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STOCHASTIC NONLINEAR AEROELASTICITY

Philip S. Beran, Ned J Lindsley, José Camberos, and Mohammad Kurdi
Air Force Research Laboratory, Air Vehicles Directorate
WPAFB, OH
Abstract

The main purpose of the research was to develop new computational methods for treating nonlinear,
dynamic, aeroelastic interactions at the design level. We considered two classes of problems requiring
these methods: (1) reliability based design optimization and/or certification of fixed wing aircraft
susceptible to nonlinear oscillations (for the purpose of avoiding dangerous oscillations), and (2)
multidisciplinary design optimization of flapping wing actuation for micro air vehicles (for the purpose of
exploiting favorable oscillations). In the former class of problems, we wish to estimate the probability
that an air vehicle will fail to an aeroelastic event of sufficient severity. This capability would enable
flight-test engineers to more effectively use scarce test resources and more rigorously frame clearance
recommendations (e.g., accounting for variability in tested equipment, such as store properties). These
methods will also provide the designers of future air vehicles new techniques by which reliability can be
addressed early in the design process, thereby lowering system development and testing costs. In the
latter class of problems, we explore the multidisciplinary optimization of dynamic systems using the
adjoint-variable approach. This capability would enable the power-efficient, time-dependent actuation of
nonlinear systems, tailored to aerodynamic loads that arise in response to structural actuation. To make
progress, we are conducting research in the following areas: (1) developing gradient-based optimization
procedures for computing minimum work actuations of linear and nonlinear systems using analytical
sensitivities [completed work]; (2) extending these procedures for addressing the robustness of designs to
uncertain actuations and loadings; (3) developing low-discrepancy samples for high-dimensional spaces;
(4) developing a framework for computing solution ensembles for complex aircraft, and (5) developing
techniques for fast construction and use of surrogate models for structures with distributed variability.
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Figure 1: Overview of research activity (left; 2008 Spring Review); Transition of reduced order
modeling technology to flight-test program for aeroelastic certification (right).




Summary

Figure 1 (left) describes the research objectives, technical challenges, and task accomplishments. It is
noted that this task forms a broader collaboration with a task entitled “Physics-Based Design of Micro Air
Vehicles” (AFOSR/NA). The summary slide taken from the AFOSR 2008 Spring Review shows a
significant result, which is the actuation time history of a linear, mechanical system optimized for
minimum work. The time-periodic actuation is like that of a square wave, demonstrating the need for the
methodology to accommodate rapid transitions. We believe this is a desirable capability for optimizing
the kinematics of micro air vehicles. Recent work has focused on the optimal actuation of nonlinear
systems. In this document, we: (1) summarize our actuation optimization of both linear and nonlinear
dynamic systems; (2) discuss recent progress in the development of smart, low-discrepancy, sampling
strategies for higher dimensional spaces, and (3) overview a framework we are building to enable the
sampling of the solution space of large, aerospace systems. Current activity in (1) generating stochastic,
time-periodic forcing functions for the robust actuation of dynamic systems, and (2) assessing uncertain
flutter speeds for structures with distributed variability®, will be discussed at the grantees’ meeting.

Figure 1 (right) describes how reduced order modeling technology developed in the combined tasks has
been transition to the Streamlined Stores Clearance Product, which is now in flight-test validation. This
goal of this Product is to reduce the amount of testing needed to certify wing/stores for aeroelastic safety.

Gradient-Based Optimization of Linear and Nonlinear Dynamic Systems. During the FY06-FY08
grant period, an hp-Cyclic technique was developed for efficiently computing time-periodic solutions in
the presence of high-frequency content®. This approach is judged to be beneficial for MAV stroke
patterns containing rapid transitions in wing orientation and stroke direction. The foundation for the
technique is the p-order spectral element. We consider problems of the form

%+Ax:f(x)+c(t),

where X is an n-dimensional vector, A is a square matrix of rank n, f is a nonlinear function of x, and c is
an actuation dependent on time. The variables x(t) correspond to the collocation of the various values of
a continuous function x(t) evaluated at discrete points. For time-periodic analysis, with period T, we
enforce X(t+T)=X(t). Following discretization in time with spectral elements, and enforcement of the

periodicity condition, a system of the form L X =A X -L F,—L_C, is obtained, where the
expanded vector X represents all variables at all times. Sensitivities of monolithic-time solutions were

computed via the adjoint method (as well as finite differences and the direct method) and used in a design
optimization process. An appropriate objective function, 1(2), is identified, and relevant design variables,
A, considered. Sensitivities (considering dependence of A on the design variables) satisfy
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We applied the monolithic-time sensitivity analysis procedure to two problems: a linear oscillator driven
by a time-periodic actuation and the same oscillator with nonlinear contributions to stiffness. Different
targets of peak displacement were examined. The actuation trajectory was defined by a set of cubic
splines on a fixed, finely spaced grid of temporal points. The optimization was performed with
MATLAB’s sequential quadratic programming capability, with sensitivities supplied by the procedure
described above. The design variables are period of actuation (T) and the values of actuation force at the
ends of each spline element. For smaller values of peak displacement, the period of actuation was found
to depart from the natural period by around 10%. The optimized actuation was such that, on an
equivalent work basis, 25% more displacement of the system mass was achieved. A sample of optimized
actuation forces is shown in Figure 2 for a target displacement of 2.5.

Figure 2: Actuation forces versus scaled time (left) and displacement (right).?

The optimal actuation of a modified Duffing equation was also studied, which contained cubic and pentic
contributions to the stiffness term:
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Sensitivity results are shown in Figure 3 (linear and cubic stiffness only), which show that sensitivities for
multiple solutions are accurately captured with the adjoint-variable approach.
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Development of Smart, Low-Discrepancy Sampling (LDS) Methods. Quasi-Monte Carlo (QMC)
integration is the same in form as conventional Monte Carlo (MC) integration except that quasi-random
numbers (sequences, samples) can be used instead of pseudo-random numbers. It is already well known
that QMC integration is more efficient than MC integration, as proved by the Koksma-Hlawaka
inequality.  Furthermore, there are classes of quasi-random sequences that require sophisticated
mathematical constructs (matrices and polynomials of a certain combinatorial nature over finite fields) to
achieve optimal performance with respect to QMC integration. The associated portable, efficient parallel
libraries are being tested in this task®. Exploratory results have demonstrated significant improvement in
convergence and accuracy using low-discrepancy sequences for Monte-Carlo numerical integration. The
results of our tests in one particular area demonstrated that the use of quasi-random numbers were
superior to the standard pseudo-random generators commonly used. We showed that for complicated
multidimensional integrals, the new method improved the quality of the results while using fewer
integration points (Figure 4). We believe that the techniques have a wide-range of applications.
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300 Quasi-Random
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Figure 4: Comparison of MC and QMC methods applied to calculating O,—Ar dissociation rates:
Baseline comparison with 1500 MC points (left) and comparison using optimally selected LDS (right).

We performed a preliminary assessment of QMC integration to the computation of failure probability for
an aeroelastic airfoil. Probability of failure was computed with MC and QMC integration at an optimum
point found by Missoum et al. in a reliability based optimization of the properties of the airfoil’s
structural support'®. Missoum used the Support Vector Machine algorithm to classify the failure surface.
Any random sample was considered to “fail” if the SVM function, s, returned a positive value. The
parameters (initial angle of attack, pitch cubic stiffness, and pitch pentic stiffness) where assumed to be
uniform random variables. Results obtained with MC and QMC integration are compared in Figure 5
(left). The number of samples needed to yield converged integration results is about the same: O(10°).
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Figure 5: Probability of failure estimates obtained with MC and QMC integration: discrete failure surface
(left) and smoothed failure surface (right).



We then re-examined the definition of failure built into the SVM procedure that was used to construct the
failure surface. The SVM function, s, varies smoothly within a margin where no samples lie. Thus, for
the level of sampling carried out in the construction of the failure surface, the true location of the failure
surface is indeterminate: it can lie anywhere in the SVM margin. In this sense, the assignment of failure
at s = 0 is strictly a numerical approximation. Now, realizing that the failure surface does not need to be
represented precisely, we exploit the smoothness the SVM function within the margin to weight
contributions of samples in this region during the numerical integration. In this way, we constructed an
integrand taking values of +1 or — 1 outside the margin and values that linearly varied within the margin.

With the integrand now C°-continuous, we then repeated our comparison of MC and QMC integration,
recording results in Figure 5 (right). In this figure, it is clearly seen that QMC converges faster than MC
integration, perhaps achieving a useful result with an order of magnitude fewer samples. We fully expect
that in a space of dimension larger than 3, the comparison between MC and QMC will favor QMC
integration more. We also note that the failure probability computed with both techniques is different
from that shown in Figure 5 (left). We attribute this difference to the need to create the SVM with a
greater number of samples to reduce the margin width.

Construction of Framework for Solution Space Sampling of Aerospace Systems. We developed a
probabilistic representation of a wing/box structure, assigning variability to structural stiffness
and mass properties. This model is used to compute ensembles of flutter speed for linear"® and
nonlinear aerodynamics (1000 samples). Results are summarized in Figure 6 below using
transonic small-disturbance theory. We are in the process of replacing the aerodynamic solver
based on small-disturbance theory with a new aerodynamic solver based on a Cartesian Euler
methodology (developed by ZONA Technology Inc.). The new capability provides superior
convergence, works well for supersonic cases, and is suitable for analyzing trimmed, complex
configurations, like those we have recently studied. See Figure 7.

Figure 7: Aeroelastic analysis of realistic aircraft: X-53 (left) and SensorCraft (right; trimmed).
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Appendix. Results of a detailed nature are documented in the following pages.
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\‘../ Goals

¢ Review non-deterministic approaches from the
perspective of aeroelasticity and certification
= What new challenges are encountered?
® Do not assume background in probabilistic techniques
¢ Re-examine aeroelastic analysis from the perspective
of non-deterministic approaches
® Do not assume background in aeroelasticity
¢ Use sample problems
= Generic (educational)

= Not-so generic (industrial)

* Theme: use of aeroelastic sensitivities
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\‘../ Some Resources
*>

¢ Introduction to Non-Deterministic Approaches, An
AlAA Professional Series Course developed by the
AIAA Non-Deterministic Approaches Technical
Committee (Enright, Grandhi, Mahadevan, Thacker)

¢ Review Article — Chris Pettit, “Uncertainty
Quantification in Aeroelasticity: Recent Results and
Research Challenges,” Journal of Aircraft, Sep-Oct,
2004.

¢ Recent Article — Hosder, Walters and Balch, “Efficient
Uncertainty Quantification Applied to the Aeroelastic
Analysis of a Transonic Wing,” AIAA 2008-729.
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¢ Preliminaries
= Aeroelastic failure mechanism: flutter
= Sources of variability
= Elements of probability theory
¢ Probabilistic view of flutter
= Numerical challenges: indirect vs direct
= Sample flutter problem (linear)
= Monte Carlo simulation and probability of failure
¢ Techniques and applications
= Surrogate models of failure surfaces
= Surrogate physical models
® [mproved sampling
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NZ Flutter
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Flutter is a divergent and catastrophic interaction
between a structure and the surrounding airstream
(aerodynamic, inertial, and elastic forces)

Must meet a flutter certification requirement
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NZ Sources of Uncertainty
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Challenging “Epistemic”
Uncertainties
imit-cycle oscillation (LCO)
Structural nonlinearity
Turbulence
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Mass Distribution
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+¢*  Fundamentals (Michael Enright)

Discrete Random Variables

— Let X be a discrete random variable,

then...
fX(‘xk)= P(X =xrc)

Probability Mass Function

Fx(xk)z P(X = xk)
Cumulative Mass Function

where  g<p(x=x)<1
! 3
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Y P(X=x)=1
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Continuous Random Variables

— Let X be a continuous random variable,

then...
Sx (x )
Probability Density Function (PDF)

Use p(x) to denote PDF

Fe(x)=P(X <x)

umulative Density Function (CDF

PDF and
where fex)= dFy(x) >0 { COFare
dx related

J:fx(x)]le

10




A 2
\/ More Essentials
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Mean (not to be confused with mass ratio) p(x) AIAA N DA, Enright
| Expected value

| n
H=E[x]= inp(xi) discrete
i=1

U =E[x]= I:xp(x)dx continuous

2 * 2
Y =Ellx-n']= [~ x=np(a)dx —
Variance (0=VY/2=standard deviation) p(x)
1 Normal RV:
2 2 = =
p(x) :_e—(x—u) /20 u=0,0=1
ov21 Gaussian PDF
X
A 4
\‘_'/ Probabilistic View of Flutter
»
P, = Probability of Uncertainty in flutter speed arising
Failure (flutter) PDF from variability in air vehicle

Must be sufficiently /
small

1
L Flutter onset speed (Ug)
1
[l
ma) U,
Specified
Flight Speed

Members of the same air vehicle class have different flutter speeds
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Deterministic Probabilistic
Pe — Pe 1

(System may re-stabilize

at higher speeds) "~ Over ensemble

U.. U;
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A
\/ Linear Aeroelastic Proto-Problem

o
W

¢ Pitch and plunge structural
coupling of a rigid airfoil (“typical
section”)

¢ Linear aerodynamics and
structural dynamics

¢ Time-domain formulation
Frequency ratio (plunge/pitch)

2
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/ U il r Tur
h/b / Force and moment
Mass ratio  Reduced velocity coefficients (modeled)
Mass center offset (Uo/(wgb))
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N7 Determining Flutter Speed (Simulation)
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Simulated

Response
(Lift, deflection, etc.) Aexp[Bt]

100-1000 time _,
steps per cycle
Prescribed
steady

\ Time

Stability of single system is observed by costly time-accurate simulation
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\'_'/ Governing Equations and the Jacobian, ) {Q

* Arrange the dependent variables in the vector x
¢ Arrange the parameters in the vector A

+ Arrange the nonlinear governing equations in the
first-order system

j_)t( =F(x;A) (N=8 equations)

¢ Fis linearized with the N-by-N Jacobian matrix

F
J= i ax =J(A)x Eigenvalues B
OX; dt
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\_/ Indirect Approach Introduces Uncertainty
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Goal: Determine U, such that g = max(Re(B(U))) =0

Damping U Pe g>0
determined 1
by system
identification g<0
U
U U
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U /\_/\/\ g 180 —
3 2 ! 0 Slower
Uy ——~_"\L & convergence

“Bracketed” flutter speed is uncertain: U; < U, < U,
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N7 Direct Approach Removes Uncertainty

o
W

+ Satisfy g = max(Re(B(U))) = 0 directly
= Small systems: Newton’s method + full system
= Large systems: sparse-matrix techniques

¢ Nonlinear steady-state + linearized dynamics
¢ Dynamic analysis rendered in steady form

U Strong convergence

Flutter computations at cost of steady-state analysis

17
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\ 2
\’/ Critical Eigenvalues

&

*
Re[B] Im[]
Flutter '
_________ -
Stable :
nm'-*'_'_/ﬁf iﬁ;—-—_‘

Eigenvalue problem is not linear

18

\ 2 o
\,.,/ Parameter Variations
*>

H Baseline

19
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A 2
\'_{ Sensitivity Analysis (Linear Variation)
L 2

+ Want to compute sensitivities of flutter speed to
parametric variations, dU;/0A
= May have numerous parameters; determine most critical
= Use to compute probability of failure
= Use to compute flutter surfaces
+ Avoid finite-difference approaches
" QU /0N = [Up(A+€)- UL(N)]/e
= # of flutter computations proportional to # of parameters
= Require high precision for each computation

¢ Employ a perturbation approach requiring only one
precise flutter solution

20

A 2
\'_( Sensitivity Analysis Procedure
L 2

U=U(A) i
Cuveofzero  GOal: Compute dU¢/AA at known flutter point (A% Ug)
damping (g=0)
Want sensitivity a a
here Gg:—gSU-I——gG)\:O (U:UF)
ou O\
A%+ 6A -1
g U, :_( g j o
) o \oU) oA
—
Need local sensitivities of damping
Jz=Bz \=X)

Sensitivities of damping derived
(J+8))(z+6z)=(B+6B)(z+ 62) from eigenvalue perturbation
analysis

21
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\ 2
\'_'/ Eigenvalue Perturbation Analysis
»>

Goal: Compute 6B and use to compute damping sensitivity

(J+0))(z+6z)=(B+6B)(z+6z) «—— Drop quadratic terms
and drop Jz=Pz

1862+ 8J)z = 352 + 5BZ Need Ieft & rlght eigenvectors
corresponding to single flutter mode

q*J6z+q*8Jz=Pq*6z+86Bq*z « g*J=Bg* A=N\")

g*8lz=06Bqg*z Compute with
finite differences
Extract eigenvalue variation 5[3 . 1 * at low cost
corresponding to flutter (g) a - q * 5 S z

ZAERO Theoretical Manual, ZONA Technology Inc. 2008

A 2
\( Comparisons

¢+ Finite Difference
= Sensitivity to mass ratio = 0.02978
= Sensitivity to frequency ratio = -4.669
= Sensitivity to cg =-9.892

¢ Analytical
= Sensitivity to mass ratio= 0.02991
= Sensitivity to frequency ratio =-4.638
= Sensitivity to cg =-10.16

Computed sensitivities are in good agreement

23
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A
\/ Airfoil Failure Surface

Flutter surface is fairly linear over selected range

Flutter Speed i

100

Mass Ratio

o.18
Frequency @2
Ratio

\ 2
\'.'/ Monte Carlo Simulation
*>

Goal: Learn by “Coin Flipping”

¢ Simulate many random events; interpret ensemble
¢ Convergence is slow (many samples — large N)

¢ Consider mass ratio and frequency ratio random
= Pick distribution of interest

¢ Determine likelihood that airfoil fails (flutters)
= Estimate probability of failure

XkI fk k:1,,N

25
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\.

AIAA NDA Monte Carlo Simulation (Thacker)

Generate realizations
for each random
variable according to
its distribution

Develop a
deterministic model/

of the system

Compute histograms, CODF

Define Random of response function and

Variables Using random the failure probability
variable values, g
evaluate the — # failed samples
Set # samples performance of the total # of samples
svstem
i sdinpnnyg n
S || [cureeose
performance
\ Fail or not Fail? /
| o]

26

our COQV = Standard Deviation/Mean
Cov,=0.05
Ccov,=0.05 |
W *2F w
L ) 3 i 5 e o p p
COVp:O.lo ;
COV,=0.05  ®F: i faegw.
W) ozt . : w =
a % % T T p 18l % T 5 o “

Choice of distribution simply determines sample locations

27
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(/P

&

o
g

'
/ Probability of Failure (P)

Pr ~ # of failures / # of samples (U < 6)

Gaussian: 500 samples; 22 failures Uniform: 500 samples; 125 failures
P. = 0.044 (5% COV) P, = 0.250 (10% COV)

Frequency Ratio
Frequency Ratio

Mass Ratio Mass Ratio

2
7 P, for Linear Airfoil (cont.)

28

Convergence of Monte Carlo for different critical flutter speeds
(Gaussian distribution with COV=10%)

Ue

Monte Carlo is very costly if each collected sample is costly

20
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A\ 2
\'_./ How to Compute P, Faster
»>

¢ Replace response (failure) surface with a surrogate
model that is cheap to evaluate
= Don’t apply MCS to costly failure analysis
+ Replace the physical model with a low-order model
that is cheap to evaluate
= Don’t apply MCS to a costly physical model
¢ Perform the MCS in a more effective manner
= Better sampling

30

\ 2
\_1 Some Techniques
0w’

¢ Surrogate surfaces
= Global approach: Polynomial Chaos Expansion (PCE)
= Local approach: Cubic elements
= Kriging and regression surfaces
= B-Splines and Support Vector Machine (discontinuous behavior)

¢ Surrogate models: Proper Orthogonal Decomposition
¢ Sampling: Quasi Monte Carlo Simulation
¢ Applications: Linear and nonlinear airfoil, nonlinear panel, transonic wing

* Giunta and Watson, “A Comparison of Approximation Modeling Techniques: Polynomial
Versus Interpolating Models,” AIAA 1998-4758.

* Chung and Alonso, “Using Gradients to Construct Cokriging Approximation Models for High-
Dimensional Design Optimization Problems,” AIAA 2002-0317.

¢ Millman, Maple, Beran, and Chilton, “Uncertainty Quantification with a B-Spline Stochastic
Projection,” AIAA Journal, Vol. 44, No. 8, 2006.

¢ Missoum, Beran, and Kurdi, “Reliability-Based Design Optimization of Nonlinear Aeroelastic
Problems,” AIAA 2008-2075.

31
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A 2
\'_'/ Polynomial Chaos Expansion (PCE)

¢ Use sampled data to develop a surrogate model
¢ Tailor spectral character to intended distribution
¢ Subject to the curse of dimensionality

Random input Random
PDF (e.g., Gaussian) PDF response
/ " /
X f

Goal: Quantify important characteristics of the distribution of f

32

A 2
\'_( PCE (cont.)

M
Original Spectral Approach: f(x) = ZFiLui(X)

Surrogate 1
f model % model
/ + Complexity warrants N samples
* Construct accurate surrogate
model with M components
X ¢ Desire M << N

+ Convergence: vary accuracy
Properties: ¢ Qrthogonality: find coefficients F;

+ Tailored: to improve properties

Ghanem and Spanos, Stochastic Finite Elements: A Spectral Approach, Springer, 1991

33
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A 2
NZ Two approaches to approximate f(x)

X— Model — f,

Generalized > F.

Intrusive Approach: W (x) > PCE model !

M times
Non-Intrusive

Generic > F.
Approach:

X, —> —f, —
k LileE] k PCE tool i

Non-intrusive approach minimizes new code development

34

A\ 2
\ ¥4 Primary Types of Spectral Expansions

o
w0’

¢ Take more care to characterize the random input

" x = X(§)
¢ Based on distributions of inputs and responses
= Gaussian: Hermite polynomials P(¢)

0 unbounded domain
0 select RVs that are normal
= Zero mean and unit variance

= Uniform: Legendre polynomials £
0 bounded domain p(€)

= Exponential: Laguerre polynomials
0 semi-bounded domain

35
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A 2
\'_{ The Original Wiener-Hermite Form (1D)

Polynomial Forms Orthogonality with respect to
W(€)=He,(€) (i=0,... Gaussian measure
W, (6)=1 E[f]= [FW(Ep(€)dE
W, (§)=¢ E

W, (6= -1 <f,g>=Elfgl= [FY(E)GW (Ep()d
W,.,(6)=EW,(6)-n¥, ,(§) 2
j WEW (Ep(E)AE=0 (i)

Important formula for both intrusive

and non-intrusive formulations —><f l.|J >= jFLU(&)lp (g)p(g)da F < l_p >

Hermite expansion leads to a
very compact representation of < f,LIJO >=F = J.fp(g)dg = E[f]
the expected value of f

A 2
\/ Non-Intrusive Point Collocation: Hosder et al.

2D p0|ynomia| Forms M samples (structured or

5 2 unstructured)
wo(gligz):]- ws(ﬁl'az)zgl_l ~ ()
w1(§11£2)251 w4(§11§2)zg1§2 ~
WE6)=E \ /e

&

Least Squares (M>P+1) Solve equations of form:
SF=f F=(S'S)"'S'f ZFUJ (€,6) =f, (k=1,...,M)
M=~2(P+1) (optimal) =0 _

. I _ (dim+order)!
51,2F=f£1,z (w/sensitivities) + P+l= dimlorderl

Hosder, Walters and Balch, “Efficient Sampling for Non-Intrusive Polynomial Chaos Applications
with Multiple Uncertain Input Variables,” AIAA 2007-1939

37
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A
\"/ Test Case: Hosder Problem

®
L 4

F(Xl :XZ) _ In(1 n Xi )sin(5X2) Max Error Near (X,,X,)=(2,2) for 0=0.02

X,=2+0 A NIPC
1 & Monte Carlo Least-Squares NIPC
X,=2+0¢§, samples ¥ Least-Squares NIPC + Sens

€,,§, Normal random variables
2" order

; 3rd order

Infusion of sensitivities most effective for few samples

Number of Samples

38

\ 2
\,.,/ Application Case: Airfoil Problem

Convergence of 6% PCE Coefficient

F(X,,X,) = flutter surface
v UJG(El,Ez):ﬁf—l

Xl =100+ 10&1 Monte Carlo
X,=0.2+0.02¢, | smPle

€,,§, Normal random variables

Number of Samples

'4% MCS Summary
'i (Ueritical = 6, Gaussian, COV = 10%)
(8]
g P=0.19:
=] =0.19:
GS_,' * Physical airfoil model
w * NIPC
¢ LS-NIPC

¢ LS-NIPC+Sens

Mass ratio

39
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A
\"/ Cubic Elements

®
L 4

¢ Local fitting approach that utilizes sensitivities
+ System of global equations not required
¢ Subject to the curse of dimensionality

X, ATPT F=F, +Fx+Fy+Fxy +Fx* +Fy’
I +EXPy +Ey’x+ B +Ry®
OF O<y<1
%, [Fa Fy
I
ox, o

A
\/ Return to Hosder Case

F(X,,X,)=In(1+X2)sin(5X,)

Sampling of F on Surface fit of F on Sampling of F on
11 x 11 mesh 321 x 321 mesh 321 x 321 mesh

41
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Hosder Case (cont.)

0‘-//’
"\

Convergence verifies cubic formulation Comparison with PCE: A Cubic
x
G a 1L.0E+01 L
o & LEE+E0
g -E 1.0e-01
pre) E 1.0€-02
g -3 S yeen
8 _: 1.00-08
T s
g 1.0€-07
c 1.0¢-08
S 1.06-00
2] o 1 2 3 4 5 L 7 L] ? 0 11 12 13 M
= Poiynomiai Degree
5 Hosder, Walters, and Balch, “Efficient Sampling for Non-
IE Intrusive Polynomial Chaos Applications with Multiple

Number of grid points per edge Uncertain Input Variables,” AIAA 2007-1939.

Cubic elements not as efficient as higher order global bases,
but deliver accuracy with practicality

42

\ 2
\'.'/ Linear Airfoil: Prediction of P,

. Up =5.8
Goal: Determine P, for flutter at fail
specified reduced velocities
N T .
l\‘)dt EEEBETEOEA & EAGAEICIBEEBETEDER T
Ooz|
S
©
o A
a 0zp =] Ufail = 59 Ufail = 60
=}
O 3t azn|
80.13 =
u- 03

Mass ratio o 7

43
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A
\/ Linear Airfoil: MCS of Cubic Fit

L4
wB

(Random character of mass and frequency ratios: uniformly distributed with COV=10%)

P. computation with 10> MCS samples Convergence of MCS at U=5.8

44

\ 2
N7 Extensions of Grid-Based Approach

[
W

Adaptive element refinement Non-simple domains

Hybrid formulations

PCE

45
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\ 2
\'_'/ Transonic Airfoil
»>

¢ Solution of Euler equations on a
moderately sized grid

+ Bifurcation calculation of the
flutter speed (using Jacobian)

¢ 0O[10%] DOFs

* Sensitivities computed with a
direct method; favorably
compared to perturbation analysis

Beran and Morton, “A Continuation Method for the Calculation of Airfoil Flutter
Boundaries,” JGCD, Nov.-Dec., 1997

3D! Badcock and Woodgate, “Prediction of Bifurcation Onset of Large Order
: Aeroelastic Models,” AIAA 2008-1820

Control! Palaniappan, Sahu, Alonso, and Jameson, “Design of Adjoint Based Laws for
Wing Flutter Control,” AIAA 2009-0148

46

\
\'_'/ Transonic Airfoil: Flutter Dip
*>

Reduced Velocity )
(U/bw,) Linear (Mach=0.0): U = 6.0
6 Euler (Mach=0.3): U = 6.3

[ Unstable

55 Unmatched flutter boundary

(1D cubic elements)
Stable

4.5

R SN T R
07 08 I

Freest Mach Numb 1 Explore variations in mass ratio and
reestream vlach Rumber frequency ratio at Mach 0.84

=]
ST T T T T T T

¢ Explored variations in Mach and pitch angle [1000 samples]:

Hosder, Walters and Balch, “Efficient Uncertainty Quantification Applied to the Aeroelastic
Analysis of a Transonic Wing,” AIAA 2008-729.

47
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\E-f/ Transonic Airfoil: Analysis in Dip

e)
c
=)
(g}

PCE LS-NIPC+Sens

Frequency Ratio

-

Mass ratio

Convergence of 4th PCE Coefficient

Nonlinearity in surface weak, but - e
25

stronger than linear airfoil: 8 E g
F,=0.19; F, = -0.0042 S

&b —a

Number of samples

48

\;{/ Application to Goland Wing

Mach 0.93 with tip-store

/ (Matched Analysis)

Industrial-Strength Process

. -
-

ZONA/ZEUS Nonlinear Dynamic Aeroelastic Analysis

l Heavy Goland wing

1

49
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A 4
\./ Goland Wing: Unmatched Euler-Based Analysis
Q"

Goal: Characterize responses for ensemble of 1000 wing structures

ter speed

G50}

Interesting coherence in “flutter dip”

Kurdi, Lindsley and Beran, “Uncertainty Quantification of the Goland* Wing’s Flutter Boundary, AIAA 2007-6309

50

\ 2
\,.,J Matched Analysis with PCE

1200 A Fluter Specd Precipitous “chimney” with high degree of sensitivity
: B Dvergent Speed to damping; verified sensitivity analysis

Flutter altitude (2" order PCE) as a
function of upper and lower skin thickness

Altitude, ft
0018

Mach

3
or 0018
E =
6 0.7 0.8 0.9 1 Mean = 0.0155ft

SD =0.000775

- A /O
ooe

1000-sample mean altitude = 8704 ft
PCE mean (6 samples) = 8729 ft o [ T
1st term: -839¢,; 51 term: 41¢,¢&, Upper

PCE enables stochastic interrogation with an “industrial-strength” process

51
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\;.’/ What We Are Working On

q —
Industrial-Strength Process | !

Dynamic Pressure (q)

)\ o Stiffness (E)

How does variability in stiffness

. %12
Simply supported von Karman panel impact panel flutter speed (A*):

+ Formulate equations
+ Compute flutter speed for a uniform panel: 7\*0

+ Use a spatially correlated MCS process to generate a set of
random panels

¢ Linearly estimate flutter speed for each panel (k=1,...,N): 7\’:(
¢ Study worst cases and failure modes

53
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\ 2
\'_'/ Equations and Their Discretization
»>

Supersonic flow
M, » 1

w(x,y,t)

T pinned

Deflections (w) normal
to un-deflected plane

pinned

>

Piston Theory for
pressure (p)

_p(d_w dw
dx " dt

Relate local pressure to local changes in deflection

J

+ Discretize 2"-order structural equations with finite differences

L 4

Uniform mesh (2

>

*

1x21)

Place equations in 1-order form: Y = (W,dW /dt)"
Stability comes from linearized equation:

V=IWV =L+ ) =L, +AT

Lindsley, Beran, and Pettit, “Integration of Model Reduction and Probabilistic Techniques with Deterministic
Multi-Physics Models,” AIAA 2006-0192.

(/P

‘4

)
4 Stochastic Viewpoint

54

J:L1+{ 1
A(x,y)

Panel-specific Jacobian

y

D)=L, + E}DkLz

L, and L, invariant

:|L2 C— A(x

Dynamic Pressure (q)

Stiffness (E)

Variability matrix

E(x;,y;)/E,

+ Adefined in terms of uniform panel: A & q/E,

¢ D expresses variability in E normalized by the uniform panel

* Flutter speed of uniform and imperfect panel: X, & A,

33
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&

)
g Modeling Variability in Stiffness

®
”

(/)

&

Goals: (1) Simulate a process that generates a random distribution E(x,y)
that is spatially correlated*®; (2) use sensitivity analysis to predict
distribution of flutter speeds

Ensemble of 1000 panels with variability
in frequency and phase (COV=5%)

Histogram of variations in
parameter A (match full order)

(X, =833)

*Deodatis, “Stochastic FEM Sensitivity Analysis of Nonlinear Dynamic Problems,”

Prob. Mech Eng., 4(3), 1989

y
/ Model Reduction

[
¥

56

p=q*8Jz/q*z

* AKX
Z rom = DZ rom

* A ¥
q rom = Dq rom

Right Eigenvector

Model reduction through
Proper Orthogonal
Decomposition (POD)

Left Eigenvector

u=0.1
A*=8073.6 (direct)
A*=8073.5 (ROM)

A*=7993.9
A*=7992.4
A*=7992.3

u=0.101
(direct)
(FOM perturbation)
(ROM perturbation)

57
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¢

\.

Low Discrepancy Sampling (LDS)

je QMc Use mathematical sequences to
generate more evenly distributed

samples: Quasi-Monte Carlo
Camberos, Greendyke, and Lambe, “On

Direct Simulation Quasi-Monte Carlo
Methods,” AIAA 2008-3915

Integral of sin(xy) in 2D Boltzman Collision Integral in 5D

] oo o L] o
rumiser of rample:

Can P¢ (non-smooth integral) be computed faster with QMC in high-dim?

58

¢ Many techniques exist for uncertainty quantification
(UQ) that can be applied to aeroelastic systems
+ However, aeroelasticity poses certain challenges
= Long run times for physics-rich problems
= Problem of precisely determining flutter speed
= Goal: minimize amount of sampling

¢ Direct flutter methods are fast & minimize sampling

¢ Sensitivities to key parameters should always be
computed

* These sensitivities can be used to improve UQ
techniques

35
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‘\/’ Linear Airfoil: First-Order Reliability
+¢* Method (FORM)

¢ Normalize: u/ Mpaseline d u’; w / Whaseline > w

Failure surface assumed |

. Linear variation of flutter speed
locally linear and

determines a:

perpendicular to gradient
/@\ Ue(target) = U¢(1,1) + o |grad, ;(Ug) |2
“Most probable” [closest] F
Baseline

failure point along line in
gradient direction:

M=1+aodU/opl,
w=1+adoU/ow]y,

Linear approximation (0.056)

60

A 2
N7 Roadmap

< Predict
Manage

Flutter Modal Element
P. «— . L .
F Identification Uncertainty Uncertainty

Probability of Failure Flutter ID
* Indirect * Indirect
= Response surface = Brackets
= Support Vector Machine = Finite-difference sensitivities
= Monte Carlo Simulation = Black box
* Direct * Direct
= Kriging and co-Kriging = Bifurcation (linearized)
= Polynomial Chaos Expansions = Adjoint sensitivities
= Monte Carlo Simulation = Specialized

61
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Worst-case Scenario

¢

Goal: Identify worst-case stiffness distribution & ensure panel safety is robust

E(point ) Flutter possible
}\Lim within region
| I
1
S E(point i) i @ A
L i
i AO
Ensure panel '
/ is flutter free ]
within region Histogram
| Alter stiffness at a
Panel LT single grid point
mesh
E,;/E;=2 AN

\ 2 .
N7 Worst-case Scenario (cont.)

«Qr
I AA/AELJ- Worst case Di,j
=} AX,=-44.88
l@nE (5.4% decrease)

Constrained

X‘; =833.5 worst case

D,=1#0.05 1 j
No net change / ‘ 4
in stiffness l

.

el

AX. = -44.58

(5.3% decrease)

<58 2R3ERR3RR

N— /-“
| CEEEEE SN
SSgEE3ssss =2@8e
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)
& Stochastic Viewpoint (cont.)

Q@
* *
. PDF ~E K ] ~ }\0 Approximates
p()\k < )\Lim )= P [ distribution of flutter
1 speeds computed from
PF < PLim <<1 : direct eigen-analysis
|
A %
| )\k
h
= A
Limiting
parameter
value, A,

Evaluate P. = P.(A;,,, \)

64
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