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1. Executive Summary 
Providing sufficient processing capacity within limited power and space constraints is a 
continuous challenge for military embedded systems.  For example, we know from the Lockheed 
Martin Joint Strike Fighter (JSF) core engineering team that the aircraft Vehicle Management 
Computer (VMC) application design faces significant challenges in maximizing computational 
throughput within given design constraints.  Next-generation war-fighting applications will place 
even greater demands on processing capacity than they do today.  Commercial multi-core 
processors promise to solve this challenge by providing, in a comparable physical footprint, 
more processing capacity than their single-core counterparts. 
 
Perseus is a suite of tools, developed under this contract, that allows existing x86-based software 
(in binary form) to be optimized for commodity multi-core platforms.  Optimizations are made 
with respect to both performance (e.g., by avoiding undesirable cache effects) and power 
consumption (e.g., by modulating frequency and voltage of cores according to necessary 
workloads).  The Perseus solution works by using dynamic binary instrumentation to both insert 
probes and modify deployed code, and by using genetic-algorithm based searches to determine 
optimal deployments within the potential design space. 
 
The Perseus program has been aggressively executed over a 5 month period.  The principal 
objective of the program was to demonstrate advanced technical concepts rather than to build 
robust prototypes that can be readily transitioned. The tools and technology developed under the 
contract, and collected experimental results have been delivered to AFRL under government 
rights use (see official contract for further qualification). 
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Figure 1.  Project Success Summary 
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The summarized success for individual technology elements defined by the project are given in 
Figure 1.  Color indicates level of success (green=absolutely meets expectations, 
yellow=somewhat meets expectations, red=does not meet expectations, grey=not applicable).  
This chart gives an assessment of a.) whether or not we consider the concept to be proved 
through the results, b.) whether the performance of the technology meets expectations and c.) the 
stability of the prototype implementation.  The only expectation that was not met was the 
extraction of temporal memory maps from the probed binaries.  The main issue here proved to be 
scalability.  As part of the work we proposed an alternative approach to data collection based on 
partial processing of the data during collection. 
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2. Background 
2.1 Multi-core Processing 

In the last few years, commodity microprocessors have shifted towards multi-core as a means to 
improve performance.  Traditional methods of increasing processing “power”, such as increasing 
clock speeds, enhancing instruction-level parallelism and improving cache designs have reached 
a plateau – at least within the realms of economic viability.  Multi-core processor designs 
combine multiple processors into a single die with shared cache and memory.  Multi-core 
processors effectively provide symmetric multiprocessing (SMP)-like capabilities in a single 
processor package.  In many cases the cores are simplified versions of their single-processor 
counterparts in order to take up less integrated circuit real estate.  Perseus is designed for 
configurations where multi-core processors are homogeneous, that is, they are all identical. 
 
The use of multi-core as a means to increase performance differs from other performance-
enhancement techniques in that it is less transparent to the end user.  Software must be explicitly 
design to be executed concurrently in order to reap the potential performance improvements that 
multi-core has to offer.  Furthermore, software that is not carefully implemented can result in 
reduced performance, typically due to resource contention and other phenomena that occur in a 
physically parallel processing environment. 
 
2.2 Cache False-sharing 

Today’s multi-core architectures typically have coherent L1 data and L2/L3 caches.  L1 caches, 
allocated per-core, are coherent within the same processor.  L2 caches are shared across 
processors.   In the Intel IA64 architecture, the cache control protocol is MESI (modified, 
exclusive, shared, and invalid) based [1].  In the case of the Intel Xeon platform each L1 cache 
line is 64 bytes wide.  When data in a cache line is written to, the MESI protocol “invalidates” 
copies of the same cache line in other L1 caches.  Subsequent requests to read data from these 
invalidated cache lines result in the line being reloaded from the L2 cache (see Figure 2).   
 

 
Figure 2. False Sharing 
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When threads running on separate cores are accessing data that resides in the same cache line 
(not necessarily the exact same data), the continuous evict-reload cycle causes a thrashing effect.  
This effect is termed “false sharing”.  The performance impact that false sharing brings can be 
significant.  Benchmark tests run as part of the Perseus experimentation showed slowdowns of 
over 100%.  The degree of slowdown directly correlates to the pattern of memory access and 
locality of data. 
 
2.3 Maximizing Performance and Minimizing Power in a Multi-core Context 

Many multi-core processing architectures allow the performance (with processing throughput) to 
be configured for each individual processing core.  Performance is controlled by modulating the 
internal clock frequency of the core.  As the clock frequency is modulated, the operating voltage 
of the core can also be reduced.  This slow down in processing “speed” reduces the power 
consumption of the processing core. Power is generally proportional to clock frequency by 
voltage squared: 
 

Power ∝ Capacitance x Voltage2 x Clock Frequency  
 
Traditionally, voltage/frequency modulation technologies, such as Intel SpeedStep and AMD 
PowerNow, have been primarily targeted for use in mobile computing applications.  
Nevertheless, the same technology can also benefit embedded systems applications where power 
conservation is of high importance.  This technology allows embedded applications to only 
demand the required level of processing power that is necessary at a particular time.  Provided 
that a given task or tasks can be slowed without unduly affecting application behavior (e.g. 
because a task must later join with a slower task) power can be conserved.  For example, the 
results given in Figure 3 illustrate a reduction in power consumption through slowdown.  Each 
graph shows the power consumption over time for the same test application (which calculates 
Pi).  Exactly the same task has been performed, yet the slower version consumes 16% less 
power.  This benefit directly results from the reduction in frequency and voltage of the slower 
processor. 
 
The notion of using “application-specific” power management [5][8] is a key element of the 
Perseus solution.  Previous work [5] has indicated substantial power savings (over 50%) beyond 
static power management schemes. 
 



5 
 

 

Figure 3.  Results from application to calculate Pi 

 
2.3.1 Intel Enhanced Halt State 

Most Intel Xeon processors incorporate an additional power saving mechanism known as the 
enhanced halt state (feature C1E).  This is a chip-triggered physical low-power state that occurs 
when all logical CPUs (i.e. cores) on a given processor are executing HALT or MWAIT 
(monitor and wait) instructions.  In Figure 3, the lower sections of the graph areas illustrate the 
power consumed by processors in this state.  The key here is that for a processor to enter the 
enhanced halt state all cores must be idle – if even one core is active the state cannot be entered.  
Quite often, operating system-level schedulers [6] do not take this into account in their 
scheduling algorithm.  Consequently, scattered threads of execution can cause a system to 
demand more power than is necessary. 
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3. Problem Definition 
Porting legacy applications to multi-core architectures presents two main challenges.  The first 
problem is how, from a program design perspective, to “parallelize” the implementation so that 
multiple threads of control-flow can be executed concurrently.  We do not address this problem 
in Perseus. 
 
The second problem concerns optimizing platformi configuration and mapping of resources to 
threads of execution.  The need for extensive knowledge of platform behavior and the potential 
complexity involved in deriving optimal designs brings the challenge outside the reach of 
conventional software engineering.   
 
To efficiently and effectively optimize legacy applications for deployment to a multi-core 
platform, we propose the need for a set of tools that provide the following four key capabilities: 
 

 Automatically identify “nominal” execution behavior of legacy applications that can be 
used as a benchmark for acceptable performance. 

 
 Automatically identify behavior of legacy applications with respect to memory access 

and potential for performance degradation arising from false-sharing phenomenon. 
 

 Automatically derive an optimal design that defines the configuration of the platform 
cores and mapping of threads over time (with respect to frequency/voltage modulation 
and availability).  

 
 Realize the implementation of derived designs without modification of source code. 

 
Perseus is a short-term research program (5 months) established to investigate and develop 
working prototype tools that can realize the above capabilities.  The program scopes the 
investigation by demonstrating a proof-of-concept solution within the context of Linux-based 
systems running on Intel Xeon based multi-core processors.  The investigation is also focused on 
repeatable applications (in a behavioral sense) that have relatively deterministic input and 
consistent behavior. 
 
In formulating a plan of research, Perseus was broken down into the following technical objectives:  

Table 1. Technical Objectives and Challenges 

 
 
Objective Challenges 
Use binary instrumentation on x86-code to 
inject probes into existing software in order to 
extract per-thread, per-function behavioral 
information relating to execution periods and 
cycle counts. 

• Collecting measurement data without 
affecting the normal behavior of the 
application. 

• Making modifications to binary code when 
complex optimizations have been used 
(e.g., stack arrangements). 
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• Applying the technique within a Linux-
based operating system and traditional 
user/kernel split. 

Use binary instrumentation on x86-code to 
inject probes into existing software in order to 
extract per-thread behavioral information 
relating data and memory block access. 

• Collecting accurate information when 
memory is shared indirectly through 
multiple levels of function nesting. 

• Collecting data at a sufficiently high rate 
and within a kernel/user architecture. 

Identify and analyze aspects of system 
behavior that can be used to optimize 
deployment of software on to a multi-core 
architecture without modifying the intrinsic 
functionality of the application code. 

• Determine what information can be used to 
drive a search-based design optimization 
process. 

• Structure design processes as a 
combinatorial search problem. 

Use automated search algorithms to explore 
the design space and select optimal designs 
with respect to one or more performance 
attributes (e.g., power consumption, minimal 
execution time). 

• Reduction of the problem. 
• Dealing with a large number of application 

and platform configuration variables that 
can change over time. 

Construct a run-time platform and application 
configuration plan from the machine selected 
optimal design. 

• Identification of control trigger insertion 
points and trigger code generation. 

  
Integrated run-time platform and application 
configuration plan with existing x86 
executable on a Linux-based system. 

• Mapping of call-points to code insertion 
points. Writing out modified binary as a 
persistent solution. 

 
The Perseus solution was designed and developed using agile methodologies.  Starting with a 
broad definition of the system architecture, a large number of iterations were made to adapt the 
design to meeting technical challenges as they arose.  A variation on the Scrum methodology 
was used to manage the research team. 
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4. Solution Overview 
The key Perseus sub-systems are: 1) behavioral analysis – Temporal Execution Graph (TEG), 2) 
behavioral analysis – Temporal Memory Access Map (TMEM), 3) Design Optimization Engine, 
4) Deployment Engine and 5) Run-time Engine. 
 
Each sub-system in the solution is implemented as a separate Linux tool.  In addition to the core 
solution we have developed a number of test applications and auxiliary tools that support 
experimentation (e.g., stand-alone data visualization tools). 
 
4.1 Top-level Architecture 

 
Figure 4.  Top-Level Architecture 

Each of the tools developed as part of the work have been tested on the Debian r.4 Linux (x86 
version) running on a variety of COTS Intel platforms.  Although the tools have not been 
officially tested on other platforms we believe that the tools can be easily migrated to support 
Intel x64 as well as PowerPC platforms. 
 
Figure 5 shows the roles and relationships of the Perseus sub-systems. 
 
Sub-system/tool Role Input Output 
Behavioral 
Analysis (TEG) 
teg.exe / 
logger.exe 
 

Instrument existing 
binary with probes that 
can be used to collect 
per-thread, per-call site 
function execution times 
(i.e., Temporal 
Execution Graph).  
Collect auxiliary 
information such as 
shared library load site. 

Original Linux 
Executable and 
Linkable Formate 
(ELF) 32-bit Linux 
Standard Base 
(LSB) executable. 

Binary TEG data file. 
System map defines 
name to virtual address 
associations. 

Behavioral 
Analysis (TMAM) 
tmam.exe / 

Instrument existing 
binary with probes that 
can be used to collect 

Original Linux ELF 
32-bit LSB 
executable. 

TMAM data and 
distilled TMAM data 
that defines functions 
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logger.exe per-thread, per-instance 
memory block 
allocations and memory 
access patterns over 
time.  

that are not false-
sharing safe. 

Design 
Optimization 
Engine 
doe.exe 

Explore design-space 
using genetic algorithms 
to identify optimal 
configurations of the 
platform over time 
according to measured 
application 
“requirements” and 
platform models. 

Behavioral meta-
data in the form of 
TEG and distilled 
TMAM data files.  
Static model of the 
platform (e.g., # of 
processors, cost of 
frequency 
modulation). 

Optimized dynamic 
configuration plan.  
Generated trigger code 
and instrumentation 
point specification. 

Deployment Engine 
deploy.exe 

Integrate dynamic 
configuration plan with 
existing source code. 

Original Linux ELF 
32-bit LSB 
executable. 
Optimized dynamic 
configuration plan. 

Optimized Linux ELF 
32-bit LSB executable. 

Run-time Engine 
fvctrl-driver.ko 
ppd.exe 
ppdcmd.exe 

Control resource 
partitioning.  Maintain 
separation of Perseus-
optimized applications 
and other applications. 

None. None. 

Figure 5.  Summary of Tools and their Roles 
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5. Detailed System Design 
5.1 Behavioral Analysis Sub-system 

Perseus performs behavioral analysis in two forms: temporal analysis of execution and temporal 
analysis of accesses to memory.  The data collected by the former we refer to as the Temporal 
Execution Graphs (TEG).  TEG data defines measurements of both cycle count and wall-clock 
time for execution of a given function.  Distributions (i.e., for multiple executions of the 
function) are collected on a per-call site, per-thread basis.  The latter data is referred to as the 
Temporal Memory Access Map (TMAM).  This captures all access to memory over time on a 
per-thread, per-call site basis. 
 
Both the TEG and TMAM data are ultimately leveraged by the Design Optimization Engine 
(refer to Section 5.5).  The TEG defines “acceptable” performance with respect to time, while the 
TMAM is used to identify threads that exhibit cache false-sharing phenomena (see Section 2.2). 
 
Within Perseus, data is collected by the insertion of “probes” into the existing code.  Probe 
insertion is performed using the Dyninst [2] dynamic binary instrumentation framework.  This 
framework allows processes to be loaded into memory and modifications made directly to the 
code while in memory (processes can be attached to in the same way as debuggers attach to 
executing processes).  Dyninst allows trampoline functions to be inserted that redirect normal 
control flow to a newly inserted function.  Trampoline functions relocate code and insert jumps 
into the original application.   A base trampoline performs register saving/restoration as well as 
instrumentation that redirects control-flow (i.e., jumps) to one or more mini trampolines that call 
user-defined functions. 
 

 
Figure 6.  Dyninst Trampoline Architecture 

As an alternative to Dyninst, the Pin platform [7] was also considered.  However, Pin is based on 
the use of just-in-time compilation and thus incurs a continuous runtime overhead (which we 
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internally measured as exceeding 15% for our test applications). Therefore Dyninst was selected 
as the Perseus dynamic instrumentation technology. 
 
5.2 High-performance Data Logger 

Behavioral data is collected in the form of TEG and TMAM events.  Event data is generated by 
the target application during execution and passed into a shared memory double-buffer.  The 
primary sources of events are Performance Application Programming Interface (PAPI) [3] and 
the Intel Performance Counters [4].  These sources provide both precise timing information and 
chip-level information (e.g., cycles consumed). 
 
As buffers are filled the data is written to the file system by a “collector” thread that runs on a 
reserved processing core.  Coordination between the event generating threads and the collector 
thread is implemented through semaphores.  The Perseus data logger is designed to minimize the 
impact incurred by the target application in generating, and writing out, massive volumes of 
event data.  Both TEG and TMAM event data is stored in an uncompressed binary form to 
reduce disk space and minimize logger thread processing overhead.  The logger uses POSIX 
shared memory services.  Only one instance of the data logger can be run for each individual 
user (account) on the system. 
 
5.3 Temporal Execution Graph Collector 

TEG data is collected by inserting event probes around function calls.  On triggering, each probe 
emits an event that identifies the thread making the call, call site address, function target address, 
cycle count and timestamp (refer to Appendix A).  The cycle count (performance event 
0x8000003B) counts the number of cycles the thread has executed not in a halt state (i.e. when 
not running HALT instructions).  This measure essentially gives an indicator of the work done 
by the respective thread over time.  The timestamps are read from the processor time stamp 
counter through the rdtsc (read time stamp counter) instruction.  Both the cycle count and the 
time stamps are 64bit counters. 
 

 
Figure 7.  TEG Data Logging Architecture 
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As previously discussed, TEG probes pass data to the logger through shared memory.  To 
establish a relationship with the shared logger, the TEG mutator (teg.exe) adds interceptions to 
the thread startup by instrumenting calls to main and start_thread.  The thread startup 
interceptor sets up the thread’s performance counters (through the PAPI API) and opens up 
access to the shared memory logger through a semaphore and Remote Procedure Call (RPC) 
buffer.  The buffer information, including the current buffer and next free position, is stored in 
Thread Local Storage (TLS) so that it can be readily accessed as the thread runs (see Figure 7).  
Note that during the development of Perseus we explored the use of GCC __thread defined 
TLS.  This approach was incompatible with the Dyninst framework due to modifications of the 
stack frame.  When using TLS with PAPI, either POSIX TLS or PAPI TLS should be used. 
 
Logging buffers are allocated on a per-thread basis – there is a one-to-one pairing of target 
application threads and buffering threads.  As buffers are filled in the logger, the logging threads 
write out information to the disk.  The current implementation is able to maintain in excess of 
one million events per second on our Intel 1.6Ghz Xeon test machine. 
 
The TEG data collection program loads the target program into memory and modifies (i.e. 
mutates) the code by inserting function call interceptors at the appropriate points.  All of the 
mutation is performed before execution of the target application begins.   
 
5.3.1 TEG Data Visualizer 

Outside of the conventional end-to-end work flow, the TEG data can be visualized with a stand 
alone tool.  The visualizer allows one to interactively explore the TEG data and create 
histograms for time and cycle count distributions.  Data can be filtered for specific call sites, 
thread identifiers, and/or function targets.  The TEG visualizer is a Java program and requires the 
JFreeChart libraries to run.  Refer to Figure 8 and Figure 9 for example visualizations. 
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Figure 8.  Data Selection In TEG Visualizer.  The TEG visualizer allows the user to filter data according to 
thread, call site and call target.  This menu shows the selection of criteria thread, function and call sites. 

 

 
Figure 9.  TEG Data Visualization.  The data visualizer allows the user to build histograms of the data and make 
comparisons across different call site, call target and thread combinations.  This screenshot illustrates how function 
call durations (presented in a histogram form) can be easily compared across different call sites. 



14 
 

 
Raw data and histogram data can also be exported from the visualizer, thus enabling easy 
visualization in other graphing applications. 
 
5.4 Temporal Memory Access Map Collector 

The Temporal Memory Access Map (TMAM) subsystem collects memory access information 
from program execution, in the form of reads and writes of memory, on a per-thread per-function 
basis.  The primary purpose of this collection is to identify pairs of thread/function tuples that are 
likely to cause instances of false-sharing cache conflicts. 
 
The TMAM Collector uses the Dyninst dynamic binary instrumentation toolkit, which provides 
an API to define an application program (the mutator) that attaches to another application 
program (the target) and alters the target program.  In the case of TMAM, the TMAM Collector 
mutates the target program to identify memory accesses (loads (reads) and stores (writes)) and 
output information regarding each access. 
 
A naïve approach to identifying cache conflicts records each thread/function tuple that reads or 
writes to a cache line and flags that set of all thread/function tuples per cache line as conflicting.  
This approach is very lightweight in terms of its impact on the runtime of the instrumented 
process.  However, it is likely to have a high rate of false positives; that is, it is likely to identify 
pairs of thread/function tuples that do not cause false sharing conflicts. 
 
To avoid false positives, more information must be collected and processed about each memory 
access.  Whether the memory access was a read or a write is very important, because any number 
of threads can read a cache line, but a write to a cache line will invalidate that cache line in other 
processors' caches, potentially causing a false sharing event.  Furthermore, dynamic memory 
management opens the possibility that two threads, the execution of which is separated in time, 
may access the same memory address, but that address may refer to two different allocations of 
memory.  The TMAM must therefore collect information about memory allocations and 
deallocations in order to account for this.  The TMAM currently collects the following tuple for 
each memory access: 
 
(timestamp, thread ID, function address, memory block ID, access base address, access 
size, type) 

 
In this tuple, timestamp provides a total-ordering of events captured.  memory block ID is an 
arbitrary integer value that uniquely identifies an allocated block of memory.  type is one of 
(MALLOC, FREE, READ, WRITE, or SYNC) representing allocation events, deallocation 
events, reads, writes, and synchronization events.  Using this rich data, the TMAM is able to 
output all of the information necessary to identify precisely which pairs of thread/function tuples 
actually cause false sharing conflicts. 
 
The rich TMAM memory access data is output via the high-performance data logger.  This is 
referred to as full-data mode output.  However, due to the massive number of memory accesses 
in many programs, even this is not able to deliver acceptable performance in all cases. 
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We have also provided a high-speed TMAM Distiller logger that implements the naïve approach.  
This is referred to as distilled-data mode output.  While the Distiller improves performance in 
many programs, it does have a higher rate of false positives. 
 
5.4.1 TMAM Conflict Detector 

The TMAM Conflict Detector tool (tmam_conflicts.exe) parses the output of the TMAM 
Collector and produces a list of pairs of thread/function tuples that cause false sharing, as well as 
a count of the number of observed false sharing instances per pair.  The TMAM Conflict 
Detector operates on the TMAM full-data output only, because the distilled-data output does not 
contain enough information to identify conflicts with any further precision. 
 
A simplified description of the Detector algorithm is as follows: 
 
// global state 
ALLOC_CL: table of cachelines containing allocated memory indexed by memory block id 
TID_CL: table of cachelines indexed by the accessing thread 
READ_CL: table of cachelines being read indexed by base address 
WRITE_CL: table of cachelines being written indexed by base address 
CONFLICTS: table of conflicts 
 
CHECK_CONFLICTS (MSG: TMAM log message) 
 Determine relevant cachelines from MSG access base address and MSG access size 
 For each relevant cacheline: 
  If MSG type == READ: 
   Lookup cacheline in WRITE_CL 
   If exists: Add to CONFLICTS 
  Else If MSG type == WRITE: 
   Lookup cacheline in READ_CL 
   Lookup cacheline in WRITE_CL 
   If exists: Add to CONFLICTS 
 
DEACT_CACHELINES (MSG: TMAM log message) 
 Determine relevant cachelines from MSG access base address and MSG access size 
 Based on MSG thread id and relevant cachelines, determine replaced cachelines 
 Clear replaced cachelines from TID_CL, READ_CL, and WRITE_CL 
 
PROCESS_ONE (MSG: TMAM log message) 
 Determine relevant cachelines from MSG access base address and MSG access size 
 DEACT_CACHELINES(MSG thread) 
 switch(MSG type) 
  case MALLOC: 
   Add relevant cachelines to ALLOC_CL 
  case FREE: 
   Remove relevant cachelines from ALLOC_CL 
   Clear relevant cachelines from TID_CL 
   Clear relevant cachelines from READ_CL 
   Clear relevant cachelines from WRITE_CL 
  case READ: 
   Add relevant cachelines to READ_CL 
   CHECK_CONFLICTS(MSG) 
  case WRITE: 
   Add relevant cachelines to WRITE_CL 
   CHECK_CONFLICTS(MSG) 
 
PROCESS_ALL (INPUT: TMAM log data source) 
 While more messages exist in INPUT: 
  Read(MSG) 
  PROCESS_ONE(MSG) 
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 Print CONFLICTS 

 
The TMAM Conflict Detector operates on the (sorted) TMAM full-data output one log message 
at a time.  When a memory block is deallocated, all of the reads and writes associated with that 
memory block are cleared.  When a cache line is read, the Detector checks for recent writes to 
that cache line to look for possible conflicts.  When a cache line is written, possible conflicts 
must be found by checking both recent reads and writes. 
 
After examining all TMAM output, the Conflict Detector outputs the list of pairs of 
thread/function tuples that have caused false sharing conflicts, as well as the counts of numbers 
of conflicts. 
 
5.4.2 TMAM Visualizer 

The TMAM Visualizer provides a graphical interface to examine and explore memory accesses 
captured during an execution trace.  The visualizer operates on the TMAM full-data output.  The 
visualizer reads log messages one at a time and processes them using an algorithm very similar 
to that used by the Conflict Detector.  Refer to Figure 10. 
 

 
Figure 10. TMAM Data Visualization Tool.  The TMAM data visualizer lets the user “play” through the event 
time line showing potential cache line conflicts as they occur.  In the screen shot, each element of the memory map 
represents a single cache line of 64 bytes.  Green indicates allocated memory, yellow indicates a read or write has 
been made to the memory and red indicates that two or more threads have made a read or write to the cache line at 
the same time (with respect to block allocation). 
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The TMAM visualizer main window interface consists of several panes.  The primary pane is the 
memory page pane.  This pane contains the space for a sorted list of memory pages in use 
holding data for the target program.  Each page widget consists of 64 cache line widgets.  
Beneath the memory page pane are three panes which contain space for displaying the active 
allocations, reads, and writes for a selected cache line.  These lists become populated during the 
display of a trace file. 
 
The TMAM visualizer is called to life by opening a TMAM trace file and an associated TMAM 
map file.  For each log message processed from the trace file, the visualizer identifies all relevant 
cache lines.  The first time a new cache line is referenced by any log message, the visualizer 
identifies the memory page (aligned on a 4K boundary) to which the cache line belongs.  If the 
page has not been referenced previously, the Visualizer creates a new widget representing the 
page and displays it in sorted order in the memory page pane. 
 
Unused cache lines are colored grey.  When a memory allocation (MALLOC) message is 
received, the relevant cache lines are colored green.  When all of the memory blocks in a cache 
line have been freed (via FREE messages), the cache line will return to the grey color.  While 
any cache line is being accessed (READ or WRITE messages active within that cache line) it is 
colored yellow.  When a cache line contains conflicting accesses (READ and WRITE messages 
or multiple WRITE messages) it is colored red to indicate the conflict.  Clicking on any cache 
line causes that cache line to become active in the TMAM visualizer interface, and its memory 
allocations, reads, and writes are displayed in the three panes at the bottom of the main window. 
 
By default, the TMAM visualizer pauses playback on the first occasion that it identifies a given 
conflict, to allow the user to notice and inspect the conflict.  On subsequent occurrences of the 
same conflict, playback is not paused. For example, if thread 1 function Foo conflicts with thread 
2 function Bar, then the first such conflict (1,Foo,2,Bar) will cause execution to pause, while 
subsequent conflicts (1,Foo,2,Bar) will not. 
 
In addition to this display, the visualizer also maintains a separate window, the Conflicts 
Window, which displays a list of all conflicts found to date. 
 
5.5 Design Optimization Engine 

The purpose of the Design Optimization Engine (DOE) is to determine a deployment plan which 
is tailored for the analyzed program on the platform in question.  Specifically, the goal of the 
DOE is to determine a schedule in which threads are mapped to cores and cores are mapped to 
frequencies.  These mappings need not be constant.  For example, it is possible for a core to run 
at multiple frequencies during the course of an execution; similarly, threads are allowed to move 
from core to core.  In this manner, the DOE can take advantage not only of platform specific 
optimizations (e.g., the Intel enhanced halt state feature) but also can adapt to changing 
execution patterns (e.g., by relocating threads over time to avoid false sharing). 
 
Recall that the purpose of the TEG data is to specify required performance of the application 
over time.  This is achieved by measuring the actual CPU cycles consumed by the application 
while it is active.  Cumulative cycle counts are read before and after each call site.  Thus, the 
TEG data divides the program into blocks of execution, where block boundaries are called sites.  
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Furthermore, each thread has its own separate cumulative count.  Thus, for each thread, resource 
requirements are detailed at the execution block granularity.  Using this information, the DOE 
must determine not only which core each thread should run an execution block on, but also at 
what frequency the core should operate at while executing the block.  In essence, the DOE must 
search through all of the possible deployment configurations and, without executing them, 
determine which is optimal with respect to either execution time or power consumption 
(depending upon user needs).  In order to accomplish this task, the DOE must utilize an 
extensive model of the system as well as an advanced searching technique. 
 
5.6 System Model 

In order for the DOE to determine the optimal deployment configuration, it must have some way 
of comparing possible deployments.  In other words, the DOE must be able to abstractly execute 
each possible deployment against a system model in order to estimate the time and power that 
such a deployment would consume when actually executed.  Constructing this model consisted 
of taking detailed measurements of the aspects of the system we considered to be the most 
relevant for predicting execution time and power.  The quantities we measured were: 

• The power consumed by each core while operating at each frequency. 
• The power and time required to change the operating frequency of a core.  Separate 

measurements were taken not only for each core, but for all pairs of frequencies (e.g., the 
time required to modulate core 1 from 1.8GHz to 1.6 GHz). 

• The power consumed by a CPU when in the Enhanced Halt State. 
• The power and time required to migrate a thread of execution from one core to another.  

Measurements were taken for each possible source and destination core. 
 
In addition to these system specific costs, we also made use of the TMAM data, which described 
costs associated with running the application on the system.  Specifically, the TMAM data lists 
groups of functions that when run in parallel may cause false sharing.  We then associated with 
each false share a time penalty roughly equivalent to the cost of migrating an execution thread. 
 
Given the execution times of all the blocks (from the TEG data) and the system model as 
described above, the DOE estimates the time and power for a deployment configuration by 
running a round robin scheduling algorithm and updating time and power costs when each block 
is scheduled.  Of course, the actual scheduling algorithm used by the operating system is likely to 
be more complicated; however, we have found that in practice, round-robin yields a high quality 
estimation. 
 
One issue which should be noted is that this type of simulation will only be accurate for 
programs which are deterministic in terms of the number of threads which are created and the 
work which is done by each thread.  The reason for this is that the DOE uses detailed 
information concerning previous executions (from the TEG and TMAM data) to predict future 
performance; clearly if executions of a program vary drastically, the predictions are likely to be 
inaccurate. 
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5.7 Searching 

Given the ability to evaluate the time or power of a possible deployment, choosing the optimal 
deployment is a matter of searching through the space of all possible deployments.  However, 
considering the number of possible execution blocks of even a short running program, this space 
can be immensely vast.  In practice, we observed that the number of possible deployment plans 
could easily be greater than 1025.  Given such a large space to search, advanced techniques need 
to be employed.  The technique we chose was genetic algorithms; this decision was based in part 
upon the fact that genetic algorithms are designed to operate over large search spaces and in part 
because deployment plans could very naturally be represented by a gene string, the primary 
model used by genetic algorithms. 
 
5.7.1 GA Background 

Genetic algorithms (GA) are a searching technique based upon evolution and the principle of 
natural selection.  In order to use a GA, a possible solution must be able to be described as a 
collection of genes.  For example, a deployment can be viewed as a string of decisions, each of 
which represents a block, the associated core, and the core’s operating frequency. Thus, in the 
same way that a person has a gene (or genes) for hair color, eye color, etc., a deployment plan 
has a gene for the first block to be scheduled, the second block to be scheduled, etc.  
 
Genetic algorithms work with a collection of possible solutions called a population.  Beginning 
with an initial generation, a GA attempts to create new solutions from existing ones, much in the 
same way that children are created from their parents.  This is accomplished with three main 
operators: 
 

• Reproduction.  An individual is selected and a new solution is created that is a direct 
copy of the selected solution.  In other words, a solution from the current generation is 
reproduced in the new generation. 

• Mutation. A member of the current generation is selected and a slightly modified copy is 
added to the new generation.  For example, the mutation technique we used was to 
change the deployment decision for a single execution block.  This is an implementation 
of the original mutation operator discussed in [9]. 

• Crossover.  Two individuals are selected and two new solutions are created by taking 
some gene values from each of the two parents.  The two children are then added to the 
new generation.  The specific technique we utilized was k-point crossover [10].  In this 
method, k cut points are made in the two parent genes and then alternating gene 
sequences from each parent are used to create the children.  For example, if a gene string 
has a length of 5, a 1-point crossover might select the single cut point between gene 2 and 
gene 3; then each child would consist of the first 2 genes from one of the parents and the 
last 3 genes from the other parent.  The cut points are randomly selected, thus the same 
two parents have the ability to create many different children. 

 
When the GA completes, usually after a set number of generations, the fittest member of the 
final generation is the solution returned. 
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Selection is an important concept in genetic algorithms.  Reproduction, mutation, and crossover 
all work by first selecting an individual (or two, in the case of crossover) and then performing 
some operation on the selectee.  The manner in which individuals are selected can have a huge 
impact upon the algorithm.  Whereas there have been many selection methods devised for 
genetic algorithms, all of them are probabilistically guided by the quality of the individuals; in 
other words, an individual solution that is better than another – or, in GA parlance, has a higher 
fitness – has a higher probability of being selected.  This aspect of genetic algorithms models 
natural selection: over time, the fittest individuals persist and the less fit individuals disappear 
from the gene pool.  For example, we chose tournament selection [11] which randomly picks n 
individuals and then selects the fittest of those n.  A common value for n is 2.  In terms of fitness, 
the round-robin simulator was used as the fitness evaluator; that is, if one deployment was 
predicted to consume less power than another, it was categorized as having a higher fitness. 
 
5.7.2 GA Enhancements 

In addition to the standard techniques described above, we also implement some well known 
advanced techniques in DOE genetic algorithm: 
 
Elitism - For every generation, the m ≥ 0 most fit individuals are automatically copied into the 
next generation.  This technique, discussed in [10], eliminates the possibility that the best 
solutions are not selected for reproduction.  In practice, we have found that very small values of 
m, such as 1 and 2, work quite well. 
 
Introduction of Domain Specific Knowledge - Normally, the initial population is randomly 
selected.  We have modified this slightly.  In our approach, when a member of the initial 
population is created, there is a high probability that this individual will be randomly selected, 
but a small number of individuals are created intentionally from domain knowledge.  
Specifically, even though it is valid for the GA to switch a thread from one core to another for 
each execution block, in practice this is wasteful (e.g. because most of the execution time and 
power is spent on changing cores). How much switching constitutes “too much” is something 
which varies with each program and we don't know a priori what this threshold is -- in fact, 
finding this threshold is really what the GA is used for. However, in order to help the GA, we try 
to encode our limited domain knowledge that “too much changing is bad” by creating individuals 
that represent solutions which seldom migrate threads or not at all.  We create these individuals 
sparingly because we don't want them to overpower the other members of the population and 
completely bias the GA search to one portion of the solution landscape. However, a small 
number of these individuals in the population can help guide the GA without completely 
overpowering it. We have found that a probability of 0.05- 0.1 works well. 
 
Population Re-infusion - Since selection is based upon the fitness of individuals, it is possible for 
the population to converge; that is, for all individuals to be the same or very similar.  When we 
notice that this has occurred, but the specified number of generations have not yet been created, 
all non-elite members of the population are discarded and replaced with new individuals.  These 
new individuals are created in the same way as those for the initial population.  Essentially, 
population re-infusion re-starts the GA while remembering the best individuals seen so far.  We 
claim that a population has a low diversity when the difference between the fitness of the best 
individual and the fitness of the worst individual are within 10% of the fitness of the best 
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individual. 
  
Incest Prevention - If two identical parents are involved in a k-point crossover, then the children 
created are exact duplicates of the parents.  In this case, crossover simply mimics reproduction.  
Even if the two parents are not identical, but very similar, the children produced are nearly 
identical to the parents, making crossover quite like mutation.  Both of these cases can cause the 
population to converge prematurely.  In order to prevent such convergence, we ensure that 
children are sufficiently different from their parents by utilizing a technique called incest 
prevention [12].  Basically, we only allow two individuals to be involved in a crossover if they 
are sufficiently different from each other.  We use hamming distance in order to measure the 
similarity of two individuals. 
 
5.7.3 Platform Control Plan 

The final design is output from the DOE as a platform control plan.  Each plan consists of a set 
of “trigger” points (defined as memory addresses in the code) as well as a source code (C/C++) 
to implement the triggers.  Triggers effectively implement application-driven control on the 
platform by setting the affinity of the current thread as well as setting the frequency/voltage of 
specific cores.  Trigger points define where the appropriate triggers should be grafted into the 
original code and, as discussed in the previous section, the cost of triggers and their functionality 
is taken into account during the design optimization process. 
 
5.7.4 GA Visualization 

As part of the Perseus tool set, the process of search the solution space via the GA algorithm can 
be viewed using a GUI-based visualization tool (Figure 11). 
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Figure 11.  Real-time Visualization of Genetic-Algorithm Populations (Designs).  This snapshot is of the GA 
visualization tool.  This tools allows the tool user to visualize progress of the GA in real-time.  This particular view 
shows the current best performance (with respect to execution time and power consumption) as the GA runs. 

 
5.8 Deployment Engine 

The deployment engine is responsible for taking the original application binary and modifying it 
to realize the platform control plan.  This is done by instrumenting the program binary with 
triggers (i.e. calls) into the control plan.  In the current prototype the control plan is compiled 
into a dynamically loadable library so that it can be loaded into the application’s process space 
together with platform control libraries for voltage/frequency modulation and thread affinity 
controlii.  See Figure 12. 
 

 
Figure 12.  Final Application Deployment Structure.  Final deployment of the optimized application is achieved 
by loading a design-specific control library into the application’s process space, which is hooked into the application 
by inserting “triggers” at the appropriate points in the binary code. 
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Because the final application is instrumented, there is an overhead (on the order of 10-15 
seconds) incurred for loading the process and performing the instrumentation.  The experimental 
results do not include this overhead as we believe that in any practical deployment the 
application would be instrumented and the modified binary written out.  Alternatively, trigger 
points can be hand grafted into the code and the control plan included as part of the application 
source.  We believe that this approach would lend itself to formal certification through code 
reviews, a practice common to DoD systems development. 
 
The following code illustrates an example (from the haltstate gate test) of the Perseus generated 
control plan: 
 
#include <pthread.h> 
#include "affinity.h" 
#include "fvctrl.h" 
#include "triggeraux.h" 
 
void Init_Frequency() 
{ 
 modulate_cpu(0, 0, 0); 
 modulate_cpu(1, 0, 0); 
 modulate_cpu(2, 0, 0); 
 modulate_cpu(3, 0, 0); 
 modulate_cpu(4, 0, 0); 
 modulate_cpu(5, 0, 0); 
 modulate_cpu(6, 1, 0); 
 modulate_cpu(7, 1, 0); 
} 
 
void Set_Default_Affinities() 
{ 
 switch(GetThreadInstanceId()){ 
  case 0: { 
   affinize_thread(0, pthread_self()); 
   break; 
  } 
  case 1: { 
   affinize_thread(4, pthread_self()); 
   break; 
  } 
  case 2: { 
   affinize_thread(5, pthread_self()); 
   break; 
  } 
 } 
} 
 
void Before_CS_8048D26() 
{ 
 switch(GetThreadInstanceId()) { 
  case 0: { 
   affinize_thread(5, pthread_self()); 
   break; 
  } 
 
 } 
} 
 
void Before_CS_8048D75() 
{ 
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 switch(GetThreadInstanceId()) { 
  case 1: { 
   affinize_thread(4, pthread_self()); 
   break; 
  } 
 
  case 2: { 
   affinize_thread(4, pthread_self()); 
   modulate_cpu(5, 1, 0); 
   break; 
  } 
 
 } 
} 
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6. Experimental Results 
6.1 Test infrastructure 

The results in this document were collected on the following platform: 
 
HP Proliant DL140 Rack Mount Server S/N USE731NBHC 
Dual- Quad-core Intel Xeon Processors E5320 @1.86GHz 
 
Intel Performance Primitives 5.3.1 (I23-28101A01D) 
Intel C++ Compiler Standard v10.0.023 Edition for Linux I23-35101A01D 
Linux (Debian R4.1.1) Kernel version 2.6.18-10.00.Custom build (gcc version 4.1.2) 
 
 
6.2 Experimental Power Measurement 

Power consumption of the test platform was measured by attaching a real-time streaming digital 
multi-meter (Agilent 34405A Digital Multimeter S/N TW47270003) directly to the ATX 
motherboard power supply.  This particular motherboard conforms to the server ATX 
specification and thus has two 12V ATX lines, one feeding each of the processors (see  
Figure 13). 
 

 
Figure 13.  Perseus Power Measurement Infrastructure.  Power consumption is measured directly from the ATX 
supply lines on the system motherboard.  Two multimeters are used, one per processor. 

 
Data is streamed from the multimeters in real-time via a USB-connected host PC.  Samples are 
taken at a rate of approximately 2 per second.  As part of the work, we developed our own data 
streaming and capture application that supports multiple data sources (i.e. multimeters) and the 
ability to ‘mark’ data points during capture.  Data points are triggered from the host being 
measured via a TCP/IP connection to the host PC.  Figure 14 shows the visualization provided 
by this application. 

mailto:@1.86GHz
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Figure 14. Perseus Real-time Power Measurement Tool.  Data is streamed from the Agilent multimeters in real 
time via USB to a collection PC. 

 
6.3 Experimental Gate Tests 

In order to evaluate the technology developed during the Perseus project, we identified a number 
of gate tests that would demonstrate different aspects of the solution.  Each gate test has been 
constructed with different optimizations in mind.  Each has a known “optimal design” and thus 
as Perseus is run on these gate tests the expected outcome is understood a priori. 
 
Note: The following results were taken during the Perseus program.  Since completion of the 
AFRL funded effort, ATL has performed additional experimentation and made a number of 
modifications to the design optimization engine. 
Table 2. Description of Experimental Gate Tests and each objective 

 
 
Test # Name Description Objective 

1. Haltstate.exe Two counting threads and a joining main thread. 
Each counting thread has equal workload and 
priority.  There is no data sharing across threads 
and thus false sharing is not expected. 

Co-locate threads to a 
single CPU in order to 
facilitate power-
reduction by entering 
enhanced halt-state on 
a single processor. 

2. Float.exe Four counting threads plus a joining main thread.  
Each counting thread has equal workload and 
priority.  There is no data sharing across threads 
and thus false sharing is not expected. 

Reduce frequencies of 
core belonging to main 
thread and other cores 
not performing work. 

3. Pairs.exe Eight counting threads plus a joining main thread.  
Threads are divided into four pairs.  Each pair is 
counting data in the same cache line and thus 
false-sharing potential is high. 

Co-locate pairs to avoid 
false sharing. 
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4. Imgapp.exe Application based on Intel Performance 
Primitives libraries.  Five threads process data in 
a fork/join pattern.  Different threads perform 
different types of work.  Work types include high-
pass, Gaussian, and Sobel-Horiz filtering.  Final 
stage of processing operates only three threads 
over a period of approximately 10 seconds. 

Reduce frequencies of 
cores running 
computational low-
demanding filters.  In 
final fork join pattern, 
co-locate remaining 
working threads to 
same processor for 
enhanced halt state 
activation. 

5. Signal.exe Signal processing application based on Intel 
Performance Primitives libraries.  Application 
applies Hamming Windows, and Discrete Cosine 
Transform (DCT) algorithms to matrices.  Sorting 
stages also included.  Application has six threads 
in phase one and two threads in phase two. 

Defined as a 
representative 
application of the signal 
processing application 
domain.  Phase 
changes should result 
in enhanced halt state 
activation. 

 
The design optimizer was configured with platform information collected empirically through 
the micro-benchmarks.  These benchmark tools, which can be found in the Perseus SourceForge 
repository (sourceforge.atl.external.lmco.com), are used to collect performance data for relevant 
aspects of the system.  Key measurements include thread migration cost, frequency control cost 
and rates of instructions-to-power.  Appendix A2 shows an example configuration for the 
float.exe gate test. 
 
Table 3 and Table 4 provide results collected from the Perseus gate test experiments (see 
repository/testing/gatetests directory). 
 
Table 3. Genetic-Algorithm Running times for each Gate Test 

 
Application 

 
Code 
Size 
(Kb) 

GA 
Running 
Time 

GA 
Iterations 

float.exe 82 4m 35s 2000

haltstate.exe 15 2m 35s 1000

pairs.exe 82 2m 45s 1000

imgapp.exe 774 59m 54s 1000

signal.exe 65 4 hr 1000
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Table 4. Power/Performance Changes for Optimized Applications 

 
Application Total 

Reduction in 
Execution 
Time (%) 

Normal 
Power (Ws) 

Optimized 
Power 
(Ws) 

Power Saving (%) 

float.exe -1.86 145.55 115.4 20.7 

haltstate.exe 2.79 54.05 41.82 22.6 

pairs.exe 19.25 79.82 65.161 18.4 

imgapp.exe  6.13 483.00 469.65 2.7 

signal.exeiii 8.67 535.38 527.5 1.5 

 
Overall the results are positive.  However, by studying the data closely it is clear that further 
tuning of the GA is needed (resulting in the relatively small power savings achieved for the 
image and signal processing applications).  In the tests we have seen “obvious” optimizations not 
being made for the image processing and signal processing applications.  For example, we have 
seen runs where co-location and spare-core frequency reduction is clearly advantageous to power 
conservation.  We speculate that the reason for these deficiencies is either that the platform 
modeling parameters are inaccurate or that the GA search is getting stuck in a local minima. 
 
Also note that these experimental results are representative and application dependent.  The 
running times used were relatively small (less than 5 minutes) so that data bloat did not become a 
problem from the perspective of the GA.  In future work, we will be looking at increasing the 
computing power for the GA processing to scale to larger designs. 
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7. Project Resources 
All of the Perseus project information, source code and documentation are maintained on the 
Lockheed Martin ATL SourceForge web site at: 
 
https://sourceforge.atl.external.lmco.com/sf/sfmain/do/viewProject/projects.perseus 
 
Requests to join the Perseus project should be made to dwadding@atl.lmco.com. 

https://sourceforge.atl.external.lmco.com/sf/sfmain/do/viewProject/projects.perseus
mailto:dwadding@atl.lmco.com
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8. Conclusions 
Over the five month timeframe of this program, a substantial research and development effort 
has ensued.  The key objective of the program was to demonstrate, through a proof-of-concept 
prototype, that a) naïve migration of legacy applications to multi-core typically results in poor 
performance with respect to power and time, and that b) machine-learning could be used to 
effectively solve the complex temporal mapping problem of thread-to-core and core 
configuration. 

Key Observations: 

Naïve Migration Leads to Less-than-Optimal Performance – Our results have shown that there 
are simple optimizations that can be made by paying attention to the nuances of multi-core cache 
architectures (e.g., false-sharing phenomena) and power management algorithms (e.g., enhanced 
halt state).  Our data shows gains in performance in the region of 20% and savings in power also 
around the 20% mark.  These measurements were taken from a two-stepping platform and thus 
we anticipate that additional savings could be achieved on platforms with more steppings. 

Effectiveness of Application-specific Power Management - State-of-the-art microprocessor-level 
(e.g., Intel Speedstep) and OS-level (e.g., cpufreq governors) power management strategies are 
unable to exploit application characteristics that can provide obvious savings in power.  A clear 
example of this is the inability to co-locate threads onto processors in order to free up whole 
processors for shutdown or enhanced halt state.  It could be argued that modifications to the 
operating system scheduler could help alleviate this problem but this could come at a cost to the 
scheduling overhead. 

Data Bloat in Memory Maps - Temporal memory maps in their raw form are too large in size to 
manage and process.  Although we demonstrated that information maintained in a temporal 
memory map is directly useful in avoiding phenomena such as false-sharing, collecting that map 
data without any form of distillation is impractical for most reasonably sized applications.  From 
our experimentation, we now believe that memory map data must be distilled in real-time in 
order to avoid excessive data bloat. 

Effectiveness of Binary Instrumentation - Dynamic binary instrumentation is effective in probe 
insertion.  Nevertheless, our experience has shown that binary instrumentation technology is still 
in its infancy.  Our experience with Dyninst is that, while being able to deal with most code, 
there are still a reasonably large number of compiler and system optimizations that cannot be 
instrumented by the current solution.  Examples are the use of compiler specific thread-local 
storage (e.g., GNU __thread attribute) and stack optimizations.  Furthermore, modified binaries 
are often brittle and susceptible to unpredictable behavior. 

Application Predictability – We have also demonstrated that many applications (particularly 
those relevant to the DoD domain) are relatively predictable with respect to execution time.  Our 
use of the temporal execution graph (TEG) to empirically define a datum for behavior, from 
which optimizations can be based, has shown to be effective.  The key to the success of the 
approach is the appropriate selection of measurement granularity and the existence of recurring 
equations in the processing. 

Degrees of Modulation – The experimental work for this program was performed on a dual- 
quad-core Intel Xeon platform with only two frequency modulation steppings.  The number of 
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steppings available is defined as a relation of the front-bus frequency and the maximum 
processor clock speed.  Today, the most steppings an Intel Xeon processor can support is six.  
We believe that this additional range of scaling would allow additional gains from the Perseus 
optimization. 

Although the program has developed a functional prototype and a number of key findings in the 
area of power-optimization for multi-core, there is still a large body of research that remains.  
Further investigations that require attention include: a) configuration of machine-learning 
algorithms to drive system design and optimization processes; b) the effectiveness of greater 
frequency/voltage modulation levels (e.g., O(1000)) in processors and the move towards on-
demand power models that eliminate the need to operate processors during halt cycles; and c) 
extension of the Perseus optimization strategies to the heterogeneous multi-core domain. 

It is clear that new technologies bring new capabilities but also bring new challenges.  The 
advent of multi-core has demonstrated a clear need for a change in the way we build (and 
parallelize) software systems – a challenge clearly at the forefront of many commercial 
technology vendors such as Intel, IBM and NVIDIA.  Nevertheless, outside of the forward 
looking challenges, the defense industry is faced with issues and challenges that are not of 
immediate concern to the broader industry.  Key examples include the problem of legacy 
software and the need for program code certification.  Keeping abreast and engaged with these 
additional challenges is key to the long term success of the defense industry. 
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Appendix A.1 – Definition of Raw Event Data Structure 
typedef struct RawEvent { 
 
  /** 
   * Thread identifier 
   */ 
  MachineAddress mThreadId; 
 
  /** 
   * Flags for type of block 
   */ 
  EventFlags mFlags; 
 
  /** 
   * Address of call site. 
   */ 
  MachineAddress mCallSiteAddress; 
 
  /**  
   * Address of function/method being called. 
   */ 
  MachineAddress mCallToSiteAddress; 
 
  /** 
   * Cycle count read from performance counter register.  The ratio of time and  
   * cycle count is directly proportional to CPU load w.r.t. concurrent threads. 
   */ 
  uint64_t mCycleCount; 
 
  /* 
   * Time stamps read from on-chip time stamp counter  
   */ 
  uint64_t mTimeStamp; 
}  
RawEvent; 
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Appendix A.2 – Example GA Configuration File 
The following GA configuration data is taken from the float.exe gate test.  Configuration values may have 
changed across gate tests. 

Procs: 8 
Freqs: 1853000000 1587000000  
Timeslice: 18530000 
Core sets: 
        0 1 2 3  
        4 5 6 7  
Cache share cores: 
        0 => 0 
        1 => 0 
        2 => 2 
        3 => 2 
        4 => 4 
        5 => 4 
        6 => 6 
        7 => 6 
Freq change penalty: 7246156 
Instrumentation penalty: 161936540 
False share penalty: 65000 
Move penalty weight: 1000 
Penalty matrix: 
        0       386461  563589  579692  872597  872597  872597  872597  
        386461  0       563589  579692  872597  872597  872597  872597  
        563589  579692  0       386461  872597  872597  872597  872597  
        563589  579692  386461  0       872597  872597  872597  872597  
        872597  872597  872597  872597  0       386461  563589  579692  
        872597  872597  872597  872597  386461  0       563589  579692  
        872597  872597  872597  872597  563589  579692  0       386461  
        872597  872597  872597  872597  563589  579692  386461  0  
Watts per frequency: 
        1587000000 => 7 1853000000 => 8.16 
Min iterations: 2000 
Coverge test count: 50 
Iters per output: 50 
Prob repro: 0.18 
Prob cross: 0.8 
Pop size: 100 
Tourn size: 2 
Gene type: 2 
Time type: 0 
Colocate thresh: 100 
Min block cycles: 1000 



35 
 

Appendix A.3 – Notes 
                                                 
i Herein we use the term platform to mean a set of processing elements (e.g., multiple processors each with multiple 
cores). 
ii Current Linux distributions, including Debian R4.0, contain two forms of the POSIX pthread libraries.  One form 
uses processes to simulate threads, whilst the other uses native system threads (known as the Native Posix Thread 
Libraries, NPTL).  To our knowledge, the NPTL implementation must be used in order to support control of true 
thread affinities. 
iii Design optimization performed on a 1/10 snapshot of the total execution. 




