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Abstract

We compare two approaches for inclusion of uncertainty/variability in modeling growth in
size-structured population models. One entails imposing a probabilistic structure on growth
rates in the population while the other involves formulating growth as a stochastic Markov
diffusion process. We present a theoretical analysis that allows one to include comparable
levels of uncertainty in the two distinct formulations in making comparisons of the two
approaches.

1 Introduction

Classical size-structured population models with both linear and nonlinear versions have
been widely investigated in the past decades as they have proved useful in modeling the
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dynamics of a wide variety of populations such as cells, plants and marine species [14].
Among the best known of these is the basic linear version given by Sinko and Streifer [18]
which we shall refer to as the Sinko-Streifer or SS model in this paper. The equation with
boundary and initial conditions is given by

ut(x, t) + (g(x, t)u(x, t))x + m(x, t)u(x, t) = 0,

g(0, t)u(0, t) =

∫ L

0

β(x, t)u(x, t)dx,

u(x, 0) = u0(x),

(1.1)

where u(x, t) denotes the population density of individuals with size x (weight in grams in
our application here) at time t. The functions m(x, t) and β(x, t) represent the mortality
rate and reproduction rate, respectively, of individuals with size x at time t. The parameter
L is the maximum size that individuals may obtain in their lifetime, and the size of all the
newborn individuals is assumed to be zero without loss of generality. The function g(x, t)
denotes the growth rate of individuals with size x at time t, so that each individual is assumed
to grow according to the deterministic growth model

dx

dt
= g(x, t). (1.2)

Thus individuals with the same size at the same time have the same growth rate. This
means that if there is no reproduction involved, then the variability of size at any time point
is totally determined by the variability in the initial sizes. Thus, such models are incapable
of manifesting any variability in growth rates that might occur in populations [10].

However, readily available experimental data (depicted graphically in Figures 2 and 3 below)
for the early growth of shrimp exhibit a great deal of variability in size as time evolves even
though the shrimp begin with approximately similar sizes on day 1 (April 28 in the figures).
This strongly suggests that the deterministic growth model (1.2) that is intrinsic to the Sinko-
Streifer model is not sufficient to model the growth dynamics of the shrimp population, and
one needs to incorporate some type of variability or uncertainty into the growth process of
individuals. This phenomenon was also observed in studies [3, 7] of mosquitofish growth in
rice fields, where the data exhibit both dispersion and bimodality in size as time increases.

1.1 Early Shrimp Growth Dynamics

Motivated by our earlier efforts [4] on modeling shrimp populations, in this section we use
mean size data which depict the early growth of shrimp cultured at the Shrimp Mariculture
Research Facility, Texas Agricultural Experiment Station in Corpus Christi, TX. The shrimp
were grown in two different raceways with differing culture conditions, with all the shrimp
at sampling time t = 0 in the postlarval (PL) stage (mean stocking size of shrimp for both
raceways on April 20 was 0.000758 gm). Fifty shrimp were randomly sampled from each
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raceway and individually weighed at each time point in a longitudinal study. Of course,
each sample of fifty contained possibly different shrimp and hence the data we use here is
aggregate type longitudinal data (i.e., individuals are not tracked over time).

The average size (weight in grams) x̄k
d of shrimp at time tk is given by x̄k

d =
1

50

50∑
i=1

sk
i , where

sk
i is the size of shrimp i at time tk. We used the exponential function

x̄(t) = a exp(bt) + c

to fit the data {(tk, x̄k
d)}, where a, b, and c are unknown parameters that are to be estimated.

Figure 1 depicts the exponential fit function x̄(t) (solid line) and data (*) for Raceway 1 and
Raceway 2, respectively. The plots reveal that exponential functions appear to fit the data
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Figure 1: (left): Exponential fit of Raceway 1 data with g(x̄) = 0.054(x̄ + 0.133); (right):
Exponential fit of Raceway 2 data with g(x̄) = 0.056(x̄ + 0.126).

in each of the raceways. Hence, the corresponding differential equation

dx̄

dt
= g(x̄) = b0(x̄ + c0) (1.3)

is a reasonable description of the early growth of shrimp. Here b0 is a positive constant which
denotes the intrinsic growth rate, and c0 is a positive constant which we shall refer to as the
affine growth term. Let X(t) be a random variable which we use to denote the size of an
individual in the population at time t. That is, each realization corresponds to the size at
time t of an individual. Then we can write an analogue of (1.3) for mean growth dynamics
as

dE(X(t))

dt
= b0(E(X(t)) + c0). (1.4)

The following arguments suggest that if we want to use the deterministic growth model (1.2)
with the SS model to describe the early growth of shrimp, then we should choose the growth
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rate dynamics to be
dx

dt
= g(x) = b0(x + c0). Then for each individual we have

x(t) = −c0 + (x(0) + c0) exp(b0t). (1.5)

Because we are considering the early growth of the shrimp population, we may ignore re-
production. Thus the size distribution at any time is totally determined by the initial size
distribution. Let X0 be a random variable which denotes the initial size distribution of
individuals. Then by (1.5) we have

E(X(t)) = −c0 + (E(X0) + c0) exp(b0t),

which implies that

dE(X(t))

dt
= b0(E(X0) + c0) exp(b0t) = b0(E(X(t)) + c0).

Thus, with the growth rate function chosen as g(x) = b0(x + c0) in the deterministic growth
model, we obtain the same form as that in (1.4). In addition, by (1.5) we find that

Var(X(t)) = exp(2b0t)Var(X0), (1.6)

which implies that the population does not disperse at all if the variance of the initial
size distribution is zero (i.e., all shrimp are initially the same size). However, if Var(X0) is
nonzero, then propagating the initial distribution with the SS model and (1.5) should produce
dispersion in a so-called cryptodeterministic formulation wherein random initial conditions
are propagated deterministically [11].

To further investigate this approach, we inspect Figures 2 and 3 below which depict the
observed size distributions of shrimp at different sampling time points for Raceway 1 and
Raceway 2, respectively. These plots indicate that the shrimp population does exhibit a great
deal of variability in size as time progresses even though they begin at a similar size (i.e.,
Var(X0) ≈ 0). This then suggests that a cryptodeterministic formulation is not adequate
and that we need to incorporate some variability into the growth of shrimp so that the
variability in size at any time is not only dependent on the variability in initial size but also
on some variability in growth rates.

In this paper we consider two distinct approaches which have been proposed in the research
literature as a means to incorporate growth uncertainty/variability into size-structured pop-
ulation models, and we use the early growth of shrimp as an example to illustrate the
difference between these two different modeling formulations. Because we only consider the
early growth of populations and are interested in modeling growth uncertainty/variability,
we will not consider reproduction and mortality rates in our formulations.

The remainder of this paper is organized as follows. In Section 2 we introduce the two
different approaches, which we shall refer to as a probabilistic formulation and a stochastic
formulation, respectively, to model the growth uncertainty, and make a theoretical compar-
ison of these two approaches. Finally we conclude the paper in Section 3 by some further
observations and remarks.
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Figure 2: Histograms for longitudinal data for Raceway 1.
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Figure 3: Histograms for longitudinal data for Raceway 2.
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2 Probabilistic vs. Stochastic Formulations

We describe two different formulations (e.g., [3, 5, 6, 7, 8, 16]) that have been considered
in the literature to model uncertainty/variability in growth. One approach involves an as-
sumption that each individual grows according to a deterministic growth model, but different
individuals (even of the same size) may have different size dependent growth rates. Based
on this, one partitions the entire population into (possibly a continuum of) subpopulations
where individuals in each subpopulation have the same growth rate. We then assign a prob-
ability distribution to this partition of possible growth rates in the population. The growth
process for individuals in a subpopulation with the rate g is described by the model

dx(t; g)

dt
= g(x(t; g), t), g ∈ G, (2.1)

where G is the collection of admissible growth rates. Thus, the growth uncertainty is in-
troduced into the population by the variability of growth rates among subpopulations of
individuals. This corresponding phenomenon may be attributed to the effect of genetic dif-
ferences or some chronic disease on the growth of individuals. For example, it was reported
in [10] that non-lethal infection of Penaeus vannamei postlarvae by IHHNV may reduce
growth and increase size variability in the population. With this assumption of a family
of admissible growth rates and an associated probability distribution, one thus obtains a
generalization of the Sinko-Streifer model, called the growth rate distribution (GRD) model,
which has been formulated and studied in [2, 3, 5, 6, 7]. The model consists of solving

vt(x, t; g) + (g(x, t)v(x, t; g))x = 0,

v(0, t; g) = 0,

v(x, 0; g) = v0(x; g),

(2.2)

for a given g ∈ G and then “summing” (with respect to the probability) the corresponding
solutions over all g ∈ G. Thus if v(x, t; g) is the population density of individuals with size
x at time t having growth rate g, the expectation of the total population density for size x
at time t is given by

u(x, t) =

∫

g∈G
v(x, t; g)dP(g), (2.3)

where P is the probability measure on G. This probabilistic structure P on G is then
the fundamental “parameter” to be determined from aggregate data for the population.
Thus this probabilistic formulation involves a stationary probabilistic structure on a family
of deterministic dynamical systems.

An alternative formulation, which we shall refer to as the stochastic formulation, is con-
structed based on the assumption that movement from one size class to another can be
described by a stochastic diffusion process [1, 8, 11, 16]. Let X(t) be a Markov diffusion pro-
cess which represents size at time t. Then X(t) is described by the Ito stochastic differential
equation (we refer to this equation as the stochastic growth model)

dX(t) = g(X(t), t)dt + σ(X(t), t)dW (t), (2.4)
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where W (t) is the standard Wiener process [1, 11]. Here g(x, t) denotes the average growth
rate of individuals with size x at time t, and is given by

lim
∆t→0+

1

∆t
E(∆X(t)|X(t) = x) = g(x, t), (2.5)

where ∆X(t) = X(t + ∆t) − X(t). The function σ(x, t) represents the variability in the
growth rate of individuals and is given by

lim
∆t→0+

1

∆t
E([∆X(t)]2|X(t) = x) = σ(x, t). (2.6)

Hence, the growth process for each individual is stochastic, and each individual grows accord-
ing to the stochastic growth model (2.4). In addition, individuals with the same size at the
same time have the same variability in the growth. Thus, the growth uncertainty/variability
is introduced into the population by the growth stochasticity of each individual. This phe-
nomenon might be explained in some situations by the influence of fluctuations of the en-
vironment on the growth rate of individuals. For example, the growth rate of shrimp is
affected by temperature, salinity, dissolved oxygen level, un-ionized ammonia level, etc.,
(e.g., see [12, 15, 17, 19]). With this assumption on the growth process, we obtain the
Fokker-Planck (FP) or forward Kolmogorov model for the population density u, which was
carefully derived in [16] among numerous other places and subsequently studied in many
references (e.g., [1, 8, 11]). The equation with appropriate boundary conditions is given by

ut(x, t) + (g(x, t)u(x, t))x =
1

2
(σ2(x, t)u(x, t))xx,

g(0, t)u(0, t)− 1

2
(σ2(x, t)u(x, t))x|x=0 = 0,

g(L, t)u(L, t)− 1

2
(σ2(x, t)u(x, t))x|x=L = 0,

u(x, 0) = u0(x).

(2.7)

In summary, from the above discussions, we readily see that in the probabilistic structure
formulation resulting in the GRD model, the growth of each individual is a deterministic
process, while in the stochastic formulation the growth of each individual is a stochastic
process resulting in the FP model. Hence, these two formulations are conceptually quite
different, and the choice of a formulation to describe the dynamics of a particular population
should, if possible, be based on the mechanisms and/or scenarios that are the primary sources
of the uncertainty/variability in growth.

Recall from Section 1.1 that the deterministic growth model used to describe the early growth
of shrimp is

dx

dt
= b0(x + c0), (2.8)

and the expectation and variance of the size distribution obtained from this deterministic
growth model in a cryptodeterministic formulation (i.e., x(0) = X0 is an initial random

7



variable that is propagated deterministically) are given by

E(X(t)) = −c0 + (E(X0) + c0) exp(b0t),

Var(X(t)) = Var(X0) exp(2b0t),
(2.9)

respectively. From our previous discussions, we recall that if we use the probabilistic for-
mulation to model the growth uncertainty/variability, then we should put a distribution on
the growth rates. Simple ways to do this are to put a distribution (with mean b0) on the
intrinsic growth rate or put a distribution (with mean c0) on the affine growth term, or
simultaneously put a distribution on both the intrinsic growth rate and the affine growth
term. For simplicity here, we only consider a distribution on either the intrinsic growth rate
or a distribution on the affine growth term. We will use B to denote a random variable
for the intrinsic growth rate and use b to represent a realization of B in some range Rb.
Similarly, we will use C to represent a random variable for the affine growth and c to denote
a realization of C in some range Rc. We then consider two different probabilistic growth
models:

dx(t; b)

dt
= b(x(t; b) + c0), b ∈ Rb (2.10)

and
dx(t; c)

dt
= b0(x(t; c) + c), c ∈ Rc. (2.11)

In Section 2.1 we shall discuss whether or not either of these probabilistic growth models
can yield the same form of growth rate dynamics as that in (1.4). From (2.4) with σ = 0
and (2.8) we see that g(x) = b0(x + c0) is a reasonable choice for the average growth rate in
the stochastic growth model. In Section 2.2 we will find a proper form for σ in order to yield
the same growth rate in the stochastic model as that in (1.4). The following relationship
between a normal distribution and a lognormal distribution (p. 109, [9]) will be fundamental
to our discussions in the next section.

Lemma 2.1 If ln Z ∼ N (µ, σ2), then Z is log-normally distributed, where its probability
density function fZ(z) is defined by

fZ(z) =
1

z
√

2πσ
exp

(
−(ln z − µ)2

2σ2

)
,

and its mean and variance are given as follows

E(Z) = exp(µ + 1
2
σ2), Var(Z) = [exp(σ2)− 1] exp(2µ + σ2).

We wish to compare the probabilistic and stochastic formulations described above. To do this
it is important to compare them with the same level of uncertainty present in the models. One
way to proceed is to compare the formulations with the same mean and variance in associated
stochastic processes. The stochastic formulation defines directly a stochastic process for
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size satisfying a corresponding stochastic differential equation (2.4). In comparing the two
formulations, it is thus useful to know whether the probabilistic formulation generates a
corresponding stochastic process for size, and if it does, whether the process satisfies a
stochastic or random differential equation, or even a mean growth dynamics equation such as
(1.4). We carry out the analysis of the probabilistic formulation (2.1)-(2.3) by parameterizing
the family G of admissible growth rates g using the form g(x) = b(x + c) and considering
distributions on either b or c.

2.1 Probabilistic Formulation and Associated Stochastic Processes

We first consider the probabilistic growth model (2.11) in Section 2.1.1 and show that this
model can yield the same form of mean growth dynamics as that in (1.4), independent of the
form of the distribution we put on the affine growth term. Then we consider the probabilistic
growth model (2.10) in Section 2.1.2 and demonstrate that this model does not yield the
same form of mean growth dynamics as that in (1.4) if a normal distribution is imposed
on the intrinsic growth rate b. In Section 2.1.4 we consider a probabilistic formulation with
g(x, t) = (b−σ2

0t)(x+ c0) and argue that if we assume a normal distribution on the intrinsic
growth rate b, then we do obtain the same form of mean growth dynamics as that in (1.4).

2.1.1 Distribution on the affine growth term c in g(x) = b0(x + c)

In this section we consider the probabilistic growth model (2.11) with C having a probability
density function fC(c) with mean and variance given by E(C) = c0 and Var(C) = σ2

c , respec-
tively. Equation (2.11) implies that the size of each individual at time t in a subpopulation
with affine growth term c is given by

x(t; c) = −c + (x(0; c) + c) exp(b0t),

which can be rewritten as

x(t; c) = x(0; c) exp(b0t) + c(exp(b0t)− 1). (2.12)

If the initial size of each individual is a fixed constant x0, that is, x(0; c) = x0 for any c
in the chosen range, then the variability of size at any time t is totally determined by the
variability in the affine growth term. That is, we obtain a stochastic random process for size
which we denote by X(t) = x(t; C). Hence, by (2.12) we have

X(t) = x0 exp(b0t) + C(exp(b0t)− 1),

and moreover, X(t) satisfies the random differential equation

dX(t)

dt
= b0(X(t) + C). (2.13)

9



It follows that the probability density function fXt(x) of X(t) for any fixed t is given by

fXt(x) =
1

exp(b0t)− 1
fC

(
x− x0 exp(b0t)

exp(b0t)− 1

)
, (2.14)

and the mean and variance of X(t) are given by

E(X(t)) = x0 exp(b0t) + c0(exp(b0t)− 1),

Var(X(t)) = σ2
c (exp(b0t)− 1)2.

(2.15)

Finally the mean E(X(t)) satisfies the mean growth dynamics equation (1.4).

If the initial size distribution is the same for all the subpopulations and it is not a Dirac
delta distribution, then the variability of size at any time t is determined by the variability in
both the affine growth term and in the initial size distribution. That is, we have a stochastic
process X(t) = x(t; X0, C) for size, where X0 is a random variable with mean E(X0) = x0,
and by (2.12) we have

X(t) = X0 exp(b0t) + C(exp(b0t)− 1). (2.16)

Because X0 generally has nothing to do with C, it is reasonable to assume that X0 and C
are two independent random variables. Then by (2.16) we find that

E(X(t)) = E(X0) exp(b0t) + c0(exp(b0t)− 1),

Var(X(t)) = Var(X0) exp(2b0t) + σ2
c (exp(b0t)− 1)2.

(2.17)

Again X(t) satisfies the random differential equation (2.13) as well as the corresponding
mean growth dynamics equation (1.4). Thus, in either of these two cases we have the mean
growth dynamics

dE(X(t))

dt
= b0(E(X(t)) + c0)

as in (1.4) holding. Therefore, the probabilistic formulation based on (2.11) with any appro-
priate distribution on the affine growth term appears to be reasonable for the early growth
of shrimp in the sense that it can yield the same form of mean growth dynamics as that
in (1.4) which we have seen can be fit to data using (1.3). Note that the corresponding
deterministic growth model of this probabilistic growth model is ẋ = b0(x + c0). Moreover,
by (2.9) and (2.17) we see that the expectation of the size distribution obtained from this
model agrees with that obtained from its corresponding cryptodeterministic growth model.
However, the variance of the size distribution obtained from this probabilistic growth model,
which is determined not only by the variability in initial size distribution but also by the
variability in the affine growth term, is greater than that obtained from its corresponding
cryptodeterministic growth model which is determined only by the variability in the initial
size distribution.

2.1.2 Distribution on the intrinsic growth rate b in g(x) = b(x + c0)

In this section we consider the probabilistic growth model (2.10) with B ∼ N (b0, σ
2
0) and

Rb = R, deferring to subsequent discussion below the consequence of allowing negative
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values of b. Equation (2.10) implies that the size of each individual in a subpopulation with
intrinsic growth rate b at time t is given by

x(t; b) = −c0 + (x(0; b) + c0) exp(bt). (2.18)

Note that B ∼ N (b0, σ
2
0) implies that for any fixed t

Bt ∼ N (b0t, σ
2
0t

2). (2.19)

Let Y (t) = exp(Bt). Thus, by (2.19) and Lemma 2.1 we know that Y (t) is log-normally
distributed for any fixed t, where its probability density function fYt(y) is given for 0 < y < ∞
by

fYt(y) =
1

y
√

2πσ0t
exp

(
− [ln y − b0t]

2

2σ2
0t

2

)
, (2.20)

with mean and variance given by

E (Y (t)) = exp

(
b0t +

1

2
σ2

0t
2

)
,

Var (Y (t)) = [exp(σ2
0t

2)− 1] exp(2b0t + σ2
0t

2).

(2.21)

If the initial size of each individual is a fixed constant x0, that is, x(0; b) = x0 for any b, then
the variability of size at any time t is determined solely by the variability in the intrinsic
growth rate. Thus the stochastic process for size is given by X(t) = x(t; B) and by (2.18)
we have

X(t) = −c0 + (x0 + c0)Y (t).

Moreover from (2.20) we find that the probability density function fXt(x) of X(t) for any
fixed t is given by

fXt(x) =
1

(x + c0)
√

2πσ0t
exp


−

[
ln

(
x+c0
x0+c0

)
− b0t

]2

2σ2
0t

2


 , (2.22)

with mean and variance given by

E(X(t)) = −c0 + (x0 + c0) exp

(
b0t +

1

2
σ2

0t
2

)

Var(X(t)) = (x0 + c0)
2[exp(σ2

0t
2)− 1] exp(2b0t + σ2

0t
2).

(2.23)

Again we find that X(t) satisfies a random differential equation

dX(t)

dt
= B(X(t) + c0). (2.24)

However, in this case it is not true that E(X(t)) generally satisfies the usual mean growth
dynamics (1.4). As we shall see below, E(X(t)) does satisfy a related differential equation.
But first we consider the case when the initial size distribution is the same for all the
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subpopulations and is not a Dirac delta distribution, so that the variability in size at any
time t is determined by the variability in both the intrinsic growth rate and the initial size
distribution. The size stochastic process is defined by X(t) = x(t; X0, B) and hence, by
(2.18) we have

X(t) = −c0 + (X0 + c0)Y (t), (2.25)

where X0 is a random variable which denotes the initial size. Again it is reasonable to assume
that X0 and Y (t) are independent random variables. Then by (2.25) and (2.21) we find that

E(X(t)) = −c0 + (E(X0) + c0) exp

(
b0t +

1

2
σ2

0t
2

)
,

Var(X(t)) = (E(X0) + c0)
2[exp(σ2

0t
2)− 1] exp(2b0t + σ2

0t
2)

+Var(X0)[exp(σ2
0t

2)− 1] exp(2b0t + σ2
0t

2)

+ exp
(
2b0t + σ2

0t
2
)
Var(X0).

(2.26)

It follows from (2.23) and (2.26) that

dE(X(t))

dt
= (b0 + σ2

0t)(E(X(t)) + c0). (2.27)

Thus, by using the probabilistic growth model (2.10) with normal distribution N (b0, σ
2
0) for

B, we cannot obtain the same form of mean growth rate as that we obtained in (1.4). We
note that computing the mean and variance of X(t) in these examples depends directly on
the ability to compute similar quantities for Y (t) = exp(Bt) and is facilitated by the special
form of the distribution of B (see [9] for discussions of properties of functions of random
variables).

From (2.23) and (2.26), we see that both the expectation and the variance in size distribution
obtained from the probabilistic growth model (2.10) with B ∼ N (b0, σ

2
0) is dependent on

the variability in the intrinsic growth rate in the first case (2.23), and in the second case
(2.26) they depend not only on the variability in the intrinsic growth rate but also on the
variability in the initial size distribution. Note that the corresponding cryptodeterministic
formulation of this probabilistic growth model is given by ẋ = b0(x+ c0), x(0) = X0. Hence,
(2.9), (2.23) and (2.26) reveal that the expectation in size distribution of these probabilistic
formulations is always greater than that obtained from its corresponding cryptodeterministic
formulation, and the same thing is true for the variance.

2.1.3 Distribution on b, c, and x0 simultaneously in g(x) = b(x + c)

We have considered in the previous sections special cases for random differential equation
analogues of the deterministic system

dx(t)

dt
= b(x + c), x(0) = x0. (2.28)

12



More generally, using the solution

x(t; b, c, x0) = (x0 + c) exp(bt)− c, (2.29)

of (2.28) and assuming that B, C and X0 are random variables for b, c and x0, respectively,
we can always define a stochastic process

X(t; B, C, X0) = (X0 + C) exp(Bt)− C, (2.30)

and argue that it satisfies the random differential equation

dX(t)

dt
= B(X(t) + C), X(0) = X0. (2.31)

But in general one cannot say anything about E(X(t)) and Var(X(t)) without special as-
sumptions on B,C and X0 that would enable one to ascertain statistical properties of X(t)
and statistical relationships between X(t), B,X0 and C.

2.1.4 Distribution on the intrinsic growth rate b in g(x, t) = (b − σ2
0t)(x + c0)

From (2.27), it appears that if we set the probabilistic growth model to be

dx(t; b)

dt
= (b− σ2

0t)(x + c0), b ∈ R, (2.32)

with B ∼ N (b0, σ
2
0), then we may obtain the same form of mean growth dynamics as we

obtained in (1.4). We proceed to argue that this is indeed the case. Equation (2.32) implies
that the size of each individual in a subpopulation with intrinsic growth rate b at time t is
given by

x(t; b) = −c0 + (x(0; b) + c0) exp(bt− 1
2
σ2

0t
2). (2.33)

Note that B ∼ N (b0, σ
2
0) implies that for any fixed t

Bt− 1
2
σ2

0t
2 ∼ N (b0t− 1

2
σ2

0t
2, σ2

0t
2). (2.34)

Let Y (t) = exp(Bt − 1
2
σ2

0t
2). Thus, by (2.34) and Lemma 2.1 we know that Y (t) is log-

normally distributed for any fixed t, where its probability density function fYt(y) is given
by

fYt(y) =
1

y
√

2πσ0t
exp

(
− [ln y − (b0t− 1

2
σ2

0t
2)]2

2σ2
0t

2

)
, (2.35)

with mean and variance given by

E (Y (t)) = exp (b0t) ,

Var (Y (t)) = [exp(σ2
0t

2)− 1] exp(2b0t).
(2.36)
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If the initial size of each individual is a fixed constant x0, that is, x(0; b) = x0 for any b, then
the variability in size at any time t is totally determined by the variability in the intrinsic
growth rate, so that the size stochastic process is X(t) = x(t; B). From (2.33) we have

X(t) = −c0 + (x0 + c0)Y (t),

and from (2.35) we find that the probability density function fXt(x) of X(t) for any fixed t
is given by

fXt(x) =
1

(x + c0)
√

2πσ0t
exp


−

[
ln

(
x+c0
x0+c0

)
− (b0t− 1

2
σ2

0t
2)

]2

2σ2
0t

2


 , (2.37)

with mean and variance given by

E(X(t)) = −c0 + (x0 + c0) exp (b0t) ,

Var(X(t)) = (x0 + c0)
2[exp(σ2

0t
2)− 1] exp(2b0t).

(2.38)

Assuming that the initial size distribution is the same for all the subpopulations and it
is not a Dirac delta distribution, then the variability in size at any time t is determined
by the variability in both the intrinsic growth rate and the initial size distribution. The
corresponding size stochastic process is given by X(t) = x(t; X0, B) where X0 is a random
variable which denotes the initial size. From (2.33) we have

X(t) = −c0 + (X0 + c0)Y (t). (2.39)

It is reasonable to assume that X0 and Y (t) are two independent random variables. Then
by (2.36) and (2.39) we find that

E(X(t)) = −c0 + (E(X0) + c0) exp (b0t) ,

Var(X(t)) = (E(X0) + c0)
2[exp(σ2

0t
2)− 1] exp(2b0t)

+Var(X0)[exp(σ2
0t

2)− 1] exp(2b0t) + exp(2b0t)Var(X0).

(2.40)

Moreover, we find the mean growth dynamics

dE(X(t))

dt
= b0(E(X(t)) + c0).

Thus, by using probabilistic growth model (2.32) with normal distribution N (b0, σ
2
0) on B,

we can obtain the same form of mean growth dynamics as obtained in (1.4).

Note that the corresponding cryptodeterministic formulation of this probabilistic growth
model is given by ẋ = (b0− σ2

0t)(x + c0), x(0) = X0. Hence, the expectation and variance of
the size stochastic process X(t) obtained from this cryptodeterministic model at time t are

E(X(t)) = −c0 + (E(X0) + c0) exp

(
b0t− 1

2
σ2

0t
2

)
,

Var(X(t)) = Var(X0) exp
(
2b0t− σ2

0t
2
)
.

(2.41)
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Thus, (2.41) and (2.40) demonstrate that the expectation in these size stochastic processes
obtained from this probabilistic growth model formulation is greater than that obtained
from its corresponding cryptodeterministic growth model, and the same thing is true for the
variance.

Based on the discussions in Sections 2.1.2 and 2.1.4, we know that if B ∼ N (b0, σ
2
0), then the

probabilistic growth model (2.32) is more reasonable to use in comparisons for the shrimp
growth than the probabilistic growth model (2.10) in the sense that (2.32) can yield the same
form of mean growth dynamics as shown in (1.4) but (2.10) cannot.

2.2 Stochastic Formulation: Stochastic Growth Process

Finally we turn to an analysis of the stochastic formulation with the size stochastic process
defined directly by a classical stochastic differential equation (SDE). We will argue that if
we set g(x) = b0(x + c0) with an appropriately chosen form for σ, then we can obtain the
same form of mean growth dynamics as we obtained in (1.4). We will consider two different
choices for σ that can each be combined with the chosen form for g to obtain the same form
of mean growth dynamics as in (1.4). For the first case, we choose σ(x) = σ̄0(x + c0), where
σ̄0 is a positive constant. With this form of σ, the mean of the size process obtained from
this stochastic growth model is the same as that obtained from probabilistic growth model
(2.32) in Section 2.1.4, but this is not true for the variance of the size process. Specifically,
the variance of the size process obtained from probabilistic growth model (2.32) at time t
is dependent on t2 as shown in (2.38) and (2.40), but as is established in (2.47) and (2.49)
below, the variance of the size process obtained from this stochastic growth model at time
t is dependent on t. For the second case, we choose σ(x, t) =

√
2tσ̄0(x + c0). With this

form of σ we obtain the same mean and variance for the size process as that obtained from
probabilistic growth model (2.32) with σ0 = σ̄0.

2.2.1 The SDE with σ(x) = σ̄0(x + c0)

In this section, the variance function σ(x) is chosen as σ(x) = σ̄0(x + c0). Let h(x, t) =
ln(x + c0). Then we have

∂h(x, t)

∂t
= 0,

∂h(x, t)

∂x
=

1

x + c0

,
∂2h(x, t)

∂x2
= − 1

(x + c0)2
.

By Ito’s Formula (Theorem 8.3 in [1]) we find that

dh(X(t), t) = (b0 − 1
2
σ̄2

0)dt + σ̄0dW (t).

Integrating both sides of the above equation we find

ln

(
X(t) + c0

X(0) + c0

)
= (b0 − 1

2
σ̄2

0)t + σ̄0W (t),
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which implies that
X(t) + c0

X(0) + c0

= exp((b0 − 1
2
σ̄2

0)t + σ̄0W (t)). (2.42)

Note that W (t) ∼ N (0, t). Hence, we have that

(b0 − 1
2
σ̄2

0)t + σ̄0W (t) ∼ N (
(b0 − 1

2
σ̄2

0)t, σ̄
2
0t

)
. (2.43)

Let Y (t) = exp((b0− 1
2
σ̄2

0)t + σ̄0W (t)). Then by (2.43) and Lemma 2.1, we have that Y (t) is
log-normally distributed for any fixed t, with its probability density function fYt(y) defined
by

fYt(y) =
1

y
√

2π(σ̄0

√
t)

exp

(
− [ln y − (b0 − 1

2
σ̄2

0)t]
2

2σ̄2
0t

)
, (2.44)

and with its mean and variance given by

E (Y (t)) = exp(b0t),

Var (Y (t)) = [exp(σ̄2
0t)− 1] exp(2b0t).

(2.45)

Next, we consider two cases for X(0). One case is that X(0) is a fixed constant x0, and the
other is that X(0) is a random variable X0. If X(0) = x0, then by (2.42) and (2.44) we find
that the probability density function fXt(x) of X(t) for any fixed t is given by

fXt(x) =
1

(x + c0)
√

2π(σ̄0

√
t)

exp


−

[
ln

(
x+c0
x0+c0

)
− (b0 − 1

2
σ̄2

0)t
]2

2σ̄2
0t


 . (2.46)

By (2.45) we find that the mean and variance of X(t) for any fixed t are given by

E(X(t)) = −c0 + (x0 + c0) exp(b0t),

Var(X(t)) = (x0 + c0)
2[exp(σ̄2

0t)− 1] exp(2b0t).
(2.47)

If X(0) = X0 is a random variable, then by (2.42) we have

X(t) = −c0 + (X0 + c0)Y (t). (2.48)

As in the previous discussions, it is reasonable to assume that X0 and Y (t) are independent
random variables. Then by (2.48) and (2.45) we find that

E(X(t)) = −c0 + (E(X0) + c0) exp (b0t) ,

Var(X(t)) = (E(X0) + c0)
2[exp(σ̄2

0t)− 1] exp(2b0t)

+Var(X0)[exp(σ̄2
0t)− 1] exp(2b0t) + Var(X0) exp(2b0t).

(2.49)

Note that (2.47) and (2.49) each yield the mean growth dynamics

dE(X(t))

dt
= b0(E(X(t)) + c0). (2.50)
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Thus we obtain the same form of mean growth dynamics as obtained in (1.4). In addition,
we see that the corresponding cryptodeterministic growth model to this stochastic process
is ẋ = b0(x + c0), x(0) = X0. Hence, by (2.9) and (2.49) we find that the expectation in the
size process obtained from this stochastic growth model agrees with that obtained from its
corresponding cryptodeterministic formulation. However, the variance obtained from this
stochastic formulation, which is determined by variability in initial size and uncertainty in
growth of each individual, is greater than that obtained from its corresponding cryptodeter-
ministic formulation which is determined only by the variability in initial size.

2.2.2 The SDE with σ(x, t) =
√

2tσ̄0(x + c0)

Based on the discussions in the above section, we see that the variance in the size process at
time t obtained from the stochastic formulation with σ(x) = σ̄0(x + c0) being dependent on
t results from Var(W (t)) = t and the fact that the variance of σ does not depend on t at all.
Therefore, in order to have the variance of the size process at time t dependent on t2 as that in
probabilistic growth model (2.32), it appears that we need to choose σ(x, t) =

√
2tσ̄0(x+c0).

We shall argue that this is in fact the case. Again let h(x, t) = ln(x + c0). Then by Ito’s
Formula we find that

dh(X(t), t) = (b0 − σ̄2
0t)dt +

√
2tσ̄0dW (t).

Integrating both sides of the above equation we obtain

ln

(
X(t) + c0

X(0) + c0

)
= (b0t− 1

2
σ̄2

0t
2) + σ̄0

∫ t

0

√
2sdW (s),

which implies that

X(t) + c0

X(0) + c0

= exp

(
(b0t− 1

2
σ̄2

0t
2) + σ̄0

∫ t

0

√
2sdW (s)

)
. (2.51)

By Theorem 4.5 in [13], for any fixed t we find that

σ̄0

∫ t

0

√
2sdW (s) ∼ N (0, σ̄2

0t
2),

which implies that

(b0t− 1
2
σ̄2

0t
2) + σ̄0

∫ t

0

√
2sdW (s) ∼ N (

b0t− 1
2
σ̄2

0t
2, σ̄2

0t
2
)
. (2.52)

Let Y (t) = exp

(
(b0t− 1

2
σ̄2

0t
2) + σ̄0

∫ t

0

√
2sdW (s)

)
. Then by (2.52) and Lemma 2.1, we find

that Y (t) is log-normally distributed for any fixed t, where its probability density function
fYt(y) is defined by

fYt(y) =
1

y
√

2πσ̄0t
exp

(
− [ln y − (b0t− 1

2
σ̄2

0t
2)]2

2σ̄2
0t

2

)
, (2.53)
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with mean and variance given by

E (Y (t)) = exp(b0t),

Var (Y (t)) = [exp(σ̄2
0t

2)− 1] exp(2b0t).
(2.54)

As before we consider two cases for X(0): X(0) = x0 is a fixed constant, and X(0) = X0

is a random variable. If X(0) = x0, then by (2.51) and (2.53) we find that the probability
density function fXt(x) of X(t) for any fixed t is given by

fXt(x) =
1

(x + c0)
√

2πσ̄0t
exp


−

[
ln

(
x+c0
x0+c0

)
− (b0t− 1

2
σ̄2

0t
2)

]2

2σ̄2
0t

2


 . (2.55)

From (2.51) and (2.54) we find that the mean and variance of X(t) for any fixed t are given
by

E(X(t)) = −c0 + (x0 + c0) exp(b0t),

Var(X(t)) = (x0 + c0)
2[exp(σ̄2

0t
2)− 1] exp(2b0t).

(2.56)

If X(0) = X0 is a random variable, then by (2.51) we have

X(t) = −c0 + (X0 + c0)Y (t), (2.57)

where again we assume that X0 and Y (t) are independent random variables. Then by (2.57)
and (2.54) we find that

E(X(t)) = −c0 + (E(X0) + c0) exp (b0t) ,

Var(X(t)) = (E(X0) + c0)
2[exp(σ̄2

0t
2)− 1] exp(2b0t)

+Var(X0)[exp(σ̄2
0t

2)− 1] exp(2b0t) + Var(X0) exp(2b0t).

(2.58)

Hence, each of (2.56) and (2.58) result in

dE(X(t))

dt
= b0(E(X(t)) + c0). (2.59)

Thus, with this choice of σ in the SDE of the stochastic formulation we obtain the same form
of mean growth dynamics as obtained in (1.4). Observe that the corresponding deterministic
growth model in this stochastic growth formulation is ẋ = b0(x + c0). Hence, by (2.9) and
(2.58) we find that that the expectation of the size process obtained from this stochastic
formulation agrees with that obtained from its corresponding cryptodeterministic model.
However, the variance obtained from this stochastic formulation, which is determined by both
variability in initial size and uncertainty in growth of each individual, is greater than that
obtained from its corresponding cryptodeterministic growth formulation. In addition, we see
that with this form of σ we obtain the same size process as we obtained from probabilistic
growth model (2.32) if σ̄0 = σ0 and their initial size distributions are the same.
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2.3 Summary Remarks

The arguments and discussions in Sections 2.1 and 2.2 reveal that the expectation of the size
stochastic process obtained from both the stochastic formulation and the probabilistic growth
model with a distribution on the affine growth term agree with that obtained from their
corresponding cryptodeterministic growth models, but this is not true for the probabilistic
growth model with a distribution on the intrinsic growth rate. Based on discussions from
Sections 2.1.4 and 2.2.2, we also see that the size distribution obtained from the stochastic
formulation is exactly the same as that obtained from probabilistic formulation if we consider
the models:

Stochastic formulation: dX(t) = b0(X(t) + c0)dt +
√

2tσ0(X(t) + c0)dW (t)

Probabilistic formulation:
dx(t; b)

dt
= (b− σ2

0t)(x(t; b) + c0), b ∈ R with B ∼ N (b0, σ
2
0),

with their initial size distributions X(0) the same (either deterministic or random).

We should observe that if in the probabilistic formulation we impose a normal distribution
N (b0, σ

2
0) for the intrinsic growth rate B, this is not completely reasonable in our motivating

application because the intrinsic growth rate can then be negative which results in the size
having positive probability of being negative as shown in (2.22) and (2.37) which actually
hold for −c0 < x < ∞. However, if σ0 is chosen to be much smaller than b0, then the
probability of the intrinsic growth rate being negative is negligible. For example, even if we
set σ0 to be 30% of the mean b0, then at least 99% of samples from N (b0, σ

2
0) are expected

to be positive. Thus, there is a slight inaccuracy between the model size process obtained
with a normal distribution on the intrinsic growth rate and the size process in the motivating
application (i.e., in which b is generally nonnegative). This is also true for the size stochastic
process obtained from stochastic formulation involving a Wiener process which also leads to
the size having the positive probability of being negative as evidenced in (2.46) and (2.55).
In actuality using these formulations for any computational population studies, one would
usually modify the normal distributions to prevent positive probabilities for negative sizes.
In our theoretical studies here we do not consider this detail because this would make any
theoretical comparisons between the probabilistic formulations and stochastic formulations
in a reasonable way an extremely formidable task (recall that all of our analysis depends
heavily on Lemma 2.1 which is very specific to the normal distribution). As noted above, if
we set σ0 in the probabilistic formulation and σ̄0 in the stochastic formulation to be much
smaller than b0, then all of the analyses in Sections 2.1 and 2.2 are a reasonable approximation
over relatively short time periods to models with essentially positive intrinsic growth rates
and positive sizes. These models in turn are a reasonable approximation to the processes
in the motivating application involving size-structured populations. More importantly, the
analyses here provide a reasonable foundation for choosing means and variances in the two
formulations to assure comparable uncertainty is being included when making computational
comparisons of the two very distinct approaches.
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3 Concluding Remarks

In this note we considered two distinct approaches, a probabilistic formulation and a stochas-
tic formulation, to incorporate growth uncertainty into size-structured population models.
The differences between these two approaches are summarized as follows:

• The growth uncertainty in the probabilistic formulation is introduced into the popu-
lation dynamics by a variability of growth rates among individuals in the population
and this results in a growth rate distribution on a family of admissible rates. For the
stochastic formulation, uncertainty is introduced into the population by the stochas-
ticity of the growth process for each individual and this results in the Fokker-Planck
model for the size densities.

• The growth process for each individual in the probabilistic formulation is a determinis-
tic one which actually leads to a stochastic process for size, while the growth process for
each individual in the stochastic formulation is directly formulated as a size stochastic
process.

• The expectation of the size process obtained from both the stochastic formulation and
the probabilistic growth model with a distribution on the affine growth term agree
with that obtained from their corresponding cryptodeterministic growth models, but
this is not true for the probabilistic growth model with a distribution on the intrinsic
growth rate. However, by proper choice of variability in each formulation, one can
obtain size stochastic processes with comparable means and variances even in the case
of a distribution on the intrinsic growth rates in the probabilistic formulations.

Future efforts include plans to incorporate uncertainty in the mortality and reproduction
rates into these models and investigate the differences between the distinct approaches in
modeling these uncertainties. We are currently using the theoretical results from this study
as a foundation for computational comparisons of the two formulations discussed here.
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[8] H.T. Banks, H.T. Tran, and D.E. Woodward, Estimation of variable coefficients in the
Fokker-Planck equations using moving node finite elements, SIAM J. Numer. Anal., 30
(1993), 1574–1602.

[9] G. Casella and R.L. Berger, Statistical Inference, Duxbury, California, 2002.

[10] F.L. Castille, T.M. Samocha, A.L. Lawrence, H. He, P. Frelier and F. Jaenike, Variability
in growth and survival of early postlarval shrimp (Penaeus vannamei Boone 1931 )
Aquaculture, 113 (1993), 65–81.

[11] T.C. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker, New York,
1988.

[12] A. Gross, S. Abutbul and D.Zilberg, Acute and chronic cffects of nitrite on white shrimp,
Litopenaeus vannamei, cultured in low-salinity brackish water, J. World Aquaculture
Soc., 35 (2004), 315–321.

21



[13] F. Klebaner, Introduction to Stochastic Calculus with Applications, Imperial College
Press, London, 1998.

[14] M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge,
2001.

[15] S. Laramore, C.R. Laramore, and J. Scarpa, Effect of low salinity on growth and survival
of postlarvae and juvenile Litopenaeus vannamei, J. World Aquaculture Soc., 32 (2001),
385–392.

[16] A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Biomathematics,
Vol. 10 , Springer-Verlag, Berlin, 1980.

[17] J. Ponce-Palafox, C.A. Martinez-Palacios and L.G. Ross, The effects of salinity and tem-
perature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei
Boone 1931, Aquaculture, 157 (1997), 107–115.

[18] J. W. Sinko and W. Streifer, A new model for age-size structure of a population, Ecology,
48 (1967), 910–918.

[19] P. Van Wyk, M. Davis-Hodgkins, C.R. Laramore, K.L. Main, J. Mountain and J. Scarpa,
Farming marine shrimp in recirculating freshwater systems, Florida Dept of Agriculture
and Consumer Services, Harbor Branch Oceanographic Institution, 1999.

22


