible designs and use 

mathematical models and computer simulations to predict the performance of untested 

designs.  An optimization technique that can handle the inherent randomness and 

complexities of simulation based testing could be used to eliminate inefficient designs 

through the analysis of simulated responses.  This technique should select which efficient 

designs warrant further investigation and are worth the costs of physical testing. 

 

Fortunately, researchers at the Air Force Institute of Technology’s Department of 

Operational Sciences have developed dynamic optimization techniques that should prove 

effective in rehabilitating the early stages of many Air Force acquisition programs.  

Principal among these new methods is an adaptive process that can automatically and 

efficiently evaluate and display to a decision maker the benefits and trade-offs of a wide 

range of engineering design problems. 

 

Whereas current optimization methods may only be able to find the design that is 

best in a single objective or one specific measure of performance, this new adaptive 

evaluation method can be used to find a wide variety of designs that represent efficient 

performance in multiple objectives, across a broad range of criteria, including life-cycle 

logistics and management costs. 

 

Furthermore, this new optimization technique was developed specifically to work 

with simulation-based testing and to handle the many different kinds of variables needed 

to adequately describe real-world conditions.  These qualities make the optimization 

method a natural and powerful tool for simulation-based acquisitions. 

 

If implemented in the earliest research and design stages of Air Force acquisition 

programs, this new optimization method has the potential to eliminate the test and 

evaluation costs of inherently inferior designs.  Further, this method is not limited to 

helping in the basic engineering phase of an acquisition program.  It can easily be adapted 

to find and eliminate many kinds of programmatic inefficiencies in all stages of the 
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acquisition process, including requirements or capabilities analysis, contract competition 

and program scheduling. 

 

Adopting this efficiency-based optimization method in conjunction with a 

renewed emphasis on modeling and simulation in all phases of the acquisition process is 

a clear, direct and responsible approach to answering Air Force critics.  The Air Force 

has invested a great deal of time, energy, and money to develop breakthrough 

technologies.  Now is the perfect time for the Air Force to use one of these homegrown 

discoveries to take the lead and establish a new standard of excellence for acquisitions in 

the Department of Defense. 

 

Disclaimer is placed on the bottom : The views expressed in this article are those of the 

author and do not reflect the official policy or position of the United States Air Force, 

Department of Defense, or the US Government. 
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