
Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 JUN 2006

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Electrical Modeling and Simulation With Matlab/Simulink and
Graphical User Interface Software

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Ueda,Jason; Daniszewski,David; Monroe,John; Masrur,Abul;
Charbeneau,Eric; Jochum,Eric; Patel,Rakesh

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI
48397-5000

8. PERFORMING ORGANIZATION REPORT
NUMBER
15987

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
TACOM/TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
15987

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

3

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Paper Offer #: 06PSC-51

Electrical Modeling and Simulation With Matlab/Simulink and
Graphical User Interface Software

Jason Ueda, David Daniszewski, John Monroe, Abul Masrur, Michelle Charbeneau, Eric
Jochum, Rakesh Patel

US Army TARDEC

ABSTRACT

This paper describes modeling and simulation
technologies used to simulate the electrical systems of
Army vehicles using Matlab/Simulink coupled with
graphical user interface software. The models were built
using Mathworks’ Matlab/Simulink software in
conjunction with the SimPowerSystems Toolbox, a
toolkit provided by Mathworks that provides models of
basic electrical components such as capacitors and
inductors, in addition to more advanced components
such as diodes and IGBT’s. The current results of this
ongoing effort are presented and discussed.

INTRODUCTION

Fast and accurate modeling of electrical systems can
prove complicated, due to the linear and non-linear
elements in the system. For instance, suppose a
parallel RLC circuit is represented by the following
equation:

∫ −=++ 0.1)u(t
R
V

dt
dV

CdtV
L
1

R
V

s

sc
c

s

c , [1]

Modeled in Simulink, it might resemble Figure 1.

iC vC

iL

vS

y

To WorkspaceScope

1
s

Integrator1

1
s

Integrator

Clock

Add1Add

1/Rs

1/Rs

1/L

1/L

1/C

1/C

iS

Figure 1

If the system were comprised only of one parallel RLC
circuit, then this would simplify matters. However,
vehicular electrical systems are more complicated and
may have multiple series and/or parallel RLC circuits, in
addition to electronic devices that are more accurately

described with non-linear equations. To directly enter
the differential equations corresponding to vehicular
electrical systems in Simulink would be time-consuming
and probably cumbersome, not to mention difficult to
debug for particularly complicated system schematics.
Use of SimPower allows modeling the physical electrical
system directly and the software constructs the
appropriate equations.

SIMPOWER

This toolkit provides “black box” components such as
voltage sources, resistors, inductors, diodes, etc. which
enable a user to construct an electrical model by simply
connecting the proper simulated components together,
mimicking an electrical schematic.

Similar to the concept of “black box” or object-oriented
methodology in software-engineering,
SimPowerSystems lets the user “plug” the electrical
components together, to make a functioning model,
while the state-space equations which model the
Simulink circuit are automatically generated and remain
hidden from the user. This enables a much more rapid
development of an electrical model from a schematic.

COMPONENT MODELING

During the course of the effort, challenges were
encountered with respect to certain devices not provided
by the SimPowerSystems Toolbox. Common power
electronic components such as rectifiers and inverters
were developed to ensure a smooth system integration
effort. These components were developed to the
appropriate level of fidelity to ensure that although the
model produced accurate results, it did so in a
reasonable time frame.

INVERTER

Three-Phase Steady State Inverter

6
N

5
B-

4
B+

3
C

2
B

1
A

t
v+

-

Vcn

v+
-

Vbn

v+
-

Vbat

v+
-

Van

s

-
+

V<0

s

-
+

V<-120

s

-
+

V<+120

1/z

Unit Delay1

1/z

Unit Delay

Scope2

1

Mod
Indx

i+ -

Ic

i+ -

Ib

i+ -

Ia

s

-
+

ICon

1

Gain

f(u)

Fcn2

f(u)

Fcn1

f(u)

Fcn

Divide3

Divide2

Divide1

Divide

Van

Figure 2 Three-Phase Steady State Inverter

Typically three-phase inverters are used to supply three-
phase loads. For vehicles, the inverter is typically
needed to convert DC power to AC power for the typical
induction motors used in hybrid electric applications.

During the course of the investigation, a three-phase
inverter model was developed as a component level-
drop in for various vehicle models in development
consideration. Due to some overhead introduced by
SimPowerSystems, it was decided to use Simulink to
develop a mild three-phase inverter, and in this instance
the appropriate equations were known. The following
equations describe the duty cycles of the three phases,
where Vbat is the voltage of a vehicle battery and t is
time:

) t)*60*pi*sin(2 (*Vbat*0.5

) pi/3)*2 -t *60*pi*sin(2 (*Vbat*0.5 , [2]

) pi/3)*2 t *60*pi*sin(2 (*Vbat*0.5 +

STATEFLOW

In augmenting the relevance of these models, test cases
using various hypothetical mission scenarios had to be
studied. The development of these scenarios and
feeding it into the models via a usable data interface was
another challenge in itself. One application tool studied
was the use of Stateflow, a toolbox provided by
Mathworks which aids with the type of event-driven
modeling a mission scenario requires.

Stateflow is a graphical design tool enabling the user to
model event-driven behavior. It is based on finite state
machine (or finite automaton), whereby each “state”
reflects the condition a system is in. A state may be
entered or exited when certain (non-)conditional events
occur which require a change in the system.

For the purposes of the ongoing effort, Stateflow is being
used as a control signal interface to the

SimPowerSystems models. At a certain time t, a
vehicular load will be turned on/off, and Stateflow sends
the appropriate command signal to the model.

In an attempt to enable a user to have a friendly
interface in order to evaluate the model results, it was
decided that being able to read a mission scenario from
an Excel spreadsheet would be a feasible solution.

EVENT MODELING

The decision to look at spreadsheet based input forced a
number of programming issues in terms of setting up a
simulation design via Stateflow and Simulink. First, a
programming solution to extract data from the
spreadsheet and feed it to the Simulink model had to be
created. Next, due to programming language
constraints, a specific format for the data had to be
created. Finally, a parallel state chart had to be set up to
send overlapping signals to the Simulink model (the term
“overlapping” in this case refers to the fact that signals
indicated certain loads were turned on/off simultaneously
or at overlapping time intervals). Within the state chart,
dynamically-sized arrays were created depending upon
the number of on/off events there were for a particular
device.

API Programming

Device # Name Start Duration On/Off
1 Master Power 00:00:10 00:00:20 1
1 Master Power 00:00:30 00:00:10 0
2 Fuel Pump 00:00:10 00:00:20 0
2 Fuel Pump 00:00:30 00:00:10 1

Figure 3 Spreadsheet Input

It was decided that vehicle loads that would be turned
on/off would have a start time and a duration time (how
long it was supposed to be on/off). As mentioned
previously, the on/off events for the devices could
overlap, which would be realistic for a given mission
scenario. Figure 3 shows a simple test case developed
to test the interaction of the Matlab programming scripts,
Stateflow toolbox, and Simulink model.

Figure 4 Stateflow Parallel State Chart

Since it was not known in advance how many times a
particular device load would be turned on and off, it was
necessary to use the Stateflow API (application
programming interface) in order to dynamically size
array variables which tracked the on and off times of the
loads. The API enables a programmer to access a
Stateflow chart via Matlab scripting commands which sift
through the Stateflow objects.

Path forward

Some of the challenges associated with the Stateflow
application included computation of parallel states, which
led to overlapping signals being sent after their
appointed time. This timing issue appears to be a
function of the way Stateflow evaluates parallel states
and may simply be a hard limitation which cannot be
overcome. In addition, a methodology for describing
non-discrete events may have to be conceived (e.g.,
such as for a light dimmer switch where there is a range
of lighting available between on and off). The Stateflow
API is a powerful tool that can be used to dynamically
create a state chart on the fly, and the possibility of
creating a state chart from a script (as opposed to the
manual creation employed in this effort) exists.

LABVIEW

In attempting to speed up the development of a
graphical user interface, it was decided to study
Labview. Labview is a software tool typically used in
data acquisition and analysis environments and enables
a visual GUI to be developed rapidly via its plug and play
components and gauges. Thus, to demonstrate the
performance of the models to the casual user, a
graphical user interface was developed that displayed
the relevant system data. However, integration issues
with Matlab/Simulink presented additional obstacles that
had to be overcome with mapping conventions using
National Instruments’ Simulation Interface Toolkit, the
software interface designed to link Labview with
Matlab/Simulink. For instance, it was found that
occasionally trying to map a gauge readout to a Simulink
/ SimPowerSystems measurement component caused
inconsistent system errors.

In addition, the capabilities of the Java and Python
programming languages are still being explored as
alternatives to Labview.

CONCLUSION

Constructing an integrated event-driven model with
multiple software toolkits presented interesting
challenges from a systems engineering perspective.
Tools which were thought to work right out of the box
with Simulink (such as the Simulation Interface Toolkit),
required more finesse and debugging than anticipated.
Though developing a baseline model seems readily
accessible to the casual user, a more thorough model
which may one day be used to augment design trade
studies may require a slightly altered approach.

For instance, perhaps Labview does not scale well when
required to interface with hundreds of vehicle loads in
the model. This may force a user to simply using just
the native graphics capabilities with Matlab in order to
prevent this. Future work should include a more
integrated and detailed system.

REFERENCES

1. Stateflow and Stateflow Coder API. Version 6.
March 2006. The Mathworks, Inc.

2. Stateflow and Stateflow Coder User’s Guide.
Version 6. March 2006. The Mathworks, Inc.

3. Stateflow User’s Guide. Version 6. March 2006.
The Mathworks, Inc.

4. Scott D. Sudhoff, Dionysios C. Aliprantis, Brian T.
Kuhn, and Patrick L. Chapman, “An Induction
Machine Model for Predicting Inverter-Machine
Interaction,” IEEE Transactions on Energy
Conversion, vol. 17, no.2, pp. 203-210, June 2002.

5. Heath Hofmann, Richard Stroman, and Michael
Lanagan, “Closed-Form Frequency Model of 3-
Phase Inverter Drive for DC Distribution System
Analysis,” Paper 2002-01-3232, SAE Power
Systems Conference Oct. 29-31, 2002. Reprinted
from Power Systems Conference Proceedings on
CD-ROM (PS2002CD).

Figure 5 Example Labview Screenshot

