


the parts to hold them up during the manufacturing process. Once a part is built,

the supporting material is shaved off through conventional tooling. The part is then

polished and inspected for dimensional accuracy.

A few different metals were available for use in the DMLS process. Morris

offered a Bronze semi-porous metal, a 17-4 stainless steel, and a Cobalt Chromium

alloy. Morris was the most confident in the Bronze and Cobalt Chromium for making

very complicated parts as those designed here. Cobalt Chromium was selected since it

is not porous (like the Bronze), the manufacturer was comfortable using the material,

and it is durable enough to survive combustion testing if the pylons were to be used

for that in the future. The density of the Cobalt Chromium alloy is 8.29 g/cm3, the

yield strength is between 880 - 980 MPa, and the maximum continuous operating

temperature is 1150 ◦ C.

The manufacturing process took a couple weeks. Morris had some difficulties

manufacturing the front piece and had to redo it, but the final products were within

tolerances in the critical areas required – the fuel port area and hypermixer geome-

tries. There are internal thermal stresses that build up during DMLS manufacturing

and can cause part bending. This is a danger when parts have a high aspect ratio,

have high aspect ratio appendages, or are not supported well during layer buildup.

This technology is still maturing, but the parts built for this testing are remarkably

accurate given their complexity. The turn-around-time was much faster than avail-

able conventional tooling shops, and it was cheaper than using conventional tooling

shops. All four parts cost a total of $10,400, bought by AFRL/RZ. Conventional

tooling shops quoted $15,000 - $20,000 for the same parts. Figures A.6 - A.11 show

the manufactured pylon parts, assembled and disassembled.
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Fig. A.6 Basic pylon assembled picture.

Fig. A.7 Ramp pylon assembled picture.

Fig. A.8 Alternating wedge pylon assembled picture.
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Fig. A.9 Front piece of pylon picture.

Fig. A.10 Back pieces of pylon picture.

Fig. A.11 All pylon pieces picture.
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The wind tunnel mounting plug was designed in conjunction with AFRL so the

plug would meet the required dimensions to hold the pylon pedestal as well as fit into

the AFRL wind tunnel floor opening. The mounting plug is a single piece. It uses

four 10-24 screws to secure the pylon pedestal in the mounting plug and four 1/4-20

screws to secure the mounting plug to the floor of the wind tunnel. The mounting

plug was manufactured out of steel at a conventional tooling shop in the local area.

The mounting plug was placed into the wind tunnel and fit checked prior to testing.

The wind tunnel floor and the mounting plug top surface were flush. The pylon

pedestal fit into the mounting plug snugly, and the pedestal top was flush with the

mounting plug top surface. Once the mounting plug and pylon pedestal were inserted

into the wind tunnel floor opening, they were there for the remainder of testing. The

only part swapped out during test was the pylon back piece. Between wind tunnel

runs it required about 5 minutes to change out the basic, ramp, or alternating wedge

back piece for the next test run. Figure A.12 is an isometric view of the wind tunnel

mounting plug. Figure A.13 is a top down view of the mounting plug. A crush gasket

was placed between the pylon pedestal bottom surface and the floor of the mounting

plug to prevent air leakage into the wind tunnel test section. The gasket is shown in

Fig. A.14

Fig. A.12 Wind tunnel mounting plug isometric view.
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Fig. A.13 Wind tunnel mounting plug top view.

Fig. A.14 Gasket.
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Appendix B. Fuel Injection and Inlet Calculation Codes

Listing B.1 Air Properties Function
function [Cp , Gamma ] = air(temp)
D = temp /100;
MWN2 = 28.01348;
MWO2 = 31.9988;

5 CpN2 = (39.060 - 512.79*D^ -1.5 + 1072.7*D^ -2 - 820.40*D^-3)/MWN2...
*1000;

CpO2 = (37.432 + 0.020102*D^1.5 - 178.57*D^ -1.5 + 236.88*D^-2)/...
MWO2 *1000;

Cp = 0.79* CpN2 + 0.21* CpO2;
MW = 0.79* MWN2 + 0.21* MWO2;
R = 8314/ MW;

10 Cv = Cp - R;
Gamma = Cp/Cv;

Listing B.2 Combustor Inlet Conditions
clear;clc;
% Mach 8 at 1000 lb/ft ^2 (~100 ,000 ft)
R = 287;
M0 = 8;

5 q_bar = 1000/144*6894.75729;
T0 = 227;
P0 = 2* q_bar /(1.4* M0^2);
HT = 1004* T0 + 1.4* M0^2*R*T0/2;

10 for j = 1:6
for i = 1:1001

T2(i,j) = 499 + i;
T2a(i,j) = T2(i,j);
CR(i,j) = j*5;

15 [Cp ,G] = air(T2(i,j));
M2(i,j) = sqrt (2/(G*R*T2(i,j))*(HT - Cp*T2(i,j)));
P2(i,j) = CR(i,j)*(M0/M2(i,j))*sqrt (1.4/G)*sqrt(T2(i,j)/...

T0)*P0;
P2a(i,j) = P2(i,j);
SR(i,j) = (1004 + Cp)/(2*R)*log(T2(i,j)/T0) - log(P2(i,j)...

/P0);
20 NKE(i,j) = 1 - 2/(1.4* M0^2)*SR(i,j);

if SR(i,j) < 0
T2(i,j) = NaN;
P2(i,j) = NaN;

end
25 end

end

P2 = P2 /1000;
P2a = P2a /1000;

30
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figure (1),clf
for k = 1: size(T2 ,2)

hl(k) = plot(P2(:,k),T2(:,k),’b’);
id = find(T2(:,k)==1450);

35 angle = 180/ pi*(atan((T2(id+2,k) - T2(id -2,k))/(P2(id+2,k) - P2...
(id -2,k))*.222));

if k == 1
text(P2(id ,k),T2(id ,k),[’CR= ’,num2str(k*5)],’Rotation ’ ,...

angle ,’Vert’,’bottom ’,’BackgroundColor ’,’none’);
hold on

40 else
text(P2(id ,k),T2(id ,k),num2str(k*5),’Rotation ’ ,...

angle ,’Vert’,’bottom ’,’BackgroundColor ’,’none’);
end

end
45 [c,h] = contour(P2 ,T2 ,M2 ,[2.5 ,3 ,3.5 ,4 ,4.5] ,’k’);

for k = 1: size(c,2)/7
id = k*7 - 5;
if k == 1
text(c(1,id) -15,c(2,id) ,[’M_{comb } = ’,num2str(c(1,id -1),’%.1f...

’)],’Vert’,’middle ’,’BackgroundColor ’,’white ’);
50 else

text(c(1,id) -15,c(2,id),num2str(c(1,id -1),’%.1f’),’Vert’,’...
middle ’,’BackgroundColor ’,’none’);

end
end
[c2 ,h2] = contour(P2a ,T2a ,NKE ,[1 ,0.99 ,0.98 ,0.97] ,’r’);

55 for k = 1:4
if k == 4

id = size(c2 ,2);
text(c2(1,id)+7,c2(2,id) ,[’n_{KE } = 1.0 ’],’Vert’,’middle ’,...

’BackgroundColor ’,’none’);
else

60 num = 0.97 + k/100;
id = find(c2 == num)/2 - 1.5;
text(c2(1,id)+7,c2(2,id),num2str(num -0.01) ,’Vert’,’middle ’...

,’BackgroundColor ’,’none’);
end

end
65 plot (48,901,’*’)

text (50,500,’* Static Pressure = 48 KPa / Static Temperature...
= 901 K’)

axis ([0 350 400 1800])
title ({’Combustor Inlet Static Conditions ’, ’’, ’(M_0 = 8, q_0...

= 1000 lb/ft^2)’})
xlabel(’Combustor Static Pressure (KPa)’)

70 ylabel(’Combustor Static Temperature (K)’)
hold off

clear;clc;
75 % Mach 5 at 1000 lb/ft ^2 (~80 ,000 ft)
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R = 287;
M0 = 5;
q_bar = 1000/144*6894.75729;
T0 = 221;

80 P0 = 2* q_bar /(1.4* M0^2);
HT = 1004* T0 + 1.4* M0^2*R*T0/2;

for j = 1:3
for i = 1:501

85 T2(i,j) = 499 + i;
T2a(i,j) = T2(i,j);
CR(i,j) = j*5;
[Cp ,G] = air(T2(i,j));
M2(i,j) = sqrt (2/(G*R*T2(i,j))*(HT - Cp*T2(i,j)));

90 P2(i,j) = CR(i,j)*(M0/M2(i,j))*sqrt (1.4/G)*sqrt(T2(i,j)/...
T0)*P0;

P2a(i,j) = P2(i,j);
SR(i,j) = (1004 + Cp)/(2*R)*log(T2(i,j)/T0) - log(P2(i,j)...

/P0);
NKE(i,j) = 1 - 2/(1.4* M0^2)*SR(i,j);
if SR(i,j) < 0

95 T2(i,j) = NaN;
P2(i,j) = NaN;

end
end

end
100

P2 = P2 /1000;
P2a = P2a /1000;

figure (2),clf
105 for k = 1: size(T2 ,2)

hl(k) = plot(P2(:,k),T2(:,k),’b’);
id = find(T2(:,k)==975);
angle = 180/ pi*(atan((T2(id+2,k) - T2(id -2,k))/(P2(id+2,k) - P2...

(id -2,k))*.5));
if k == 1

110 text(P2(id ,k),T2(id ,k),[’CR= ’,num2str(k*5)],’Rotation ’ ,...
angle ,’Vert’,’bottom ’,’BackgroundColor ’,’none’);

hold on
else
text(P2(id ,k),T2(id ,k),num2str(k*5),’Rotation ’ ,...

115 angle ,’Vert’,’bottom ’,’BackgroundColor ’,’none’);
end

end
[c,h] = contour(P2 ,T2 ,M2 ,[1.5 ,1.75 ,2 ,2.25 ,2.5] ,’k’);
for k = 1: size(c,2)/4

120 id = k*4 - 2;
if k == 1
text(c(1,id) -30,c(2,id) ,[’M_{comb } = ’,num2str(c(1,id -1),’%.2f...

’)],’Vert’,’middle ’,’BackgroundColor ’,’white ’);
else
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text(c(1,id) -30,c(2,id),num2str(c(1,id -1),’%.2f’),’Vert’,’...
middle ’,’BackgroundColor ’,’none’);

125 end
end
[c2 ,h2] = contour(P2a ,T2a ,NKE ,[1 ,0.99 ,0.98 ,0.97] ,’r’);
for k = 1:4

if k == 4
130 id = size(c2 ,2);

text(c2(1,id)+7,c2(2,id) ,[’n_{KE } = 1.0 ’],’Vert’,’middle ’,...
’BackgroundColor ’,’none’);

else
num = 0.97 + k/100;
id = find(c2 == num)/2 - 1.5;

135 text(c2(1,id)+7,c2(2,id),num2str(num -0.01) ,’Vert’,’middle ’...
,’BackgroundColor ’,’none’);

end
end
plot (118 ,712,’*’)
text (75,450,’* Static Pressure = 118 KPa / Static Temperature...

= 712 K’)
140 axis ([0 500 400 1200])

title ({’Combustor Inlet Static Conditions ’, ’’, ’(M_0 = 5, q_0...
= 1000 lb/ft^2)’})

xlabel(’Combustor Static Pressure (KPa)’)
ylabel(’Combustor Static Temperature (K)’)
hold off

145
’Mach 8 and 100 ,000 ft’

Static_Temperature = 901
Static_Pressure = 48*1000
Mach = 3.5

150 [Cp,G] = air(Static_Temperature)
Total_Temperature = (1 + (G - 1)/2* Mach ^2)*Static_Temperature
Total_Pressure = (1 + (G - 1)/2* Mach ^2)^(G/(G - 1))*...

Static_Pressure
Velocity = Mach*sqrt(G*R*Static_Temperature)
Density = Static_Pressure /(R*Static_Temperature)

155 Area = (0.254) ^2*pi/4
Mass_Flow = Density*Velocity*Area

’Mach 5 and 80 ,000 ft’
Static_Temperature = 712

160 Static_Pressure = 118*1000
Mach = 2.0
[Cp,G] = air(Static_Temperature)
Total_Temperature = (1 + (G - 1)/2* Mach ^2)*Static_Temperature
Total_Pressure = (1 + (G - 1)/2* Mach ^2)^(G/(G - 1))*...

Static_Pressure
165 Velocity = Mach*sqrt(G*R*Static_Temperature)

Density = Static_Pressure /(R*Static_Temperature)
Area = (0.254) ^2*pi/4
Mass_Flow = Density*Velocity*Area
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Listing B.3 Fuel Injector Conditions
clear;clc

% Pylon Injector Parameters (all units in metric)
GAMMA = 1.02;

5 MW = 154;
R = 56;
P_total_inlet = 8.5 E5;
T_total_inlet = 900;
Rho_total_inlet = P_total_inlet/R/T_total_inlet;

10 P_tunnel = 4.8 E4;
A_inlet = 1.30E-4;
A_outlet = 5.7E-5;
Internal_height = 1.0E-2;
Volume = A_inlet*Internal_height + 4*4*57/1000^3;

15 dt = 1E-6;

% Initial Conditions
P_internal (1) = P_tunnel;
time (1) = 0;

20
% Calculations

for i = 2:500
i

25 % Inlet Conditions
Mach_inlet = -0.0001;
tol = 1;
while tol > 0.003

Mach_inlet = Mach_inlet + .0001;
30 P_ratio_inlet = (1 + ( GAMMA -1)/2* Mach_inlet ^2)^(GAMMA /(...

GAMMA -1));
tol = abs(P_ratio_inlet -P_total_inlet/P_internal(i-1));

end
if Mach_inlet > 1.0

Mach_inlet = 1.0;
35 end

Rho_inlet = Rho_total_inlet /(1 + ( GAMMA -1)/2* Mach_inlet ^2)...
^(1/( GAMMA -1));

T_inlet = T_total_inlet /(1 + ( GAMMA -1)/2* Mach_inlet ^2);
m_inlet = Rho_inlet*Mach_inlet*sqrt(GAMMA*R*T_inlet)*A_inlet;

40 % Outlet Conditions
Mach_outlet = -0.0001;
tol = 1;
while tol > 0.003

Mach_outlet = Mach_outlet + .0001;
45 P_ratio_outlet = (1 + ( GAMMA -1)/2* Mach_outlet ^2)^(GAMMA /(...

GAMMA -1));
tol = abs(P_ratio_outlet -P_internal(i-1)/P_tunnel);

end
if Mach_outlet > 1.0
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Mach_outlet = 1.0;
50 end

Rho_outlet = Rho_total_inlet /((1 + ( GAMMA -1)/2* Mach_outlet ^2)...
^(1/( GAMMA -1)));

T_outlet = T_total_inlet /(1 + ( GAMMA -1)/2* Mach_outlet ^2);
m_outlet = Rho_outlet*Mach_outlet*sqrt(GAMMA*R*T_outlet)*...

A_outlet;
P_outlet = P_total_inlet /((1 + ( GAMMA -1)/2* Mach_outlet ^2)^(...

GAMMA /(GAMMA -1)));
55

% Updated Internal Pressure Calculation
dm = m_inlet - m_outlet;
dP = (R*T_total_inlet/Volume)*dm;
P_internal(i) = P_internal(i-1) + dP*dt;

60 time(i) = time(i-1) + dt;
end

plot(time ,P_internal /1000- P_tunnel /1000)
xlabel(’Seconds ’)

65 ylabel(’Plenum gauge pressure (kPa)’)
title(’Pylon internal pressure over time’)
m_outlet_sonic_check = A_outlet*P_total_inlet/sqrt(T_total_inlet)*...

sqrt(GAMMA/R)*(1+( GAMMA -1) /2)^(-(GAMMA +1) /(2*( GAMMA -1)))
Mach_inlet
V_inlet=Mach_inlet*sqrt(GAMMA*R*T_inlet)

70 P_internal_ss = P_internal(i)
P_internal_gauge_ss = P_internal(i) - P_tunnel
Mach_outlet
V_outlet=Mach_outlet*sqrt(GAMMA*R*T_outlet)
m_outlet

75 P_outlet
P_tunnel
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Appendix C. Raman Spectroscopy Mass Fraction Profiles
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Fig. C.1 Two alternating wedge plume profile measurements at 13.6 de.

Z (mm)

 

 

−40 −20 0 20 40
0

10

20

30

40

50

60

70

80

0

0.01

0.02

0.03

0.04

0.05

Z (mm)

Y
 (

m
m

)

 

 

−40 −20 0 20 40
0

10

20

30

40

50

60

70

80

0

0.01

0.02

0.03

0.04

0.05

Fig. C.2 Two alternating wedge plume profile measurements at 23.9 de.
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Fig. C.3 Two ramp plume profile measurements at 23.9 de.
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Fig. C.4 Average alternating wedge plume profile measurement at 13.6 de.
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Fig. C.5 Ramp plume profile measurement at 13.6 de.
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Fig. C.6 Basic plume profile measurement at 13.6 de.
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Fig. C.7 Average alternating wedge plume profile measurement at 23.9 de.
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Fig. C.8 Average ramp plume profile measurement at 23.9 de.
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Fig. C.9 Basic plume profile measurement at 23.9 de.
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Appendix D. NO-PLIF Intensity Profiles

Fig. D.1 Basic pylon instantaneous plume images at 13.6 de.
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de = 7.7 de = 10.7

de = 16.6de = 13.6

de = 23.9de = 19.6

Fig. D.2 Basic pylon ensemble averaged plume images.
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Fig. D.3 Ramp pylon instantaneous plume images at 13.6 de.
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de = 7.7 de = 10.7

de = 16.6de = 13.6

de = 23.9de = 19.6

Fig. D.4 Ramp pylon ensemble averaged plume images.
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Fig. D.5 Alternating wedge pylon instantaneous plume images at 13.6 de.
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de = 7.7 de = 10.7

de = 16.6de = 13.6

de = 23.9de = 19.6

Fig. D.6 Alternating wedge pylon ensemble averaged plume images.
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de = 7.7 de = 13.6 de = 23.9

BASIC PYLON

de = 7.7 de = 13.6 de = 23.9

RAMP PYLON

de = 7.7 de = 13.6 de = 23.9

ALTERNATING WEDGE  PYLON

Fig. D.7 Standard deviation plume images.
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