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1. Summary

My first administrative task as the Acting Director of CITE was to coordinate the research activ-

ities of CITE’s in-house researchers and external collaborators and prepare group presentations

and demonstrations during the Scientific Advisory Board (SAB) review of the Information Di-

rectorate (IF) that was held in November 2003. The SAB review is a biannual 2-day event

where a team of high-profile external evaluators (from government, academia, and industrial

sector) is visiting on-site to review and evaluate the performance of the Directorate. As part

of IF, CITE participated in the SAB review with an overarching presentation of its research

activities and accomplishments that included 11 research posters/presentations and 3 experi-

mental demonstrations. In the SAB final report, the evaluation of CITE includes the following

statement: “IF, and AFRL more generally, should consider CITE as a candidate best practice

model to focus research by leveraging academia, industry, and internal activities.”

In this context, during my 11-month tenure as the Acting Director of CITE I addressed and

acted upon four items: CITE research focus, personnel needs, budget/funding, in-house and

external collaborators.

(i)Research Focus

The research activities of CITE initially evolved around video-centric R&D. In terms of fu-

ture growth, at that time, CITE was moving toward broadening its horizon and R&D scope

from video-centric to (a) general (covert, secure, or open) transmission and (b) detection and

exploitation of all forms of digital signals (audio, image/video, data) that is military specific.

The administrative action that I took regarding this item was to organize a strategic planning
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meeting that involved seven external high profile evaluators and seven AFRL participants (ad-

ministrators and research scientists including the Chief Scientist of IF). The Strategic Planning

Committee concluded that at a high level of abstraction there are four primary theoretical

research areas of interest to CITE; namely, signal design, scalability, adaptivity, and non-

stationarity. The signal design area focuses on avoiding interference by selective modulation,

code design for signal multiplexing, and adaptive coding strategies. Scalability is viewed as

the means to increase average information content of the transmitted signal by matching the

bandwidths of transmitter, channel, and receiver. Adaptivity is considered in the context of

minimizing quickly and effectively the effects of interference, natural or man-made, on the trans-

mission, collection, and exploitation of information. Finally, within the nonstationarity focus

area, the objective is to characterize and exploit the time-varying nature of transmission and

collection environments (e.g., small sample support adaptivity can exploit local stationarity).

The developments in these theoretical research areas are applied to transmission exploitation

applications. Examples of projected needs of the next generation warfighter in the areas of

transmission and exploitation include:

− Wireless digital connectivity beyond LoS; ”communicate with any asset any time.”

− Locate, intercept, and exploit digital information quickly and reliably.

− Automate exploitation process to assist the human operator/analyst (targeting, damage as-

sessment, annotation, summarization).

− Develop miniature wireless sensor packages with daylight imaging, ranging designation, and

GPS.

− Develop SW/HW radios that combine multiple data link waveforms and protocols.

The Strategic Planning committee also concluded that the T & E critical technical areas that
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CITE should focus on are: All-IP wireless (basic research component), video over wireless IP

(applied research component), and sensor networks (target application/testbed). The above ar-

eas encompass research on next generation multiple access technologies, code/signature design

and adaptive assignment for code division multiplexing, data authentication/information assur-

ance, interference mitigation/multiuser detection for effective data collection and reliable data

exploitation, surveillance, eavesdropping, covert communications, and cross-layer end-to-end

optimization.

In terms of maintaining an evaluation/demonstration platform of emerging technologies,

the Strategic Planning Committee suggested that CITE should maintain (and continuously

upgrade) a unifying evaluation/demonstration vehicle (testbed) in order to facilitate technology

forecasting, feasibility analysis and technology transition, provide cost vs. return preliminary

assessment, foster cooperative research among academia, industry, and government, provide a

unique edge in attracting collaborators, support Directorate’s technical vision, and serve as a

multiservice evaluation center for military information transmission and exploitation.

In agreement with or in response to the Strategic Planning Meeting findings I took the

following actions:

− Initiated two joint projects with IFEC on wideband multiuser detection for effective data

exploitation in high density rapidly changing environments (funded by Tactical Sigint Technol-

ogy Program).

− Initiated a dialog (through a series of lectures and meetings) with IFEC for transition of

CITE’s theoretical developments to audio-specific problems (accent identification, speech/language

recognition).

− Initiated/funded a joint industry-academia-in-house project for the development of a unifying

3



layered video transmission evaluation platform.

(ii) Personnel, Budget/funding, Collaborators

Early on in my tenure as the Acting Director of CITE, I realized that there was a need for

new hirings with competitive salaries and decreased management responsibilities to build a

technical research core that fosters collaboration among T & E in-house teams, and academic

and industrial research groups. My administrative actions with respect to this item was to

seek and obtain authorization to recruit, initiate the advertisement of 6.1 research job open-

ings, and, finally, present the top applicants to the IF administration. The IF administration

then proceeded with job offers with very competitive salary and limited program management

responsibilities.

The administrative action that I took was the initiation of a joint project with IFEC on

wideband multiuser detection for effective data exploitation in high density rapidly changing

environments.

Finally, the administrative actions that I took to serve better CITE’s collaborators and

sponsors was (i) to propose that CITE starts funding selected AFOSR supported University

research (that is within the scope of CITE) to transition research to CITE’s testbed and (ii)

to initiate/fund a joint industry-academia in-house project for the development of a unifying

evaluation/demonstration platform of layered video transmission over multirate SS wireless

channels with embedded interference resistant receiver technology.

Apart from the administrative responsibilities as the Acting Director of CITE, during my

sabbatical leave and the years that followed I contacted research work on the subject of general-

ized likelihood ratio test packet data detectors. Initial findings were summarized and published

to the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
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that was held in Montreal in May 2004. The paper was accepted for publication in the confer-

ence proceedings and was presented at a technical session of the conference. Subsequently, the

full body of this work of this work was published in the IEEE Transactions on Communications,

in the Feb. issue of 2008 (Volume 56, Page(s):222 - 233). In this work, we designed novel gener-

alized likelihood ratio test (GLRT)-type packet-data detectors for general multiaccess/multiuser

digital communication systems and we developed analytical performance evaluation tools for

finite data packet sizes. For the known channel case we derived a coherent GLRT packet-data

detector, while for the unknown channel case we derived both a coherent pilot assisted GLRT

packet-data detector and a differential phase-shift-keying (DPSK) GLRT packet-data detector.

Efficient suboptimum implementations of the above schemes that exhibit complexity linear

in the packet size were also considered. Simulation studies evaluated the performance of the

proposed schemes in the context of packet-data code-division multiple access (CDMA) com-

munications. The rest of this report contains a description of the above research developments

in some detail. Further details and additional research activities have been reported in several

progress reports already submitted to AFRL during the period Aug. 2004-Sept. 2008.

2. Introduction

The optimum rule for the detection of a transmitted packet of digital data under perfectly known

parameters of the received data joint probability density function is the well known likelihood

ratio test (LRT) that selects the most likely data combination among the finite set of alter-

natives. When, however, there are unknown parameters in the received signal model/density

and a uniformly most powerful (UMP) test does not exist [1], the design of a detection scheme
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becomes a coupled optimization process that involves joint detection (hypothesis testing) and

parameter estimation. As such, we can either solve the estimation part first (i.e., maximize

the likelihood of each hypothesis with respect to the unknown parameters) and then solve the

detection part (i.e., choose the most likely hypothesis) or execute the optimization sequence in

the opposite order. Under certain general conditions, the above double maximization problems

are equivalent and result to what is known as the generalized likelihood ratio test (GLRT). In

particular, the estimation-detection sequence of optimization is the most intuitive and results

in a likelihood ratio test that utilizes maximum likelihood (ML) estimates of the unknown pa-

rameters. On the other hand, for specific applications the detection-estimation optimization

sequence, although a more difficult optimization problem in general, may lead to computa-

tionally simpler test implementations than the estimation-detection sequence [2]. In any case,

the overall statistical optimality of GLRT tests is difficult to be determined theoretically, if at

all possible. An alternative, ad-hoc but frequently used approach to the design of a detection

scheme in the presence of unknown parameters in the distribution of the received data is to

proceed by directly substituting parameter estimates in the LRT formula.

GLRT has been a rather popular methodology in the past for radar signal detection prob-

lems (as seen for example in [3]– [6] and references therein) while it has been given limited

consideration in the context of multiaccess/multiuser digital communications [7], [8]. The bi-

nary nature of the radar hypothesis testing problem as well as the availability of secondary

data (pure disturbance observations) in addition to primary data (data that include both the

signal of interest and disturbance) facilitates greatly the design of the GLRT test. On the other

hand, we may argue that GLRT approaches to multiaccess/multiuser digital communications

are not so straightforward because of the usual non-binary nature of the detection problem, the
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absence of secondary data, and/or the non-Gaussian characteristics of the disturbance (e.g.,

multiaccess interference).

In this work we propose novel GLRT packet-data detectors for general multiaccess/multiuser

digital communication systems. In particular, we develop: a) a coherent GLRT packet-data

detector for the known channel case, b) a coherent GLRT pilot assisted detector for the un-

known channel case (the channel is estimated implicitly as part of the GLRT formulation while

short pilot signaling is used to resolve phase ambiguity), and c) a differential GLRT detector for

differentially encoded packet-data. In view of the exponential complexity in the size of the data

packet of the above GLRT schemes, we also propose suboptimum implementations that exhibit

linear complexity. Last but not least, we develop analytical performance evaluation tools for

finite data packet sizes. The importance/novelty of our analytical performance evaluation tools

lies in the fact that they deviate from the conventional and convenient yet inaccurate perfor-

mance analysis assumption of infinitely long packet sizes. Instead, our formulas provide the

bit error rate (BER) that can be reached by a GLRT test for a given finite data packet size

as well as the size of a data packet that is necessary for the test to reach a pre-specified BER

level. Comparative studies included in this work establish analytically the BER performance

merits of the new GLRT tests relative to the popular practice of directly substituting sample

average estimates of the unknown parameters in the LRT formula. The proposed GLRT detec-

tors are evaluated in the context of packet-data CDMA communications and state-of-the-art

performance is demonstrated.

The rest of the report is organized as follows. Our signal model and some background in-

formation are presented in Section III. The known and unknown channel cases are treated in

Section IV-A and IV-C, respectively. Therein, the proposed packet-data detectors are derived,
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their suboptimum implementations of linear complexity are outlined, and the relationship be-

tween the size of the available data record and the BER performance that can be reached by

each GLRT scheme is identified analytically. Section IV-C is devoted to simulation studies and

comparisons. A few concluding remarks are drawn in Section V.

3. Methods, Assumptions, and Procedures

Consider the following general discrete-time signal model for a transmitted data packet of

interest of size N :

xi =
√

Ebis, i = 1, 2, . . . , N, (1)

where the information bits bi, i = 1, . . . , N , take values ±1 with equal probability, are inde-

pendent from each other, and modulate a known G-dimension discrete-time complex signal

waveform of unit norm, s ∈ CG, ||s|| = 1. With this setup, E represents total transmitted

energy per bit. We assume that the transmitted signal experiences multipath quasi-static fad-

ing of maximum delay M < G sampling periods with negligible inter-symbol interference (ISI)

effects. If {yi ∈ CL}N
i=1, L = G + M , denotes the corresponding received data packet, then

yi = bi

√
ESa + ni, i = 1, . . . , N, (2)

where S is the L×M known signal waveform delay matrix, a ∈ CM is the vector of the multipath

channel coefficients that are assumed to remain constant during the transmission of the data

packet, and ni, i = 1, . . . , N , is a sequence of independent identically distributed zero mean

Gaussian vector with unknown covariance matrix Rn, that represent comprehensively channel

interference and noise that is independent of the data sequence bi, i = 1, . . . , N .
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The probability density function (pdf) of the observations Y
4
=[y1,y2, . . . ,yN ] conditioned

on the transmitted bits b = [b1, b2, . . . , bN ]T can be expressed in the following compact form:

f (Y |b; E,S, a,Rn ) =
1

πLN |Rn|N
e
trace

[
−R−1

n (Y−
√

ESabT )(Y−
√

ESabT )
H

]
. (3)

When a and Rn are perfectly known, the optimum rule for the detection of bi, i = 1, . . . N ,

simplifies to the familiar one-shot tests

b̂iML
= sgn

[
Re

{
(R−1

n Sa)H yi

}]
, i = 1, . . . N, (4)

where sgn[x] extracts the sign of the real variable x and Re(y) extracts the real part of the

complex scalar y. In other words, the optimum maximum likelihood (ML) detector of b ∈
{±1}N reduces to N individual applications of the linear filter R−1

n Sa followed by an output

sign detector and the detection of all bits in the packet has computational cost linear in the

packet size (detection of bi depends only on yi and joint detection of all bits in the packet is

equivalent to disjoint bit-by-bit detection).

On the other hand, when a priori knowledge of the parameters a and/or Rn cannot be

assumed, we may proceed in one of two different ways: (i) We can use again the parametrically

described test in (4) and substitute the unknown parameters/statistics by corresponding esti-

mates (usually sample-average), which results in a scheme that maintains linear complexity in

the packet size; or (ii) we may carry out joint detection and parameter estimation which results

in superior performance GLRT schemes at the expense of increased complexity. In the next

section, we propose a novel packet-data GLRT test for the case of known multipath channels

(parameter a) and colored Gaussian disturbance of unknown correlation matrix (parameter Rn)

and we establish analytically how the new GLRT test compares to the common sample-average

LRT parameter substitution approach. Alongside, we develop analytical tools that provide the
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BER performance of the proposed test for any given data packet size as well as the data packet

size that is necessary for the test to reach a given BER level.

4. Results and Discussion

4.1 GLRT Detection: Known Channel

4.1.1 Algorithmic Development

For convenience, define v
4
=
√

ESa where a is the known channel coefficient vector and S is

the known signal waveform matrix. The GLRT packet-data detector is given by the following

Proposition.

Proposition 1 The GLRT test for the detection of the data packet b of size N in the presence

of complex Gaussian disturbance with unknown covariance matrix Rn is

b̂GLRT = arg max
b

{
max
Rn

f (Y |b,v,Rn )

}
= arg max

b
l1(b) (5)

where

l1(b)
4
= NbTYH [RSA(N)]−1 v + NvH [RSA(N)]−1 Yb +

(
bTYH [RSA(N)]−1 Yb

) (
vH [RSA(N)]−1 v

)

− (
bTYH [RSA(N)]−1 v

) (
vH [RSA(N)]−1 Yb

)
(6)

and RSA(N)
4
= 1

N
YYH is the sample average received data correlation matrix.

Proof: For a given bit combination b, the maximum of f (Y |b,v,Rn ) is reached when Rn

is the ML estimate, i.e. Rn = R̂nML
(b) = 1

N
(Y − vbT ) (Y − vbT )H. Thus, (5) reduces readily

to

b̂GLRT =arg min
b

∣∣∣∣
1

N
(Y−vbT ) (Y−vbT )H

∣∣∣∣=arg min
b

∣∣∣∣RSA(N)−vbTYH

N
−YbvH

N
+vvH

∣∣∣∣ . (7)
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The test in (7) can be further reduced to (5) using the identity

∣∣∣∣RSA−v

(
Yb

N

)H

−Yb

N
vH +vvH

∣∣∣∣ = |RSA|
[
1+vHR−1

SAv−vHR−1

SA

Yb

N
−

(
Yb

N

)H

R−1

SAv

+vHR−1

SA

Yb

N

(
Yb

N

)H

R−1

SAv−vHR−1

SAv

(
Yb

N

)H

R−1

SA

Yb

N

]
.(8)

that holds true for any Hermitian positive definite matrix RSA and vectors v and Yb
N

. ¥

We note that direct implementation of test in (5) has complexity exponential in the packet size

N .

The GLRT test in (5) can be contrasted with the standard “sample-matrix-inversion” (SMI)

detection scheme, that replaces the unknown parameter Rn of the LRT expression in (4) by a

sample average estimate RnSA
(K)

4
= 1

K

∑K
k=1 nkn

H
k based on pure disturbance observations nk,

k = 1, . . . , K that are independent from yi, i = 1, . . . , N :

b̂iSMI
= sgn

[
Re

{
vHR−1

nSA
(K)yi

}]
, i = 1, . . . , N. (9)

When pure disturbance observations (secondary data) nk, k = 1, . . . , K are not available, a

popular version of the test in (9) utilizes directly the sample-average correlation matrix of

the (desired-signal-present) received data, RSA(N), evaluated using the same received data yi,

i = 1, . . . , N , that are processed by the detector. We denote this test by

b̂iSMI−dsp
= sgn [Re {vHR−1

SA(N)yi}] , i = 1, . . . , N, (10)

where the subscript part “dsp” stands for desired-signal-present. While it is understood that

(9) and (10) converge with probability 1 to the test in (4) as the K, N →∞, recent analytical

results on short data record adaptive filtering [9]– [12] indicate that for finite sample support

of equal size (K = N) the test in (9) outperforms the test in (10) in terms of BER. Yet, as

Theorem 1 shows below, if we utilize the new packet-data GLRT detector in (5), we can achieve
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approximately the same average1 BER performance as with the test in (9) without the need

for pure disturbance observations (secondary data) that are independent of the received data

packet. The proof is given in the Appendix.

Theorem 1 (i) Let b be the transmitted data packet and b̂ a data packet decision that differs

from b in m bits (i.e., contains m bits in error). Then,

P
[
l1(b̂) > l1(b)

∣∣∣b
]

=

∫ 1

0

Q(
√

2mγx)
xN−L(1− x)L−2

B(N − L + 1, L− 1)
dx (11)

where Q(x)
4
= 1√

2π

∫ +∞
x

e−u2/2du, γ
4
= vHR−1

n v, and l1(·) is given by (6).

(ii) For sufficiently large transmitted energy per bit E, the average BER of the GLRT detector in

(5) is approximately equal to the average BER of the scheme in (9) that utilizes RnSA
evaluated

based on K = N − 1 pure disturbance observations

lim
γ→∞

BERGLRT (N)

BERSMI(N − 1)
≈ 1. (12)

¥

Using Theorem 1, we can derive an approximation of the average BER of the GLRT detector

and evaluate the packet size that is necessary for the GLRT detector to achieve a given BER

performance level. Our findings are summarized in the following theorem whose proof is in the

Appendix.

Theorem 2 (i) The average BER of the GLRT detector that operates on a data packet of size

1The average BER of a packet-data detector is defined as the expected number of bits in error divided by

the packet size. We note that the detectors in (4), (5), (9), and (10) all share the property that their average

BER is equal to the BER of each bit in the packet.
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N ≥ L + 2 is given by

BERGLRT (N) ≈ 1

π

∫ π/2

0

M
(
N − L + 1, N,− γ

sin2 θ

)
dθ (13)

≈ 2

3
Q

(√
2µ

)
+

1

6
Q

(√
2µ + 2

√
3σ

)
+

1

6
Q

(√
2µ− 2

√
3σ

)
(14)

where M(a, b, z) is Kummer’s confluent hypergeometric function, γ
4
= vHR−1

n v, µ
4
= N−L+1

N
γ,

and σ2 4
= (N−L+1)(L−1)

N2(N+1)
γ2.

(ii) For any given ν, the smallest packet size Nν that guarantees that the BER performance of

the GLRT packet-data detector is within ν dB from the BER performance of the optimum ML

detector in (4) (i.e., BERGLRT (N) ≤ Q(
√

2γ10−ν/10)) is given by the ceiling of the maximum

real root of the cubic equation

N3+

(
1− 2(L− 1)

1− 10−
ν
10

)
N2+

(
(L− 1)2 − 3(L− 1)(

1− 10−
ν
10

)2 − 2(L− 1)

1− 10−
ν
10

)
N+

4(L− 1)2

(
1− 10−

ν
10

)2 =0. (15)

¥

The roots of (15) can be obtained either numerically or analytically [13]. We note that

the result in Part (ii) of Theorem 2 is independent of the statistics of the receiver input (i.e.,

independent of the performance of the optimum ML detector) which is often unknown to the

designer.

4.1.2 Implementation Issues

Direct implementation of (5) has complexity exponential in the number of bits. Below, we

consider a procedure to obtain effective suboptimum implementations of linear complexity.

We start with an initial estimate of the packet bits b̂(0) =
[
b̂1(0), . . . , b̂N(0)

]
replicated P

times to create P distinct parallel search paths b̂(p)(d), p = 1, 2, . . . , P , d = 0, 1, . . . , D, of final

depth D. With each path p, we associate a bit index sequence {πp(n)}N
n=1 that is a distinct

permutation of {1, 2, . . . , N}. At each step d, we check in parallel one bit per search path,

13



namely b̂
(p)

πp(d mod N)
Upon completion, step D, we declare as our approximate GLRT decision

the most likely among the P bit vectors b̂(p)(D), p = 1, . . . , P . The algorithm is outlined below.

Suboptimum GLRT algorithm

Initialization: Number of parallel search paths P ; search depth D;

initial decision vector b̂(p)(0) :=
[
b̂1(0), b̂2(0), . . . , b̂N(0)

]T

, p = 1, 2, . . . , P ;

search index sequences {πp(n)}N
n=1 , p = 1, 2, . . . , P.

For step d = 1, 2, . . . D

For path p = 1, 2, . . . , P

i := πp(d mod N)

b̂
(p)
i (d) := arg max

b
(p)
i

{
max
Rn

f

(
Y

∣∣∣∣
{

b̂
(p)
j (d− 1)

}
j 6=i

, b
(p)
i ,v,Rn

)}

b̂
(p)
j (d) := b̂

(p)
j (d− 1), j 6= i.

end

end

b̂GLRT := arg max
b∈{b̂(1)(D),...,̂b(P )(D)}

l1(b).

The parallel search at each step d updates a single bit in each of the P packet estimates (paths)

and prevents early convergence to a local optimum. Using (5), the complexity of one bit update

is of order O(L). The overall complexity of the above algorithm for the detection of a data

packet of size N is of order O(NL2) + O(NL) + O(L3) + O(DPL), which includes the cost

of the initial evaluation of RSA(N) and R−1
SA(N). We note that a good initial estimate may

allow relatively small values for P and D. In this context, we can regularly reinitialize the

parallel search algorithm using the best sequence estimate among the current P alternatives.

The performance of this ad hoc implementation method is examined in the simulation studies

14



of Section IV-C.

4.2 GLRT Detection: Unknown Channel

4.2.1 Algorithmic Development

In this section we investigate the case of unknown channel, that is unknown E and a

according to the signal model in (2). The following proposition provides the GLRT detection

scheme for this case.

Proposition 2 The GLRT test for the detection of the data packet b of size N transmitted

over an unknown linear channel in the presence of complex Gaussian disturbance of unknown

covariance matrix Rn is given by

b̂GLRT = arg max
b

{
max
a,Rn

f (Y |b,S, a,Rn )

}
= arg max

b
l2(b) (16)

(17)

where l2(b) =
NbTYH [YYH]−1 S

(
SH [YYH]−1 S

)−1
SH [YYH]−1 Yb

N2 −NbTYH [YYH]−1 Yb
. (18)

Proof: For a given bit combination b and channel coefficient vector a, f (Y |b,S, a,Rn ) is

maximized for Rn = RnML
(b, a)

4
= 1

N
(Y − SabT ) (Y − SabT )H and (16) becomes

b̂GLRT = arg max
b

max
a

∣∣∣∣
1

N
(Y − SabT ) (Y − SabT )H

∣∣∣∣
−1

. (19)

The inner maximization is solved by finding the stationary point with respect to a. Using the

identity in (8) and after some simplifications, we obtain

âML(b) =
N

(
SH [RSA(N)]−1 S

)−1
SH [RSA(N)]−1 Yb

N2 − bTYH [RSA(N)]−1 Yb + bTYH [RSA(N)]−1 S
(
SH [RSA(N)]−1 S

)−1
SH [RSA(N)]−1 Yb

. (20)

Substituting (20) into (19) leads to the detection rule in (16). ¥
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The following theorem evaluates the asymptotic pairwise probability of error of the above

detection rule in the high SNR region. The proof can be found in the Appendix.

Theorem 3 Let b be the transmitted data packet and b̂ a data packet decision that differs from

b in m bits. Then,

lim
E→∞

P
(

l2(b̂) > l2(b)
∣∣∣b

)
=

∫ 1

0

Q

(√
2m(N −m)

N
γ · x

)
xN−L−1(1− x)L−2

B(N − L,L− 1)
dx (21)

where γ
4
= vHR−1

n v. ¥

We note that the function l2(b) in (18) is ambiguous with respect to the phase of b. This

phase ambiguity problem is also present in Theorem 3. In practice, phase ambiguity is resolved

either by using a pilot sequence or by employing differential modulation at the transmitter; the

rest of this subsection deals exactly with these two approaches.

4.2.2 Pilot Assisted GLRT Detection

Proposition 3 Let {bj}J
j=1 and {bi}N

i=J+1 denote, respectively, J known pilot bits and N − J

unknown information bits within the data packet b of size N that is transmitted over an unknown

linear channel in the presence of complex Gaussian disturbance of unknown covariance. Then,

the pilot assisted GLRT detector of {bi}N
j=J+1 is given by

{
b̂iGLRT

}N

i=J+1

= arg max
bi,i≥J+1

l2(b). (22)

Proof: We note that the joint conditional pdf of the observations is given by

f
(
{yi}N

i=1

∣∣∣{bi}J
i=1 , {bi}N

i=J+1 ,S,a,Rn

)
=
|Rn|−N

πL·N exp

{
−

N∑

i=1

(yi − biSa)H R−1
n (yi − biSa)

}
. (23)
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Thus, the GLRT detection algorithm is as in (16) with a difference only in the support of the

outer optimization. ¥

It is interesting to note that in (22) the pilot sequence {bi}J
i=1 is not used to directly estimate

the phase in an explicit manner but is rather incorporated implicitly in the GLRT rule. It is

also interesting to observe that the GLRT test expression in (22) maintains the same structure

as in (18). For a reasonably long pilot sequence, e.g. J ≥ 2, Theorem 3 implies that we can

safely neglect the pairwise probability of error in the high SNR region for m ≥ 2 (we note

that the above pilot assisted GLRT detection rule ensures that 1 ≤ m ≤ N − J and thus

eliminates the phase ambiguity problem). We conclude the treatment of the pilot assisted

GLRT detection problem by deriving an approximation of the BER performance of the test in

(22) and evaluating the size of the data packet that is necessary for the detector to achieve a

given BER performance level (the proof utilizes Theorems 2 and 3 and is omitted due to lack

of space).

Corollary 1 (i) The average BER of the pilot assisted GLRT detector for a data packet of size

N ≥ L + 3 is given by

BERGLRT−pilot(N) ≈ BERSMI(N − 2) =
1

π

∫ π/2

0

M

(
N − L,N − 1,−(N − 1)γ

N sin2 θ

)
dθ(24)

≈ 2

3
Q

(√
2µ

)
+

1

6
Q

(√
2µ + 2

√
3σ

)
+

1

6
Q

(√
2µ− 2

√
3σ

)
(25)

where µ
4
= N−L

N
γ, σ2 4

= (N−L)(L−1)
N3 γ2, and BERSMI(N − 2) is the BER of the coherent SMI

detector in (9) that would require perfect knowledge of a and utilize K = N − 2 independent

pure disturbance observations.

(ii) For any given ν, the smallest packet size Nν that guarantees that the BER performance of

the GLRT pilot assisted packet-data detector is within ν dB from the BER performance of the

17



optimum coherent ML detector in (4) (i.e., BERGLRT−pilot(N) ≤ Q(
√

2γ10−ν/10)) is given by

the ceiling of the maximum real root of the cubic equation

N3 − 2L

1− 10−
ν
10

N2 +
L2 − 3(L− 1)(

1− 10−
ν
10

)2 N +
3L(L− 1)(
1− 10−

ν
10

)2 = 0. (26)

¥

Corollary 1 implies that the pilot assisted GLRT detector performs closely to the coherent

SMI detector in (9) that requires perfect knowledge of a and assumes availability of pure

disturbance observations. We can modify in a straightforward manner the algorithm outlined

in Section III-A to obtain a suboptimum implementation of the unknown-channel pilot GLRT

scheme in (22) that exhibits linear complexity.

4.2.3 DPSK GLRT Detection

As an alternative to pilot signaling, phase ambiguity of the GLRT detector in (18) can be

resolved by employing differential encoding at the transmitter. To avoid redundancy in our

presentation, in this section we keep the size of the transmitted packet equal to N while the

number of the information bits embedded in the differentially encoded packet is N −1, {bi}N−1

i=1 .

The differentially encoded bits themselves are d0 = +1 and di = di−1bi, i = 1, 2, . . . , N−1. The

ith received vector yi is still of the form of (2) with di in place of bi. Given the transmitted

bits di, i = 0, 1 . . . N − 1, the information bits can be uniquely determined by bi = di−1di,

i = 1, . . . , N − 1.

We recall [14] that under ideal conditions (i.e., perfectly known interference-plus-noise statis-

tics and channel impulse response) the ideal optimum (ML) differential detector of a packet of

N − 1 information bits consists of the ideal linear filter R−1
n Sa followed first by a sign detector

and then by the 2-symbol block differential decoder. On the other hand, when interference-plus-

18



noise statistics are perfectly known but the channel is known only within a phase ambiguity θ,

the optimum (ML) differential detector of a block (packet) of N −1 information bits consists of

the ideal linear filter R−1
n Saejθ followed by an N -symbol differential decoder that operates on

a block of complex, in general, scalar outputs of the optimum linear filter [15] (the linear filter

R−1
n Saejθ provides the sufficient statistics for differential decoding). Direct implementation of

the optimum block differential decoder according to the likelihood metric requires exponential

complexity in the block (packet) size N (fast approximate algorithms with complexity N log N

can be used instead [16]- [19]). It is well understood that the BER performance of the phase-

ambiguity-optimum block differential detector is lower bounded by the BER performance of the

ideal all-known differential detector and approaches this lower bound as N → ∞. A popular

suboptimum receiver for differentially encoded data has been the 2-symbol differential detector

that utilizes a 2-symbol only differential decoder and detects one bit at a time by evaluating

the sign of the real part of the product of the current filter output with the previous conjugated

filter output.

Under unknown input statistics and channel coefficients, the common approach has been

to produce estimates of the unknown quantities and insert the estimates in the N-symbol (or

2-symbol) block differential detector. Instead, what we propose herein is a GLRT-type scheme

that combines into a single optimization effort estimation of interference-plus-noise covariance

matrix and channel coefficients and detection of packet data. The following proposition iden-

tifies our DPSK GLRT scheme.

Proposition 4 The DPSK GLRT detector of differentially encoded packet data {bi}N−1

i=1 trans-

mitted over an unknown linear channel in the presence of complex Gaussian disturbance of

19



unknown covariance is given by

{
d̂iGLRT

}N−1

i=1

= arg max
di,i≥1

l2(d) (27)

b̂iGLRT
= d̂i−1GLRT

d̂iGLRT
, i = 1, 2, . . . , N − 1, (28)

where d
4
= [d0, . . . dN−1]

T .

Proof: It suffices to observe that the one-to-one mapping of information bits to differentially

encoded bits implies that maximization of the generalized likelihood function with respect to

the information bits is equivalent to maximization with respect to the differentially encoded

(transmitted) bits. ¥

Using Theorem 3 and the observation that both a single-bit error and an (N−1)-bit error in

d̂ results in a 2-bit error in the bit sequence
{

b̂i

}N−1

i=1
, we can approximate the BER performance

of the DPSK GLRT detector and obtain the packet size that is necessary for the detector to

achieve a certain BER performance level as follows.

Corollary 2 (i) The average BER of the DPSK GLRT detector that operates on a data packet

of size N ≥ L + 3 is given by

BERGLRT−DPSK(N) ≈ BERSMI,DPSK(N − 2)≈ 2

π

∫ π/2

0

M

(
N−L,N−1,−(N − 1)γ

N sin2 θ

)
dθ(29)

≈ 4

3
Q

(√
2µ

)
+

1

3
Q

(√
2µ + 2

√
3σ

)
+

1

3
Q

(√
2µ− 2

√
3σ

)
(30)

where µ
4
= N−L

N
γ, σ2 4

= (N−L)(L−1)
N3 γ2, and BERSMI,DPSK(N − 2) is the BER of a detection

scheme that would utilize the coherent SMI detector of {di}N
i=1 built on K = N − 2 independent

pure disturbance observations under perfect knowledge of a, followed by the differential decoder

b̂i = d̂i−1d̂i, i = 1, . . . , N − 1.
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(ii) For any given ν, the smallest packet size Nν that guarantees that the BER performance of

the DPSK GLRT packet-data detector is within ν dB from the BER performance of the optimum

ML DPSK detector (i.e., BERGLRT,DPSK(N) ≤ 2Q(
√

2γ10−ν/10)) is given by the ceiling of the

maximum real root of the cubic equation

N3 − 2L

1− 10−
ν
10

N2 +
L2 − 3(L− 1)(

1− 10−
ν
10

)2 N +
3L(L− 1)(
1− 10−

ν
10

)2 = 0. (31)

¥

In the following section, simulation studies demonstrate that the proposed DPSK GLRT

detector that combines estimation of the unknown parameters and packet-data detection into

one process outperforms the common estimate-and-plug-in approach where we first take the

optimum N -symbol (or the popular suboptimum 2-symbol) block differential detector formula

and then substitute therein unknown statistics and channel coefficients by estimates obtained

separately.

4.3 Simulation Studies

We prepare a communication system simulation study where packet-data are received in the

presence of Gaussian noise of unknown covariance. The covariance matrix used to generate

received data is taken directly from the literature [20]. The dimension of the received data

vectors is L = 9. The channel processed signal waveform Sa is chosen arbitrarily and is

assumed to be known (known channel case). We would like to study the BER performance of

the proposed GLRT packet-data detector as a function of the data packet size N and examine

the accuracy of our analytical BER expression in (14). The GLRT detector is implemented in

its linear cost form as presented in Section IV.A with P = 16, D = 6N , and arbitrary initial bit
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Fig. 1. BER of packet-data detectors as a function of the packet size N (Gaussian disturbance of unknown

covariance, known channel, E = 7dB).

estimates. Fig. 1 presents our findings and comparisons with SMI-dsp (desired-signal-present)

in (10), SMI (disturbance only observations) in (9), LMS (step size 10−3), RLS (initialization

parameter 100), and ideal ML detection. In view of the nearly overlapping analytical and

simulated GLRT BER curves, we may claim that our linear cost GLRT implementation performs

very close to full GLRT and (14) provides an accurate approximation of the BER of the GLRT

packet-data detector. Furthermore, the GLRT packet-data detector outperforms significantly

the SMI-dsp, LMS, and RLS detectors and performs nearly the same as the SMI detector in

(9) that requires N − 1 additional pure disturbance observations.

In the rest of this section, we use as an illustration vehicle for the proposed GLRT schemes

a packet-data DS-CDMA communication system2. At all times, the GLRT detectors are imple-

2The combined effect of DS-CDMA multiple access interference (MAI) and AWGN is Gaussian-mixture

distributed and not plain Gaussian. It is interesting to examine how the newly developed GLRT detectors
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mented via the linear complexity algorithm of Section IV.B with P = 16 and D = 6N . Initial

bit estimates are taken either by conventional matched-filter (MF) outputs (Case-study #1) or

are arbitrarily set (Case-studies #2 and #3).

DS-CDMA Case-study #1 Synchronous multiuser system and single-path channel

We consider a system with 10 synchronous users with Gold signatures of length G = 31.

We select a “user of interest” and have the SNR’s of the interfering users fixed in the range

[6dB, 11dB]. In this study we assume exact knowledge of the channel of the user of interest.

We compare the BER of the GLRT detector with the BER of the MF, SMI-dsp, LMS (step size

10−4), RLS (initialization parameter 100), and SMI detector in (9) that assumes availability of

N − 1 additional pure disturbance observations.

In Figs. 2 and 3, we plot the BER as a function of the SNR of the user of interest and the

packet size N , respectively. We observe that the GLRT detector performs very closely to the

SMI detector in (9) and outperforms all other detectors.

DS-CDMA Case-study #2 Asynchronous multipath fading channel: Pilot-assisted signaling

We consider the same setup as in Case-study #1, except that now the users transmit

asynchronously and each user channel has 3 resolvable paths. The path coefficients are modeled

as independent complex Gaussian random variables all of unit variance. The length of the pilot

sequence is fixed at J = 10. We compare the BER of the GLRT detector with the BER of the

RAKE-MF, the SMI and SMI-dsp detectors in (9) and (10), and the LMS and RLS detectors.

We note that in this study the GLRT detector assumes no knowledge of the channel while

all other detectors assume exact knowledge of the channel. In addition, the SMI detector in

(9) uses N − 2 extra pure disturbance observations that are assumed to be available. It is

perform in such an environment.
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Fig. 2. Case-study #1: BER as function of the SNR of the user of interest (N = 127).
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Fig. 3. Case-study #1: BER as function of the packet size N . The SNR of the user of interest is fixed at

9dB.
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Fig. 4. Case-study #2: BER as function of the SNR of the user of interest (N = 127).

worth noting that the pilot sequence is incorporated and processed internally and elegantly by

the GLRT algorithm without the need for a separate phase estimation stage. Our simulation

findings given in Figs. 4 and 5 are self-explanatory and make a strong case in favor of the new

GLRT developments.

DS-CDMA Case-study #3 Asynchronous multipath fading channel: DPSK signaling

We consider the same setup as in Case-study #2, except that the transmitter now uses

DPSK encoding instead of pilot signaling; hence, at the receiver end a differential decoder is

needed to recover the information bits. We compare the BER of our DPSK GLRT detector

with the BER of the DPSK version of the following detectors: RAKE-MF, SMI-dsp, LMS,

RLS, and ideal MMSE. A 2-symbol differential decoder is used in all cases. The coherent SMI

detector that is described in Corollary 2, Part (i) is also included as a reference. We note that

the DPSK GLRT detector assumes no knowledge of the channel while the RAKE-MF, LMS,
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Fig. 5. Case-study #2: BER as function of the packet size N . The SNR of the user of interest is fixed at

9dB.

RLS, SMI-dsp, and ideal MMSE detectors assume perfectly known path coefficients up to an

unknown phase (phase ambiguity is resolved by differential encoding/decoding). In addition,

the ideal MMSE detector assumes perfectly known interference-plus-noise covariance matrix

and the coherent SMI detector in Corollary 2, Part (i) requires perfect knowledge of the path

coefficients (including the phase) and N − 2 additional pure disturbance observations. In Figs.

6 and 7 we repeat the studies of Figs. 4 and 5. The superiority of the new DPSK GLRT

detector is striking. In fact, for data packets of size N = 250 and higher the DPSK GLRT

detector outperforms even the ideal MMSE (2-symbol decoder) detector.

5. Conclusions

We considered the problem of packet-data detection for general multiaccess/multiuser digital

communication systems. We proposed novel GLRT-type detection schemes that perform joint
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Fig. 6. Case-study #3: BER as function of the SNR of the user of interest (N = 160).
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Fig. 7. Case-study #3: BER as function of the packet size N . The SNR of the user of interest is fixed at

9dB.
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estimation of the unknown system parameters and detection of the packet-data and we designed

suboptimum implementations of linear complexity in the packet size. In particular, for the

known channel case we developed a coherent GLRT detector, while for the unknown channel

case we developed a pilot assisted GLRT detector (the pilot signal is implicitly used to resolve

phase ambiguity) and a DPSK GLRT detector. We established analytically the performance

of each proposed GLRT-type scheme relative to the corresponding conventional estimate-and-

plug-in detector that replaces unknown parameters in its ideal formula by estimates obtained

through a separate estimation process. In all cases, the GLRT schemes maintain the same

elegant core structure regardless of known or unknown channels and pilot or DPSK signaling.

Finally, we developed analytical performance evaluation tools that provide the BER that can be

reached by each proposed GLRT scheme for a given finite data record size, as well as the data

record size that is necessary for each GLRT detector to perform within a certain neighborhood

of the optimal performance point (without the need to know the latter).
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7. Appendices

Proof of Theorem 1

(i) We can write Y = vbT + N where N
4
= [n1, . . . ,nN ] ∼ N (0, IN ⊗ Rn). W.l.o.g. assume

b = [1, . . . , 1︸ ︷︷ ︸
N

]T and b̂ = [−1, . . . ,−1︸ ︷︷ ︸
m

, 1, . . . , 1]T . By (5) and (7), l1(b̂) > l1(b) is equivalent to

∣∣∣∣∣NNH + 2v

(
m∑

i=1

ni

)H

+ 2

(
m∑

i=1

ni

)
vH + 4mvvH

∣∣∣∣∣ < |NNH| . (32)

Let U
4
= [u1, . . . ,uN ] be a unitary matrix and define N

′ 4
= NU = [n

′
1,N

′′
] where n

′
1 = Nu1

and u1 = [1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0]T/
√

m. Then, N
′ ∼ N (0, IN ⊗ Rn), n

′
1 = 1√

m

m∑
i=1

ni ∼ N (0,Rn),
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N
′′ ∼ N (0, IN−1 ⊗Rn), and NNH = N

′
N

′H = N
′′
N

′′H + n
′
1n

′H
1 Thus, (32) can be reduced to

∣∣∣A +
(
n
′
1 + 2

√
mv

)(
n
′
1 + 2

√
mv

)H
∣∣∣ <

∣∣∣A + n
′
1n

′H
1

∣∣∣ (33)

where A
4
= N

′′
N

′′H ∼ CW L(N − 1,Rn) is complex Wishart distributed with N − 1 degrees of

freedom and independent of n
′
1 [22]. Using identity (8), we simplify (33) to

Re
(
vHA−1n

′
1

)
< −√m (vHA−1v) . (34)

Given A, vHA−1n
′
1 is circular complex Gaussian distributed with zero mean and variance

vHA−1RnA
−1v. Thus, given A and b

P
(

l1(b̂) > l1(b)
∣∣∣A,b

)
= Q




√
2m (vHA−1v)2

vHA−1RnA−1v


 . (35)

Using a similar reasoning as in [23], η
4
=

(vHA−1v)
2

γ(vHA−1RnA−1v)
has a Beta distribution fη(x) =

xa−1(1−x)b−1

B(a,b)
, 0 ≤ x ≤ 1, where a = N − L + 1, b = L− 1, and B(a, b) is the Beta function [13].

Then, (11) is just the expected value of (35) with respect to A (or equivalently η).

(ii) For m ≥ 2 we can show that

lim
γ→∞

∫ 1

0
Q

(√
2mγx

)
fη(x)dx∫ 1

0
Q

(√
2γx

)
fη(x)dx

= lim
γ→∞

√
mΓ(a+b+0.5)

Γ(b)
(mγ)−a−0.5 (1 + O(|γ|−1))

Γ(a+b+0.5)
Γ(b)

(γ)−a−0.5 (1 + O(|γ|−1))
= m−(N−L+1.5) (36)

where Γ(·) is the complete Gamma function. The sequence of operations that lead to this

result in (36) includes application of L’Hospital’s rule, use of the fact that the moment gener-

ating function of a Beta distributed variable with parameters a and b is a Kummer’s confluent

hypergeometric function [13], i.e.,
∫∞

0
esxfρ(x)dx = M(a, a + b, s), and use of the asymptotic

expression of M(a, a + b, s) [13]. (36) implies that the pairwise probability of error in (11) is
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negligible in the high received SNR region for m ≥ 2. Under this approximation,

BERGLRT (N) =
1

N

∑

b̂

P
(
b̂GLRT = b̂

∣∣∣b
)
m(b̂) ≤ 1

N

∑

b̂

P
(
l1(b̂)> l1(b)

∣∣∣b
)
m(b̂) (37)

≈ 1

N

∑

m(b̂)=1

∫ 1

0

Q
(√

2γx
)

fη(x)dx =

∫ 1

0

Q
(√

2γx
)

fη(x)dx (38)

where m(b̂) is the number of bits that b̂ differs from b. Next, we consider the average BER

performance of the SMI detector in (9). Define

ρ
4
=

∣∣vHR−1
nSA

(N − 1)v
∣∣2

γ
(
vHR−1

nSA
(N − 1)RnR−1

nSA
(N − 1)v

) (39)

where RnSA
(N − 1) is evaluated based on N − 1 pure disturbance observations3. By [23], ρ is

Beta distributed with parameters a = N − L + 1 and b = L− 1 (hence ρ and η have identical

pdf’s). The average BER of the detector in (9) is

BERSMI(N − 1) =

∫ 1

0

Q
(√

2γx
)

fρ(x)dx =

∫ 1

0

Q
(√

2γx
)

fη(x)dx (40)

Expressions (38) and (40) provide an upper bound on BERGLRT (N). On the other hand,

the average BER of the GLRT packet-data detector is equal to the BER of any bit, say bit bN .

The BER of detecting bN using the GLRT packet-data detector in (5) is lower bounded by the

BER of the following GLRT-type detection scheme that assumes perfect knowledge of the first

N − 1 bits in the packet:

b̂N = arg max
bN

{
max
Rn

f
(
Y

∣∣∣{bi}N−1
i=1 , bN ,v,Rn

)}
. (41)

Following similar calculations used to obtain (7) and then applying (8), we have

b̂N = arg max
bN

[
Re

(
vHR−1

nSA
(N − 1)yNbN

)]
=sgn

[
Re

(
vHR−1

nSA
(N − 1)yN

)]
(42)

3We recall that N−1 ≥ L is the necessary condition to guarantee the existence of the inverse of RnSA
(N−1)

with probability 1.
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where RnSA
(N − 1) is the sample average noise correlation matrix evaluated using the first

N − 1 noise components. We see that (42) is the detector in (9) with K = N − 1. Hence, the

BER of the detection scheme in (41) is equal to BERSMI(N − 1), and

BERGLRT (N) ≥ BERSMI(N − 1). (43)

If we combine (38), (40) and (43), then (12) follows. ¥

Proof of Theorem 2

(i) Expression (13) can be proved by virtue of Theorem 1, expression (5.3) of [24], and the

fact that the moment generating function of a Beta distributed random variable is a Kummer’s

confluent hypergeometric function [13]. Alternatively, we can express BERGLRT (N) as Eθ{g(θ)}
for g(θ)

4
= Q(

√
2θ), θ

4
= γη and η a Beta distributed random variable with a = N − L + 1

and b = L − 1 [13], and then approximate by 2
3
g(µ) + 1

6
g(µ +

√
3σ) + 1

6
g(µ − √3σ) [25] for

µ
4
= N−L+1

N
γ, σ2 4

= (N−L+1)(L−1)
N2(N+1)

γ2, and any N−L+1
N

≥
√

3(N−L+1)(L−1)
N2(N+1)

. The latter inequality

holds for all L and N > L + 2 which also satisfies the condition for the existence of the inverse

of RnSA
(N − 1) with probability 1.

(ii) Let h(N)
4
= N−L+1

N
−

√
3(N−L+1)(L−1)

N2(N+1)
. The monotonicity of Q(x) and (14) imply that

1

6
Q

(√
2γh(N)

)
< BERGLRT (N) < Q

(√
2γh(N)

)
. (44)

Thus, Q
(√

2γh(N)
)

is an asymptotically tight upper bound on BERGLRT (N). The smallest

Nν that guarantees BERGLRT (N) ≤ Q(
√

2γ10−ν/10) ∀γ is the ceiling of the solution of the

equation h(N) = 10−ν/10 which can be found as the maximum real root of (15). ¥

Proof of Theorem 3

W.l.o.g. assume b = [1, . . . , 1︸ ︷︷ ︸
N

] and b̂ = [−1, . . . ,−1︸ ︷︷ ︸
m

, 1, . . . , 1]. Let y1

4
= 1

m

m∑
i=1

yi, y2

4
=
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1
N−m

N∑
i=m+1

yi, A1
4
=

m∑
i=1

(yi − y1) (yi − y1)
H, A2

4
=

N∑
i=m+1

(yi − y2) (yi − y1)
H, and A = A1 +

A2. Then y1 ∼ N (v,Rn/m) is independent of A1 and y2 ∼ N (v,Rn/(N −m)) is independent

of A2 [22]. We also note that y1 is independent of A2 and y2 is independent of A1. Thus,

Y
4
= [y1,y2] is independent of A, which has a complex Wishart distribution with N−2 degrees

of freedom [22]. Set D
4
= diag (m,N −m). Then YYH = A + my1y

H

1 + (N − m)y2y
H

2 =

A + YDY
H
. Through straightforward -yet tedious- matrix algebra [21], we have

(YYH)−1 = A−1 −A−1Y
(
D−1 + YHA−1Y

)−1

YHA−1, (45)

[
SH (YYH)−1 S

]−1 = B−1 + B−1Z
[
D−1 + YHA−1Y − ZHB−1Z

]−1

ZHB−1, (46)

D−1 −YH (YYH)−1 Y = D−1

(
D−1 + YHA−1Y

)−1

D−1, (47)

YH (YYH)−1 S
[
SH (YYH)−1 S

]−1 SH (YYH)−1 Y

= D−1

[
D−1+YHA−1Y−ZHB−1Z

]−1

ZHB−1Z
(
D−1+YHA−1Y

)−1

D−1,(48)

D−1 −YH (YYH)−1 Y + YH (YYH)−1 S
[
SH (YYH)−1 S

]−1 SH (YYH)−1 Y

= D−1

[
D−1 + YHA−1Y − ZHB−1Z

]−1

D−1 (49)

where Z
4
= SHA−1Y and B

4
= SHA−1S are introduced for notation simplicity. Using (45)–(49),

inequality l2(b̂) > l2(b) can be reduced to

[1, 1](ZHB−1Z)−1[1, 1]T

[1, 1]
[
D−1+ Y

H
A−1Y

]−1

[1, 1]T
>

[−1, 1](ZHB−1Z)−1[−1, 1]T

[−1, 1]
[
D−1+ Y

H
A−1Y

]−1

[−1, 1]T
(50)

where the positiveness of |ZHB−1Z| and
∣∣∣D−1 + Y

H
A−1Y − ZHB−1Z

∣∣∣ can be easily verified4.

Let [[α11, α21]
T , [α12, α22]

T ]
4
= Y

H
A−1Y and [[β11, β21]

T , [β12, β22]
T ]

4
= ZHB−1Z. Using the ex-

4We note that Y
H

A−1Y − ZHB−1Z is semi-positive definite since it can be written as

Y
H

A−1/2
[
I−A−1/2S (SHA−1/2A−1/2S)−1 SHA−1/2

]
A−1/2Y.
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plicit expression of the inverse of a 2× 2 matrix, we can simplify (50) to

(α12 + α21)(β11 + β22) > (β12 + β21)(
1

m
+

1

N −m
+ α11 + α22). (51)

Set z1
4
= y1 − v and z2

4
= y2 − v. Then z1 ∼ N(0, Rn

m
) and z2 ∼ N(0, Rn

N−m
) are independent

of A. Since vHA−1S (SHA−1S)−1 SH = vH, then

α11 + α22 = ζ + zH

1 A−1z1 + zH

2 A−1z2︸ ︷︷ ︸
δ1

, (52)

α12 + α21 = ζ + 2Re [zH

1 A−1z2]︸ ︷︷ ︸
δ2

, (53)

β11 + β22 = ζ + zH

1 A−1S (SHA−1S)−1 SHA−1z1 + zH

2 A−1S (SHA−1S)−1 SHA−1z2︸ ︷︷ ︸
δ3

, (54)

β12 + β21 = ζ + 2Re
[
zH

1 A−1S (SHA−1S)−1 SHA−1z2

]
︸ ︷︷ ︸

δ4

, (55)

ζ = 2vHA−1v + 2Re [vHA−1z1] + 2Re [vHA−1z2] . (56)

As the SNR increases, δi, i = 1, . . . , 4 are negligible comparing to ζ, and (51) is asymptotically

equivalent to ζ < 0, i.e., Re [vHA−1 (z1 + z2)] < −vHA−1v. Given A, vHA−1 (z1 + z2) is a

circular complex Gaussian variable with zero mean and variance
(

1
m

+ 1
N−m

)
vHA−1RnA

−1v.

Thus

lim
E→∞

P
(

l2(b̂) > l2(b)
∣∣∣A,b

)
= Q




√
2m(N −m) (vHA−1v)2

NvHA−1RnA−1v


 . (57)

Then (21) follows by [23] and the observation that
(vHA−1v)

2

γ(vHA−1RnA−1v)
is a scaled Beta distributed

variable with parameters a = N − L and b = L− 1. ¥
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8. List of Acronyms

AFRL - Air Force Research Laboratory

AWGN - Additive White Gaussian Noise

BER - bit error rate

CDMA - code-division multiple access

CITE - Center for Integrated Transmission and Exploitation

DPSK - differential phase-shift-keying

DS-CDMA - direct sequence code-division multiple access

ICASSP - International Conference on Acoustics, Speech, and Signal Processing

IF - Information Directorate

GLRT - generalized likelihood ratio test

LMS - Least Mean Squares

LRT - likelihood ratio test

MAI - multiple access interference

MF - Matched- filter

ML - maximum likelihood

MMSE - Minimum Mean Square Estimation

RLS - Recursive Least Squares

SAB - Scientific Advisory Board

SMI - Sample Matrix Inversion

SNR - signal to noise ration

UMP - uniformly most powerful
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