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1. Introduction 

Over the course of the last decade, high performance computing architectures have dramatically 
shifted away from vector processors to scalar units.  This change occurred mainly due to shifts in 
the commodity markets and the increase in performance of scalar processors.  Whereas vector 
processors are designed to execute mathematical operations on numerous data items 
simultaneously, scalar units can process one element at a time.  Superscalar architectures, such as 
the MIPS R8000, have also been developed over time, where a limited number of simultaneous 
instructions per cycle could be issued.  This allowed for a small amount of instruction-level 
parallelism and speedup per clock cycle on scalar designs.  By June 2006, 98.4% of the largest 
parallel computer systems were using scalar processors mainly in a cluster configuration (1).   

Cluster computing allows for parallelism at a coarse-grained level.  Applications in various fields 
such as bioinformatics and computational structural mechanics can potentially benefit from 
having numerous processors work on subsets of an overall problem domain. These results are 
then merged during a final step to achieve the overall problem results.  However, the overall 
speedup from using many processors is limited by the time to distribute data and communicate 
among the processors.  It is also limited by the individual processor speeds and algorithm 
execution on the scalar processors. 

While scalar processors typically follow the von Neumann architecture approach of fetch, 
execute, and store, reconfigurable computing refers to processing with the aid of programmable 
logics, usually in the form of a field programmable gate array (FPGA) (the scope of this report 
does not include hardware-accelerated computing as found with devices such as graphical 
processing units [GPUs]).  With an FPGA, data path and control flow can be modified as 
necessary to reduce an algorithm’s execution time.  Instead of computing through a series of 
instructions, a series of logic gates is created to solve a problem.  By coupling an FPGA with a 
processor, compute-intensive applications can be off-loaded from a host central processing unit 
(CPU) to an optimized architecture of an FPGA.  This integration allows an FPGA to function as 
a powerful coprocessor and collaborate with a main CPU for performance acceleration.   

FPGAs are not really programmed in the traditional sense of the word.  Rather, they require a 
hardware description language that has the concepts of concurrence built in.  Due to the time-
intensive development workflow required from hardware descriptions, several vendors are 
developing and refining procedural programming languages that down-compile to hardware 
implementations or descriptors like VHSIC hardware description language (VHDL).  In this 
report, we look at DIME-C and Mitrion-C for programming FPGAs.  The test bed systems used 
in this study include the Cray XD1 featuring Virtex-II Pro FPGAs and the Nallatech H101-
PCIXM board featuring a Virtex-4 FPGA.   
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2. FPGA Background 

An FPGA is a reconfigurable device composed of configurable logic blocks and programmable 
interconnects.  Configurable logic blocks can be programmed to implement any desired logic 
functions that use a memory technology to store output values.  Programmable interconnects 
surround the individual logic blocks and allow user-defined connections.  Hence, the 
combination of configurable logic blocks and programmable interconnects is able to create any 
logic gate network.  Figure 1 illustrates how the NAND gate function can be constructed with 
either transistors or memory elements.   

 

 

Figure 1.  NAND gate construction.   

For an FPGA, a specific architecture is adopted for targeted computations as opposed to 
computing on a fixed architecture of a scalar processor.  Therefore, FPGA technology implies 
the use of dedicated hardware for performing computations.  The process is similar to the design 
of an application-specific integrated circuit (ASIC) with difference of reprogrammable 
functionality in FPGAs.  Unfortunately, lower clock frequency is the cost of having a flexible 
computing fabric.  Mainstream FPGAs are built on static random access memory (SRAM) 
technology and operate at associated speeds (on average, 400 MHz).  This lower speed is 
misleading when comparing the technology to scalar processors.  The wide and deep pipelines 
possible with FPGAs can provide speedup to overcome the shortfall in clock rates. 
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3. FPGA Programming 

The overall procedure for programming FPGAs can be broken down into three tasks: core hardware 
design, FPGA interface specification, and host program development.  First, an application of interest 
is designed in hardware.  Traditionally, designers use hardware description languages for hardware 
design.  Second, the user application must be interconnected to an architecture-specific interface in 
order for the FPGA to communicate with its surrounding components.  These interface core 
components handle communications between a host and an FPGA.  Finally, a host program is written 
in standard C with vendor-specific application programming interface (API) functions to load and 
execute the hardware design on an FPGA device.   

Each of the previously described steps can be accomplished in many different ways.  For 
instance, a hardware design can be done using VHDL, Verilog, DIME-C, Mitrion-C, or Handel-
C to name just a few.  The two dominant hardware languages are VHDL and Verilog.  Hardware 
description languages are inherently concurrent and parallel languages that require a different 
mind set than the sequential programming languages that are targeted for a CPU.  In a concurrent 
language environment, the order of statements is irrelevant because statements are not executed 
in order, line by line.  A code written in VHDL or Verilog simply describes the architecture and 
interconnects of a hardware system; hence the name hardware description language.  

The design for an FPGA using a hardware description language requires the prerequisite 
knowledge of digital logics and circuits background.  To attract broader users, high-level 
languages, similar to the programming language C, are being introduced as a substitute for 
hardware description languages.  In this methodology, a designer is allowed to write a code 
resembling a high-level language’s syntax and format.  Then, the code is compiled to produce 
the corresponding hardware counterparts in VHDL or Verilog.   

4. Reconfigurable Systems 

The Nallatech H101-PCIXM hardware is equipped with a Xilinx Virtex-4 LX100 and 4 MB of 
DDR-II SRAM (2).  The card is connected to a 133-MHz-capable peripheral component 
interconnect extended (PCI-X) interface inside a Linux workstation.  The field upgradeable 
systems environment (FUSE) API functions, developed by Nallatech, control the FPGA board. 

The Cray XD1 combines microprocessors and FPGAs with the low-latency and high-bandwidth 
RapidArray interconnect (3).  RapidArray interconnect is a high-speed switch fabric that 
improves PCI-X bus bottlenecks and shared resource contention.  Currently, the Cray XD1 at the 
U.S. Naval Research Laboratory is configured with 144 nodes of Virtex II Pro FPGAs and 6 
nodes of Virtex 4 FPGAs (4).   
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5. Evaluation of High-Level Languages 

In an apparent effort to field their technologies into newer and more diverse areas, FPGA 
vendors are trying to overcome the barriers found in programming their devices by using high-
level language development methods.  Several examples exist—Nallatech, Mitrionics, and 
Celoxica, to name a few.  The various vendor-specific approaches used are evaluated and 
compared with the VHDL method.  This report explores the Nallatech and Mitrionics 
approaches.   

5.1 Nallatech 

Nallatech offers the DIME-C and DIMETalk software development tools to ease the process of 
programming applications on an FPGA.  Currently, DIME-C and DIMETalk are supported only 
on a Windows platform.  Since a large amount of system memory is used during the synthesis 
process when executing Xilinx software, 64-bit Windows or Linux operating systems are 
recommended for the software installation. 

5.1.1  DIME-C 

DIME-C is the high-level language developed by Nallatech.  Nallatech provides the software 
development environment to edit, compile, and translate a DIME-C code into VHDL.  An 
attractive feature of DIME-C is that it is a subset of the American National Standards Institute 
(ANSI) C with the identical syntax.  To get started, a user only needs to learn the portion of the 
standard C language that is not supported in DIME-C.  The following ANSI C elements are not 
supported in DIME-C (5): 

• pointers 

• structures 

• enumerated types 

• switch statements 

• all labeled statements (e.g., case default) 

• the type qualifiers const and volatile 

• the storage-class specifiers auto, register, and typedef 

• the type specifiers long and double 

• the unary expression sizeof 

• the jump statements goto, continue, and break
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• the conditional expression “?” 

• string literals 

These constraints allow for a minimal learning curve to start coding in DIME-C.  However, to 
exploit hardware optimizations, a certain coding style must be followed for parallelism and 
pipelines to be applied to the design as described in the DIME-C user guide.  Upon compiling 
and translating DIME-C code, a color coded graphical representation indicating parallel and 
pipelined structure is generated along with estimated area of FPGA slice requirement.  Since the 
language is a subset of ANSI C, DIME-C code can be debugged using any ANSI C compiler.  
Figure 2 shows a sample code written in DIME-C.   

 
for (i = 0; i < 18; i += 2)  { 
    for (k=0; k<16; k++)  { 
        data_l = data_l ^ p[k]; 
        data_temp = data_l; 
        bit0_7   = data_temp & 0x000000FF; 
        data_temp >>= 8; 
        bit8_15  = data_temp & 0x000000FF; 
        data_temp >>= 8; 
        bit16_23 = data_temp & 0x000000FF; 
        data_temp >>= 8; 
        bit24_31 = data_temp & 0x000000FF; 
        data_temp = s0[bit24_31] + s1[bit16_23]; 
        data_temp = data_temp ^ s2[bit8_15]; 
        data_temp = data_temp + s3[bit0_7]; 
        data_r = data_temp ^ data_r; 
        temp = data_l; 
        data_l = data_r; 
        data_r = temp; 
    } 
}  

Figure 2.  Sample DIME-C source code. 

 

5.1.2  DIMETalk 

In order to configure an FPGA, a binary bit file must be generated through the synthesis process.  
But before creating a binary bit file, FPGA’s interface information needs to be specified and 
connected with the user design.  DIMETalk provides a PCI-X host interface as a component 
within the DIMETalk network, allowing the connection from PCI-X to internal memory 
elements.  Having the host interface component simplifies the implementation of the FPGA and 
host communication by hiding the details associated with PCI-X bus and its connections to the 
FPGA pins.  Unfortunately, interface specifications vary among different vendors, which results 
in a portability issue.  
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The FPGA’s internal and external interfaces are handled by the DIMETalk software.  DIMETalk 
divides and represents an overall FPGA design as separate, individual components with 
predefined interconnects (6).  At minimum, a clock driver, a host interface, a memory element, 
and user design modules are required to complete an FPGA design in Nallatech.  The following 
list outlines and describes the minimum components of a DIMETalk network: 

• Clock driver provides the clock signals for a design.   

• Host interface defines the FPGA board interface to a host system allowing communication 
to an FPGA.  

• Memory elements can store data and are visible and accessible by a host.   

• User module defines an algorithm in hardware. 

Basically, DIMETalk provides a workspace for placing and connecting elements of a hardware 
design, creating a network inside an FPGA (see figure 3).  Also, this allows for a graphical 
method of creating multiple instantiations and managing multiple FPGA networks. 
 

 

Figure 3.  DIMETalk network.   

5.1.3  FUSE API 

The FUSE API functions, provided by Nallatech, are used for a host to communicate with an 
FPGA board.  A standard C code, referred to as a host C file, contains these FPGA-specific API 
functions.  Executing a host C file will load, control, and execute the hardware design on an 
FPGA.  A generic host C file is created during the build process of a DIMETalk network, thus 
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relieving a developer from the details of initial FPGA setup.  Besides the initial FPGA board 
setup, the host C file is responsible for initializing system memory and transferring data to an 
FPGA memory.  A graphical representation of this communication is shown in figure 4.   
 

Unit

Processing

FPGAHost

FUSE API
Memory

ElementMemory

CPU

Host C File  

Figure 4.  Host and FPGA communication.   

The host C file is compiled to generate an executable that, once invoked, will start the 
reconfigurable computing process.  In summary, the host C file is responsible for the following: 

• FPGA board setup. 

• Host system memory initialization. 

• Data transfer from host system memory to FPGA memory. 

• Triggering the FPGA process and monitoring for done signal. 

• Transfer of computed results in FPGA memory to host system memory. 

5.1.4  Design Flow 

The components and steps required to run an application on an FPGA board are outlined below.  
The three design files needed to run an application in an FPGA are the hardware description file, 
an interface specification file, and a host C file.  The major steps of Nallatech’s design flow are 
as follows: 

1. Development of a DIME-C source code describing an application. 

2. Compilation of the DIME-C code into VHDL. 

3. Importing VHDL that was created previously into DIMEtalk and creation of a network 
consisting of the minimum components which are interface, clock, memory, and imported 
VHDL. 

4. Synthesis of the DIMEtalk network, generating the associated binary bit file. 

5. Inserting data exchange and control API functions in the host C file. 

6. Compilation of the host C file and start of the executable.   
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5.1.5  Nallatech Experiences 

The tools offered by Nallatech attempt to simplify the hardware design process by offering the 
high-level language DIME-C, providing a PCI-X interface component, and creating a generic 
host C file.  Furthermore, hardware optimizations are automated by the DIME-C compiler.  
Unfortunately, these user-friendly features result in a limited amount of hardware design 
flexibility for exploiting parallelism.  The conversion from DIME-C to VHDL is an open-ended 
problem.  For example, an addition operation can be accomplished using a carry-propagate 
adder, a carry-save adder, or a carry look-ahead adder.  The ability to control low-level signals 
and components of hardware design gives the FPGA an edge over processors—something lost 
during automatic conversion.  Since the DIME-C compiler is in charge of designing hardware for 
an algorithm written in DIME-C, hardware optimizations are limited to the ability of the DIME-
C compiler to detect them.  

An issue encountered with Nallatech’s software is the lack of a test bench unit to verify a 
generated hardware design that is translated from DIMC-C.  Apparently, test bench functionality 
for the high performance computing FPGA boards is not yet available.  The only option to verify 
a design on an FPGA is to wait for the synthesis to complete and then test the design by running 
it on an FPGA card.  This process for the Blowfish algorithm took an excess of 1 hr to complete 
for any change applied to the design.  The problem was exacerbated with the mismatch of 
DIME-C simulation output and FPGA output.  The DIME-C version would produce the correct 
results, but the compiled and synthesized FPGA version of working DIME-C source code would 
produce incorrect results.  Such a situation indicates immaturity of the DIME-C compiler.  

The DIME-C compiler derives a hardware design from a subset of standard C, which is a 
procedural language.  A procedural language is intended for programming processors and is 
fundamentally different from designing hardware.  Although the intentions and benefits of using 
DIME-C for programming FPGAs are attractive, achieving performance improvement directly 
from a language targeted for a CPU can be a limiting factor.  

5.2 Mitrionics 

Mitrionics development tools include the Mitrion-C language, Mitrion-C simulator, and Mithal.  
Mitrionics software tools are supported in various platforms such as Windows, UNIX, Linux, 
and OS-X.  Moreover, the Mitrion-C language and simulator are free to download.  Mitrionics 
charges a license for the virtual processors that actually run a design on an FPGA.  A unique 
aspect of the Mitrionics approach is that rather than directly translating a high-level language 
down to the hardware level, highly configurable virtual processors are inserted in between the 
translation process (7).  The virtual processor is a fine-grain, parallel, and configurable soft-core 
processor with a fixed clock frequency of 100 MHz (8).  Mitrionic’s software tools support the 
Cray XD1 architecture, which removes the user’s responsibility of implementing the FPGA to 
host interface components.   
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5.2.1  Mitrion-C 

Mitrion-C is a high-level concurrent language similar to the hardware description languages 
without the requirement of knowing the digital design concepts.  Its syntax is different from 
standard C as shown in figure 5.  Mitrion-C is a single assignment language resulting in many 
temporary variables.  When a Mitrion-C source code is compiled, it is translated into VHDL.   
 

(data_ll, data_rr, mem_s0_02, mem_s1_02, mem_s2_02, mem_s3_02) = for (i 
in <0..15> ) {    
        data_k = data_l ^ p[i];   
        bits0_7 = (bits:8) data_k; 
        bits8_15 = (bits:8) (data_k >> 8); 
        bits16_23 = (bits:8) (data_k >> 16); 

bits24_31 = (bits:8) (data_k >> 24); 
        (s0_out, mem_s0_01) = _memread(mem_s0_00, bits24_31); 
        (s1_out, mem_s1_01) = _memread(mem_s1_00, bits16_23); 
        (s2_out, mem_s2_01) = _memread(mem_s2_00, bits8_15); 
        (s3_out, mem_s3_01) = _memread(mem_s3_00, bits0_7); 
        f_out = ((s0_out + s1_out) ^ s2_out) + s3_out; 
        data_l = f_out ^ data_r; 
        data_r = data_k; 
}(data_l, data_r, mem_s0_01, mem_s1_01, mem_s2_01, mem_s3_01); 

 

Figure 5.  Sample Mitrion-C source code. 

5.2.2  Simulator 

The graphical user interface simulator for Mitrion-C provides an intuitive graphical 
representation of dataflow and design structure (see figure 6).  Stepping through the visual 
representation, a user can compare component utilization and the amount of achieved 
parallelism.  In conjunction with the simulator, “watch” statements can be inserted into a source 
code to monitor internal signals within a design. 

5.2.3  Mithal 

The Mitrion host abstraction layer API is a C-based API for interfacing the Mitrion Virtual 
Processor and a host computer.  A host C file consisting of Mithal API functions load, control, 
and execute a design on an FPGA.  An example of Mithal API functions for writing and reading 
data to an FPGA is as follows:   
 
mem = (WORD*)mitrion_processor_reg_buffer(p,"mem_a",NULL,NUM_WORDS *  
      sizeof(WORD), WRITE_DATA); 
mem2 = (WORD*)mitrion_processor_reg_buffer(p,"mem_b",NULL,NUM_WORDS *          
       sizeof(WORD), READ_DATA); 
 

A unique feature of the Mithal API is the ability to use a Mitrion simulator to mimic a design 
running on an FPGA, allowing the simulation of entire design interactions.  Hence, the complete 
FPGA design can be simulated on a machine without any FPGA installed.   
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Figure 6.  Mitrionics simulator.   

5.2.4  Mitrionics Experiences 

In the Cray XD1, communication between a processor and an FPGA is accomplished through the 
RapidArray interconnect.  Thus, the RapidArray interface core must be included in a user design.  
VHDL source codes of interface core components, including RapidArray, are provided as 
templates with predefined port signals.  Normally, a developer is responsible for processing the 
host or CPU’s requests by including necessary interface components.  However, the Mitrionics 
developer only needs to follow and match the bus width and the number of interface signals for a 
particular architecture within Mitrion-C code.   

Although Mitrion-C looks similar to the procedural languages like standard C, a different mind-
set is required for programming a parallel language.  There is no order of execution, and 
parallelism is implicit in the Mitrion-C language.  Initial coding experiences with Mitrion-C 
language indicate a complexity for implementing array manipulations and difficulty in tracking 
variable types.  In addition, source code tends to be cluttered with temporary variables because 
every statement, including loops and block expressions, must return a value.  Dividing and 
debugging portions of Mitrion-C code becomes cumbersome because the language manifests 
code dependency where commenting out a portion of the code can result in compile errors due to 
the dependencies in final memory instance tokens, final return values, and temporary variables.   

5.2.5  Comparison 

This section attempts to give a high-level, overall assessment of the various approaches.  
Naturally, each approach has its own set of advantages and disadvantages.  We are mainly 
interested in performance and ease-of-use (time to solution)—two areas that, at times, seem to be 
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mutually exclusive.  It should be noted that some of these assessments stem directly from the 
design mentality of the approach, while others reflect upon the maturity level of the approaches 
as they come from the various vendors.   

Development time estimates are given in table 1.  These categorizations follow after dealing with 
the approaches for 1 year.  More detail is provided later in the performance of the approaches on 
certain target applications.  At this point, the easier it is to code, the worse the sustained 
performance.  The reader may wish to consult table 1 again after reviewing the performance data 
in later sections of this document.  More general assessments are listed in table 2. 
 

Table 1.  Development time estimates.   

Development Stage VHDL DIME-C Mitrion-C 
Background learning High Low Medium 
Writing source code High Low Medium 
Debug & simulation Low High Medium 
Applying design changes High Low Medium 
Maintaining High Low Medium 

 

Table 2.  Comparison of the languages/approaches.   

Language Advantages Disadvantages 

VHDL 

•  High performance 
•  Design flexibility 
•  All hardware functionality available 
•  Intended for programming FPGA 

•  Development time 
•  I/O interface 
•  Size 
•  Unfamiliar to software developers 

DIME-C 

•  Easy to code  
•  I/O Interface core abstraction 
•  Hardware optimizations automatic 
•  Subset of standard C with same syntax 

•  Limited functionality 
•  Primitive 
•  Procedural language 

Mitrion-C 

•  Reduced coding time 
•  Raised abstraction level 
•  User control of parallelism 
•  Concurrent language (parallelism is default) 

•  Limited customization 
•  Documentation 
•  Short history 

Note:  I/O = input/output.   
 

6. Applications 

6.1 Blowfish Algorithm 

The Blowfish algorithm is a symmetric block cipher introduced by Bruce Schneier (9).  Details 
of the algorithm can be accessed at Schneier’s Web site (10).  Unique and notable Blowfish 
features include key dependent S-boxes and a highly complex key schedule.  A time-consuming 
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key schedule makes Blowfish an ideal hash function candidate for password authentication.  
Although Blowfish is known as a block cipher, the algorithm supports a hash operation by using 
a user key as inputs in the range 32–448 bits and getting a fixed 64-bit output.   

6.1.1  VHDL Hardware Design 

For Blowfish, hardware structure and design choices depend strongly on the intended purpose of 
the algorithm.  Consider a standard execution of encryption and decryption functions with a 
constant secret key for a set of data.  In this case, a pipeline structure enhances efficiency and 
throughput where a predetermined secret key maintains the key-dependent S-box constant at 
every level of the pipeline.  The opposite is true when the algorithm is used with the intention of 
performing a brute force attack.  With an objective to determine an unknown user key, the attack 
continuously guesses a different secret key.  Accordingly, S-boxes must be recalculated for each 
particular key under examination.  Due to key and S-box dependency, S-boxes are not predefined 
identical lookup tables.  Rather, they are a changing entity.  Unlike the process of encrypting or 
decrypting messages, key recovery of Blowfish spends a majority of its time precomputing key 
and S-boxes.  This preprocessing is equivalent to encrypting 4168 bytes of text.  

The major elements of the hardware design consist of S-box, data path, key register, and control.  
The design layout is shown in figure 7.  The specifications for the S-box are 32-bit output with  
8-bit address inputs.  However, during preprocessing the data path generates 64-bit output to 
replace previous values of the S-box.  Since a standard 32-bit RAM unit does not support writing 
of 64-bit in one cycle, two 32-bit S-boxes with a multiplexer-controlled output are used to 
support 64-bit loads.  The seven most significant bits of the address are applied to both S-boxes 
and the least significant bit is connected to the select signal of the multiplexer.  Basically, a  
32-bit S-box capable of storing 256 entries is substituted with two 32-bit S-boxes each holding 
128 entries, as shown in figure 8.  The preprocessing stage assigns new values for all data within 
S-boxes—1024 entries.  With the ability to load 64-bit values in one clock cycle, the  
S-box write operation completes in 512 clock cycles instead of 1024 clock cycles.   

6.1.2  VHDL Simulation 

During the simulation stage, the current state of the S-boxes, output of registers, and the value of 
the signals at various stages are checked and verified with the correct values.  Intermediate 
results are an essential reference during the hardware design debugging process.  Intermediate 
values were retrieved from the Blowfish code written in standard C.  ModelSim, a Hardware 
Description Language simulator, produces a window displaying waveforms that represent the 
inner values of the hardware design.  These waveforms were analyzed and compared with the 
expected values obtained from the C code for validation.   
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Figure 7.  Top-level blowfish architecture.   
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Figure 8.  The 64-bit S-box design.   

 
A testbench module tests various vectors with the help of a script file.  A script file was 
generated with the help of Perl, which instructs the simulator by providing input vectors and 
expected answers.  Testbench compares the hardware results with the expected answer.  Error 
message is printed to the console window when the hardware result fails to match the expected 
answer.  The test vectors were acquired from the Blowfish author’s Web site (10).  
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6.1.3  Hardware Issues 

The size of hardware for the full Blowfish algorithm demanded large resources for an FPGA, 
especially S-boxes for 16 rounds of Blowfish.  Each S-box contains 256 entries where each entry 
stores a 32-bit value.  For 16 rounds of the Blowfish algorithm, there are 64 S-boxes.  Instead, 
the reduced version consisting of just one round was implemented.  This hardware is then reused 
to implement the 16 rounds of Blowfish algorithm.  Size limitation is a big concern for FPGA 
design.  As more of the fabric is required to implement a design, the ability to replicate the 
design to promote parallelism and pipelining is decreased.  If it is degraded to a high level, the 
slower clock speeds of the FPGA will not allow better performance over standard scalar CPUs 
with higher clock rates. 

Mapping S-boxes to configurable logic blocks of an FPGA locks up a large amount of FPGA 
resources.  An alternative option would be to use the block RAMs, which are dedicated on-chip 
RAM modules within FPGAs.  The downside of using block RAM is that it only allows one 
entry write per clock cycle, which means 128 clock cycles are needed to load the initial 128 hex 
values of pi.   Another disadvantage of block RAM is the synchronous read characteristic where 
the output of the S-box appears one clock cycle after an input is applied.  Thus, computing 16 
rounds takes 17 clock cycles for the block RAM design.  Additionally, key register values and 
necessary control signals must be stored and forwarded to the next clock cycle due to the one-
cycle delay of a block RAM.  Figure 9 describes the timing relating to S-boxes mapped to block 
RAMs. 
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Figure 9.  Timing of dataflow.   
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The number of clock cycles needed to complete a one-key test of the Blowfish algorithm is 
composed of secret key load, preprocessing, and encryption/decryption.  Time required for 
loading the secret key depends on I/O specification.  For example, 64-bit I/O for a secret key 
needs nine clock cycles to finish loading a 512-bit key register.  A separate exclusive-OR cycle 
is not necessary because input of a secret key is applied to exclusive-OR before being latched 
into the key register.  Preprocessing is divided into pi initialization, key register setup, and S-box 
setup.  The VHDL design requires 9012 clock cycles (table 3). 

Table 3.  Required clock cycles.   

Operation Cycles 
Secret key load 9 
Pi initialization 129 
Key register setup 153 
S-box setup 8704 
Encryption/decryption 17 
Total 9012 

 

6.1.4  DIME-C Implementation 

The Blowfish algorithm was written adhering to the rules specified by the DIME-C language.  
Mainly, DIME-C does not support pointers or the concept of call by reference, although arrays 
are supported.  Values passed as function arguments will get modified instead of a copy being 
created.  With pointers, it becomes more difficult for the compiler to track parallel use of 
hardware (11).  Since DIME-C is a subset of ANSI C, debugging was performed using a 
standard GNU compiler.  For debugging and simulating DIME-C code, the design was wrapped 
around a main function responsible for supplying input data. 

In order to generate a binary file to program an FPGA, DIME-C code is translated into VHDL by 
the DIME-C compiler and imported into a DIMEtalk network as a user component.  Within the 
DIMEtalk software environment, the DIME-C generated-user component is interfaced with the 
PCI-X core, clock driver, and memory block by connecting component ports with wires.  After 
creating the network, DIMETalk synthesizes the design, which translates the network into logic 
gates and builds a binary file.  When this build process completes, the area and delay results 
along with a sample host API file is placed under the current working folder.  A sample API host 
file performs basic hardware tests, board reset, binary file programming, and design execution.  
Data transfer from a host to an FPGA is added to the sample host file, and the host file, is 
compiled to generate the final executable.   

6.1.5  Mitrion-C Implementation 

Unlike other high-level languages targeted for hardware, Mitrion-C is a concurrent language 
similar to hardware description languages.  The Blowfish algorithm was written and debugged 
on a local workstation using the free Mitrionics compiler and simulator.  After passing the 
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simulation, the Blowfish design in Mitrion-C was compiled and synthesized, following Mitrion’s 
Cray XD1 document (12), on the Cray XD1 system equipped with Virtex-II Pro and Virtex-4 
FPGAs.   

The workflow design attempts to streamline the development process.  Interface components and 
interconnects for the Cray XD1 are predefined by the core files in templates named Rapid 
Transport, User App, and quad data rate (QDR) SRAM.  User design, which is the hardware 
design of a target application, is inserted and interfaced with the internal signals of the User App 
file.  In other words, the outer skeleton, including interconnecting port signals of the interface 
core files, are preset by the vendor, and a user design is wrapped inside this predefined template.  
This concept is illustrated in figure 10.   
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Figure 10.  Cray design hierarchy. 
 

6.1.6  Blowfish in Hardware 

The S-box entries are key-dependent where original values are replaced with a new value 
calculated from a secret key.  This S-box preprocessing is a major portion of computation for a 
Blowfish key attack.  Suppose 16 rounds of execution are defined as one run in Blowfish 
algorithm.  Then the algorithm can be viewed as encryption taking one run and total 
preprocessing taking 521 runs to complete.  In other words, about 99.8% of the time is spent on 
the precomputing step.  Key and S-box initialization of the Blowfish algorithm imposes a one-
time start-up cost for encryption or decryption where the secret key remains constant.  However, 
an attacker employing a brute force attack would need to perform the lengthy preprocessing 
every time for each different key.  This inherently sequential process of key and S-box setup 
delivers extra protection and limits hardware acceleration. 

Dedicated block RAM provided by Xilinx does not support reset initialization of the internal 
memory cell to pi; only output data of specified width is latched when reset is asserted.  
Normally, S-box with fixed internal values would be a good candidate for utilizing a block RAM 
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located inside a FPGA.  Even normal Blowfish algorithm operations used for fixed-key 
encryption and decryption would be a good fit for using a block RAM, since start-up 
initialization is supported.  But for the purpose of performing brute force attack, this block RAM 
property implies sequential reset of S-box pi internal values for every new key.  

For attacking user passwords, S-box dependencies prevent gaining benefits from pipelining.  
Every pipeline stage would require different S-box values, which translate to different hardware 
for each stage.  An alternative approach is to replicate one round of Blowfish such that each 
round independently computes its assigned input iteratively.  The resulting structure is simply a 
collection of parallel and independent one-round design of Blowfish.  The allowed number of 
copies depends on the available amount of configurable logic blocks and block RAMs within a 
particular model of an FPGA.   

6.1.7  Blowfish Hardware Results 

The Blowfish algorithm key search operation was implemented and executed on both the CPU 
and the FPGA.  For programming the FPGA device, VHDL, DIME-C, and Mitrion-C languages 
were analyzed for comparison.  Area and delay information are provided within a Place and 
Route file with an extension ending in .par.  The Blowfish execution time focused on the core 
processing time, excluding host and FPGA data transfer.  Performance results (see table 4) 
indicate that DIME-C version performs poorly in terms of execution time compared to other 
approaches.  As for the area utilization, DIME-C and Mitrion-C designs require more space than 
hand-coded VHDL (see table 5), which means fewer instances of processing units can be 
duplicated for acceleration.  Performance results show that a 32-bit data path and key dependent 
S-boxes of the Blowfish algorithm give a processor a distinct advantage in execution time.   

Table 4.  Performance comparison.   

 
Language 

Processing  
Hardware 

Clock  
Frequency

(MHz) 

One Unit Execution 
Time 
(µs) 

Processing 
Units 

 
Throughput

(keys/s) 
ANSI C Xeon 3000 54 1 18,518  
VHDL Virtex-4 LX100 FPGA 65 120 11 91,666 
DIME-C Virtex-4 LX100 FPGA 51 1850 4 2162 

Virtex-II Pro VP50 FPGA 100 822 2 2433 Mitrion-C 
Virtex-4 LX160 FPGA 100 823 4 4860 
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Table 5.  Single-unit area utilization on FPGA.   

 
Language 

Processing 
Hardware Resource 

 
Used 

Slices 3270 VHDL Virtex-4 
XC4LX100 Block RAMS 33 

Slices 10,391 DIME-C Virtex-4 
XC4LX100 Block RAMS 51 

Slices 11,782 Virtex-II Pro 
XC2VP50 Block RAMS 23 

Slices 12,424 
Mitrion-C 

Virtex-4 
XC4LX160 Block RAMS 23 

6.2 Mstack 

Mstack is an algorithm involving a large number of independent sorts to calculate respective 
median values.  The internal data types to be sorted are represented as floating point numbers.  
The hardware is designed to accommodate a sort array of maximum length 128, referred to as the 
number of channels in the Mstack benchmark.  Due to the limited fixed size of the arrays, a 
bubble sort is used to perform the sorting for Mstack.  This section describes DIME-C 
implementation of Mstack.  Further details of the benchmark will be described in a separate 
document.   

6.2.1  Mstack Implementation 

The core computation of Mstack involves a bubble sort algorithm.  The steps for the Mstack 
algorithm can be divided into initialization, sorting, and median calculation.  In reconfigurable 
computing, previous tasks are decomposed and assigned to either a processor or an FPGA.  The 
cost of using a coprocessor is the additional steps incurred for configuration and exchanging data 
with an FPGA.  Tasks for the reconfigurable computing model for Mstack involve initial FPGA 
setup, data initialization on the host side, data transfer to the FPGA, sorting on the FPGA, 
median calculation on the FPGA, and transferring results back to the host memory.   

The bubble sort and median calculation part of the Mstack benchmark were written in DIME-C 
and implemented in hardware to be executed on an FPGA.  The remaining initialization steps are 
performed by the host.  As expected, this experiment showed that to reduce the time spent on 
data transfer, a few large blocks of data should be transmitted, rather than many smaller blocks.  
Agglomeration like this is common in the field to reduce the start-up and shutdown costs for 
performing lots of small data transfers.  However, large blocks of data require a large amount of 
FPGA memory, which, in turn, reduces the number of possible instantiations.  To fit the 
maximum number of multiple-processing units, the use of FPGA resources was balanced 
between block RAMs and slices.   
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6.2.2  DIME-C Optimizations 

The graphical representation of DIME-C code is a helpful tool that indicates serial, parallel, and 
pipelined executions through color-coded visualization.  Additionally, a rough estimate of area 
utilization is calculated by the compiler.  Using this information, a designer can quickly observe 
the effects of design modification without performing the lengthy synthesis step.  By combining 
the rough estimate of area utilization calculated by the compiler, the following optimizations 
were applied to bubble sort algorithm written in DIME-C: 

• Substitute multiplication and division with addition and shift operators.   

• Compute loop-independent calculations outside of the inner loop. 

• Use separate block RAMs to allow parallel execution. 

Few options are available for creating multiple copies of a functional unit.  The first option is to 
create multiple instances with the #pragma preprocessor command.  This command allows 
separate instances of a function.  The second method is to create multiple instances by using 
DIMEtalk software to duplicate necessary units using its graphical interface.  The third option is 
to create multiple sort instructions within the DIME-C code.  In the case of bubble sort, multiple 
instances of a bubble sort function can be generated using the #pragma command, but logic 
functions that could have been shared among separate instances are also duplicated.  Area 
utilization can be saved if parallel bubble sorts can be combined to share similar logic 
requirements such as address calculation and address offset.  Thus, multiple instances were 
added within a DIME-C code and duplicated in the DIMEtalk network. 

6.2.3  Synthesis Setback 

Xilinx recommends 4 GB of system memory and a 64-bit architecture for the synthesis of 
Xilinx-4 LX100 FPGA (13).  For small designs, the synthesis process completes without any 
error, but designs utilizing full FPGA area abort during the synthesis step.  To circumvent the 
memory shortage, files were transferred to a 64-bit Linux machine containing 4 GB of memory.  
The synthesis process can be invoked by typing “tclsh buld.tcl”.  However, before running the 
synthesis script, file names under the “tmpcore” directory must be all lowercase letters for the 
synthesis process to recognize and load these files successfully on Linux operating systems.   

6.2.4  Mstack FPGA Results 

Performance results were obtained using the “time” command, which measures the total run time 
to execute a command in a Linux operating system.  This elapsed time includes FPGA initial 
setup, FPGA configuration, host-to-FPGA communication, FPGA computation, and reading 
back of median results.  A Virtex-4 FPGA (device type XC4VLX100, speed grade -10) was the 
specific hardware used for evaluation.  Performance results are given in table 6.  Device 
utilization is shown in table 7.  
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Table 6.  Performance results on a Virtex-4 XC4VLX100 FPGA.   

Elapsed Time (s) 
No. of Channels FPGA (Virtex-4 LX100) CPU (3.0-GHz Intel Woodcrest) 

5 12.5 1.3 
50 62.2 9.5 
75 119.4 18.0 
128 298.1 44.0 

Table 7.  Virtex-4 LX100 area utilization.   

Resource Used Available Percentage 
DSP48s 96 96 100 
RAM16s 227 240 94 

Slices 41,320 49,152 84 
 

7. Closing Thoughts on Hardware Acceleration 

In general, FPGA performance improvements are gained through unit duplication and hardware 
optimizations.  First, replicating a processing element increases the throughput.  By creating 
parallel processing units within an FPGA, multiple executions can occur concurrently.  Hence 
area utilization becomes important, since it determines the maximum number of parallel units 
that can reside in an FPGA.  For example, consider an algorithm running on a standard CPU 
clocked at 4 GHz.  Now compare this to an FPGA that, since it employs SRAM technology, is 
currently clocked at 400 MHz, at best.  Assuming that the CPU takes about one cycle, on 
average, to complete some operation, 10 duplicate-functioning units on the FPGA would roughly 
equal the processing power of the faster CPU.  Second, hardware can be optimized for a task of 
interest.  Optimizations include various hardware techniques to reduce the steps and time 
required to complete an algorithm.  For example, bit manipulation, pipelining, and multiple-
instruction execution are just a few of the optimization methods available in hardware design.  In 
hardware, data path, data flow, storage, and control can be custom designed to be optimal for a 
particular algorithm.  Basically, custom design dedicated for a specific purpose gives an FPGA 
the advantage.  Therefore, flexibility or the option to control and customize hardware 
components is the key aspect in achieving hardware acceleration.    

8. Conclusions 

After overcoming the initial learning phase, high-level languages for hardware designs reduce 
design time to prototype and allow faster design modifications.  The integration of host and 
FPGA interfaces significantly simplifies the interface development.  However, compared to a 
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hand-coded hardware design, only a limited amount of hardware optimizations can be applied to 
the high-level languages because designers are exempt from the underlying hardware details.  
FPGA elements are not visible to the programmer (14).  As a result, performance improvements 
depend on the amount of vendor-specific optimizations recognized within an algorithm.   

C-to-hardware languages intend to simplify the programming of FPGAs for end-users by 
automatically translating a C-like source code into a hardware description language.  In essence, 
a high-level language compiler is a translator rather than a hardware design tool.  By making the 
low-level details transparent to users, the ability to custom design hardware that is tailored for a 
particular application is taken away.  Not all the optimization options available to a hardware 
designer are accessible to a high-level language user.  As a result, in the majority of cases, 
simply translating scientific code into hardware will not result in faster performance for several 
reasons, such as the following:   

• The large area overhead associated with automated translation. 

• A much lower clock frequency in the FPGA. 

• An inability to customize hardware. 

Despite the growing potential of FPGA-based systems and coprocessors, their popularity in the 
computing community remains stagnant.  This may be for several reasons.  The architecture and 
interface cores, along with corresponding API functions, differ with each company.  The lack of 
a universal standard, platform incompatibility, and vendor-specific development tools also seems 
to thwart users from considering reconfigurable computing.  These limitations define the 
challenges for the advancement in FPGA technology.   
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