

AFRL-RI-RS-TR-2009-101
Final Technical Report
April 2009

INFORMATION INTEGRATION SEEDLING FOR
DATA INTEGRATION AND EXPLOITATION
SYSTEM THAT LEARNS (DIESEL)

SRI International

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-101 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

ROGER J. DZIEGIEL, Jr. JOSEPH CAMERA, Chief
Work Unit Manager Information & Intelligence Exploitation Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 09
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Sep 07 – Dec 08
4. TITLE AND SUBTITLE

INFORMATION INTEGRATION SEEDLING FOR DATA INTEGRATION
AND EXPLOITATION SYSTEM THAT LEARNS (DIESEL)

5a. CONTRACT NUMBER
FA8750-07-D-0185/0003

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Pedro M. Domingos

5d. PROJECT NUMBER
PALT

5e. TASK NUMBER
QD

5f. WORK UNIT NUMBER
03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3453

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIED
525 Brooks Rd.
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-101

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2009-1333

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This Seedling investigated three key problems in information integration. All three problems are present simultaneously, and a truly
robust and widely applicable information integration system therefore needs to solve the three problems simultaneously. A unified
approach was developed to address these problems.

15. SUBJECT TERMS
Entity Resolution, Schema Matching, Concept Matching, Markov Logic, Algorithms, Artificial Intelligence, Machine Learning,
Computer Science

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

25

19a. NAME OF RESPONSIBLE PERSON
Roger J. Dziegiel, Jr.

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

1.0 INTRODUCTION 1
2.0 BACKGROUND ON MARKOV LOGIC 2
3.0 SEMANTIC NETWORK EXTRACTOR 3

 3.1 System Description 3
 3.2 Experiments 5

4.0 JOINT UNSUPERVISED COREFERENCE RESOLUTION 8
 4.1 System Description 8
 4.1.1 Base MLN 8
 4.1.2 Full MLN 10
 4.1.3 Extensions to Weight Learning and Inference 10
 4.2 Experiments 11

5.0 LEARNING MLN STRUCTURE VIA HYPERGRAPH LIFTING 13
 5.1 System Description 13
 5.1.1 Hypergraph Lifting 14
 5.1.2 Path Finding 15
 5.1.3 Clause Creation and Pruning 15
 5.2 Experiments 16

6.0 CONCLUSION AND RECOMMENDATION 17
7.0
8.0

REFERENCES
LIST OF ACRONYMS

18
20

ii

LIST OF FIGURES

1 Snippet of Semantic Network Learned By SNE 7
2 Example of Hypergraph Lifting 14

LIST OF TABLES

1 Performance when SNE Clusters Relations and Objects Jointly and Separately 6
2 Performance of SNE and Three Other Relational Clustering Systems 6
3 Runtimes of SNE and Three Other Relational Clustering Systems 7
4 Coreference Results in MUC Scores on the MUC-6 and ACE-2004 Datasets 12
5 Coreference Results in MUC Scores on the ACE-2 Dataset 12
6 Coreference Results in B3 Scores on the ACE-2 Dataset 12
7 Experimental Comparison of MLN Structure Learners 16

1

1.0 INTRODUCTION

The goal of the University of Washington effort under DIESEL is to develop a unified approach
to entity, schema and concept matching. Entity resolution is the problem of determining which
mentions in the data correspond to the same object (e.g., “J. Smith” and “Jane Smith” may be the
same person). Schema matching is the problem of determining which fields in a database or other
structure correspond to the same attributes (e.g., “Contact” and “Telephone” may be the same
attribute). Concept matching (a.k.a. ontology alignment) is the problem of determining which
concepts in two taxonomies correspond to each other (e.g., “Faculty” in one taxonomy may
mean the same as “Staff” in another). To date, each of these problems has been addressed
separately, assuming that the other two have been solved a priori (e.g., schema matching may be
performed assuming that objects and concepts have already been resolved). In most cases,
however, all three problems are present simultaneously, and a truly robust and widely applicable
information integration system therefore needs to solve the three simultaneously.
 We successfully developed the approach we planned, as described in a series of papers [1, 2,
3], building on our earlier work on entity resolution [4, 5, 6]. Our approach uses Markov logic
and a combination of existing and new learning and inference algorithms for it [7]. The key idea
is to leverage joint inference, gradually propagating information from easier to harder matches.
For example, if two fields are the same, then perhaps the corresponding objects are the same, and
maybe the concepts they instantiate are also the same. We developed both supervised and
unsupervised approaches (i.e., with and without labeled data), and observation-level and object-
level approaches (i.e., inferring equality of observations vs. inferring their membership in
objects, relations, etc.). Generally speaking, unsupervised object-level matching is the superior
approach, and the one we would recommend a priori. We also studied the incorporation of
background knowledge into the matching process, and we found that it is extremely helpful, in
the sense that a small amount of easily-stated knowledge can go a long way toward ensuring
accurate matching. We also studied how background knowledge can be efficiently induced from
data if it is not known a priori, and found that the learned knowledge correctly captures the
regularities in the data, and helps in ensuring good matches.
 We begin by briefly reviewing some background on Markov logic. Then we describe the
three systems we developed in detail, and present their experimental results. Finally we conclude
with some recommendations.

2

2.0 BACKGROUND ON MARKOV LOGIC

Markov logic networks (MLNs) combine logic and probability by attaching weights to first-order
logic rules [8], and viewing these as templates for features of Markov networks [9].
 In first-order logic, formulas are constructed using four types of symbols: constants,
variables, functions, and predicates. Constants represent objects in the domain of discourse (e.g.,
people: (Anna, Bob, etc.). Variables (e.g., x, y) range over the objects in the domain. Predicates
represent relations among objects (e.g., Friends), or attributes of objects (e.g., Student).
Variables and constants may be typed. An atom is a predicate symbol applied to a list of
arguments, which may be variables or constants (e.g., Friends(Anna,x)). (In this report, we use
predicate and relation interchangeably.) A ground atom is an atom all of whose arguments are
constants (e.g., Friends(Anna,Bob)). A world is an assignment of truth values to all possible
ground atoms. A database is a partial specification of a world; each atom in it is true, false or
(implicitly) unknown. A clause is a disjunction of non-negated/negated atoms.
 A Markov network or Markov random field is a model for the joint distribution of a set of
variables ܺ ൌ ሺ ଵܺ, … , ܺ௡ሻ א and a set of potential ܩ It is composed of an undirected graph .ࢄ
functions ߶௞. The graph has a node for each variable, and the model has a potential function for
each clique in the graph. A potential function is a non-negative real-valued function of the state
of the corresponding clique. The joint distribution represented by a Markov network is given by
ܲሺܺ ൌ ሻݔ ൌ భ

ೋ
∏ ߶௞ሺݔሼ௞ሽሻ௞ where ߶௞ሺݔሼ௞ሽሻ is the state of the ݇th clique (i.e., the state of the

variables that appear in that clique). ܼ, known as the partition function, is given by ܼ ൌ
∑ ∏ ߶௞ሺݔሼ௞ሽሻ௞௫ࢄא . Markov networks are often conveniently represented as log-linear models,
with each clique potential replaced by an exponentiated weighted sum of features of the state,
leading to ܲሺܺ ൌ ሻݔ ൌ భ

ೋ expሺ ∑ ௝ݓ ௝݂ሺݔሻሻ௝ . A feature may be any real-valued function of the
state. This report will focus on binary features ௝݂ሺݔሻ א ሼ0,1ሽ. In the most direct translation from
the potential-function form, there is one feature corresponding to each possible state ݔሼ௞ሽ of each
clique, with its weight being log ߶௞ሺݔሼ௞ሽሻ . This representation is exponential in the size of the
cliques. However, we are free to specify a much smaller number of features (e.g., logical
functions of the state of the clique), allowing for a more compact representation than the
potential-function form, particularly when large cliques are present. Markov logic takes
advantage of this.
 A Markov logic network (MLN) is a set of weighted first-order formulas. Together with a set
of constants representing objects in the domain, it defines a Markov network with one node per
ground atom and one feature per ground formula. The weight of a feature is the weight of the
first-order formula that originated it. The probability distribution over possible worlds ݔ
specified by the ground Markov network is given by ܲሺܺ ൌ ሻݔ ൌ ଵ

௭
exp൫∑ ∑ ிא೔௜ீאሻ௝ݔ௜݃௝ሺݓ ൯,

where ܼ is the partition function, ܨ is the set of all first-order formulas in the MLN, ܩ௜ is the set
of groundings of the ݅th first-order formula, and ݃௝ሺݔሻ ൌ 1 if the ݆th ground formula is true and
݃௝ሺݔሻ ൌ 0 otherwise. Markov logic enables us to compactly represent complex models in non-
i.i.d. domains. General algorithms for inference and learning in Markov logic are discussed in
[7].

3

3.0 SEMANTIC NETWORK EXTRACTOR

3.1 System Description

Our Semantic Network Extractor (SNE) system [1] jointly clusters objects (entities) and relations
(schemas/concepts) in an unsupervised manner, without requiring the number of clusters to be
specified in advance. SNE does so by allowing information from object clusters it has created at
each step to be used in forming relation clusters, and vice versa. The object clusters and relation
clusters respectively form the nodes and links of a semantic network. A link exists between two
nodes if and only if a true ground fact can be formed from the symbols in the corresponding
relation and object clusters.
 SNE is defined using finite second-order Markov logic in which variables can range over
relations (predicates) as well as objects (constants). Extending Markov logic to second order
involves simply grounding atoms with all possible predicate symbols as well as all constant
symbols, and allows us to represent some models much more compactly than first-order Markov
logic.
 In SNE, we assume that relations are binary, i.e., relations are of the form ݎሺݔ, is ݎ ሻ whereݕ
a relation symbol, and ݔ and ݕ are object symbols. We use ߛ௜ and ߁௜ to respectively denote a
cluster and clustering (i.e., a partitioning) of symbols of type ݅. If ݔ ,ݎ, and ݕ are respectively in
cluster ߛ௥, ߛ௫, and ߛ௬, we say that ݎሺݔ, ,௥ߛሻ is in the cluster combination ሺݕ ,௫ߛ ௬ሻ. The learningߛ
problem in SNE consists of finding the cluster assignment ߁ ൌ ൫߁௥, ,௫߁ ௬൯ that maximizes the߁
posterior probability ܲሺܦ|߁ሻ ן ܲሺ߁, ሻܦ ൌ ܲሺ߁ሻܲሺ߁|ܦሻ where ܦ is a vector of truth
assignments to the observable ݎሺݔ, .ሻ ground atomsݕ
 We define one MLN for the likelihood ܲሺ߁|ܦሻ component, and one MLN for the prior ܲሺ߁ሻ
component of the posterior probability with just four simple rules.
 The MLN for the likelihood component only contains one rule stating that the truth value of
an atom is determined by the cluster combination it belongs to:

,ݎ׊ ,ݔ ,ݕ ൅ߛ௥, ൅ߛ௫, ൅ߛ௬ ݎ א ௥ߛ ר ݔ א ௫ߛ ר ݕ א ௬ߛ ֜ ,ݔሺݎ ሻݕ

The “+”' notation is syntactic sugar that signifies that there is an instance of this rule with a
separate weight for each cluster combination ሺߛ௥, ,௫ߛ ௬ሻ. This rule predicts the probability ofߛ
query atoms given the cluster memberships of the symbols in them. This is known as the atom
prediction rule.
 Three rules are defined in the MLN for the prior component. The first rule states that each
symbol belongs to exactly one cluster:

ݔ ߛ ଵ׌ ݔ׊ א ߛ

This rule is hard, i.e., it has infinite weight and cannot be violated.
 The second rule imposes an exponential prior on the number of cluster combinations. This
rule combats the proliferation of cluster combinations and consequent over fitting, and is
represented by the formula

,௥ߛ׊ ,௫ߛ ,ݎ ׌ ௬ߛ ,ݔ ݎ ݕ א ௥ߛ ר ݔ א ௫ߛ ר ݕ א ௬ߛ

4

with negative weight െߣ. The parameter ߣ is fixed during learning, and is the penalty in log-
posterior incurred by adding a cluster combination to the model. Thus larger ߣs lead to fewer
cluster combinations being formed. This rule represents the complexity of the model in terms of
the number of instances of the atom prediction rule (which is equal to the number of cluster
combinations).
 The last rule encodes the belief that most symbols tend to be in different clusters. It is
represented by the formula

,ݔ׊ ݔ ′, ,௫ߛ ݔ ′௫ߛ א ௫ߛ ר ݔ ′ א ′௫ߛ ר ݔ ് ݔ ′ ֜ ௫ߛ ് ′௫ߛ

with positive weight ߤ. The parameter ߤ is also fixed during learning. We expect there to be
many concepts and high-level relations in a large heterogeneous body of data. If the tuple
extraction process samples instances of these concepts and relations sparsely, and we expect each
concept or relation to have only a few instances sampled, in many cases only one. Thus we
expect most pairs of symbols to be in different concept and relation clusters.
 SNE simplifies the learning problem by performing hard assignment of symbols to clusters
(i.e., instead of computing probabilities of cluster membership, a symbol is simply assigned to its
most likely cluster). This allows the maximum a posteriori (MAP) weights of the atom prediction
rules, and the MAP log-posterior to be computed in closed form. The equation for the log-
posterior, as defined by the two MLNs, can be written in closed form as

log ܲሺ߁| ܴሻ ൌ ෍ ቂݐ௞ log ቀ ௧ೖା ఈ
௧ೖା௙ೖାఈାఉቁ ൅ ௞݂log ቀ ௙ೖା ఉ

௧ೖା௙ೖାఈାఉቁቃ െ ݉ߣ ൅ ݀ߤ ൅ ሺ1ሻ ܥ
௞א௄

where ܭ is the set of cluster combinations; ݐ௞ and ௞݂ are respectively the number of true and
false ground atoms in cluster combination ݇; ߙ and ߚ are smoothing parameters; ݉ is the number
of cluster combinations, ݀ is the number of pairs of symbols that belong to different clusters, and
 .is a constant ܥ

5

 Since the log-posterior can be computed in closed-form, SNE simply searches over cluster
assignments, evaluating each assignment by its posterior probability. (To speed up the
computation of Equation 2, we make an approximation to it. Please refer to [1] for details.) SNE
uses a bottom-up agglomerative clustering algorithm to find the MAP clustering. The algorithm
begins by assigning each symbol to its own unit cluster. Next we try to merge pairs of clusters of
each type. We create candidate pairs of clusters, and for each of them, we evaluate the change in
posterior probability (Eqn. 2) if the pair is merged. If the candidate pair improves posterior
probability, we store it in a sorted list. We then iterate through the list, performing the best
merges first, and ignoring those containing clusters that have already been merged. In this
manner, we incrementally merge clusters until no merges can be performed to improve posterior
probability. To avoid creating all possible candidate pairs of clusters of each type (which is
quadratic in the number of clusters), we make use of canopies [10]. A canopy for relation
symbols is a set of clusters such that there exist object clusters ߛ௫ and ߛ௬, and for all clusters ߛ௥ in
the canopy, the cluster combination ሺߛ௥, ,௫ߛ ,ݔሺݎ ௬ሻ contains at least one true ground atomߛ .ሻݕ
We say that the clusters in the canopy share the property ൫ߛ௫, ݔ ௬൯. Canopies for object symbolsߛ
and ݕ are similarly defined. We only try to merge clusters in a canopy that is no larger than a
parameter ݔܽܯݕ݌݋݊ܽܥ. This parameter limits the number of candidate cluster pairs we consider
for merges, making our algorithm more tractable. Furthermore, by using canopies, we only try
“good” merges, because symbols in clusters that share a property are more likely to belong to the
same cluster than those in clusters with no property in common.

3.2 Experiments

We conducted experiments to investigate the efficacy of jointly clustering relations and objects
vis-à-vis clustering them separately (i.e., clustering relations but not objects, and vice versa). We
also investigated the effectiveness of SNE against three other relational clustering systems, viz.,
Multiple Relational Clusterings (MRC), Information-Theoretic Co-clustering (ITC), and Infinite
Relational Model (IRM).
 All experiments were conducted on a large Web dataset consisting of 2.1 million ݎሺݔ, ሻݕ
triples (publicly available at http://knight.cis.temple.edu-/~yates/data/resolver_data.tar.gz)
extracted in a Web crawl by the information extraction system TextRunner [11]. Each triple
takes the form ݎሺݔ, are object symbols. Some ݕ andݔ is a relation symbol, and ݎ ሻ whereݕ
example triples are: named_after (Jupiter, Roman_god) and upheld (Court, ruling). There are
15,872 distinct symbols, 700,781 distinct ݔ symbols, and 665,378 distinct ݕsymbols. Two
characteristics of TextRunner's extractions are that they are sparse and noisy. To reduce the noise
in the dataset, we only considered symbols that appeared at least 25 times. This leaves 10,214 ݎ
symbols, 8942 ݔ symbols, and 7995 ݕ symbols. There are 2,065,045 triples that contain at least
one symbol that appears at least 25 times. In all experiments, we set the ݔܽܯݕ݌݋݊ܽܥ parameter
to 50. We also made the closed-world assumption for all systems (i.e., all triples not in the
dataset are assumed false). Because the other relational clustering systems do not scale to the
Web dataset, we had to modify them to use SNE’s search algorithm. We also limited MRC to
find a single clustering (it is able to find multiple) for an apple-to-apple comparison with SNE.

http://knight.cis.temple.edu-/~yates/data/resolver_data.tar.gz

6

We evaluated the clustering’s learned by each model against a gold standard that we manually
created. The gold standard assigns 2688 ݎ symbols, 2568 ݔ symbols, and 3058 ݕ symbols to 874,
511, and 700 non-unit clusters respectively. We measured the pairwise precision, recall and F1
of each model against the gold standard. Pairwise precision is the fraction of symbol pairs in
learned clusters that appear in the same gold clusters. Pairwise recall is the fraction of symbol
pairs in gold clusters that appear in the same learned clusters. F1 is the harmonic mean of
precision and recall.
 Figure 1 shows a snippet of the semantic network learned by SNE. Table 1 shows the
performance of SNE when it clusters relations and objects jointly and when it clusters them
separately. From that figure, we can see that SNE has the better overall F1 when it clusters
relations and objects jointly (SNE-Sep). We show the best F1s in bold. Table 2 compares
performance of SNE to those of three other relational clustering systems, and shows that SNE
has the best overall F1 score. From Table 3 which shows the runtimes of the various systems, we
see that SNE scales well relative to the other systems. We also evaluated the systems in terms of
the semantic statements that they learned where a semantic statement is a cluster combination
with one true ground atom. We found that SNE outperforms the other systems in terms of the
fraction of correct semantic statements discovered (see [1] for details). We also found the
clusters discovered by SNE agree well with those in a publicly available ontology WordNet [12].

Table 1. Performance when SNE Clusters Relations and Objects Jointly and

 Separately (SNE-Sep)

Systems

Relation Object
Precision Recall F1 Precision Recall F1

SNE 0.452 0.187 0.265 0.509 0.062 0.110
SNE-Sep 0.597 0.116 0.194 0.535 0.046 0.085

Table 2. Performance of SNE and Three Other Relational Clustering Systems

Systems

Relation Object
Precision Recall F1 Precision Recall F1

SNE 0.452 0.187 0.265 0.509 0.062 0.110
IRM 0.201 0.089 0.124 0.280 0.042 0.073
ITC 0.773 0.003 0.006 0.617 0.025 0.048

MRC 0.054 0.044 0.049 0.045 0.009 0.015

Table 3. Runtimes of SNE and Three Other Relational Clustering Systems

7

Systems Runtimes

(hrs)
SNE 5.5
IRM 9.5
ITC 72.0

MRC 1.1

Figure 1: Snippet of Semantic Network Learned by SNE

4.0 JOINT UNSUPERVISED COREFERENCE RESOLUTION

8

4.1 System Description

In this system, we demonstrate how we can easily add background knowledge using Markov
logic to improve the matching of entities. We tested the efficacy of our system on the problem of
coreference resolution, i.e., identifying mentions (typically noun phrases) that refer to the same
entities. This is a key sub-problem in many natural language processing (NLP) applications,
including information extraction, question answering, machine translation, etc.
 Supervised learning approaches treat the problem as one of classification: for each pair of
mentions, predict whether they corefer or not [13]. While successful, these approaches require
labeled training data, consisting of mention pairs and the correct decisions for them. This limits
their applicability. Unsupervised approaches are attractive due to the availability of large
quantities of unlabeled text. However, unsupervised coreference resolution is much more
difficult. The most sophisticated model to date proposed by [14] still lags supervised ones by a
substantial margin. The lack of label information in unsupervised coreference resolution can
potentially be overcome by performing joint inference, which leverages the “easy” decisions to
help make related “hard” ones. Relations that have been exploited in supervised coreference
resolution include transitivity and anaphor city. (Transitivity refers to the condition where if
mentions A and B corefer, and B and C corefer, then A and C corefer. Anaphoricity refers to the
condition where a linguistic unit (e.g., pronoun) refers back to another unit as in the use of him to
refer to Alan in the sentence Alan told Betty to get him some candy.) However, there is little work
to date on joint inference for unsupervised resolution. We address this problem using Markov
logic, which allows us to easily build models involving relations among mentions, like
apposition and predicate nominal’s. By extending the state-of-the-art algorithms for inference
and learning in Markov logic, we developed the first general-purpose unsupervised learning
algorithm, and applied it to unsupervised coreference resolution.
 We incrementally create more sophisticated MLNs for coreference resolution to illustrate the
ease of specifying models in Markov logic.

4.1.1 Base MLN

The main query predicate is ݐݏݑ݈ܥ݊ܫሺ݉, ܿ!ሻ, which is true if and only if mention ݉ is in cluster
ܿ. (A query predicate is a predicate whose value we do not know at test time, would like to
infer.) The “ܿ!” notation signifies that for each ݉, this predicate is true for a unique value of ܿ.
The main evidence predicate is ݀ܽ݁ܪሺ݉, a token, and which is ݐ ሻ, where ݉ is a mention and!ݐ
true if and only if ݐ is the head of ݉. A key component in our MLN is a simple head mixture
model, where the mixture component priors are represented by the unit clause ݐݏݑ݈ܥ݊ܫሺ൅݉, ൅ܿሻ
and the head distribution is represented by the head prediction rule

,ሺ݉ݐݏݑ݈ܥ݊ܫ ൅ܿሻ ר ,ሺ݉݀ܽ݁ܪ ൅ݐሻ.

9

All free variables are implicitly universally quantified. The “ ” notation signifies that the MLN
contains an instance of the rule, with a separate weight, for each value combination of the
variables with a plus sign. By convention, at each inference step we name each non-empty
cluster after the earliest mention it contains. This helps break the symmetry among mentions,
which otherwise produces multiple optima and makes learning unnecessarily harder. To
encourage clustering, we impose an exponential prior on the number of non-empty clusters with
weight −1. The above model only clusters mentions with the same head, and does not work well
for pronouns. To address this, we introduce the predicate ݊ݎܲݏܫሺ݉ሻ, which is true if and only if
the mention ݉ is a pronoun, and adapt the head prediction rule as follows:

൓݊ݎܲݏܫሺ݉ሻ ^ ݐݏݑ݈ܥ݊ܫሺ݉, ൅ܿሻ ^ ݀ܽ݁ܪሺ݉, ൅ݐሻ

This is always false when ݉ is a pronoun, and thus applies only to non-pronouns. Pronouns tend
to resolve with mentions that are semantically compatible with them. Thus we introduce
predicates that represent entity type, number, and gender: ܶ݁݌ݕሺݔ, ݁!ሻ, ,ݔሺݎܾ݁݉ݑܰ ݊!ሻ,
,ݔሺݎ݁݀݊݁ܩ ݃!ሻ, where ݔ can be either a cluster or mention, ݊ א ሼܵ݅݊݃ݎ݈ܽݑ, ݁ ,ሽ݈ܽݎݑ݈ܲ א
ሼܲ݁݊݋ݏݎ, ,݊݋݅ݐܽݖ݅݊ܽ݃ݎܱ ,݊݋݅ݐܽܿ݋ܮ ݃ ሽ, andݎ݄݁ݐܱ א ሼ݈݁ܽܯ, ,݈݁ܽ݉݁ܨ ሽ. Many of theseݎ݁ݐݑ݁ܰ
are known for pronouns, and some can be inferred from simple linguistic cues (e.g., “Ms. Galen”
is a singular female person, while “XYZ Corp.” is an organization). (We used the following cues:
Mr., Ms., Jr., Inc., Corp., corporation, and company.) Entity type assignment is represented by
the unit clause ܶ݁݌ݕሺ൅ݔ, ൅݁ሻ, and similarly for number and gender. A mention should agree
with its cluster in entity type. This is ensured by the hard rule (which has infinite weight and
must be satisfied)

,ሺ݉ݐݏݑ݈ܥ݊ܫ ܿሻ ֜ ሺ ܶ݁݌ݕሺ݉, ݁ሻ ֞ ,ሺܿ݁݌ݕܶ ݁ሻሻ

There are similar hard rules for number and gender.
 Different pronouns prefer different entity types, as represented by

ሺ݉ሻ݊ݎܲݏܫ ר ,ሺ݉ݐݏݑ݈ܥ݊ܫ ܿሻ ר ,ሺ݉݀ܽ݁ܪ ൅ݐሻ ר ,ሺܿ݁݌ݕܶ ൅݁ሻ

which only applies to pronouns, and whose weight is positive if pronoun ݐ is likely to assume
entity type ݁ and negative otherwise. There are similar rules for number and gender. Aside from
semantic compatibility, pronouns tend to resolve with nearby mentions. To model this, we
impose an exponential prior on the distance (number of mentions) between a pronoun and its
antecedent, with weight −1.

10

4.1.2 Full MLN

Syntactic relations among mentions often suggest coreference. Incorporating such relations into
our MLN is straightforward. We illustrate this with two examples: apposition and predicate
nominals. We introduce a predicate for apposition, ݋݌݌ܣሺݔ, are mentions, and ݕ ,ݔ ሻ, whereݕ
which is true if and only if ݕ is an appositive of ݔ. We then add the rule

,ݔሺ݋݌݌ܣ ሻݕ ֜ ሺݐݏݑ݈ܥ݊ܫሺݔ, ܿሻ ֞ ,ݕሺݐݏݑ݈ܥ݊ܫ ܿሻሻ

which ensures that ݕ ,ݔ are in the same cluster if ݕ is an appositive of ݔ. Similarly, we introduce
a predicate for predicate nominals, ܲ݉݋ܰ݀݁ݎሺݔ, ሻ, and the corresponding rule. The weights ofݕ
both rules can be learned from data with a positive prior mean. For simplicity, in this paper we
treat them as hard constraints.

4.1.3 Extensions to Weight Learning and Inference

In order to apply existing Markov logic inference and learning algorithms to the problem of
unsupervised coreference resolution, we had to extend them. Unsupervised learning in Markov
logic maximizes the conditional log-likelihood

,ݔሺܮ ሻݕ ൌ log ܲሺܻ ൌ ܺ|ݕ ൌ ሻݔ ൌ log ෍ ܲሺܻ ൌ ,ݕ ܼ ൌ ܺ|ݖ ൌ ሻݔ
௭

where ܼ are unknown predicates. In our coreference resolution MLN, ܻ includes ݀ܽ݁ܪ and
known groundings of ܶݎܾ݁݉ݑܰ ,݁݌ݕ and ݎ݁݀݊݁ܩ; ܼ includes ݐݏݑ݈ܥ݊ܫ and unknown
groundings of ܶݎ݁݀݊݁ܩ ,ݎܾ݁݉ݑܰ ,݁݌ݕ; and ܺ includes ݋݌݌ܣ ,݊ݎܲݏܫ and ܲ݉݋ܰ݀݁ݎ. (For
simplicity, from now on we drop ݔ from the formula.) With ܼ, the optimization problem is no
longer convex. However, we can still find a local optimum using gradient descent, with the
gradient being

߲
௜ݓ߲

ሻݕሺܮ ൌ E௓|௬ሾ݊௜ሿ െ E௒,௓ሾ݊௜ሿ

where ݊௜ is the number of true groundings of the ݅௧௛ clause. We extended PSCG for
unsupervised learning. The gradient is the difference of two expectations, each of which can be
approximated using samples generated by MC-SAT [15]. The ሺ݅, ݆ሻth entry of the Hessian is now

߲ଶ

௝ݓ௜߲ݓ߲
ሻݕሺܮ ൌ Cov௓|௬ൣ݊௜, ௝݊൧ െ Cov௒,௓ሾ݊௜, ௝݊ሿ

and the step size can be computed accordingly. Since our problem is no longer convex, the
negative diagonal Hessian may contain zero or negative entries, so we first took the absolute
values of the diagonal and added 1, then used the inverse as the preconditioner. Notice that when
the objects form independent subsets (in our cases, mentions in each document), we can process
them in parallel and then gather sufficient statistics for learning. We developed an efficient

11

parallelized implementation of our unsupervised learning algorithm using the message-passing
interface (MPI). To reduce burn-in time, we initialized MC-SAT with the state returned by
MaxWalkSAT [16], rather than a random solution to the hard clauses. In the existing
implementation in Alchemy [17], SampleSAT [18] flips only one atom in each step, which is
inefficient for predicates with unique-value constraints (e.g., ݀ܽ݁ܪሺ݉, ܿ!ሻ). Such predicates can
be viewed as multi-valued predicates (e.g., ݀ܽ݁ܪሺ݉ሻ with value ranging over all ܿ’s) and are
prevalent in NLP applications. We adapted SampleSAT to flip two or more atoms in each step so
that the unique-value constraints are automatically satisfied. By default, MC-SAT treats each
ground clause as a separate factor while determining the slice. This can be very inefficient for
highly correlated clauses. For example, given a non-pronoun mention m currently in cluster ܿ
and with head ݐ, among the mixture prior rules involving ݉ ݐݏݑ݈ܥ݊ܫሺ݉, ܿሻ is the only one that is
satisfied, and among those head-prediction rules involving ݉, ൓݊ݎܲݏܫሺ݉ሻ ר ,ሺ݉ݐݏݑ݈ܥ݊ܫ ܿሻ ר
,ሺ݉݀ܽ݁ܪ ߶ ሻ is the only one that is satisfied; the factors for these rules multiply toݐ ൌ
expሺݓ௠,௖ ൅ ,ሺ݉ݐݏݑ݈ܥ݊ܫ ௠,௖ is the weight forݓ ௠,௖,௧ሻ, whereݓ ܿሻ, and ݓ௠,௖,௧ is the weight for
൓݊ݎܲݏܫሺ݉ሻ ר ,ሺ݉ݐݏݑ݈ܥ݊ܫ ܿሻ ר ,ሺ݉݀ܽ݁ܪ ሻ, since an unsatisfied rule contributes a factor ofݐ
݁଴ ൌ 1. We extended MC-SAT to treat each set of mutually exclusive and exhaustive rules as a
single factor. E.g., for the above ݉, MC-SAT now samples ݑ uniformly from ሺ0, ߶ሻ, and
requires that in the next state ߶ be no less than ݑ. Equivalently, the new cluster and head for ݉
should satisfy ݓ௠,௖ ′ ൅ ௠,௖ݓ ′,௧ ′ ൒ log ሺݑሻ. We extended SampleSAT so that when it considers
flipping any variable involved in such constraints (e.g., ܿ or ݐ above), it ensures that their new
values still satisfy these constraints. The final clustering is found using the MaxWalkSAT
weighted satisfiability solver, with the appropriate extensions. We first ran a MaxWalkSAT pass
with only finite-weight formulas, then ran another pass with all formulas. We found that this
significantly improved the quality of the results that MaxWalkSAT returned.

4.2 Experiments

We tested our approach on MUC-6, ACE-2004 and ACE Phrase-2 (ACE-2).The MUC-6 dataset
consists of 30 documents for testing and 221 for training. The English version of the ACE-2004
training corpus contains two sections, BNEWS and NWIRE, with 220 and 128 documents,
respectively. ACE-2 contains a training set and a test set. In our experiments, we only used the
test set, which contains three sections, BNEWS, NWIRE, and NPAPER, with 51, 29, and 17
documents, respectively. We emphasize that our approach is unsupervised, and thus the data only
contains raw text plus true mention boundaries. We evaluated our systems using two commonly-
used scoring programs: MUC [19] and B3 [20]. On MUC-6, we compared against the published
results of the state-of-the-art unsupervised system by [14] (H&K), and against the state-of-the-art
supervised system by [13] (M&W). On ACE-2004, we compared against the published results of
H&K. On ACE-2, we compared against the published results of two supervised systems [21]
(Ng) and [22] (D&B).
 Table 4 shows the results on the MUC-6 and ACE-2004 datasets. Our approach (MLN)
outperforms both H&K and M&W in precision, recall and F1. Table 5 and 6 shows the results on
the ACE-2 dataset. Our approach outperforms Ng and is competitive with D&B on all measures.

12

Table 4. Coreference Results in MUC Scores on the MUC-6 and ACE-2004 datasets

Systems

MUC-6 ACE-2004
EN-BNEWS

ACE-2004
EN-NWIRE

Precision Recall F1 Precision Recall F1 Precision Recall F1
H&K 80.4 62.4 70.3 63.2 61.3 62.3 66.7 62.3 64.2
M&W - - 73.4 - - - - - -
MLN 83.0 75.8 79.2 66.8 67.8 67.3 71.3 70.5 70.9

Table 5. Coreference Results in MUC Scores on the ACE-2 datasets

Systems

BNEWS NWIRE NPAPER

Precision Recall F1 Precision Recall F1 Precision Recall F1
Ng 67.9 62.2 64.9 60.3 50.1 54.7 71.4 67.4 69.3

D&B 78.0 62.1 69.2 75.8 60.8 67.5 77.6 68.0 72.5
MLN 68.3 66.6 67.4 67.7 67.3 67.4 69.2 71.7 70.4

Table 6. Coreference Results in B3 Scores on the ACE-2 datasets

Systems

BNEWS NWIRE NPAPER

Precision Recall F1 Precision Recall F1 Precision Recall F1
Ng 77.1 57.0 65.6 75.4 59.3 66.4 75.4 59.3 66.4

MLN 70.3 65.3 67.7 74.7 68.8 71.6 70.0 66.5 68.2

13

5.0 LEARNING MLN STRUCTURE VIA HYPERGRAPH LIFTING

5.1 System Description

We create the Learning via Hyperpgraph Lifting (LHL) system [3] to learn background
knowledge (in the form of Markov logic rules) from data when it is not known a priori. Such
knowledge could then be used for matching entities, schemas and concepts (as in the previous
system).
 Learning Markov logic rules and their associated weights is the problem of MLN Structure
Learning. To date, most MLN structure learners [23, 24] systematically enumerate candidate
clauses by starting from an empty clause, greedily adding literals to it, and testing the resulting
clause's empirical fit to training data. Such a strategy has two shortcomings: searching the large
space of clauses is computationally expensive; and it is susceptible to converging to a local
optimum, missing potentially useful clauses. These shortcomings can be ameliorated by using
the data to a priori constrain the space of candidates. This is the basic idea in relational
pathfinding [25], which finds paths of true ground atoms that are linked via their arguments and
then generalizes them into first-order rules. Each path corresponds to a conjunction that is true at
least once in the data. Since most conjunctions are false, this helps to concentrate the search on
regions with promising rules. However, pathfinding potentially amounts to exhaustive search
over an exponential number of paths. Hence, systems using relational pathfinding typically
restrict themselves to very short paths, creating short clauses from them and greedily joining
them into longer ones.
 Our system LHL uses relational pathfinding to a fuller extent than previous ones. It mitigates
the exponential search problem by first inducing a more compact representation of data, in the
form of a hypergraph over clusters of constants. Pathfinding on this ‘lifted’ hypergraph is
typically at least an order of magnitude faster than on the ground training data, and produces
MLNs that are more accurate.
 A hypergraph is a straightforward generalization of a graph in which an edge can link any
number of nodes, rather than just two. More formally, we define a hypergraph as a pair ሺܸ, ሻܧ
where ܸ is a set of nodes, and ܧ is a multiset of labeled non-empty ordered subsets of ܸ called
hyperedges. In LHL, we find paths in a hypergraph. A path is defined as a set of hyperedges such
that for any two hyperedges ݁0 and ݁௡ in the set, there exists an ordering of (a subset of)
hyperedges in the set ݁0, ݁1, … , ݁௡ି1, ݁௡ such that ݁௡ and ݁௡ା1 share at least one node.
 A database can be viewed as a hypergraph with constants as nodes, and true ground atoms as
hyperedges. Each hyperedge is labeled with a predicate symbol. Nodes (constants) are linked by
a hyperedge (true ground atom) if and only if they appear as arguments in the hyperedge.
(Henceforth we use node and constant interchangeably, and likewise for hyperedge and true
ground atom.) A path of hyperedges can be generalized into a first-order clause by variabilizing
their arguments. To avoid tracing the exponential number of paths in the hypergraph, LHL first
jointly clusters the nodes into higher-level concepts, and by doing so it also clusters the
hyperedges (i.e., the ground atoms containing the clustered nodes). The ‘lifted’ hypergraph has
fewer nodes and hyperedges, and therefore fewer paths, reducing the cost of finding them.

14

Figure 2 provides an example. We have a database describing an academic department where
professors tend to have students whom they are advising as teaching assistants (TAs) in the
classes the professors are teaching. The left graph is created from the database, and after lifting,
results in the right graph. Observe that the lifted graph is simpler and the clustered constants
correspond to the high-level concepts of Professor, Student, and Course.

Figure 2: Example of Hypergraph Lifting

 LHL consists of three steps. LHL begins by lifting a hypergraph. Then it finds paths in the
lifted hypergraph. Finally it creates candidate clauses from the paths, and learn their weights to
create an MLN. We describe each step in turn.

5.1.1 Hypergraph Lifting

We call our hypergraph lifting algorithm LiftGraph. LiftGraph is defined using similar Markov
logic rules as SNE. It differs from SNE in the following ways. LiftGraph can handle relations of
arbitrary arity, whereas SNE can only handle binary relations. While SNE can cluster relation
symbols, in this report, for simplicity, LiftGraph do not cluster relations. (However, it is
straightforward to extend LiftGraph to do so.) LiftGraph works by jointly clustering the
constants in a hypergraph in a bottom-up agglomerative manner, allowing information to
propagate from one cluster to another as they are formed. The number of clusters need not be
pre-specified. As a consequence of clustering the constants, the ground atoms in which the
constants appear are also clustered. Each hyperedge in the lifted hypergraph contains at least one
true ground atom.
 We use the same notation as SNE. In addition, we use ݎሺߛଵ, … , ௡ሻ to denote a hyperedgeߛ
connecting nodes ߛଵ, … , ,ݔሺݎ ௡.A hypergraph representing the true ground atomsߛ … , ௡ሻ in aݔ
database is simply ሺܸ ൌ ൛ሼݔ௜ሽൟ, ܧ ൌ ሼݎሺሼݔଵሽ, … , ሼݔ௡ሽሽሻ with each constant ݔ௜ in its own cluster,
and a hyperedge for each true ground atom.
 LiftGraph simplifies the learning problem by performing hard assignment of constant
symbols to clusters (like SNE). The log-posterior of the LiftGraph model can now be computed
in closed form. LiftGraph thus simply searches over cluster assignments, evaluating each one by
its posterior probability. It begins by assigning each constant symbol ݔ௜ to its own cluster ሼݔ௜ሽ,
and creating a hyperedge ݎሺሼݔଵሽ, … , ሼݔ௡ሽሻ for each true ground atom ݎሺݔଵ, … , ௡ሻ. Next it createsݔ
candidate pairs of clusters of each type, and for each pair, it evaluates the gain in posterior

15

probability if its clusters are merged. It then chooses the pair that gives the largest gain to be
merged. When clusters ߛ௜ and ߛ௜

ᇱ are merged to form new ߛ௜
௡௘௪, each hyperedge

,ଵߛሺݎ … , ,௜ߛ … ,ଵߛሺݎ ௡ሻ is replaced withߛ … , ௜ߛ
௡௘௪ , … ௡ሻ (and similarly for hyperedges containingߛ

௜ߛ
ᇱ). Since ݎሺߛଵ, … , ,௜ߛ … ,ଵߛሺݎ ,௡ሻ contains at least one true ground atomߛ … , ௜ߛ

௡௘௪ , … ௡ሻ must doߛ
too. In this manner, LiftGraph incrementally merges clusters until no merges can be performed to
improve posterior probability. It then returns a lifted hypergraph whose hyperedges all contain at
least one true ground atom.

5.1.2 Path Finding

LHL constructs paths by starting from each hyperedge in a hypergraph. It begins by adding a
hyperedge to an empty path, and then recursively adds hyperedges linked to nodes already
present in the path (hyperedges already in the path are not re-added). Its search terminates when
the path reaches a maximum length or when no new hyperedge can be added. Each time a
hyperedge is added to the path, FindPath stores the resulting path as a new one. All the paths are
passed on to the next step to create clauses.

5.1.3 Clause Creation and Pruning

A path in the hypergraph corresponds to a conjunction of ݎሺߛଵ, … , ௡ሻ hyperedges, and itߛ
guarantees that the conjunction has at least one support in the hypergraph. We replace each ߛ௜ in
a path with a variable, thereby creating a variabilized atom for each hyperedge. We convert the
conjunction of positive literals to a clause because that is the form that is typically used by ILP
and MLN structure learning and inference algorithms usually. In Markov logic, a conjunction of
positive literals with weight ݓ is equivalent to a clause of negative literals with weight െݓ. In
addition, we add clauses with the signs of up to ݊ literals flipped (where ݊ is a user-defined
parameter), since the resulting clauses may also be useful. We evaluate each clause using
weighted pseudo-log-likelihood (WPLL) [23].
 We iterate over the clauses from shortest to longest. For each clause, we compare its scores
against those of its sub-clauses (considered separately) that have already been retained. If the
clause scores higher than all of these sub-clauses, it is retained; otherwise, it is discarded. In this
manner, we discard clauses which are unlikely to be useful. Note that this process is efficient
because the score of a clause only needs to be computed once, and can be cached for future
comparisons. (Alternatively, we could evaluate a clause against all its sub-clauses taken together,
but this would require re-optimizing the weights for each combination of sub-clauses for every
comparison, which is computationally expensive.)
 Finally we add the retained clauses to an MLN. We have the option of doing this in several
ways. We could greedily add the rules one at a time in order of decreasing score. After adding
each rule, we relearn the weights, and keep the rule in the MLN if it improves the overall WPLL.
Alternatively, we could add all the rules to the MLN, and learn weights using L1 regularization
to prune away ‘bad’ rules by giving them zero weights [26]. Lastly, we could use L2-
regularization instead if the number of rules is not too large, and rely on the regularization to
give ‘bad’ rules low weight. Optionally, we discard rules containing ‘dangling’ variables (i.e.,
variables which only appear once in a clause), since these are unlikely to be useful.

16

5.2 Experiments

We carried out experiments to investigate the performance of LHL on three datasets, publicly
available at http://alchemy.cs.washington.edu. The IMDB dataset was created by [24] from the
IMDB.com database. It describes a movie domain, and contains predicates describing movies,
actors, directors, and their relationships (e.g, WorkedIn(person,movie), etc.) The UW-CSE
dataset, prepared by [7], describes an academic department. Its predicates describe students,
faculty, and their relationships (e.g, AdvisedBy(person1,person2), etc.). The Cora dataset,
originally created by Andrew McCallum, is a collection of citations to computer science papers.
Predicates include: SameCitation(c1,c2), TitleHasWord(title,word), etc. The IMDB, UW-CSE,
and Cora datasets respectively have 17,793, 260,254, and 687,422 ground atoms, of which
1224, 2112, and 42,558 are true. Each dataset is divided into 5 folds. Note that the primary task
in the Cora domain is the matching of entities, i.e., the citations, and their author, title and venue
fields.
 We compared LHL to two state-of-the-art systems: BUSL [24] and MSL [23]. Both systems
are implemented in the Alchemy software package [17]. BUSL uses a form of relational
pathfinding to find a path of ground atoms in the training data, but restricts itself to very short
paths (length 2) to avoid fully searching the large space of paths. It then greedily pieces the path
together into longer ones. MSL uses beam search to search for clauses. It begins from an empty
clause, and systematically generates literals that can be used to extend the clause, evaluating each
clause thus created for its empirical adequacy. The best clause it finds is added to an MLN, and
the process is repeated until no new clauses can be found that improves the MLN’s fit to data.
 We evaluated the performance of the systems according to how well they predict the
groundings of each predicate given groundings of all other predicates as evidence. For each
dataset, we performed cross-validation using the five previously defined folds. To evaluate the
performance of the systems, we measured the average conditional log-likelihood of the test
atoms (CLL), and the area under the precision-recall curve (AUC). Table 7 shows the results of
the systems. From the table, we see that LHL beats BUSL and MSL on 3 AUC and 2 CLL
scores, but does worse on 1 CLL score. The runtimes of the systems also suggest that LHL scales
better than the other systems.

Table 7. Experimental Comparison of MLN Structure Learners

Systems

IMDB UW-CSE Cora

AUC CLL Time(min) AUC CLL Time (hr) AUC CLL Time (hr)
LHL 0.73 -0.13 15.3 0.22 0.04 7.3 0.72 -0.64 13.6

BUSL 0.47 -0.14 4.7 0.21 0.05 12.9 0.17 -0.37 18.7
MSL 0.41 -0.18 0.2 0.18 0.57 2.1 0.17 -0.37 65.6

http://alchemy.cs.washington.edu

17

6.0 CONCLUSION AND RECOMMENDATION

We successfully developed the approach we planned. Our SNE system for extracting semantic
networks from text is, to our knowledge, the most advanced to date in the scale and accuracy of
the entity, schema and concept matching it can perform. Our unsupervised, object-level approach
is currently the state of the art for coreference matching on standard datasets, outperforming even
previous supervised approaches. Generally speaking, unsupervised object-level matching is the
superior approach, and the one we would recommend a priori. Our LHL system for learning
background knowledge from data when the knowledge is not available a priori also outperforms
two state-of-the-art systems.
 We originally planned to experiment on a variety of unstructured, semi-structured and
structured data (e.g., free text, Web pages and databases, respectively). However, our
experiments focused mainly on unstructured data, due to the difficulty in obtaining good semi-
structured and structured datasets. Although the latter are of course common in the real world,
there are currently no standard testbeds available that simultaneously include entity, schema and
concept matching problems. This is not surprising, since research had previously not progressed
this far, but a supposedly-available dataset we were planning to use turned out not to be.
 Our work is important to data integration in general and DARPA in particular because it is
the first to jointly handle the problems of entity, schema and concept matching. Since all three
are usually present in real-world domains, truly effective data integration cannot be
accomplished without it.

18

7.0 REFERENCES

[1] Kok, S. & Domingos, P., “Extracting Semantic Networks from Text via Relational
Clustering”, Proceedings of the Nineteenth European Conference on Machine Learning,
Antwerp, Belgium, 2008.

[2] Poon, H. & Domingos, P., “Joint Unsupervised Coreference Resolution with Markov
Logic”, Proceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing, Honolulu, HI, 2008.

[3] Kok, S. & Domingos, P., “Learning Markov Logic Network Structure via Hypergraph
Lifting”, 2008, (in submission).

[4] Singla, P. & Domingos, P., “Entity Resolution with Markov Logic”, Proceedings of the
Sixth IEEE International Conference on Data Mining, Hong Kong, 2006.

[5] Poon, H. & Domingos, P., “Joint Inference in Information Extraction”, Proceedings of the
Twenty Second National Conference on Artificial Intelligence, Vancouver, Canada, 2007.

[6] Kok, S. & Domingos, P., “Statistical Predicate Invention”, Proceedings of the Twenty
Fourth International Conference on Machine Learning, Corvallis, Oregon, 2007.

[7] Richardson, M. & Domingos, P., “Markov Logic Networks”, Machine Learning, 62, 2006
pp. 107-136.

[8] Genesereth, M. R. & Nilsson, N. J., Logical Foundations of Artificial Intelligence,
Morgan Kaufmann, San Mateo, CA, 1987.

[9] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, San Francisco, CA, 1988.

[10] McCallum, A.; Nigam, K. and Ungar, L., “Efficient Clustering of High-Dimensional Data
Sets with Application to Reference Matching”, Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2000.

[11] Banko, M.; Cafarella, M. J.; Soderland, S.; Broadhead, M. and Etzioni, O., “Open
Information Extraction from the Web”, Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, Hyderabad, India, 2007.

[12] Gelbaum, C., editor, WordNet: An Electronic Lexical Database, MIT Press, Cambridge,
MA, 1998.

[13] McCallum, A. & Wellner, B., “Conditional Models of Identity Uncertainty with
Application to Noun Coreference, Advances in Neural Information Processing Systems
17, 2005.

[14] Haghighi, A. & Klein, D., “Unsupervised Coreference Resolution in a Nonparametric
Bayesian Model”, 45th Annual Meeting of the Association for Computational Linguistics,
Prague, Czech Republic, 2007.

[15] Poon, H. & Domingos, P., “Sound and Efficient Inference with Probabilistic and
Deterministic Dependencies”, Proceedings of the Twenty First National Conference on
Artificial Intelligence, Boston, MA, 2006.

[16] Kautz, H.; Selman, B. and Jiang, Y., “A General Stochastic Approach to Solving Problems
with Hard and Soft Constraints”, The Satisfiability Problem: Theory and Applications.
American Mathematical Society, New York, New York, pp. 573-586.

[17] Kok, S.; Sumner, M.; Richardson, M.; Singla, P.; Poon, H.; Lowd , D.; Wang, J. and
Domingos, P., “ The Alchemy System for Statistical Relational AI (Technical Report)”,
Department of Computer Science and Engineering, University of Washington, 2006.

[18] Wei, W.; Erenrich, J. and Selman B., “Towards Efficient Sampling: Exploiting Random

19

Walk Strategies”, Proceedings of the Twenty First National Conference on Artificial
Intelligence, 2004.

[19] Vilian, M.; Burger, J; Aberdeen, J.; Connolly, D. & Hirschman, L., “A Model-Theoretic
Coreference Scoring Scheme”, Message Understanding Conference, 1995.

[20] Amit, B. and Baldwin, B., “Algorithms for Scoring Coreference Chains”, Message
Understanding Conference, 1997.

[21] Ng, V., “Machine Learning for Coreference Resolution: From Local Classification to
Global Ranking”, 43rd Annual Meeting of the Association for Computational Linguistics,
2005.

[22] Denis, P. & Baldridge, J., “Joint Determination of Anaphoricity and Coreference
Resolution using Integer Programming”, Conference of the North American Chapter of the
Association for Computational Linguistics, 2007.

[23] Kok, S. & Domingos, P., “Learning the Structure of Markov Logic Networks”,
Proceedings of the Twenty Second International Conference on Machine Learning, Bonn,
Germany, 2005.

[24] Mihalkov, L. & Mooney, R. J., “Bottom-Up Learning of Markov Logic Network
Structure”, Proceedings of the Twenty Fourth International Conference on Machine
Learning, Corvallis, Oregon, 2007.

[25] Richards, B. L. & Mooney, R. J., “Learning Relations by Pathfinding”, Proceedings of
the Tenth National Conference on Artificial Intelligence, 1992.

[26] Huynh, T. & Mooney, R. J., “Discriminative Structure and Parameter Learning for
Markov Logic Networks”, Proceedings of the Twenty Fifth International Conference on
Machine Learning, Corvallis, Oregon, 2008..

20

8.0 LIST OF ACRONYMS

ACE Automatic Content Extraction

BUSL Bottom-Up Structure Learner

DIESEL Data Integration and Exploitation System that Learns

i.i.d. independent and identically distributed

ILP inductive logic programming

IRM Infinite Relational Model

ITC Information-Theoretic Co-clustering

LHL Learning via Hypergraph Lifting

MAP maximum a posteriori

MLN Markov logic network

MRC Multiple Relational Clustering

MSL Markov logic Structure Learner

MUC Message Understanding Conference

NLP natural language processing

PSCG preconditioned scaled conjugate gradient

WPLL weighted pseudo-log-likelihood

