REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 17/3/2008
2. REPORT TYPE Final Report
3. DATES COVERED (From - To) 3/1/04 - 2/28/07

4. TITLE AND SUBTITLE
Chemical/Radiation Hormesis Database, Evaluation of Hormetic Mechanisms and Their Biomedical and Risk Assessment Implications

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA9550-04-1-0104

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
0026492004

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Edward J. Calabrese

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Public Health (EHS)
Morrill I, N344
University of Massachusetts
Amherst, MA 01003

8. PERFORMING ORGANIZATION REPORT NUMBER

ST/A122165/S13300001100000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/AL
845 N. Randolph St.
Arlington, VA 22203

10. SPONSOR/MONITOR'S ACRONYM(S)
AFOSR

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

AFRL-SR-AR-TR-08-0189

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unlimited Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project assessed the biomedical and toxicological literature for evidence of hormesis, its frequency in the literature and its underlying mechanistic foundation. This work was supported by the continued development of the hormesis database and the conduct of a high level international conference on hormesis held annually. Particular focus was given to the area of neuroscience and hormesis in the literature assessment. Fourteen manuscripts concerning hormesis and neuroscience have been accepted for publication in the journal Critical Reviews in Toxicology and will be published in 2008.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Edward J. Calabrese

19b. TELEPHONE NUMBER (Include area code)
413-545-3164

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39 18
Period Covered: March 1, 2004 – February 28, 2007

Title of Proposal: Chemical/Radiation Hormesis Database, Evaluation of Hormetic Mechanisms and Their Biomedical and Risk Assessment Implications

Grant Number: FA9550-04-1-0104

Institution: University of Massachusetts, Amherst Massachusetts

Author/Principal Investigator: Edward J. Calabrese, Ph.D.; Department of Public Health; Environmental Health Sciences; Morrill I, N344; University of Massachusetts; Amherst, MA; 01003; Phone: 413-545-3164; Fax: 413-545-4692; E-mail: edwarde@schoolph.umass.edu

2008040404124
Publications:

2007

2006

2005

List of Personnel Supported by this Grant:

Hannah Allaben (hourly) – 6/18/06-8/28/06
Robyn Blain (hourly) – 9/1/05-2/24/07
Edward Calabrese (PI) – 5/28/06-9/1/06
Ben DiTrolio (hourly) – 6/18/06-9/1/06
Brenda Gomex (hourly) – 7/16/06-9/1/06
Wilson Poon (hourly) – 9/3/06-2/24/07
Paula Goodhind (100%) – 9/1/05-2/24/07
George Hoffmann (hourly) – 1/1/06-2/24/07
Julia Ryan (hourly) – 7/31/05-4/1/06
John S. Staudenmayer – 6/4/06-7/15/06

Invention/Patents/Discoveries: None

Collaborators/Consultants: Two statisticians (JWS/EJS) and a mechanistically oriented genetic toxicologist (GRH) are working on analysis of several large high through-put databases of anti-tumor and anti-bacterial agents in order to compare the hormesis dose-response model and the threshold model for low-dose prediction. These include:

John W. Staudenmayer, Ph.D. – Mathematics and Statistics; University of Massachusetts; Amherst, MA 01003
Edward J. Stanek III, Ph.D. – Department of Biostatistics and Epidemiology; School of Public Health; University of Massachusetts; Amherst, MA 01003
George R.Hoffmann, Ph.D. – College of the Holy Cross; Biology; Worcester, MA 01610

Honors or Awards: None

Key Findings/Results/Accomplishments:

Using a large NCI cell toxicity database with 57,000 dose responses and approximately 2,200 chemicals we demonstrated that the threshold dose response model was unable to provide accurate and reliable predictions of responses in the low dose zone. During the same testing procedure the hormetic dose response model was able to provide accurate and reliable estimations of responses in the low dose zone. More detailed analyses revealed that essentially all chemicals satisfying entry criteria for evaluation induce responses consistent with the hormesis dose response model. We believe that this is a very significant finding since it not only challenges the accuracy of the most widely used model in toxicology but also provides evidence to support an alternative model. The next step in our research is to assess whether the threshold and hormetic dose response models can be similarly tested in other large high through-put databases in order to be able to generalize the above findings to other model, endpoints, and study designs.

A major integrative assessment of the scientific literature concerning neurotoxicology and neuropharmacology have been evaluated within the context of dose response relationships. The findings indicate that the hormetic dose response relationship occurs with exceptional frequency and is highly generalizable being independent of biological model, endpoint measured and chemical class evaluated. These findings have potential implications with respect to drug discovery, drug development and clinical evaluation as well as inhuman toxicology and risk assessment. The completed findings have been subjected to peer-review and will be published in their entirety in 2008 within Critical Review in Toxicology.
International conferences were conducted on the toxicology and risk assessment implications of hormesis for chemicals and radiation. The conferences were conducted at the University of Massachusetts, Amherst Massachusetts in June 2005, 2006, and May 2007 with papers being published in the peer-reviewed journal *Dose-Response*.

Transition/Technology Transfers: None

Changes in Research Objective: N/A

Change in Program Manager: N/A

Extensions Granted or Milestones Slipped: N/A