
Noname manuscript No.

(will be inserted by the editor)

Solving Computationally Expensive Optimization

Problems with CPU Time-Correlated Functions

Mark A. Abramson · Thomas J. Asaki ·

John E. Dennis, Jr. · Raymond Magallanez,

Jr. · Matthew J. Sottile

May 27, 2008

Abstract In this paper, we characterize a new class of optimization problems in which

objective function values are correlated with the computational time required to obtain

these values. That is, as the optimal solution is approached, the computational time

required to compute an objective function values decreases significantly. This is mo-

tivated by an application in which each objective function evaluation requires both a

numerical fluid dynamics simulation and an image registration process, and the goal is

to find the parameter values of a predetermined reference image by comparing the flow

dynamics from the numerical simulation and the reference image through the image

comparison process. In designing an approach to numerically solve the more general

class of problems in an efficient way, we make use of surrogates based on CPU times of

previously evaluated points, rather than their function values, all within the search

step framework of mesh adaptive direct search algorithms. Because of the expected

CPU time correlation, a time cutoff parameter was added to the objective function

evaluation to allow its termination during the comparison process if the computational

time exceeds a specified threshold. The approach was tested using the NOMADm and

DACE MATLABr software packages, and results are presented.

Mark A. Abramson
The Boeing Company, PO Box 3707 Mail Code 7L-21, Seattle WA 98124-2207 USA E-mail:
Abramson.Mark@gmail.com

Thomas J. Asaki
Los Alamos National Laboratory, MS D413, Los Alamos, New Mexico 87545 USA E-mail:
asaki@lanl.gov

Raymond Magallanez, Jr.
Headquarters, United States Air Force, AF/A9R, Pentagon, Washington, DC USA E-mail:
Raymond.MagallanezJr@pentagon.af.mil

John E. Dennis, Jr.
Rice University, Department of Computational and Applied Mathematics, 8419 42nd Avenue
SW, Seattle, WA 98136-2360 USA E-mail: dennis@rice.edu

Matthew J. Sottile University of Oregon, Department of Computer and Information Science,
Eugene, OR 97401 E-mail: matt@cs.uoregon.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
27 MAY 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Solving Computationally Expensive Optimization Problems with CPU
Time-Correlated Functions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rice University,Department of Computational and Applied
Mathematics,Seattle,WA,98136-2360

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this paper, we characterize a new class of optimization problems in which objective function values are
correlated with the computational time required to obtain these values. That is, as the optimal solution is
approached, the computational time required to compute an objective function values decreases
significantly. This is motivated by an application in which each objective function evaluation requires both
a numerical fluid dynamics simulation and an image registration process, and the goal is to find the
parameter values of a predetermined reference image by comparing the flow dynamics from the numerical
simulation and the reference image through the image comparison process. In designing an approach to
numerically solve the more general class of problems in an efficient way, we make use of surrogates based
on CPU times of previously evaluated points, rather than their function values, all within the search step
framework of mesh adaptive direct search algorithms. Because of the expected CPU time correlation, a
time cutoff parameter was added to the objective function evaluation to allow its termination during the
comparison process if the computational time exceeds a specified threshold. The approach was tested using
the NOMADm and DACE MATLABr software packages, and results are presented.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Keywords Derivative-free optimization, mesh adaptive direct search (MADS)

algorithms, pattern search, Navier-Stokes equations, surrogate optimization, image

registration

1 Introduction

In this paper, we introduce a new class of optimization problems and a novel approach

for solving them. This class consists of minimizing an objective function f : X ⊂

R
n → R that is computationally expensive to evaluate, but becomes significantly less

so as the solution is approached. Typically, the objective function involves some type

of realistic engineering simulation, which in practice can exceed days or weeks of wall

clock time on even the largest parallel systems, making it infeasible to naively perform

full simulation runs on a large set of problem instances. While tackling the extreme

computational requirements of these large simulations is our ultimate goal, our primary

motivation in this paper comes from an application that involves both a fluid dynamics

simulation and an image registration process, the latter of which becomes much less

expensive close to the solution.

This unique property of correlation between objective function values and the com-

putational time required to compute them leads us to a solution approach that inte-

grates CPU runtime measures into the optimization process, allowing us to better

utilize computational resources and significantly reduce computational time. Because

of the computational expense, our approach also involves the iterative use of surrogates.

In this context, a surrogate can be thought of as a much less expensive replacement

for, but not necessarily a good approximation to, the objective function.

To maintain rigorous convergence properties of the approach, the use of surrogates

is incorporated into the search step of the class of mesh adaptive direct search (MADS)

algorithms. MADS was introduced by Audet and Dennis [6] as a way of extending gen-

eralized pattern search (GPS) [4,11,12,23] to optimization problems with nonlinear

constraints without the use of penalty parameters [13] or filters [5]. Like GPS, each

iteration of MADS consists of a search and a poll step. The search step, which con-

sists of evaluating the objective function at any finite number of points, allows for the

use of surrogates to handle computationally expensive functions. The poll step, which

consists of evaluating adjacent points on a mesh formed by directions that positively

span R
n, drives the convergence theory of the algorithm. Since our solution approach

focuses only on a carefully designed search step within the MADS framework, and

without disturbing the algorithm or its theoretical convergence properties, we restrict

our discussion only to the search step. Further details on the MADS algorithm class

and its convergence properties can be found in [6] or [2].

The remainder of the paper is as follows. In Section 2, we further motivate our

work by discussing the details of our application. In 3, we discuss surrogates in more

detail, including some specific types and initialization strategies. In Section 4, we in-

troduce new strategies for incorporating surrogates to efficiently solve our target class

of problems. Numerical results on a specific instance of our application are given in

Section 5, followed by some concluding remarks in Section 6.

3

2 An Applicable Class of Optimization Problems

The class of problems we target is motivated by an application in which each ob-

jective function evaluation requires both a fluid dynamics simulation and an image

registration. The movement of fluids in a region Ω ⊂ R
n, n ∈ {2, 3} is governed by the

well-known Navier-Stokes equations:

∂

∂t
v + (v · ∇)v + ∇p =

1

Re
△v + (1 − βT̃)g,

∂T̃

∂t
+ v · ∇T̃ =

1

Re

1

Pr
△T̃ + q

′′′
,

div v = 0,

where u is a velocity field on R
n, p is the pressure field in Ω, g indicates body forces

in Ω, Re ∈ R is the Reynolds number of the flow, Pr ∈ R is Prandtl number of the

flow, β ∈ R is the coefficient of thermal expansion, q′′′ is the heat source, T̃ is the

temperature, and △ =
Pn

i=1
∂2

∂x2

i

denotes the Laplace operator.

Our test example is that of the well-known lid-driven cavity problem [9], in which

an initially stationary 2d fluid in a rectangular container is subject to forces imposed

by the top boundary (lid) moving at a uniform horizontal velocity. Since the Navier-

Stokes equations cannot be solved analytically, they must be solved numerically using

a finite element method and associated finite differencing scheme. We use the method

of [9]. Figure 1(a) shows a snapshot of the fluid velocity at some positive time. Figure

1(b) shows the corresponding representation of the heat function H, which we will

use as reference data. The heat function defines the 2d heat flux Φq = ∇× H, and is

analogous to the hydrodynamic stream function which defines the 2d velocity.

Fig. 1 Example time snapshots of a lid-driven cavity simulation. The velocity field (a) at
some time t > 0 shows a vortical structure. The heat function (b) at time t serves as our
example reference image.

Image registration is the process of estimating some optimal transformation u∗

between two images. Thus, a transformation u is realized as a path through the space

of images. A particular choice of u will depend on the needs of the application. For

example, in medical imaging it is desirable to compare images with minimal distortion,

∇ × u. Other image comparison tasks benefit from minimizing the work required to

“move” the intensities from one image to another. Different types of transformations

are described in [15]. If we consider the classical inner product space L2(Ω) of squared

Lebesgue-integrable functions with its standard induced norm, a transformation of an

4

image T is given by Tu(x) = T (x−u(x)), where u(x) is the displacement of the point x.

The objective is to minimize the distance between a reference image R and a template

image T through an optimal warp transformation Tu ∈ L2(Ω), as defined by some

distance measurement D, and a smoothing or regularizing term S. This problem is

given by

min
u

D[R, Tu] + αS[u], (1)

where α > 0, and

D[R, Tu] = φ(x, u(x)) (2)

S[u] = A[u](x), (3)

for a force measurement φ and partial differential operator A. The distance measure

defines a local spatio-temporal force φ needed to “move” T toward R, creating the image

warp transformation Tu. The regularizing term is added to the objective function to

differentiate between possible transformations, since the minimum distance may not

be unique, and one type of transformation may be preferred over another. Applying

the Euler-Lagrange equations to (1)–(3) yields the system of nonlinear differential

equations,

A[u](x) − φ(x, u(x)) = 0,

from which the iteration scheme,

A[uk+1](x) − φ(x, u
k(x)) = 0, (4)

is constructed. In particular, we chose the following, consistent with [15]:

D[R, Tu] =
1

2
‖Tu − R‖L2(Ω), S[u] =

1

2

n
X

i=1

Z

Ω

(△ui)
2
dx, A[u] = △2

u.

Figure 2 shows an example of an image registration of two different simulated flows

of heat for a fluid. The top left picture is the reference image R for a specific set of

(unknown) parameter values (e.g., Reynolds number of the fluid). For a different set of

parameter values, the simulation is run, resulting in the template image T shown in the

top right picture. The image registration is then applied using (4) to solve (1)–(3), the

solution of which is an optimal warp function u∗(x). The resulting warped template

image Tu and the difference between R and Tu are shown in the bottom left and right

images, respectively.

Given pixel points {xi}
N
i=1 ⊂ R

n, where N is the number of pixels in the image,

the objective function is a measure of dissimilarity between the images; namely,

d = ‖u∗(x) − ū‖2, ū =
1

N

N
X

i=1

u
∗(xi) (5)

The subtraction of the means in (5) allows for a zero objective function value for

images that are identical except for translational alignment issues. If the images are

very similar, the numerical image registration scheme (4) requires only a few iterations

to transform T into R, resulting in less computational time and a small distance value.

On the other hand, images that are relatively dissimilar require more iterations of (4),

which would increase the computational time and distance value. Thus, the objective

function (distance) value and its associated computational time are expected to be

strongly correlated.

5

Fig. 2 Image registration example. The noisy intensities of the template image (b) are trans-
formed into a registered image (c) intended to match a reference image (a). The optimal
transformation u∗ is determined by equation 1. The residual R − Tu is shown in (d).

3 Surrogate Functions

The idea for surrogates first appeared as “approximation concepts” in the work of

Schmit and Miura [10]. Booker et al. [8] characterize a class of problems for which

surrogate functions would be an appropriate approach, suggest a surrogate compo-

sition, and set forth a general Surrogate Management Framework (SMF) for using

surrogates to numerically solve optimization problems. Most surrogates are one of two

types: simplified physics or response-based. A simplified physics model, also known as

a low-fidelity model, makes certain physical assumptions that significantly reduce the

computational cost by eliminating complex equations and even the number of vari-

ables. Although several novel approaches exist in the literature for treating this class

of surrogates (e.g., see [18] or [3]), the actual construction of the models is problem-

dependent.

To handle our target class of problems, we use as surrogates a class of response-

based Kriging approximation models [19]. Given a set of known data points {si}
m
i=1 ⊂

R
n and their function values or deterministic responses ys ∈ R

m (i.e., [ys]i = y(si), i =

i, 2, . . . , m), the deterministic function ŷ(z) is modeled as a realization of a stochastic

process,

Y (z) =

p
X

j=1

βj f̂j(z) + Z(z) = β
T

f̂(z) + Z(z), (6)

where Y (z) is the sum of a regression model with coefficients β = [β1, β2, . . . , βp] ∈ R
p

and basis functions f̂ = [f̂1, f̂2, . . . , f̂p], and a random variable Z(z), where Z : R
n −→

R, with mean zero and covariance V (w, z) = σ2R(θ, w, z) between Z(w) and Z(z),

σ2 is the process variance, and R(θ, w, z) is the correlation function of w and z. The

parameter θ ∈ R
n controls the shape of the correlation function.

6

Kriging produces an approximate function value at an unknown point z ∈ R
n using

weights on known responses; namely,

ŷ(z) = c(x)T ys, (7)

where c(x) ∈ R
m is a vector of weights obtained by minimizing the mean squared

error (MSE) between the true model (6) and the approximate model (7), while forcing

the predictor to be unbiased. Details for computing c(x) are given in [19] or [14], for

example.

The DACE process requires specification of the data sites, and regression and cor-

relation functions. For constructing an initial surrogate, the set of initial data sites can

be chosen via experimental design [20] or by sampling a set of “space-filling” points,

such as Latin hypercube designs [21,22] or orthogonal arrays [17]. Although experi-

mental designs generally require more function evaluations, we chose to use a central

composite design (CCD) because the small dimension of our problem allowed us to

sample enough points to form a more accurate second-order regression model.

The choice of correlation function can significantly impact the performance of the

algorithm. A common choice in practice [14] is the Gaussian function, given by

R(θ, a, b) =
n

Y

j=1

Rj(θj , |dj |), Rj(θj , |dj |) = exp(−θjd
2
j), dj = aj − bj (8)

for any points a, b ∈ R
n. In constructing the surrogate, the values for θ = (θ1, θ2, . . . , θn),

are computed as the solution to an optimization problem, based on previously evaluated

points. The optimization process requires the computation of R(θ, x, x)−1. However,

this is difficult numerically because R can become ill-conditioned as points cluster

together during the convergence process of MADS [7]. The increase in the condition

number of R(θ, x, x) (which can be estimated and monitored) can greatly impact the

computed value of θ or prevent the calculation of the regression coefficients altogether.

If the condition number is too large, then the search step is skipped.

4 New Surrogate Strategies

In this section, we introduce a new search step for CPU time-correlated functions.

First, if objective function values and CPU times are positively correlated, then im-

provement in the objective function should not be expected once the computational

time exceeds a certain amount. To avoid wasting unnecessary CPU time, we introduce

a CPU time threshold parameter tcut
k > 0 to allow a function evaluation to be aborted

if it is taking too long to perform. A value of tcut
k = ∞ means that the function is

evaluated normally without being aborted.

Using this notation an evaluation of f can now be represented by [z, t] = f(y, tcut
k),

where t is the time needed to compute the function value z at a trial point y ∈ X and

for a specified value of tcut
k . Once the time for computing the function value exceeds

the value specified by tcut
k , evaluation of f(y) is aborted without returning a value for

z (or z is set to be infinity or an arbitrarily large number). One possible approach we

considered is to set tcut
k+1 = tk, where tk is the recorded CPU time for the current best

iterate xk.

The CPU time correlation also means that a surrogate based on either the objective

function values or CPU times would probably be a good predictor of decrease in the

7

objective. In fact, a surrogate on the CPU time has the added advantage that it always

returns a value, whereas, the objective function would be aborted if tcut
k is exceeded at

iteration k. We denote these surrogates on objective values and CPU times by Fk(x)

and Tk(x) (at iteration k), respectively, and we consider the following four surrogate

optimization problems, whose solutions we would expect to be good subsequent trial

points for the true objective function:

min
x∈X

Fk(x), (9)

min
x∈X

Tk(x), (10)

min
x∈X

Fk(x), s.t. Tk(x) ≤ t
cut
k + ε, (11)

min
x∈X

Tk(x), s.t. Fk(x) ≤ zk. (12)

The parameter ε > 0 added to the constraint in (11) is a constant offset to allow for

variability in computational time.

The surrogate optimization problem is typically solved using a recursive call to

MADS. Constraints in (11)–(12) are treated by the barrier approach of only allowing

feasible points (or setting the function value at any infeasible trial point to infinity).

We should note that the combination of MADS with a barrier and the use of the tcut
k

in the original optimization problem causes a dilemma when using surrogate functions.

Using the parameter tcut
k to stop unprofitable function evaluations is good for saving

computational time, but it results in infinite or arbitrarily large function values, which

cannot be used to construct a good surrogate. To overcome this, we simply set the

function value to the largest value seen thus far in the iteration process, whenever the

time cutoff threshold is exceeded. Our algorithm can be summarized as simply MADS

with the specific kth search step given in Figure 3.

• For all previously evaluated points Xk, construct surrogate functions Fk(x) or Tk(x).
• Solve a surrogate problem (one of (9)–(12)), yielding a set of trial points Sk.
• Evaluate points y ∈ Sk using [z, t] = f(y, tcut

k
) until an improved mesh point has

been found, or until all points in Sk have been evaluated.
• If z < zk for some y ∈ Sk,

Set xk+1 = y, zk+1 = z, tk+1 = t, and update tcut

k+1
.

Set k = k + 1 and repeat search

End

Fig. 3 MADS search step k for CPU time-correlated functions

5 A Numerical Example

We now present a numerical example, which is a specific example of the class of prob-

lems described in the Section 2. The problem is the well-studied lid-driven cavity prob-

lem [15]. For a given two-dimensional square domain, the Navier-Stokes equations

describe a fluid flow with a horizontal velocity force on one edge (see Figure 1). The

fluid begins at rest, and as time starts, a constant horizontal velocity is asserted along

the top edge, causing a circular pattern of flow to appear within the fluid over time.

8

For each combination of Reynolds number and simulation length, the velocity and

viscosity of the fluid form a different circular heat pattern throughout the region. At

one particular Reynolds number and simulation length, a reference image of the heat

pattern is captured and then noise is added to the image, so as to represent what one

might to see in experimentally obtained physical measurements. As stated in Section 2,

the goal is to run a simulation for different Reynolds numbers and simulation lengths,

capture the template image, and compare the template and reference images of heat

in an attempt to determine the original Reynolds number and simulation length set

for the reference image. Figure 2 shown earlier actually shows reference and template

images for this very problem.

To solve the problem, the MADS algorithm with the search step described by 3

was run using two MATLABr software packages, NOMADm [1] for the implementa-

tion of MADS, and DACE [16] to build the surrogates, along with some custom-built

files used for the search step. The surrogate optimization problem is solved by a

recursive call to the NOMADm optimizer from within the search step.

For each scenario, different variations of the algorithm are applied and compared to

a base case. The base case implementation uses GPS with an empty search step (i.e.,

it is skipped), a single initial point or set of CCD points, and tcut
k = ∞ for all k. This

allows for a full evaluation of all points and a comparative analysis of the proposed

algorithm. The other cases use the partial and full implementation of the search step

presented in Figure 3.

We first made some preliminary runs using a strategy of setting tcut
k+1 = tk at each

iteration. However, these runs turned out to be unsuccessful in forming good surrogates

(i.e., surrogates that routinely found good trial points to evaluate) because our main

assumption of CPU time correlation turned out to only hold locally. If the template

image is too dissimilar from the reference image, the image registration process actually

terminates prematurely – with a lower CPU time and a much worse objective function

value. Setting tcut
k+1 = 2tk at each iteration seemed to rectify the situation. We also

experienced ill-conditioning of the correlation matrix as a solution is approached, which

is caused by trial points becoming more clustered together. This was remedied by

invoking an empty search (i.e., not optimizing the surrogate) whenever the matrix

became ill-conditioned. This is not unreasonable in this case because the CPU time

correlation means that function values are probably much less expensive at this point

in the iteration process, and the use of surrogates is then not as important.

The results for each case are shown in Table 1, where the column headings denote,

respectively, the type of search step executed (Search), type of initial points used

(x0), final solution (x∗), number of iterations (nIter), number of function evaluations

(nFunc), CPU minutes required (CPU), and the ratio of successful to total surrogate

search steps executed (Successes). Except for the “None” designation, the search

types refer to the four surrogate strategies shown in (9)–(12). The first letter indicates

the objective function (F (x) vs. T (x)), and the second (if present) indicates the con-

straint. The initial point types consist of using a single initial point in the geometric

center of the bound constrained feasible region (center), a randomly chosen initial feasi-

ble point (random), or central composite design (CCD). The final solution is expressed

as [Reynolds number, simulation length (seconds)]. The first three runs are base cases

with no search step or time cutoff parameter used, while the last seven cases are dif-

ferent variations of the new search step, the first three being similar to the base case

(no search step) except for the use of the time cutoff parameter to abort expensive

function evaluations. (The random point is the same random initial point that was

9

used for the base case.) The final four cases employ one of the surrogate optimization

problems (9)–(12), as just described.

Table 1 GPS: Lid-Driven Cavity Results

Full-Time (tcut

k
= +∞):

Search x0 x∗ nIter nFunc CPU Successes

None center [134.13, 4.76] 56 123 126.73
None random [134.12, 4.76] 58 118 178.31
None CCD [134.13, 4.76] 40 107 196.58

Cut-Time (tcut

k
= 2 × tk):

Search x0 x∗ nIter nFunc CPU Successes

None center [134.13, 4.76] 80 157 257.67
None random [134.12, 4.76] 92 162 796.40
None CCD [134.13, 4.76] 40 107 109.73
F-T CCD [134.19, 4.76] 73 162 135.78 23/44
F CCD [134.19, 4.76] 72 165 182.89 15/34
T-F CCD [134.19, 4.76] 52 133 74.00 7/15
T CCD [134.19, 4.76] 49 127 74.48 5/13

All runs successfully found the optimal solution at essentially the same parameter

values (with f(x∗) = 0.60 in all cases). As hoped for, the CPU time was significantly

lower for the two time-based surrogates ((10) and (12)) than all the other cases, despite

costing more function evaluations than many other cases, including all three bases cases.

This also indicates that for this class of problems, the number of function evaluations

is not a good measure of the efficiency of the different implementations.

The results with no search illustrate the importance of finding an appropriate

initial point to set up the time cutoff parameter. With only one initial point, this

parameter needs several iterations to build enough slack to allow the sequence of points

to overcome the local nature of the CPU time correlation. The extra iterations resulted

in a different path to a solution, which required significantly more CPU time. However,

when using a initial CCD (with an empty search step), the results are identical except

for the CPU time. In this case, using the time cutoff parameter saved almost 90 CPU

minutes.

Figure 4 further illustrates the performance of the four surrogate strategies, with

each color representing a different strategy, and each shape representing the source

(search or poll step) of the improvement. The figure shows that the surrogates

based on computational time achieve lower function values quicker than the surrogates

based on function values. Furthermore, regardless of the surrogate objective, the use of

a constraint in each case resulted in faster initial convergence than the corresponding

unconstrained version.

6 Concluding Remarks

This paper represents a first attempt at numerically solving the challenging class of

optimization problems in which function values and the CPU times required to compute

them are correlated. Exploiting knowledge about CPU time correlation with objective

10

Fig. 4 Decreasing Function Value

function values appears to be a useful and efficient means of solving this class of

problems. One challenge is dealing with the extent to which the CPU time correlation

property holds in practice, which may not be fully understood. The implementation

of the time cutoff parameter was a useful way to reduce the time required to find

a numerical solution. However, while it can be used to stop the image registration

algorithm, it cannot stop the numerical simulation, since the image registration requires

the image obtained from the full simulation.

Since tcut
k is controlled by the user, one potential improvement would be a more

systematic approach to updating it, rather than the trial-and-error approach used

here. Since function values and computational times are stored in order to construct

surrogates, they can also be used to measure the correlation between the two. Higher

values of tcut
k can be assigned whenever the correlation is low, and vice versa.

Not using the surrogates when ill-conditioning occurs was a simple tactic that made

sense for the particular problem we solved. However, a more effective means to combat

this problem may be the use of a trust region (e.g., see [3]), both to constrain the

optimization of the surrogate and to screen out points used in the construction of

the surrogate. The size of the trust region could be based on the frame or mesh size

parameter.

Acknowledgments

The authors wish to thank David Bethea for some useful comments and discussions.

The views expressed in this document are those of the authors and do not reflect

the official policy or position of the United States Air Force, Department of Defense,

or United States Government.

11

References

1. M. A. Abramson. NOMADm optimization software. http://www.afit.edu/en/ENC/-
Faculty/MAbramson/NOMADm.html.

2. M. A. Abramson and C. Audet. Second-order convergence of mesh adaptive direct search.
SIAM J. Optim., 17(2):606–619, 2006.

3. N. Alexandrov, J. E. Dennis, Jr., R. Lewis, and V. Torczon. A trust region framework for
managing the use of approximation models in optimization. Structural Optim., 15:16–23,
1998.

4. C. Audet and J. E. Dennis, Jr. Analysis of generalized pattern searches. SIAM J. Optim.,
13(3):889–903, 2003.

5. C. Audet and J. E. Dennis, Jr. A pattern search filter method for nonlinear programming
without derivatives. SIAM J. Optim., 14(4):980–1010, 2004.

6. C. Audet and J. E. Dennis, Jr. Mesh adaptive direct search algorithms for constrained
optimization. SIAM J. Optim., 17(2):188–217, 2006.

7. A. J. Booker. Well-conditioned Kriging models for optimization of computer simulations.
Technical Report M&CT-TECH-00-002, Boeing Computer Services, Research and Tech-
nology, M/S 7L–68, Seattle, Washington 98124, 2000.

8. A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W.
Trosset. A rigorous framework for optimization of expensive functions by surrogates.
Struct. Optim., 17(1):1–13, February 1999.

9. M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical Simulation in Fluid Dynamics:
a Practical Introduction. SIAM, New York, 1998.

10. Jr. L. A. Schmit and H. Miura. Approximation concepts for efficient structural synthesis.
Technical Report CR-2552, NASA, 1976.

11. R. M. Lewis and V. Torczon. Pattern search algorithms for bound constrained minimiza-
tion. SIAM J. Optim., 9(4):1082–1099, 1999.

12. R. M. Lewis and V. Torczon. Pattern search methods for linearly constrained minimization.
SIAM J. Optim., 10(3):917–941, 2000.

13. R. M. Lewis and V. Torczon. A globally convergent augmented Lagrangian pattern search
algorithm for optimization with general constraints and simple bounds. SIAM J. Optim.,
12(4):1075–1089, 2002.

14. S. N. Lophaven, H. B. Nielsen, and J. Søndergaard. Aspects of the MATLAB toolbox
DACE. Technical Report IMM-TR-2002-13, Technical University of Denmark, Copen-
hagen, 2002.

15. J. Modersitzki. Numerical Methods for Image Registration. Oxford University Press, 2004.
16. H. B. Nielsen. DACE surrogate models. http://www2.imm.dtu.dk hbn/dace.
17. A. B. Owen. Orthogonal arrays for computer experiments, integration, and visualization.

Statistica Sinica, 2:439–452, 1992.
18. T. D. Robinson, M. S. Eldred, K. E. Willcox, and R. Haimes. Strategies for multifidelity

optimization with variable dimernsional hierarchical models. In Proceedings of the 47th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence (2nd AIAA Multidisciplinary Design Optimization Specialist Conference), Newport,
Rhode Island, May 2006.

19. J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer
experiments. Stat. Sci., 4(4):409–435, 1989.

20. T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer
Experiments. Springer Verlag, 2003.

21. M. Stein. Large sample properties of simulations using latin hypercube sampling. Tech-
nometrics, 29(2):143–151, 1987.

22. Boxin Tang. Orthogonal array-based latin hypercubes. Journal of the American Statistical
Association, 88(424):1392–1397, 1993.

23. V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim., 7(1):1–25,
February 1997.

