Airworthiness Certification Strategy for Global Hawk HALE

NATO Conference
Florence, Italy

May 15, 2007

Mo Pourmand
Global Hawk ASIP Manager
HALE Systems Enterprise
Unmanned Systems, Northrop Grumman Corporation
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 NOV 2007</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airworthiness Certification Strategy for Global Hawk HALE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALE Systems Enterprise Unmanned Systems, Northrop Grumman Corporation 17066 Goldentop Road San Diego, CA 92150 USA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
<td>See also ADM202420., The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>UU</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Agenda

- Introduction to Global Hawk High Altitude Long Endurance (HALE) Platform
 - Mission requirements and system overview
 - Flight operations summary

- HALE Structural Design Overview
 - Design drivers
 - Integrated structural test program

- ASIP and Airworthiness Certification
 - Tailored ASIP for HALE UAV’s
 - Tailored ASIP for Global Hawk

- Summary
System Designed To Meet Challenging Mission Requirements

- Unmanned autonomous operation
- Automated in-flight contingencies
- Long endurance (30+ Hours)
- High altitude (60,000+ feet)
- 3,000 lbs Multi-Int payload capability
- Real-time mission control, override & re-tasking
- Airspace integration for worldwide operations
- Multi service interoperability
- Cost effective redundancy for autonomous flight operation
High Altitude, High Speed, Long Endurance

1. High altitude is critical for turbulent weather avoidance
2. True airspeed & therefore ground speed are maximum at high altitude
3. Winds are light & variable at high altitude
4. High altitude operations do not conflict with other air traffic
5. High altitude provides longer sensor range
6. Long endurance at high altitude provides maximum area surveillance capability

Generally, conditions become exponentially better at altitudes above 55K ft
High Altitude is Critical for Weather Avoidance

- Stratosphere: Typically calm weather
- Tropopause: Thunderstorms Tops, Hail, lightning, severe turbulence, heart of the bad weather, Typically severe icing conditions

Northrop Grumman

Copyright 2005 Northrop Grumman Corporation

UMS TDEA# 08566
Typical Global Hawk Mission Profile

- **Idle / Takeoff**
 - Steady 20Kt Crosswind Component
 - 25 Min. at Ground Idle
 - 5 Min. at Takeoff Thrust

- **Cruise Climb Ingress**
 - 65,000 Ft Loiter Altitude
 - 1,200 NM

- **Climb**
 - 200 NM Max.
 - 65,000 Ft
 - 50,000 Ft

- **65,000 Ft Loiter Altitude**
 - 24 Hour Loiter

- **Descent**
 - 200 NM Max.
 - 65,000 Ft
 - 50,000 Ft

- **Sensor Area Coverage**
 - 40,000 Sq Mi

- **Descent / Land**
 - 1 Hour Reserve Loiter at Sea Level
 - Steady 20Kt Crosswind Component
 - Standard Runway 8,000’ x 150’
Automated In-Flight Contingencies

- Contingency 1 - Loss of Command & Control
 - Pre-Determined Autonomous Navigation Until C2 is Re-established or, if not, to an Autonomous Landing at Home Base or Predetermined Contingency Base

- Contingency 2 - Loss or Malfunction of Critical Subsystem
 - Autonomous Return to Base or to a Predetermined Contingency Airfield

- Contingency 3 - Inoperative Engine
 - Glide to Home Base or a Pre-Determined Contingency Airfield; 45 Minutes of Electrical Power Available

- Contingency 4 - Automatic Take-Off Abort; Automatic Landing Abort
 - Both Aborts Triggered By Exceeding Safe Criteria for Respective Operation
Historical Flight Operation

Flight Summary
Program Totals:
- ~900 flights / 14,000 hours
- 10,000 combat hours
- ~ 5,000 hrs on one vehicle
 - Tear down inspection with no major anomaly

Flight History
- Contract award May 1995
 - First flight (Block 10) Feb 28, 1998
 - First flight (Block 20) March 1, 2007
- Altitude – 60,000+ feet
- Duration – 30+ hours
- Operated in Jurisdiction of 14 Foreign Airspaces
Block 20 Configuration Specifications

RQ-4B Specifications
- Payload Weight: 3,000 Lbs
- Zero Fuel Weight: 15,000 Lbs
- Takeoff Gross Weight: 32,250 Lbs
- Engine: RR AE-3007H
- Long Range: 11,000 NM
- Long Endurance: 32+ Hrs
- High Altitude: 60,000+ Ft
- High Speed: 310 KTAS

Dimensions:
- 47.6 Ft
- 130.9 Ft
- 15.3 Ft
Structural Design Overview

Fuselage Design
- Conventional Metallic Design
- Machined Al Bulkheads, Frames, Longerons
- Riveted Al Skins
- Bonded Metallic Sandwich Compartment Doors

Wing Design
- Wet Wing
- High Modulus GrEP Laminate skins
- GrEP Spars And Ribs
- Machined Ti Ribs At Critical Joints
- Cold Bonded Structure

V-Tail, Aft Fuselage, Nacelle, Radomes, Fairings Design
- GrEP and/or FG Sandwich Structures
- Nomex Honeycomb Core
- GrEP Laminate Spars, Frames Where Necessary
- Cold Bonded Structures
- Machined Al or Ti Fittings As Required
Bonded Structures Adhesive Selection

- R.T. cure epoxy adhesive (paste)
- Best system at reasonable cost, much lower in cost than film adhesive
- Good combination of pot life, handling time, and full cure capability at room temperature
- Qualified for exposure and use with water and JP fuels
- Evaluated for different bondline thickness
- Extensive use in industry and readily available
- Application on the international Space Station
- Extensive evaluation by AFRL
Bond Adhesive Requirements

- Moisture and Temperature Exposure
 - Require excellent hot/wet glass transition temperature
 - Cryogenic temperatures at high altitude

- Chemical Exposure
 - Need excellent adhesive solvent exposure properties
 - JP-8, JP-5 and hydraulic fluids

- Typical Strength Properties Evaluated
 - Design operating strains
 - Joints strain-to-failure
 - Lap shear and peel strength
 - Durability and damage tolerance

- Major emphasize on adhesive bonding process control and stability
 - Identify critical parameters
 - Quantify quality assurance
 - 100% NDI (Ultrasonic)
Primary Structural Design Drivers

- Maneuver Loads
 - 1.5g typical cruise maneuver controlled by software
 - Worst pull-up maneuver < 3g max
- Gust Loads (90% of mission spent above 50K = less probability of encountering high gust speeds)
 - 3.2g gust load factor based on mission cycle analysis
- Ground Operation Loads
 - Controlled by software for low sink rate, and moderate taxi and braking
- Airspeeds
 - $V_{\text{cruise}} = \text{Mach 0.6 at altitude}$
 - $V_{\text{nte}} = 165 \text{ KEAS}$

Bottom Line – Benign and Predictable Loads Envelope
Finite Element Models

- Validated wing FE model with excellent correlation to test results
 - Manufacturing article test, proof test, GVT, and ultimate testing
Global Hawk ASIP Integrated Structural Test Program

- Implement tailored ASIP requirements with an integrated structural test program towards airworthiness certification of Global Hawk

- Building block approach
 - Coupon test
 - Joint allowables
 - Element test
 - Component level tests
 - Proof tests
 - Full-scale static tests
 - Component level durability tests
 - “Full-scale” durability test
Structures – Testing and Results
Static Load Testing Overview

- Component/Coupon Testing
 - Material Allowables Program
 - Coupon Testing Including Damage
 - Adhesive Strength
 - Manufacturing Study Article (MSA #1) Test
 - 10’ Cantilevered Wing Section Tested To Failure
 - V-Tail Main Spar
 - 5’ Section Including Attachment Tested to 200% Limit
 - BL 0 Wing Splice Element Test

- Proof Testing – All Composite Primary Structure
 - Wing, Aft Fuse, V-Tails to 100% Limit Load

- Limit and Ultimate Loads Testing
 - All Critical Flight And Ground Loads
 - Wing Test
 - MLG
 - Fuselage Tests
 - NLG
 - V-tail
 - Composite AFT fuselage
Structures – Testing and Results
Durability and Damage Tolerant Testing Overview

- Component/Coupon Testing
 - Material Allowables Program
 - Cyclic Testing Including un-bond, and delamination
 - Manufacturing Study Article (MSA #2) Test
 - Effect of defect assessment for known defects
 - V-Tail Main Spar
 - Effect of defect for impact damage and excess porosity
 - BL 0 Wing Splice Element Test
 - Passed durability tests, impact damage study

- “Full” Scale Durability Testing
 - V-Tails
 - Composite aft fuselage
 - Fracture critical fittings
Structures – Testing and Results
Dynamic And Flight Testing Overview

- Dynamic Tests
 - Ground Vibration Modal Testing (GVMT)
 - Measures Natural Modes, Frequencies, Damping
 - Full And Zero Fuel
 - Soft Support System To Simulate Free Flight
 - Control Surface Stiffness And Freeplay Tests
 - Test Data Is Used For Analysis
 - Flutter And Modal Analyses Updates
 - Flexible Correction To Rigid Aero Database
 - Results To G&C For Software Notch Filters

- Flight Testing
 - Taxi – Gear Loads And Vibrations Monitored
Structures – Testing and Results
Development Tests

Manufacturing Study Article Test

Wing Section

GVMT Soft Supports

Shakers

GVMT
Structural Static Proof Tests

- Successfully completed all static proof tests to date
 - Wings: AF-8 through AF-15
 - Aft Fuselage: AF-8 through AF-16
 - V-tails: AF-8 through AF-15
Wing Ultimate Test

- 100% Of Conditions Complete
 - No anomalies encountered
 - Ultimate testing of fuel pressure and control surfaces completed
 - All limit load test completed
 - Maneuver, up-gust, down bending gust and landing gear loads
 - Ultimate strength margin testing complete Sept. 07
 - Maximum up bending condition tested to failure
 - Predicted failure at 131%, failed at 132% DLL
ULT Wing – Limit Taxi Down Bending

ULT WING – TEST SET-UP – 1.6G TAXI CONDITION 800A

ULT WING – 100% LIMIT LOAD APPLIED – 1.6G TAXI CONDITION 800A

NORTHROP GRUMMAN
Fuselage Ultimate Test

- No anomalies encountered
 - Designed to F.S. 1.25
 - No buckling at ultimate
 - Passed F.S. 1.5
Tailored ASIP for HALE UAV’s

- Global Hawk is Trial Case for HALE ASIP Tailoring
 - Use JSSG 2006 and MIL-STD-1530 guidelines
 - Rapid pace spiral development requires alternative approaches
 - Building block approach reduces acceptable risk
 - Evaluate delay of full-scale testing when acceptable alternate methods are employed

- ASIP tailoring decisions for HALE UAV’s must consider acquisition and life cycle costs along with the quantification of increased risk
Tailored ASIP for Global Hawk HALE

- Mission Specific Tailoring
 - HALE vs Combat = speed and maneuver loads requirements
 - High altitude vs low altitude = gust loads exposure
 - Short mission vs long endurance = GAG cycles

- Global Hawk Approach
 - HALE mission minimizes maneuver requirements
 - Pre-programmed autonomous maneuvers within flight envelope
 - High altitude operations minimize exposure to gusts
 - Long endurance flights minimize structural cycling
Tailored Testing

- Mission requirements allow consideration of slight risk increase due to delay of full-scale testing
- Benefits
 - Supports fast paced spiral development strategy
 - Minimizes initial acquisition costs
 - Provides Warfighter with needed capability sooner
- Implications on EMD
 - Added costs on production due to proof testing
- Implications on Life Cycle
 - System support increased due to additional inspections
Tailored ASIP for HALE UAV’s - Examples

- Tailoring Examples – Potential Safety Impact
 - Truncated EMD stage – Early LRIP go-ahead
 - Reduced Factor of Safety for gust events
 - Typical gust load criteria based on high altitude consistent mission usage, and time at altitude
 - Reduced impact damage resistance for light-weight composite structure design
Summary

- Typical ASIP requirements and elements of airworthiness certification can be tailored for HALE UAV’s
 - Low mission GAG cycles
 - Repeatable and controlled missions
- Global Hawk has successfully demonstrated operational airworthiness within acceptable risk
 - ~ 900 missions and 14,000 flight hours
- Tailored HALE ASIP tasks may increase life cycle cost
 - Technical risk must be balanced with economical impact
Questions?
Airworthiness Certification Strategy for Global Hawk HALE

Mostafa Pourmand
Global Hawk ASIP Manager
HALE Systems Enterprise
Unmanned Systems, Northrop Grumman Corporation
17066 Goldentop Road
San Diego, CA 92150
USA

mo.pourmand@ngc.com

This paper was received as a PowerPoint presentation without supporting text.

Click here to view PowerPoint presentation; Press Esc to exit
