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Abstract 
 
 
In our original proposal for the DARPA BICA project, our plan was to develop an innovative and 
novel biologically-based computational model of interacting brain modules for memory, using the 
adaptive representations architecture of Gluck & Myers (2001, Gateway to Memory: An 
Introduction to Neural Network Models of the Hippocampus and Learning, MIT Press).  The 
approach was to begin with a connectionist-level architecture for the hippocampal region (medial 
temporal lobe) as a central system for creating optimal and adaptive stimulus representations, and 
then work outwards from the hippocampal region to the brain systems that it modulates, including 
the cerebellum, cerebral cortex, basal ganglia, as well as other structures which, themselves, 
reciprocally modulate the hippocampus (ventral tegmental area/VTA, medial septum of the basal 
forebrain). Ultimately, this would define a novel biologically-inspired and constrained architecture 
for the neural substrates of a broad range of learning and memory behaviors and capabilities. 
 
Our direction changed toward the end of the first year as we saw the opportunity to collaborate 
with other BICA teams to create a completely new biologically-inspired architecture, called 
TOSCA. TOSCA was to be the basis for our collaborative Phase II submission to BICA. The 
TOSCA team included:  
 

• Michigan (John Laird, Richard Lewis, Thad Polk, Doug Pearson (Three Penny))  
• MIT (Cynthia Breazeal, Linda Smith (Indiana), Larry Barsalou (Emory))  
• Dartmouth (Richard Granger, Carey Priebe (Johns Hopkins), Anna Tsao (Algotek)) 
• Harvard (Stephen Kosslyn, Giorgio Ganis, Bruce Draper (CSU))  
• Rutgers (Mark Gluck) 
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Summary, Introduction & Methods 
This report reflects the research we have done under BICA and represents a summary of the 
Rutgers contributions to the larger TOSCA architecture.  The design of TOSCA starts at the brain 
system and circuits levels.  In developing an initial version of TOSCA, our team chose to abstract 
away from much of the complexity of the brain.  Many brain systems include multiple subsystems 
that are extremely complex in their own right (e.g., vision and hearing within sensory systems) 
and the sophisticated computational mechanisms underlying these systems.   This is purely a 
tactical decision to get us started and we fully plan to greatly expand the systems and subsystems 
in TOSCA in the future.  Our strategy is to include those neural systems that we consider most 
important in constructing an initial functional architecture that provides end to end behavior.  
 
The Rutgers team had primary responsibility and/or significant contributions to three components: 
(1) Cortico-hippocampal circuits, (2) Cerebellum, and (3) Fronto-striatal/basal ganglia. Refer to 
the Michigan report for a broader overview and the summary of other components contributed by 
other team members. 
 
These three components are described below in the results and discussion section. The final 
deliverable was a blue-print for an integrated architecture for cognition which, had it been 
continued, would have been our proposed work to be done under Phase II funding of BICA. 
 

Results and Discussion 

Cortico-hippocampal circuits (episodic memory, spatiotemporal relations) 
 
Anatomical structure  
As illustrated below in Figure 1.1, our network model of cortico-hippocampal circuits for 
learning and memory include modules corresponding to the dentate gyrus (DG), CA3 and CA1 
fields of the hippocampus proper, and superficial and deep entorhinal cortex, which receive 
inputs from the perirhinal and parahippocampal coritices which, in turn, get projections from the 
rest of the brain. 
Entohrinal Cortex (EC): The entorhinal cortex contains six layers that, for simplicity, can be 
divided into "superficial" (layers I-III) and "deep" (layers V-VI).  The superficial layers receive 
highly-processed multimodal sensory input from neocortex (primarily via perirhinal and 
postrhinal cortex).  Principal neurons in the superficial layers include pyramidal neurons (in layer 
III) and stellate cells (in layer II).  The stellate cells project via the perforant path to DG and CA3, 
while the pyramidal cells project to CA1 (and subiculum).  The superficial layers also contain a 
large number of GABAergic interneurons that exert a widespread inhibitory control over the 
output of principal cells.  The deep layers receive input from CA1 (and subiculum) and project 
back to the same neocortical areas that provided input to the superficial layers.  There is also a 
projection from deep to superficial EC that causes both excitation and feedforward inhibition (van 
Haeften et al., 2003).  Pyramidal cells in the deep layers show graded persistent firing (over 5 
minutes) which could allow for reverberating circuits (superficial EC to hippocampus to deep EC 
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to superficial EC) to maintain stimulus representations across short delays (Frank & Brown, 
2003). 
 
 

 
Figure 1.1: Hippocampal Formation interaction with Cortex 

 
Hippocampal Formation: The hippocampus includes a DG layer, a CA3 layer, and a CA1 layer. 
Connections from DG to CA3 and from EC to CA1 are topologically organized.  Each stellate 
neuron in EC contacts a subset of the possible postsynaptic targets in DG and in CA3.  Each 
neuron in CA3 contacts a subset of the possible postsynaptic targets in CA3 and CA1. 
 
Physiological operation 
EC neurons receive external input representing highly pre-processed multimodal sensory 
information from cortex.  They will be modulated by interneurons providing both feedback and 
feedforward inhibition; for simplicity.  Strong inhibitory processes and local circuit feedback in 
the EC cause representational compression, implementing representational clustering function 
proposed by Myers et al. (1995).  Deep EC neurons form the principal output of the hippocampal 
region back to cortex and also project to principal cells in superficial EC. 
 
Computational function 
In our implementation of TOSCA, we will follow the widely accepted hypothesis that the 
hippocampal region plays a critical role in the acquisition of new memories, both (1) rapidly-
acquired memories for autobiographical events, sometimes collectively called episodic memory 
(e.g. Squire, 1987; Squire et al., 2004), as well as being critically involved in developing novel 
adaptive stimulus representations that are important both for episodic memories but also for 
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incrementally-acquired procedural memories which are otherwise mediated through the 
cerebellum and basal ganglia. As a starting point we plan to incorporate our previous neural 
network modeling of hippocampal region processing in the larger architecture (Gluck & Myers, 
1993, 2001; Myers & Gluck, 1994).  This model assumes that the hippocampal region develops 
new stimulus representations that encode contextual and stimulus-stimulus regularities. 
Specifically, we found that known features of the anatomy and physiology of EC (sparse 
activation of principal neurons, dense inhibition, and local plasticity mechanisms) give rise to the 
compression of redundant features in the input.  This model accounted for data showing that 
latent inhibition and sensory preconditioning, which depend on compressing together the 
representations of conditioned stimulus and context and/or co-occurring cues, survive selective 
hippocampal lesion but are impaired after EC or broad hippocampal-region damage (Myers et al., 
1995). We will adopt this same model in the initial version of TOSCA.  We will also follow our 
previous modeling in assuming that the hippocampal layer forms a compact code for the whole 
situation in which the organism finds itself (what we call the 'ensemble''; Murnane, Phelps, & 
Malmberg, 1999).  Such representations will form the basis of episodic memory in TOSCA, 
which are acquired in one or a few exposures and include information about the spatial and 
temporal context in which learning occurred (e.g. Meeter et al., 2004; Hasselmo & Eichenbaum, 
2005; O’Reilly & Rudy, 2000), or on spatial and sequence learning, which may be animal 
analogues of human episodic learning (e.g. Lisman et al., 2005; Sharp, 1999; Tsodyks et al., 
1996). 
 
Systems 
Interactions between the hippocampal system and other neural systems will play a crucial 
functional role in TOSCA. At the highest level, the hippocampal system will constantly be 
encoding and storing compressed representations of the current state (as represented in posterior 
cortex).  When similar states are encountered in the future, they will activate the previously stored 
compressed representation, which will in turn reinstantiate information from the previously stored 
state in posterior cortex.  Once this information is represented in posterior cortex, it can influence 
which actions/intentions are proposed and selected. Furthermore, we envision 
corticohippocampal loops in TOSCA storing and retrieving temporal sequences of events that 
have been experienced.  Specifically, each event in a sequence could provide cues that lead to 
retrieval of the next event in the sequence.  In this way, the hippocampal system could be used to 
replay a sequence of events from the past.  Doing so could be potentially very valuable to the 
agent, because it would make it possible to plan ahead and predict likely future events that may 
improve its present decision making. 
 
The interaction between the hippocampal system and anterior cortex could provide another 
crucial functionality for TOSCA.  Recall that one critical assumption of the architecture is that it 
learns how and when to perform mental operations as well as motor actions.  That is, the same 
learning algorithms will be used to reinforce rewarding actions, whether they are mental actions 
or motor actions.  The initial design of TOSCA will exploit this strategy in order to learn how 
best to exploit its episodic memory system.  For example, TOSCA should be able to learn when 
the mental act of attempting an episodic memory retrieval is likely to lead to long-term reward. 
Similarly, it should learn when episodic storage is called for.  Indeed, the agent should even be 
able to learn what retrieval cues to set in posterior cortex in order to retrieve memories that are 
likely to help in deciding how to act.  Put simply, TOSCA should be able to learn how to use its 
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episodic memory most effectively in addition to learning episodic memories themselves. 
 
Cortico-striatal circuits (intention selection and dopamine modulation) 
 
Anatomical structure 
The basal ganglia (BG) are a set of interconnected, sub-cortical nuclei which form a complex 
network of loops integrating cortical, thalamic and brainstem information (Alexander et al 1986). 
There are three main pathways from the cortex, through the BG, and back to the cortex as 
illustrated in Figure 1.2.  The striatum is the input nucleus of the direct pathway.  It projects 
directly to the output nuclei of the BG, the globus pallidus interna (GPi) and substantia nigra pars 
reticulata (SNr).  The output nuclei project back to the cortex via the thalamus, with the input 
returning to the same cortical module that provided the excitation to the striatum.  The striatum 
also has a second pathway to the output nuclei, the indirect pathway.  This two step inhibitory 
pathway provides delayed excitation to the same area of the output nuclei that the striatum 
inhibited via the direct pathway. The hyperdirect pathway provides a route for cortical excitation 
to be passed to the output nuclei of the BG. 
 

 
Figure 1.2: Schematic of a single corticostriatal loop. 

 
Each loop through the basal ganglia originates in a specific cortical area and terminates in the 
same area.  This provides a set of parallel loops through the basal ganglia as shown by the 
relationship of the output channels with specific cortical areas as seen in Figure 1.3.  
Communication between the channels occurs at the level of corticothalamic loops and cortico-
cortical circuits. 
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Figure 1.3: Basal ganglia output channels 

Physiological operation 
The cortical module proposes a number of contesting intentions.  These are held in check by the 
tonic inhibitory output of the GPi/SNr acting via the thalamus.  The striatum acts to decide 
amongst the competing intentions using information from past rewards obtained in similar 
environmental contexts. The three pathways provide mechanisms for intention selection, control 
the force of release of the intention and duration of release of the intention.  The presence of 
multiple, parallel corticostriatal loops allows for the selection of multiple intentions in parallel. 
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Intentions that are mutually exclusive (e.g. reach for ball with left hand and scratch head with left 
hand) will be presented within the same corticostriatal loop, and will therefore be decided 
between.  Intentions that can be executed in parallel (e.g. walk and talk) can be selected in 
parallel and thus executed simultaneously.  The segregated corticostriatal loops interact at the 
cortical level, with the feeding of information generally from areas of more abstract intentions to 
more motor intentions.  As an example, the first corticostriatal loop, communicating with areas in 
prefrontal cortex may decide that the medium term intention goal is to satisfy hunger.  This 
decision will be passed back to the prefrontal cortex and forwarded to more motor planning areas. 
The next corticostriatal loop, originating from the motor planning areas, will decide that the 
current motor plan is to go to the cafeteria.  This decision is then communicated back to the motor 
planning cortical area and forwarded to a shorter term motor planning area.  This series of loops 
continues until the first action of the sequence is decided upon, perhaps rising from a chair.  The 
medium term goal of hunger satiation remains.  The actions needed to fulfill that goal are 
executed in sequence until the goal has been met and another medium term goal attains a higher 
priority and is therefore selected in the corticostriatal loop. 
 
Derived computational functionality  
We assume that a central function of corticostriatal circuits is action selection (or more 
accurately, intention selection).  Specifically, the corticostriatal circuits in TOSCA will act as a 
winner-take-all network to mediate between mutually exclusive intentions.  The main 
computation is performed at the level of the striatum where the intrinsic membrane properties of 
the principal neurons provide the capability to differentiate between the expected rewards from 
each of the competing intentions.  When a rewarding (or aversive) event occurs, the intentions 
that led to the event will be strengthened (or weakened) within the striatum so that they are more 
(or less) likely to be selected the next time a similar environmental context is encountered. 
 
Systems  
As previously discussed, projections from posterior to anterior cortex can naturally encode 
associations between actions/intentions and features of the state that suggest that action. 
Multiple different, and potentially, conflicting intentions can be activated in parallel and it will 
often be necessary to select among conflicting actions.  The neuroanatomy of corticostriatal 
circuits make them particularly well-suited to this function and interactions between cortex and 
basal ganglia will be crucial in doing so.  Interactions between this system and the dopamine 
system will also be crucial for learning in TOSCA.  Specifically, when an action leads to 
unexpected reward, the value of that action in the current state/context will be increased by 
potentiating the cortical associations between the state features and the action representation.  The 
corticostriatal action-selection system will be sensitive to these values, so that when that action is 
proposed in similar states in the future, its probability of being selected will be higher. 
 
Modulation of action contingencies via dopamine 
 
Anatomical structure 
Dopamine producing neurons are located in two midbrain nuclei, the ventral tegmental area 
(VTA) and the substantia nigra pars compacta (SNc).  They receive excitatory input primarily 
from the pedunculopontine tegmental nucleus (PPTN), which conveys information about the 
occurrence of primarily rewarding events, and prefrontal cortex and inhibitory input from the 



7 
 

ventral striatum.  They project to the prefrontal cortex and striatum where they fire in a phasic 
fashion to release dopamine in response to rewarding situations (Romo & Schultz 1990, Schultz 
1996). 
 

 
Figure 1.4: Schematic of main connections of the dopaminergic system 

 
 
Physiological operation  
The corticostriatal loops of the basal ganglia are the substrate for selecting between intentions. 
Learning of the correct intention in a given environmental context is under the control of the 
dopaminergic system shown in Figure 1.4.  When a reward is encountered, the synaptic strengths 
in the corticostriatal circuits that were activated prior to the reward are increased.  This makes it 
more likely that the same intention will be executed in a similar environmental context on future 
occasions.  An unexpected (primary) reward elicits a phasic response in the dopaminergic 
neurons of the VTA/SNc.  When a CS has been learned to reliably predict an upcoming reward, 
the time of response of the dopamine neurons shifts to coincide with the CS.  These phasic 
releases of dopamine are utilized in the recipient structures to direct learning.  The action of 
phasic dopamine signals is to increase synaptic strength by a 3-factor learning rule.  In this rule, 
the relative timing of synaptic input, neuronal firing and dopamine pulse conspire to dictate the 
amount of learning from a single rewarding event. 
 
Derived computational functionality  
Dopamine neurons have long been associated with reward learning and rewarded behavior, partly 
because of clear evidence of their key role in drugs of addiction (DiChiara, 1999), and because 
they are among the best targets for self-stimulation.  The observation that the activity of 
dopamine cells in the monkey midbrain in reward-learning tasks closely follows the form of a key 
training signal in reinforcement learning (the temporal difference prediction error), is an 
important backdrop for TOSCA.  In particular, temporal difference based reinforcement learning 
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(RL) methods will serve to modulate state-action associations by potentiating associations 
between clusters in posterior cortex (representing complex internal state information) and clusters 
in anterior cortex (representing internal and external action intentions). 
 
Systems  
The dopamine system is tightly bound to the corticostriatal system, mediating learning in the 
prefrontal cortex and both divisions of the striatum.  This system is also now known to provide 
neuromodulatory input to the hippocampal and thalamic systems.  
 
Dopamine reward circuits (Intrinsic Reward and its Neural Basis) 
 
Anatomical structure 
Recent studies (Kakade & Dayan 2002, Dayan & Balleine 2002) have focused on the idea that 
dopamine not only plays a critical role in the extrinsic motivational control of behaviors aimed at 
harvesting explicit rewards, but also in the intrinsic motivational control of behaviors associated 
with novelty and exploration.  For instance, salient, novel sensory stimuli inspire the same sort of 
phasic activity of dopamine cells as novel rewards (Schultz 1998, Horvitz et. al. 1997}.  However, 
this activation extinguishes more or less quickly as the stimuli become familiar.  This may 
underlie the fact that novelty itself has rewarding characteristics (Montague etal.1996). 

The novelty-based release of dopamine onto one of its major targets, the striatum, causes both 
general psychomotor activation (Hooks & Kalivas 1994) and also specific exploratory or seeking 
behaviors such as approach that cause animals to engage with those novel stimuli.  Approach of 
this sort is a Pavlovian response---it is like a pre-wired action inspired by novelty (and also reward 
prediction).  Theoretical treatments (Kakade & Dayan 2001, Kakade & Dayan 2002) have directly 
related the dopamine activity with mechanisms for controlling exploration in the RL literature 
such as exploration and shaping bonuses (Sutton, 1993, Dayan & Sejnowski 1996, Ng et. al. 1999) 
effectively completing the circle of interaction between computational, psychological and neural 
approaches.  In TOSCA, we will explore a wider set of mechanisms by which animals control and 
benefit from exploration, using it to build sophisticated mechanisms for manipulating and 
exploiting novel environments.  This wider set of mechanisms include the desire for mastery over 
one's environment and often leads to purposeful and sustained experimentation, as well as the 
motivation of an agent in a social setting to be liked by other agents (like-me) which leads to 
imitative behavior in social settings.  

Various studies have also considered the neural basis of the assessment of novelty.  Of particular 
relevance are two further neuromodulators, acetylcholine (ACh) and norepinephrine (NE), which 
are known to be involved in uncertainty and unexpectedness, and also to interact with the 
dopamine system.  Theoretical treatments of these (Dayan &Yu 2003,Yu & Dayan 2002) focus on 
their roles in reporting specific sorts of uncertainty---uncertainty arising from ignorance (which is 
what should drive exploration) and uncertainty arising from environmental stochasticity (which 
should not).  The difference between these forms of uncertainty is relative to models of the 
environment, which form a key component of any theory of novelty.  The ideas on ACh and NE 
are in their infancy; there is scope for a productive interaction between our explorations via 
TOSCA and future experiments and theory on the drives and effects of NE and ACh. 
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Derived computational functionality  
The intrinsic motivations listed above will serve as mechanisms for providing internal reward to 
the agent and this in turn will help direct the agent’s behavior during exploration and play both in 
the presence and absence of externally specified tasks.  These internal rewards will lead to the 
learning of useful mental and physical skills in the form of options or abstract actions that in turn 
will become available to the reinforcement learning system in TOSCA as actions.  This will allow 
an incremental buildup of a hierarchy of useful cognitive and physical skills by the agent that 
would not be possible in the absence of intrinsic motivations.  
 
Systems  
The dopamine system is tightly bound to the corticostriatal system, mediating learning in the 
prefrontal cortex and both divisions of the striatum.  This system is also now known to provide 
neuromodulatory input to the hippocampal and thalamic systems.  
 
Cerebellum 
 
Anatomical structure  
The cerebellum can be subdivided into the cerebellar cortex and the deep cerebellar nuclei, which 
sit on top of the cerebellar peduncle.  Figure 1.5 illustrates a schematic diagram of the major 
connections of the cerebellum.  The largest subdivision of the cerebellar cortex in humans is the 
cerebrocerebellum which occupies most of the lateral cerebellar hemispheres and receives input 
from many areas of the cerebral cortex.  The phylogenetically oldest part of the cerebellar cortex is 
the vestibulocerebellum, which comprises the caudal lobes.  The third division is the 
spinocerebellum, which occupies the median and paramedian zone of the cerebellar hemispheres. 
The deep cerebellar nuclei are embedded within the white matter of the cerebellum.  The 
connections between the cerebellum and other parts of the nervous system occur by way of three 
large pathways called the cerebellar peduncles. The middle cerebellar peduncle is an afferent 
pathway arising mainly in the pons and the superior cerebellar peduncle is an efferent pathway 
from the deep cerebellar nuclei to the thalamus. 
 
The majority of cerebral cortical inputs to the cerebellum arise in the primary motor and premotor 
cortices of the frontal lobe, the primary and secondary somatic sensory cortices of the anterior 
parietal lobe and the secondary visual regions of the posterior parietal lobe. The cerebellum 
projects mainly to the upper motor neurons in the cerebral cortex via relay neurons in the 
thalamus. 
 
Physiological operation 
The cerebellum influences movements by modifying the activity patterns of the upper motor 
neurons.  The primary function of the cerebellum is to detect the difference (or motor error) 
between an intended movement and the actual movement and, through its projections to the upper 
motor neurons, to reduce the error (Gluck et al 2001).  These corrections can be made both during 
the course of a movement and as a form of motor learning when the correction is stored.  
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Figure 1.5: Schematic of the major connections of the cerebellum 

 
 
From lesion studies it has been found that the cerebellar loop is critical for the performance of 
planned, voluntary, multi-joint movements.  The activity of the cerebellum instructs the motor 
cortex in the direction, timing and force.  For ballistic movements these instructions are based 
entirely on predictions about their outcome. 
 
Derived computational functionality  
In the TOSCA architecture, the cerebellum acts to store complex motor programs as they are 
learned.  Individual movements, originally used as separate parts of a complex movement 
sequence, will be gradually compiled into motor programs in the cerebellum.  These motor 
programs generate the appropriate motor sequences on demand and through supervised learning 
gradually make execution of the movement sequences smoother and better coordinated (Gluck et 
al 1994). 
 
Systems  
The cerebellum interacts primarily with the cerebral cortex.  In early phases of motor learning, the 
motor programs will be simple and proposed by the cerebral cortex.  When the intended action has 
been selected by the basal ganglia, the action will be executed by the primary motor cortex. 
 
The cerebellum will receive information about the intended outcome of the action from the motor 
cortices and the outcome of execution of the action from the sensory cortices.  The difference 
between the intention and the outcome will be used by the cerebellum for learning of the motor 
action.  The next time the same motor action is proposed the cerebellum will have an influence on 
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the execution of the action and will use the error in the action execution to continue learning. 
 
Conclusion 
 
The previous section lays out the Rutgers University components of the broader team vision for 
TOSCA at the level of brain systems and circuits.  It explores the physiology we are trying to 
capture in TOSCA as well as the low-level computation being performed in individual brain 
systems and in brain circuits.  However, it is down at a level where it is often difficult to see how 
human-level behavior emerges from these components and their connections.  
 
Two primary features of the design of TOSCA are its representational system and its control 
system.   Learning permeates the operation of the TOSCA system: the system is continually 
learning and cannot help but learn, and thereby builds up representations from combinations of 
perception and prior knowledge, as well as building up control knowledge. 
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Acronym List 
 
ACh – Acetylcholine 
BG – Basal Ganglia 
BICA – Biologically Inspired Computer Architecture 
CA1 – Cornu Ammonis 1 
CA3 – Cornu Ammonis 3 
CS – Conditioned Stimulus 
DG – Dentate Gyrus 
EC – Entorhinal Cortex 
GPe – Globus Pallidus externa 
GPi – Globus Pallidus interna 
NE – Norepinephrine 
PPTN – PedunculoPontine Tegmental Nucleus 
RL – Reinforcement Learning 
SNc – Substantia Nigra pars compacta 
SNr – Substantia Nigra pars reticulata 
STN – Triangular Septal Nucleus 
TOSCA –  
VTA – Ventral Tegmental Area 
 
 




