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Proceedings of the Annual Acquisition Research Program 

The following article is taken as an excerpt from the proceedings of the annual 

Acquisition Research Program.  This annual event showcases the research projects 

funded through the Acquisition Research Program at the Graduate School of Business 

and Public Policy at the Naval Postgraduate School.  Featuring keynote speakers, 

plenary panels, multiple panel sessions, a student research poster show and social 

events, the Annual Acquisition Research Symposium offers a candid environment 

where high-ranking Department of Defense (DoD) officials, industry officials, 

accomplished faculty and military students are encouraged to collaborate on finding 

applicable solutions to the challenges facing acquisition policies and processes within 

the DoD today.  By jointly and publicly questioning the norms of industry and academia, 

the resulting research benefits from myriad perspectives and collaborations which can 

identify better solutions and practices in acquisition, contract, financial, logistics and 

program management. 

For further information regarding the Acquisition Research Program, electronic 

copies of additional research, or to learn more about becoming a sponsor, please visit 

our program website at: 

www.acquistionresearch.org  

For further information on or to register for the next Acquisition Research 

Symposium during the third week of May, please visit our conference website at: 

www.researchsymposium.org 
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Abstract  
The Department of Defense (DoD) has placed a growing emphasis in recent years on 

the pursuit of agile capabilities via net-centric operations. Dramatic technological advancements 
in communications and sensing have generated opportunities for battlefield systems to exploit 
collaboration for multiple effects. In this setting, systems are expected and often required to 
interoperate along several dimensions. Yet, the manner in which these “system-of-systems” are 
acquired (designed, developed, tested and fielded) has not kept pace with the shifts in 
operational doctrine. Systems acquisition remains largely focused on requirements for individual 
operation, paying insufficient attention to the ability of systems to influence the variety of future 
ecosystems in which they may subsist. Further, acquisition programs have struggled with 
complexities in both program management and engineering design. This paper establishes an 
understanding and classification of underlying complexities in the acquisition of system-of-
systems. It also provides a conceptual model that exposes the connectivity between systems 
and the impact of system heterogeneity and externalities on that connectivity throughout the 
acquisition lifecycle. Implementation of this model in an exploratory simulation is in progress. Its 
objective is to allow acquisition professionals to develop intuition for procuring and deploying 
system-of-systems, providing a venue for experimentation and exploration to develop insights 
that underpin successful acquisition of SoS-oriented defense capabilities.  
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1. Introduction 
A system-of-systems (SoS) consists of multiple, heterogeneous, distributed systems that 

can (and do) operate independently but can also assemble in networks and collaborate to 
achieve a goal. According to Maier (1998),  component systems of the SoS typically 
demonstrate traits of operational and managerial independence, emergent behavior, 
evolutionary development and geographic distribution. Networks of component systems often 
form among a hierarchy of levels and evolve over time as systems are added to or removed 
from the SoS. However, these component systems are often developed out of context of their 
interactions with the future SoS. As a result, the systems may be unable to interact with the 
future SoS, adapt to any emergent behavior, or be robust in the face of external disturbances. 
The US Coast Guard’s (USCG) Integrated Deepwater System (IDS) is an example of a 
Department of Homeland Security (DHS) acquisition process for an SoS, “patterned after the 
successful Department of Defense (DoD) model of contracting to competing industry teams” 
(Anderson, Burton, Palmquist, & Watson. 1999). IDS has faced technical and management 
challenges similar to those that are historically prevalent in acquisitions in SoS environments. 

In the 1990s, the USCG Acquisition Directorate recognized the need to “deliver and 
support new generations of platform and mission systems” (1998). The 25-year, $24 billion IDS 
is aimed at “delivering new aircraft and cutters, modernizing legacy assets, and providing a new 
generation of Command, Control, Communications, Computers, Intelligence, Surveillance and 
Reconnaissance (C4ISR) mission systems for forces deployed and ashore” (1998).  In 2002, 
the Coast Guard awarded this contract to Integrated Coast Guard Systems (ICGS), an industry 
consortium of Northrop Grumman, Lockheed Martin and several other defense contractors. 
ICGS was contracted to act as the Lead System Integrator responsible for acquiring assets and 
integrating them into the IDS. The USCG recently dismissed its Lead System Integrator after a 
series of technical and managerial failures (Allen, 2007). In 2006, the Government 
Accountability Office (GAO) reported that the collaboration among the subcontractors continues 
to be problematic and that the system integrator wields little influence to compel decisions 
among them (Caldwell, 2006). 

The DHS and the DoD are not the only organizations struggling with systems integration 
of a collection of complex system. The Air Transportation System and the NASA Constellation 
program are also facing similar challenges in attempting to apply generic system engineering 
processes for acquisition in an SoS environment. Integration challenges faced by the 
Constellation Program are documented in a recent NRC report (Committee on Systems 
Integration for Project Constellation, 2004). Both DoD and non-DoD examples are the key 
drivers motivating the research described in this paper. 

The overarching goal of this research is to understand which types of acquisition 
management, policy insights and approaches can increase the success of an acquisition 
process in the SoS setting. The three research questions being explored are as follows: 

1. Is there a taxonomy by which one can detect classes of complexities in particular SoS 
applications? 

2. What are the underlying systems engineering (SE) and program management functions 
that are affected? 

3. How can exploratory modeling generate SE and acquisition management insights and 
approaches to improve the probability of success?  

In order to answer some of the questions posed, we aim to 



 

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 173 - 
=

=

1. Identify the complexities in the acquisition of SoS based on historical trends of “failures,” 
especially in the context of the DoD and DHS.  

2. Develop a conceptual model of a generic acquisition process that can then be 
customized to different SoS applications. 

3. Develop and simulate a computational model using an existing acquisition process for 
an SoS as a case-study; for example, the USCG Integrated Deepwater System could be 
used as an example of a DHS acquisition process set in an SoS environment. 
Interpretations of the results obtained would be used to field the research questions 
posed. 

Since the project is presently at its midway point, in this paper we only focus on the first 
two research questions, specifically, on the mappings between SoS acquisition difficulties and 
complexities with a view toward model development. A general framework for and an outline of 
the computational model are provided. 

2. Mapping Failure Modes to Underlying Complexities 
Simon (1996) and Bar-Yam (2003) define complexity as the amount of information 

necessary to describe a system effectively. In the context of a system-of-systems, the 
necessary information encompasses both the systems that comprise the SoS and their time-
varying interactions with each other and the “externalities.” Rouse  suggested that the 
complexity of a system (or model of a system) is related to 

 The intentions with which one addresses the systems. 

 The characteristics of the representation that appropriately accounts for the system’s 
boundaries, architecture, interconnections and information flows. 

 The multiple representations of a system, all of which are simplifications; hence, 
complexity is inevitably underestimated. 

 The context, multiple stakeholders, and objectives associated with the system’s 
development, deployment and operation. (2007)  

 (Polzer, DeLaurentis and Fry (2007) explored the issue of multiplicity of perspectives, in 
which perspective was defined as a system’s version of operational context.) 

 The learning and adaptation exhibited during the system’s evolution (Rouse, 2007). 

Historical data from previous unsuccessful defense acquisition programs show a distinct 
correlation with the causes for complexity identified by Rouse (2007). Fowler (1994) points out 
some of the causes for the failure of the Defense Acquisition Process to be “over specification 
and an overly rigid approach on development”: unreasonably detailed cost estimates of 
development and production, impractical schedules and extremely large bureaucratic overhead. 
Dr. Pedro Rustan, director of advanced systems and technology at the National 
Reconnaissance Office, identified four specific shortcomings in the acquisition process for 
defense space systems: “initial weapons performance requirements that are too detailed and 
lacking flexibility,” “insufficient flexibility in the budget process,” “a propensity to increase 
performance requirements in the middle of the acquisition cycle” and demands to field entirely 
new spacecraft to meet new requirement” (Spring, 2005). Riccioni (2005) used the United State 
Air Force (USAF) F-22 Raptor Program to illustrate shortcomings of the existing Defense 
Acquisition Process. Some of the recognized reasons for the failure of the F-22 Raptor Program 
were the ambitious nature of the set requirements, the “gross underestimation” and continual 
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misrepresentation of cost in order to “seduce the Congress and the Public” to believe that the 
aircraft was affordable. However, the major failing of this program lies in that the enormous 
delay in the development process (spanning over two decades) resulted in an aircraft that was 
no longer needed since the “existing and future enemies changed natures.” Riccioni also points 
out that “terrorists are the only extant and foreseeable threats” but they do not threaten the West 
with fighter aircrafts. In another example, the US Army’s Future Combat Systems (FCS) has 
found difficulties in developing and fielding equipment that meet the program objective 
(Capaccio, 2006). 

Using the above examples in conjunction with other acquisition programs, such as 
USCG Integrated Deepwater System and Future Combat System, we summarize the common 
causes of failure within acquisition processes as: a) misalignment of objectives among the 
systems, b) limited span of control of the SoS engineer on the component systems of the SoS, 
c) evolution of the SoS, d) inflexibility of the component system designs, e) emergent behavior 
revealing hidden dependencies within systems, f) perceived complexity of systems and g) the 
challenges in system representation.  

Sage and Biemer (2007) examined the existing systems engineering process models in 
the context of their applicability to SoS and concluded that none of them “could be tailored to 
systems family development.” Sage and Biemer also developed the System-of-systems 
Engineering (SoSE) Process Model designed specifically for SoS applications. The complexities 
discussed above were mapped onto a section of the SoSE Process Model based on the trends 
observed in past acquisition processes within the DoD Acquisition Process. Figure 1 depicts the 
mapping of some of these complexities to a section of the SoSE Process Model, representing 
from where complexities might arise and how they may affect the acquisition process. For 
example, SoS operations could demonstrate emergent behavior and result in a change in the 
CONOPs for the SoS. Evolution of the SoS changes the CONOPS of the SoS may result in a 
subsequent change in the Acquisition Strategy. Misalignment of objectives of the component 
systems in an SoS can arise from both the CONOPs as well as the SoS Project Control. System 
inflexibility, perceived complexities and challenges in representing systems occur mostly 
between or within systems. Accurate representation of component systems is complicated by 
the presence of hidden and visible dependencies between systems, fuzzy boundaries, unknown 
architectures, etc.  
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Figure 1. Complexities Mapped to a Section of the SoSE Process Model 

(Sage & Biemer, 2007) 

 

3. Towards Development of an Exploratory Model for SoS 
Acquisition 

3.1  Pre-Acquisition Model 
The purpose of the pre-acquisition model is to better understand the external 

stakeholders that affect the acquisition process. The model we developed is depicted in Figure 
2 and is based loosely on Sage and Biemer (2007) SoSE Process Model. External inputs to the 
SoS acquisition process are sorted into three categories: “Capabilities & Possibilities” (CAP), 
“Technology Assessment, Development, Investment and Affordability Plan” (ADIA) and the 
funding received. The CAP and ADIA are our own creation. Though they are similar to the 
Concepts of Operation (CONOPs) and Technology Investment and Development Plan (TDIP) in 
the SoSE Process Model, there are some key differences.   
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Figure 2. Conceptual Model for Pre-Acquisition Activities 
The need, objective, and vision for an SoS feed the CAP. The CAP is a high-level 

requirements document that provides the following information: 

1. The capabilities that the SoS is required to possess and services it must provide 

2. The system types that are needed to provide these capabilities 

3. The relative roles and responsibilities of the constituent systems 

4. Milestones in the development of the SoS and the number of increments needed 

5. Baseline SoS capability at its first deployment  

6. Future possibilities for the SoS in terms of capabilities it may possess and services it 
may provide  

7. Pre-planned product improvement (P3I) for each system type to support future 
capabilities of the SoS 

The main differences between the CONOPS and CAP stem from the last two entries (6 
and 7). The evolutionary nature of the SoS requires the dynamic addition and removal of 
component systems and functionalities. While the capabilities required for the SoS at the time of 
first deployment may be basic, the future capabilities of the SoS allow the systems of the SoS to 
be developed keeping in mind the future capabilities the SoS will provide. This prevents 
individual systems from becoming obsolete or being drastically re-designed. 
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The CAP feeds the Technology ADIA Plan, which is needed to 

1. Assess the capabilities of the legacy systems and their current maturities 

2. Provide a cost estimate for upgrading/ developing systems  

3. Provide an estimate of the investment that will be needed per increment  

4. Assess the affordability of the investment 

The differences in the Technology ADIA Plan and the TDIP stem from entries 2 and 3 in 
the list above. In addition to the functions of the TDIP, the Technology ADIA Plan provides cost 
estimates for all new development needed, including a cost breakdown per increment in the 
development process.  

Both the CAP and the Technology ADIA Plan are required to determine the amount of 
funding required for the project. While there are numerous factors that are used to determine 
funding (such as political affiliation, unexpected crisis, regulations etc), CAP and the Technology 
ADIA Plan are the inputs to the acquisition process that translate into technical requirements for 
the SoS. Provision of a computational model of the pre-acquisition activities is outside the scope 
of this paper. Instead, we focus on realizing a model for the acquisition strategy, which is 
described next. 

3.2  Acquisition Strategy Model 
Development of a “brand new” SoS has been and will remain a rare occurrence. The 

United States Air Force (USAF) Scientific Advisory Board (Saunders et al., 2005) states that 
one of the challenges in building an SoS is that legacy systems are contributors that affect the 
performance of other systems. These legacy systems, may be used “as-is” or may need some 
re-engineering to feed the needs of the new SoS. In addition, new systems are incorporated to 
develop the capabilities of the SoS. Again, the new systems can range from off-the-shelf, plug-
and-play products to custom-built systems dependent of the working of a legacy system. The 
breadth of the heterogeneity of the components can be broadly categorized under legacy 
systems, new systems and improvements. Sub-categories arise when two or more categories 
overlap.  

 

Figure 3. Heterogeneity of Component Systems in an SoS 



 

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 178 - 
=

=

The different components that comprise the acquisition process in an SoS environment 
are depicted in Figure 3. For example, improvements can be non-system related, such as 
improvements in business practices for the SoS, or they can be system-related such as re-
engineering legacy systems or customizing/developing new systems to meet the needs of the 
SoS. Similarly, legacy and new systems can be independent “as-is” systems, dependent “as-is” 
systems, independent systems in need of “re-engineering,” or dependent systems that need 
customization. Another subcategory is based on the interoperability of the systems in the SoS. 
While some dependent systems have existing interfaces that allow them to be interoperable 
(plug-and-play), others need to develop interfaces that allow them to interact with other 
systems.  

Implementing and integrating these different kinds of systems and processes into the 
SoS is made more complex by the evolutionary nature of an SoS. Thus, it must be made 
possible for component systems to re-designed or upgraded dynamically without having to re-
design the entire SoS. Also, though most systems depend on others during the implementation 
or integration phases, they are not centrally controlled. This requires that the systems have an 
incentive to collaborate with each other without being forced to do so. These issues are merely 
a sub-set of the challenges for an acquisition process (as discussed in Section 2) in an SoS 
environment.   

The conceptual model for acquisition strategy proposed in this section is based on the 
16 basic technical management and technical system-engineering processes outlined in the 
Defense Acquisition Guidebook (DoD, 2006), often referred to as the 5000-series guide. 
However, an SoS environment changes the way these processes are applied. The 2007 
System-of-Systems System Engineering (SoS-SE) Guide (Systems and Software Engineering, 
2006) addresses these considerations by modifying (or in some cases revamping) some of the 
16 processes in accord with an SoS environment. These new processes and their functions are 
described in Table 1. Our conceptual model for acquisition in an SoS environment is illustrated 
in Figure 4. It is centered on the revised processes and depicted in a hierarchy to show the flow 
of control between the processes throughout the acquisition lifecycle. 

Table 1. Modified Technical Management and Technical Processes, 
as Dscribed in the DoD SoS-SE Guidebook 

(Systems and Software Engineering, 2006) 

Requirements 
Development 

Takes all inputs from relevant stakeholders and translates the inputs into technical 
requirements 

Logical Analysis Is the process of obtaining sets of logical solutions to improve the understanding of 
the defined requirements and the relationships among the requirements (e.g., 
functional, behavioral, temporal) 

Design Solution Process that translates the outputs of the Requirements Development and Logical 
Analysis processes into alternative design solutions and selects a final design 
solution. 

Decision 
Analysis 

Provides the basis for evaluating and selecting alternatives when decisions need to 
be made. 

Implementation The process that actually yields the lowest level system elements in the system 
hierarchy. The system element is made, bought or reused. 

Integration The process of incorporating the lower-level system elements into a high-level system 
element in the physical architecture. 

Verification Confirms that the system element meets the design-to or build-to specifications. It 
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answers the question, “Did you build it right?” 
Validation Answers the question “Did you build the right thing?” 
Transition The process applied to move the end-item system to the user. 
Technical 
Planning 

Ensure that the systems engineering processes are applied properly throughout a 
system’s lifecycle. 

Technical 
Assessment 

Activities measure technical progress and the effectiveness of plans and 
requirements. 

Requirements 
Management 

Provides traceability back to user-defined capabilities 

Risk 
Management 

To help ensure program cost, schedule and performance objectives are achieved at 
every stage in the lifecycle and to communicate to all stakeholders the process for 
uncovering, determining the scope of, and managing program uncertainties. 

Configuration 
Management 

The application of sound business practices to establish and maintain consistency of 
a product’s attributes with its requirements and product configuration information. 

Data 
Management 

Address the handling of information necessary for or associated with product 
development and sustainment. 

Interface 
Management 

Ensures interface definition and compliance among the elements that compose the 
system, as well as with other systems with which the system or systems elements 
must interoperate.  
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Figure 4. Conceptual Model for Acquisition Strategy  
Based on SoS SE Processes of Table 1 

As can be seen in Figure 4, Requirements Development provides the technical 
requirements of the SoS, based on the relevant external inputs. The pre-acquisition model as 
discussed in Section 3.1 provides details about the external inputs: CAP, Technology ADIA Plan 
and funding. The technical requirements are then sent to Logical Analysis to check for 
relationships among the requirements. This also helps to check for inconsistencies among 
requirements for different systems and how that might affect the functioning and behavior of the 
future SoS.  

Design Solution development and Decision Analysis are the next processes that come 
up with the optimal design solution from the set of feasible solutions to meet the given 
requirements. The optimal design solution is not only based on the current set of requirements 
and solution alternatives but it also takes into account all previous information and data 
available through requirements, risk, configuration, interface and data management processes.  
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Since most SoS acquisitions are multi-year projects involving many different parties, the overlap 
between the management processes, Design Solution and Decision Analysis processes, allows 
for greater traceability for decisions made. The optimal design solution obtained from this phase 
is then sent to the next stage: Technology Planning and Technology Assessment. In the event 
that there is not an optimal or sub-optimal design solution to successfully implement the given 
requirements, the feedback loop to Requirement Development translates into a change in the 
technical requirements for the SoS.  

Technology Planning and Technology Assessment are essentially scheduling processes 
that help oversee the implementation, integration, validation and verification for all the α-level 
systems in the SoS. Systems in the SoS are often dependent on other systems for either 
implementation or integration, or both. These dependencies correspond to time-lags in the 
acquisition process. For example, if system A is a legacy system and system B is being built, 
the integration of A with B will not occur until B has been completely implemented. This 
generates a time lag, especially if another system C is waiting to be implemented based on the 
integration of A with B. As more systems are added to the SoS, it becomes necessary to 
generate a schedule that can help coordinate the process. This schedule also needs to be 
continually updated to reflect unexpected delays, clearly identify bottle-necks, etc.  

Due to the heterogeneity of the systems that comprise the SoS and the interactions 
between then, Validation and Verification processes need to not only check for suitable 
implementation of the “optimal design solution” on a system-level but also need to be on the 
lookout for any misaligned objectives between systems, hidden dependencies among the 
systems, and any emergent behavior that may affect the functioning and/or behavior of the 
future SoS. In most situations, early detection of an emergent behavior will prevent the re-
designing of major system components and ensure that the SoS functions satisfactorily. Even 
though Validation and Verification processes oversee Implementation and Integration, they 
occur after Implementation and Integration have begun.  

While Implementation and Integration are the lowest levels of the acquisition model 
shown, much of the feedback from this level translates into developing different design solutions 
and sometimes changing the technical requirements. This level deals with acquiring the 
systems in the SoS and integrating them based on their dependencies with other systems. 
These processes consume the bulk of the financial and other resources as well as consume the 
most time. Therefore, it is understandable why system engineers are often reluctant to re-design 
functional systems on a whim and why they want to make sure that once the system has been 
developed, integrated and tested, it does not go back into the Implementation phase.  

4. Developing a Computational Exploratory Model for Acquisition 
Strategy 

4.1  Overview 
Our purpose in constructing a computational exploratory model is to allow acquisition 

professionals to develop intuition for procuring and deploying system-of-systems. Thus, the 
objective is not to provide a model validated and ready for deployment in real acquisition 
programs but to expose the complexities in SoS acquisition. The specific complexities targeted 
are related to evolutionary development of the SoS and the span-of-control possessed by the 
SoS managers and engineers. The conceptual model displayed in Figure 4 is implemented 
using the USCG Integrated Deepwater System as a case study. Given the possibility of 
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emergent behavior during evolutionary development and the heterogeneity of the components 
and their interactions, we decided to use the agent based modeling (ABM) approach.  

Several challenges arise in transforming the acquisition model to a computational model 
for purposes of simulation and learning. One challenge lies in converting all the qualitative 
concepts into quantitative measures to support the computational model for SoS acquisition. We 
started by building an ideal model devoid of disruptors that historically plague the acquisition 
process. We will add non-linear behavior to the ideal model to test different scenarios in the 
process.  

A second challenge is building a model that can accommodate the dynamic addition and 
removal of components in the SoS. In addition, these component systems need to reflect the 
heterogeneity of the systems in a real acquisition process. We included parameters such as 
level of completeness to demonstrate the difference between legacy systems, new systems and 
the partially implemented/ integrated systems. Level of completeness for both integration and 
implementation processes vary between 0 and 1, where 1 means that the system is 100% 
complete. For example, system A representing a fully implemented legacy system has an 
implementation completeness set to “1,” while its integration with system B might only be 20% 
complete. In this case, the completeness of the integration phase is initialized to 0.20. 

A third challenge arises from the numerous methodologies that can be applied to reflect 
the integration and implementation processes. In a simplified model, it is much easier to begin 
integration once all the systems have been implemented. However, this method is neither cost 
nor time efficient, especially in multi-year projects involving numerous systems. On the other 
hand, dynamically implementing and integrating systems is time efficient but often not possible 
when dependent systems are outside the span of control of the systems engineers. For 
example, a cutter and helicopter may be dependent systems being developed by different 
contractors or different groups that cannot be forced to collaborate. This gives rise to questions: 
How do we group the systems for integration to achieve maximum efficiency with regard to time 
and cost incurred? Would it be beneficial to group systems based on the span of control or 
influence of the systems engineers or on the direct dependencies of the system?  

However, developing an acquisition model that studies the effects of all the factors that 
add to the complexity of the acquisition process for SoS in a short span of time is impossible. 
Our coarse-scale engineering model will specifically target challenges related to the evolution of 
the SoS and the span-of-control of the SoS engineer(s).  

4.2  Model Inputs  
The exploratory computational model developed has a top-down flow with feedback at 

two junctures. The flow of control begins from Requirement Development (Level t0(0), Figure 4) 
to Design Solution (Level t3(0), Figure 4) through Logical Analysis(Level t2(0), Figure 4). This 
linkage is shown in the Figure 5.  

The primary inputs fed into the Requirement Development and Logical Analysis 
processes (e.g., number of requirements, the relationships between these requirements, the 
systems affected and the dependencies between these systems) are user-defined. The inputs 
are used to develop a schedule of when each requirement will be implemented, depending on 
the relationships between the requirements. An example of such user-defined data for these 
steps is shown in Table 2.  
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Figure 5. Flow of Control and Parallel Processing of Requirements 

As shown in Table 2, there are 3 requirements (1, 2 and 3) and each has a dependency 
vector associated with it. The vectors are concatenated to form the dependency matrix for 
requirements. An “X” is placed for all diagonal elements of the dependency matrix because a 
requirement cannot be dependent on itself. The vector for requirement 1 ([X 1 0]), shows that 
requirement “1” is dependent on requirement “2.” This means that requirement 1 cannot be 
realized until requirement 2 is implemented. A lack of dependency between requirements 
means that the requirements can be simultaneously realized. In real world applications, 
communication upgrade to the North-Atlantic fleet may be independent of the weaponry 
upgrade for the same group of systems. In such a case, both the requirements on the same 
group of systems may be implemented simultaneously. Each requirement affects a subset of 
the systems present in the SoS, and the systems in each subset share a unique dependency 
matrix with other systems in that subset (shown in Table 2). 

Table 2. User-defined Data Used for the Computational Model 
Requirements Dependency Systems Affected System-level Dependency  
1 [X 1 0] [A, B] 

⎥
⎦

⎤
⎢
⎣

⎡
X

X
1

1  

2 [0 X 0]  [A, B, C] 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

X
X

X

11
00
11

 

3 [1 0 X] [A,C] 
⎥
⎦

⎤
⎢
⎣

⎡
X

X
1

0  

 
All component systems of the SoS have user-defined and calculated parameters that 

expose their heterogeneity and help track their progress through the acquisition process.  Some 
of the parameters used to describe each system in the SoS are described in Table 3. While the 
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parameters “Name,” “Imp.completeness,” “Imp.time,” “Imp.dependencies,” “Int.completeness,” 
“Int.time” and “Int.dependencies” are user-defined, ID and Mode are calculated by the model.  

Level of completeness for both integration and implementation processes vary between 
0 and 1, where 1 means that the system is a 100% complete. A partially complete system may 
start with a fractional level of completeness. Though the level of completeness for 
implementation and integration are mutually exclusive, a system can not have “0” 
implementation completeness and a non-zero integration completeness. This qualitatively 
means that a system that has not yet been implemented cannot be partially integrated with 
another system. Times to complete implementation and integration are discrete.  

Table 3. Parameters Used to Describe Any System in the SoS 
Parameter Description 
Name Name of the system 
ID Unique ID assigned to the system 
Imp.completeness[] An array that gives the completeness of the implementation of the 

system at any given time.  
Imp.dependencies[] Dependency vector that shows if system implementation is 

dependant on any other system
Imp.time Maximum time needed to complete implementation 
Int.completeness[] An array that gives the completeness of the integration of the 

system with respect to another system at any given time.  
Int.dependencies[] Dependency vector that shows if system integration is dependant 

on any other system 
Int.time Maximum Time needed to complete integration of system x with 

any other system
Mode[x;y] Provides the phase of development the system is currently in and 

its status 
 

Each system has a pre-defined dependency vector associated with implementation and 
integration processes. These vectors are concatenated to form a dependency matrix for the 
systems affected by each requirement. Elements along the diagonal of the dependency matrix 
(denoted with an “X”) are assigned a value of “0” since a system cannot be dependent or 
independent of itself. Otherwise, element (i,j) in the system-level dependency matrix can be 0 or 
1. A value of 0 signifies that the system (i) is independent of system(j) and a value of 1 signifies 
that system(i) is dependent on system(j). The dependency matrix can be directed. This occurs 
when system (i) is dependent on system (j) but not vice-versa. In Table 3, the system-level 
dependency matrix for requirement 3 is directed.  

As previously mentioned, parameters of ID and Mode are assigned by the model. When 
the system is added to the SoS, it is assigned an ID to uniquely identify it throughout the 
lifecycle of the SoS. The mode of each system contains two elements: the phase (first element) 
and the status (second element). Depending on the level of completeness of the system in the 
integration and implementation phases, the phase of the mode is set to values of {0,1,2,3}. 
When the system is added into the SoS, 0 is the Mode assigned; 1 and 2 refer to 
implementation and integration states respectively, and 3 refers to in-operation state.  Status of 
the Mode can be set to 0 or 1, depending on if the system is available for 
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implementation/integration or not. Thus, a Mode of [2; 1] means that the system is in the 
integration phase and is currently being integrated with another system. 

4.3  Model Dynamics 
As seen in Figure 5, the flow of control in the model starts from the Requirement 

Development (Level t0(0), Figure 4) to Validation and Verification (Levelt6(0), Figure 4). When 
the model is first deployed, this stage initializes all processes by supplying requirements to be 
implemented, systems affected, etc. Each requirement also has a “change” status flag that 
shows when a particular requirement is unchanged (status=0), being changed (status=-1) or 
has been changed (status=1). When a requirement is changed after the acquisition process has 
begun, it affects all subsequent processes.  

 Using the user-defined parameters and inputs from Requirement Development (similar 
to the data shown in Table 2), Logical Analysis (Level t2(0), Figure 4) generates a schedule to 
realize the given requirements. Depending on the dependencies between the requirements, 
they get implemented in series or in parallel with other requirements. As shown in Figure 5, 
every requirement being implemented is fed into its own Design Solution and Decision Analysis 
(Level t3(0), Figure 4) process. This process can change the implementation or integration 
times required by each system affected by the requirement. If a requirement is changed, the 
design solution and implementation processes for the component systems are affected. The set 
of systems with their modified implementation and integration times are then sent through the 
Technology Planning and Technology Assessment (Level t4(0), Figure 4) processes.  

Technology Planning takes in the array of systems being affected by the given 
requirement and divides them into “to-be-implemented” and “read-for-integration” queues 
depending on the implementation/integration times needed for each system. Since the 
component systems in the acquisition process can be at varying levels of completeness during 
the implementation and integration cycles, they are dynamically added to the queues. For each 
queue, a synchronization matrix (sync_mat) is generated to keep track of the number of 
systems in the queue, their expected times of completion and their “iteration-rate.” Given the 
maximum time allotted and the existing level of completeness, Iteration rate is defined as the 
average rate at which the process needs to be completed for a system. For example, if system 
“A,” which is 25% completed needs to be fully implemented in 5 time-steps, using Equation 1, 
the iteration rate of system “A” is calculated to be 0.15. 

Equation 1.  
time

sscompleteneRateIteration
max_

)0(1_ −
=  

The systems in the synchronization matrix for the implementation/integration queues are 
sorted on the basis of 1) number of systems dependent on that system and, 2) maximum time 
required by the system to complete the process. Thus, systems with larger number of systems 
dependent on them are higher on the synchronization queue than those with a fewer number of 
dependent systems. Similarly, systems with the same number of dependent systems—those 
requiring less time for implementation/integration—get higher priority. Since this is a basic 
model, we only have two criteria to determine an appropriate schedule. In future models, more 
conditions can be added to simulate different methodologies. For example, priority of the 
systems in the queue may be a factor that determines their position in the process queues.  

Technology Assessment uses the synchronization matrix developed by Technology 
Planning to track the progress of the systems in the implementation/ integration queues. In a 
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non-ideal acquisition model, the iteration rates for the systems will be subject to external 
perturbations. A drastically reduced iteration-rate will stall the development of a system mid-
process and affect other systems dependent on the stalled system. Technology Assessment 
recognizes the stalled systems and activates “enablers” to re-adjust their iteration-rate.  

Implementation (Level t5(0), Figure 4) of systems can also occur in series or parallel 
configurations depending on the system dependencies. The level of completeness for an 
implementation process increases by the iteration rate at every time-step, until it reaches a 
completeness value of 1. The incremental increase in the level of completeness of two 
independent systems with different iteration rates occurs simultaneously, as shown in Figure 6a. 
If system “B” were dependent on system “A,” then implementation of B would commence when 
A was fully implemented, as shown in Figure 6b. When a system achieves the implementation 
completeness value of 1, it is added onto the integration queue. Since the integration and 
implementation process queues are dynamically generated, the synchronization matrix for the 
systems in the queues also changes dynamically.  
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Figure 6. Incremental Increase in Implementation Completeness for a) Independent 
Systems b) Dependent Systems. 

The Integration (Level t5(0), Figure 4) process also uses a synchronization matrix for 
coordination. While parallel processing of dynamically changing process queues greatly 
improves the time efficiency for independent systems, they also increase the probability of 
dependent systems trying to integrate with each other at the same time. For example, system 
“A” might be waiting to be integrated with system “B” while system “B” is being integrated with 
system “C.” The current implementation algorithm solves this problem by using the Mode 
parameter for each system. As described in Table 3, Mode is a 2x1 array structure. The first 
element gives the phase the system is currently in and the second element gives the status. 
When a system in the integration queue (phase 2) starts getting integrated with another system 
its status changes from 0 to 1. In the previous example, when “B” begins integration with system 
“C,” the mode status of “B” changes to 1. System “A” cannot integrate with system “B,” unless 
the mode status for “B” changes back to 0. This process is better illustrated in Figure 7.  

a) Independent Systems b) Dependent Systems 
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Figure 7. Use of Mode in the Integration Process Queue 

When both the Implementation and Integration processes for all the systems affected 
are complete, the Validation and Verification (Level t6(0), Figure 4) processes check to see that 
all the systems were implemented and integrated within constraints of time and budget. They 
check for a completeness level of 1 for all the component systems affected, and then they 
compare the actual time needed and cost incurred by each system to the time and cost allotted 
to them by Design Solution and Decision Analysis.  

5. Work in Progress: Implementation and Success Metrics 
As discussed in Section 4, the modeling approach for acquisition allows for a great deal 

of flexibility in terms of parameters, methodologies, etc. While we have generated a successful 
“small-scale” ideal model to depict the basic methodology of the defense acquisition process, 
we have yet to implement different scenarios using disruptors and enablers.   

Also, while the feedback system within the system-level has been implemented between 
processes like integration and technology planning, the feedback system between Design 
Solution and Requirements Development has yet to be implemented. The high-level feedback 
loops to Requirements Development and Logical Analysis will allow us to model scenarios in 
which requirements change at different times through out the lifecycle of the SoS. As mentioned 
in Section 2, historical trends in defense and non-defense related acquisition processes show 
that requirement changes occurring during the later phases of the acquisition lifecycle have 
been major contributors to the failure of the SoS acquisition program.    

We are also currently working on developing the soft parameters that allow for fuzzy 
boundaries depicting varying spans of control of the SoS engineers and managers over the 
different component systems This may be reflected in the system-dependency matrix by using 
values between 0 and 1. Fractional values of dependency then need to be mapped to a time-
delay parameter in each process, in order to show the relationship (if any) between the span of 
authority of a systems or system-of-systems engineer and the time required for the completion 
of an acquisition process.  
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The success of the developed ABM Model will be measured by the ability of the model to 
provide insights into the types of acquisition management insights and approaches that can 
increase the success of an acquisition process in the SoS setting. The model will enable us to 
answer the three research questions posed in Section 1, specifically targeting complexities 
related to span of control/influence of the SoS engineers and managers and the evolutionary 
development of an SoS. A successful model will allow for the study of various scenarios 
generated by implementing different acquisition management strategies and approaches in an 
SoS environment. For example, scenarios could be generated by adjusting the “levels” of 
collaboration between individual system engineers at varying hierarchical levels or the span of 
control of the SoS engineer throughout the lifecycle of the SoS. The model may even be used 
as a comparative tool to study the effect of implementing different methodologies for individual 
processes on SoS parameters, such as time needed to acquire, test and deploy specific 
capabilities. The greatest benefit of such modeling lies in its ability to act as a decision-making 
tool for SoS engineers, program managers and systems engineers to improve the probability of 
success of the SoS acquisition process by simulating different scenarios and implementing 
different strategies.  

6. Conclusions 
From historical data related to past SoS-oriented defense acquisition programs 

(discussed in Section 2), we summarize the common causes of failure as a) misalignment of 
objectives among the systems, b) limited span of control of the SoS engineer on the component 
systems of the SoS, c) evolution of the SoS, d) inflexibility of the component system designs, e) 
emergent behavior revealing hidden dependencies within systems, f) perceived complexity of 
systems, and g) the challenges in accurately representing them. These sources of complexity 
were mapped to a section of the SoSE Process Model recently introduced by Sage and Biemer 
(2007) in order to identify where manifestations of these complexities might arise and how to 
begin assessment of how they may impact the acquisition process.  

This mapping in conjunction with the 16 technical and technical management SE 
processes identified by the DoD SoS-SE Guide (Systems and Software Engineering, 2006) was 
used to develop a conceptual model for pre-acquisition and acquisition strategy activities. The 
acquisition strategy model takes an incremental approach to the evolutionary development of an 
SoS and allows processes lower in the hierarchy to affect change in the processes above them. 
Thus, the model exposes the interconnections among levels and uses these to implement 
evolving requirements and design solutions in the component systems of the SoS. 

These mappings and conceptual models are directed toward providing a basis for a 
computational exploratory model for acquisition strategy in an SoS environment. Based on user-
defined inputs for the requirements and their dependencies on each other, the model uses 
series and parallel processing to implement these requirements in the component systems. This 
exploratory model allows evolving requirements and design solutions to trickle through the lower 
processes and uses disruptors to affect specific component systems, which in-turn affects 
change in processes higher in the hierarchy.  

The uniqueness of the models lie in their ability to provide a better understanding of the 
acquisition process in an SoS environment, along with computational tools for better decision-
making for the higher levels of SoS management. We hope the insights gained from this 
research will significantly improve the probability of success with future acquisition programs 
within and without the DoD.  
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Motivation Motivation 
Data indicates a variety of challenges for SoS Acquisition are at hand.



Root causes* of failure within Root causes* of failure within 
acquisition processesacquisition processes

a) a) misalignment misalignment of objectives among the systems, of objectives among the systems, 
b) limited b) limited span of control span of control of the SoS engineer on the of the SoS engineer on the 
component systems of the SoS, component systems of the SoS, 
c) c) evolution evolution of the SoS, of the SoS, 
d) d) inflexibility inflexibility of the component system designs, of the component system designs, 
e) e) emergent behavior emergent behavior revealing hidden dependencies revealing hidden dependencies 
within systems, within systems, 
f) f) perceived complexity perceived complexity of systems and of systems and 
g) the challenges in g) the challenges in system representationsystem representation

* Partially based on: Rouse, W. (2007, June). Complex Engineered, Organizational and Natural Systems.   
Systems Engineering, 10, 3., pp. 260-271



Our Research QuestionsOur Research Questions
1.1. What are the underlying systems engineering What are the underlying systems engineering 

(SE) and program management functions that are (SE) and program management functions that are 
affected by complexities due to affected by complexities due to evolutionevolution of SoS of SoS 
acquisition and acquisition and spanspan--ofof--controlcontrol??

We hypothesize that a lWe hypothesize that a large arge spanspan--ofof--controlcontrol for the SoS engineers and for the SoS engineers and 
managers makes the acquisition process timemanagers makes the acquisition process time--efficient for directed efficient for directed 
requirement dependencies, primarily by encouraging distinct grourequirement dependencies, primarily by encouraging distinct groups ps 
implementing dependent requirements to collaborate. implementing dependent requirements to collaborate. 

2.2. How can Exploratory Modeling How can Exploratory Modeling generate insightsgenerate insights
and approaches to improve the probability of and approaches to improve the probability of 
program success?program success?



Development of an Exploratory Development of an Exploratory 
Model for SoS AcquisitionModel for SoS Acquisition

1. 1. PrePre--Acquisition ModelAcquisition Model : Understand the influence of : Understand the influence of 
external stakeholders on the acquisition processexternal stakeholders on the acquisition process

2. 2. Acquisition Strategy ModelAcquisition Strategy Model : : 
–– Based on the 16 technical management and technical Based on the 16 technical management and technical 

systems engineering processes outlined in the Defense systems engineering processes outlined in the Defense 
Acquisition Guidebook (5000 series) applied to an SoS Acquisition Guidebook (5000 series) applied to an SoS 
environment (SoSenvironment (SoS--SE Guide)SE Guide)

–– Conceptual model depicts the processes in a hierarchical Conceptual model depicts the processes in a hierarchical 
setting to show the flow of control between the processes setting to show the flow of control between the processes 
throughout the acquisition lifethroughout the acquisition life--cycle. cycle. 



Acquisition Strategy Acquisition Strategy –– The Paper ModelThe Paper Model



Overall Description Overall Description –– Computational ModelComputational Model
System Inputs: System Inputs: 

-- Total time for entire SoS to be designed and implementedTotal time for entire SoS to be designed and implemented

-- Number of requirementsNumber of requirements

-- Total budget for SoSTotal budget for SoS

Logic:Logic:

-- Uses Agent Based Modeling (ABM) implemented in MATLABUses Agent Based Modeling (ABM) implemented in MATLAB

-- Uses probabilistic model for disrupter actuation and system solUses probabilistic model for disrupter actuation and system solutionution

Outputs:Outputs:

-- Total time needed for SoS developmentTotal time needed for SoS development

-- Information at every time step:Information at every time step:

•• Stage (status) of requirementStage (status) of requirement

•• Fraction of completion of each requirement at each stageFraction of completion of each requirement at each stage

•• System integration/implementation statisticsSystem integration/implementation statistics
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ImplementationImplementation of Sys. C proceeds with of Sys. C proceeds with 
respect to respect to Sys.Sys.’’ss A, B, and CA, B, and C
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Integration Integration of Sys. C is dependent on the of Sys. C is dependent on the 
other systems as well!other systems as well!

Implementation and Integration of Implementation and Integration of 
Dependent Systems (no disruptions)Dependent Systems (no disruptions)

Sys. ASys. A
Sys. BSys. B
Sys. CSys. C

Waiting for BWaiting for B

Waiting for AWaiting for A

Time-step Time-step

Sys. C Integration CompletenessSys. C Implementation Completeness



Effects of DisruptorsEffects of Disruptors
Inevitable disruptions on both systemInevitable disruptions on both system--level and requirement levels will occur level and requirement levels will occur 
Technology Assessment Technology Assessment is able to immediately trace and resolve the problem. This is able to immediately trace and resolve the problem. This 
prevents the development from stalling or regressing over multipprevents the development from stalling or regressing over multiple timele time--steps.steps.
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Vulnerability to DisruptionsVulnerability to Disruptions
Some systems have a much Some systems have a much 
higher risk factor. This higher risk factor. This 
means that they are more means that they are more 
vulnerable to negative vulnerable to negative 
disruptions in their disruptions in their 
development. development. 

Analysis: Analysis: Higher risk of Higher risk of 
disruptions means the disruptions means the 
system/systems take more system/systems take more 
time to complete the stage. time to complete the stage. 
There is also the possibility There is also the possibility 
that this may never that this may never 
happen.  happen.  
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p(B)=50% chance of the Integration queue being hit by disruptions.
p(A|B)=99% chance for a system in the queue being affected. 

p(A)= 49.5% chance of a system being hit by disruptions
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Effect of SpanEffect of Span--ofof--controlcontrol

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Time-step

S
ta

ge
 o

f D
ev

el
op

m
en

t

Implemetation of different Requirements in an Environment with limited Span-of-Control
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Limited Span of Control

Extensive Span of Control

Time-step

Stages of Requirement Completion: 
1. Requirement Development

2. Logical Analysis

3. Design Solution

4. Decision Analysis

5. Implementation

6. Integration

Time-step

In the case of limited Span-of-
Control, acquisition process 
completes in 19 time-steps. 
Whereas, in extensive Span-of-
Control process completes in 12 
time-steps.



Uniqueness of ModelUniqueness of Model
Dynamic and scalable Model Dynamic and scalable Model allows Requirements and Systems to be allows Requirements and Systems to be 
added/changed at any point in the acquisition process.added/changed at any point in the acquisition process.

Heterogeneity: Heterogeneity: Component systems differ in their level of completeness for Component systems differ in their level of completeness for 
Integration Integration andand ImplementationImplementation phases.  They represent legacy systems and new phases.  They represent legacy systems and new 
systems in various stages of development.systems in various stages of development.

Probabilistic approach Probabilistic approach for disruptors affecting systems is based on real for disruptors affecting systems is based on real 
acquisition models where higher risk means greater chance for deacquisition models where higher risk means greater chance for delays during lays during 
development (development (Design, Integration and ImplementationDesign, Integration and Implementation).).

Parallel processing Parallel processing for Requirements and Systems fulfilling a given Requirement for Requirements and Systems fulfilling a given Requirement 
depends on depends on ‘‘spanspan--ofof--controlcontrol’’ of SoS engineers and managers. of SoS engineers and managers. 

Overall focus is on Overall focus is on ““LearningLearning”” and and ““exposition of complexitiesexposition of complexities””, not on actual , not on actual 
use for program management.use for program management.



Future WorkFuture Work

Using Future Combat Systems (FCS) as a Using Future Combat Systems (FCS) as a 
casecase--study for the exploratory modelstudy for the exploratory model
Adding fuzzy probabilistic boundaries Adding fuzzy probabilistic boundaries 
defining defining spanspan--ofof--controlcontrol
Generating, testing and analyzing different Generating, testing and analyzing different 
scenarios dealing with introduction of scenarios dealing with introduction of 
requirements and systems at different times requirements and systems at different times 
and with different levels of completeness.and with different levels of completeness.
Creating userCreating user--interfaces for the modelinterfaces for the model
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