Award Number: W81XWH-04-1-0222

TITLE: Analysis of Morphogenic Effect of hDAB2IP on Prostate Cancer and its Disease Correlation

PRINCIPAL INVESTIGATOR: Jer-Tsong Hsieh, Ph.D.

CONTRACTING ORGANIZATION: University of Texas, Southwestern Medical Center
Dallas, TX 75390-9110

REPORT DATE: February 2007

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Imbalance of apoptotic and/or survival signaling cascade is a hallmark of malignant cell. In prostate cancer (PCa), constitutive activation of phosphatidylinositol 3-kinase (PI3K)-Akt/PKB and inactivation of apoptosis-stimulated kinase (ASK1)-JNK pathway signaling are often detected in metastatic cell. Understanding the underlying mechanism leading to such alternations will provide a better treatment strategy to control the terminal stage of this disease. In this project, we have proposed that DAB2IP protein, a novel RASGAP, is a part of homeostatic machinery and plays an important in modulating signal pathways elicited by exogenous survival/death stimuli. Our data clearly demonstrated that DAB2IP is a novel scaffold protein that complexes with key proteins involved in cell growth or death. The outcome of this study has led us to unveil a new mechanism of DAB2IP, which provides a better understanding how PCa cells switch from survival to death under the stimuli of exogenous signals.
Table of Contents

Introduction... 4

Body... 4

Key Research Accomplishments... 7

Reportable Outcomes... 7

Conclusions.. 8

References... 8

Appendices... 9
INTRODUCTION

Expression of Ras protein has also been assessed in primary and metastatic prostate cancer (PCa) tumors. Most tumors expressed higher Ras protein than normal prostate tissues (1). Also, an increased c-H-Ras mRNA expression in PCa is associated with the progression of PCa to androgen independence (2). Surprisingly perhaps, PCa specimens from American men have an extremely low rate of mutation in the Ras gene (3). This implies that other effectors may be involved in increasing RAS protein levels in PCa. DAB2IP appears to be a good candidate because it contains an amino acid sequence that is homologous to the GTPase activating protein (GAP) domain of other RasGAPs and it is functional active based on biochemical and molecular biologic studies (4). In addition to the GAP domain, DAB2IP contains several other functional motifs such as a pleckstrin homology domain (aa 20-70) with a high affinity to certain phosphoinositides, a C2 domain (aa 90-120) involved in binding phospholipids in a calcium-dependent or -independent manner, a proline-rich (PR) domain (aa 796-805) involved in interacting with proteins that contain a SH3 domain, and a leucine zipper (aa 842-861), which mediates dimerization. For example, the C2 domain of DAB2IP can bind and then activate apoptosis-stimulated kinase (ASK1) involved in the TNF-α-mediated apoptosis (5).

In addition to the interaction of C2 domain with ASK1, DAB2IP mutants defective in GAP activity failed to increase ASK1 activity, suggesting that the GAP activity of DAB2IP is required for TNF-α-elicited ASK1 activity (5). Also, the GAP activity of DAB2IP is known to be a negative regulator for Ras-Raf-ERK activation critical for cell growth. Thus, DAB2IP appears as a unique factor in modulating both cell growth and death by inhibiting Ras-Raf-ERK proliferative pathway (6) and activating ASK1-JNK/p38 apoptotic signaling. Very likely, other functional domains in DAB2IP have different roles in maintaining homeostasis of prostate epithelium.

RECENT PROGRESS

Overall, Task 1 and 2 are completed and Task 3 is completed 60%. In summary, we made several key progresses in this project: (1) Loss of DAB2IP expression is associated with the recurrent of androgen-independent (AI) PCa; (2) Loss of DAB2IP expression is mainly due to epigenetic regulation; (3) DAB2IP is a key homeostatic factor in balancing cell growth and apoptosis. Thus, I have summarized these new results as follows:

Task 3. To delineate signal cascade mediated by hDAB2IP protein complex in prostatic epithelium.

The role of DAB2IP in modulating cell survival and death

Cell homeostasis is a balance between cell proliferation, apoptosis and differentiation in basal and luminal epithelia. It is believed that loss of homeostatic control in these cells renders the onset of neoplasm in prostatic epithelium. Until now, a little is known about homeostatic machinery in normal prostatic epithelium. Recently, we identified DAB2IP as a new member of GTPase activating protein (GAP) family as a potent growth inhibitor in metastatic PCa cell lines (7) by inducing G0 cell cycle arrest and promoting apoptosis under stress factor (Fig. 1). It is known that the C2 domain can interact with ASK1 to facilitate TNF-α-mediated apoptosis by activating ASK1. Our preliminary data further indicated that the PR domain in DAB2IP is
critical for binding PI3K regulatory subunit (p85) and then suppresses the activation of Akt (Fig. 2); the first six amino acids of PR domain appear to be key binding site (Fig. 3). It appears that DAB2IP-mediated Akt inactivation can concomitantly enhance ASK1 activation leading to cell apoptosis. In contrast, DAB2IP siRNA can restore Akt activity, suppress ASK1 activation and reduce apoptosis (Fig. 4), indicating that DAB2IP is critical factor for interaction between Akt and ASK1. Taken together, we believe that DAB2IP is a novel scaffold protein for both survival and death signal molecules, by which DAB2IP complex is a key machinery to maintain homeostasis in normal cell.

Figure 1 The role of DAB2IP in PI3K inhibitor (LY294002)-induced cell apoptosis. DAB2IP-transfected PCa lines (C4-2) were determined for DAB2IP expression (a), then the total cell number (b), the percentage of apoptotic cell (c) and apoptotic hallmark-PARP cleavage (d) were determined after 24 hrs of treatment.

Figure 2 The level of phosphorylated Akt and total Akt in DAB2IP-transfected C4-2. Cells were treated LY294002 (10 μM) (a) or TNF-α (100 ng/ml) (b) for 30 min and total cell lysate was subjected to western blot analysis.

Figure 3 Determination of interactive domain in DAB2IP with the regulatory domain PI3K (p85). Using pull down (a) or immunoprecipitation (b), the first six amino acids in PR domain of DAB2IP is a critical binding domain with p85. The mutant can diminish the activity of DAB2IP in LY294002- or TNF-α-elicited cell apoptosis.
Figure 4 Reduction of LY294002- or TNF-α-mediated cell apoptosis by DAB2IP siRNA. Endogenous DAB2IP levels in PZ-HPV7 was decreased by DAB2IPsiRNA (a), which resulted in elevated activated Akt (b), decreased activated ASK1 (c) and decreased cell apoptosis (d) after treating with LY294002- or TNF-α.
KEY RESEARCH ACCOMPLISHMENT

• Clone mouse DAB2IP gene, map the promoter region and characterize epigenetic regulation (This work has been published on the cover page of DNA and Cell Biology journal).

• Generate a series of DAB2IP mutant constructs.

• Generate a DAB2IP knock out ES cell.

• Map new functional domain in DAB2IP for controlling cell survival.

• Determine the role of DAB2IP in cell survival/ apoptosis of PCa cells by various exogenous stimuli.

REPORTABLE OUTCOMES

CONCLUSIONS

Prostate homeostasis relies on a balance between cell proliferation, apoptosis and differentiation. We initially identified DAB2IP, a novel Ras-GTPase activating protein (Ras-GAP), as a DOC-2/DAB2-interacting protein from a yeast two-hybrid system. A blast search indicated that DAB2IP consists of several conserved structural domains—the pleckstrin homology (PH), the protein kinase C conserved region 2 (C2) and RasGAP at the N-terminal half, and at the C-terminal half a proline-rich sequence (PR) and a leucine-zipper motif (LZ). We have extensively characterized the structural and functional relationship of AIP1 involved in the TNF signaling pathways. Interestingly, DAB2IP mutants defective in GAP activity failed to increase ASK1 activity, suggesting that the GAP activity of AIP1 is required for AIP1-enhanced ASK1 activity. The GAP activity of Ras-GAP is known to be critical for regulation of Ras-Raf-ERK activation. The requirement for AIP1 GAP activity in ASK1-JNK activation is supported by observation that ERK exerts an inhibitory effect on ASK1-JNK signaling. Crosstalk among MAPKs, i.e. one MAPK (e.g. ERK) may inhibit or oppose the activation of another MAPK (e.g, JNK), has been well documented. Many stimuli reciprocally regulate ERK and JNK activation Conversely, ERK inhibition by DAB2IP (via GAP activity) may require for DAB2IP-enhanced ASK1-JNK activation. Now, our data have further established a linkage of PI3K, Ras-GAP to stress-activated ASK1-JNK signaling pathway. Further study of the role of DAB2IP in signal transduction will provide more understanding of recurrent AIPCa.
REFERENCES

Cloning of Mouse Dab2ip Gene, a Novel Member of the RasGTPase-Activating Protein Family and Characterization of Its Regulatory Region in Prostate

HONG CHEN,1 JOSE A. KARAM,1 ROGER SCHULTZ,2 ZHENGWANG ZHANG,1 CHRISTINE DUNCAN,2 and JER-TSONG HSIEH1

ABSTRACT

Disabled homolog 2 (Drosophila) interacting protein (DAB2IP/Dab2IP) is a member of the GTPase-activating protein for downregulating the Ras-mediated signal pathway and TNF-mediated apoptosis. The down-regulation of human DAB2IP mRNA levels was detected in prostate cancer cells due to the epigenetic regulation. Here, we isolated a mouse Dab2ip gene with a highly homologous sequence to that of the human and rat gene and mapped it at chromosome 2B. The mDab2ip gene contains 14 exons and 13 introns and spans approximately 65 kb. Exon1 contains at least three splicing variants (Ia, Ib, and Ic). The deduced amino acid sequence of mouse Dab2IP encompasses 1065 residues containing several unique protein interaction motifs as well as a Ras-like GAP-related domain, which shares a high homology with both humans and rats. Data from real-time RT-PCR analysis revealed a diverse expression pattern of the mDab2ip gene in various organs, implying differential regulation of this gene from various tissues. We have mapped a 1.3-kb segment containing a 5′-upstream region from exon Ia as a promoter region (−147/+545) in prostatic epithelial cell lines (TRAMP-C); this region is highly GC-rich, and mDab2ip appears to be a TATA-less promoter. It appears that epigenetic regulation, particularly histone acetylation of the Dab2ip gene promoter, plays an important role in modulating its gene expression in the mouse prostate cancer cell.

INTRODUCTION

Disabled homolog 2 (Drosophila) interacting protein (DAB2IP/Dab2IP) is a novel member of the Ras GTPase-activity family protein (Chen et al., 2002; Wang et al., 2002) DAB2IP is able to interact with DOC-2/DAB2 (Fulop et al., 1998; Tseng et al., 1999; Zhou and Hsieh, 2001; Zhou et al., 2003), and this protein complex modulates the Ras-mediated signal pathway, then causes the growth inhibition in prostate cancer cells (Wang et al., 2002). Also, DAB2IP (also named AIP1: ASK interacting protein 1) is involved in TNF-α-mediated cell apoptosis by facilitating dissociation of ASK1 from its inhibitor 14-3-3 (Zhang et al., 2003, 2004)

The higher hDAB2IP mRNA levels are detected in normal human prostatic epithelium than in prostate cancer cells, which is due to the epigenetic regulation (Wolffe and Matzke, 1999; Jones and Takai, 2001) such as DNA methylation and histone acetylation of the human DAB2IP (hDAB2IP) gene promoter (Chen et al., 2002, 2003). In breast cancer, DNA hypermethylation of hDAB2IP is also found in both breast cancer cell lines and specimens with lymph node metastasis, and hDAB2IP gene expression can be restored in methylated cell lines treated with 5-aza-2′-deoxycytidine (Dote et al., 2004). Also, hDAB2IP (alias for AFQ34) is identified as a novel MLL fusion partner from an acute myeloid leukemia (AML) patient with a t(9;11) (q34;q23) (Von Bergh et al., 2004). Thus, DAB2IP should be involved in carcinogenesis of various tissues.

To further unveil the physiological functions of mouse Dab2ip, we decided to clone and map its chromosomal location. With analyzing the structure of the mouse Dab2ip (mDab2ip) gene, we have assembled the entire gene sequence and its full-length mRNA with an open reading frame. We also...
profiled the \textit{mDab2ip} expression pattern from a variety of organs and cell lines. By determining the promoter sequence from the 5'-flanking region of the \textit{mDab2ip} gene in mouse prostatic epithelial cell lines provided clues for the transcriptional regulation of the \textit{mDab2ip} gene.

MATERIALS AND METHODS

Tissue culture, treatment, and RNA isolation

Three mouse transgenic prostate adenocarcinoma cell lines (TRAMP-C1, TRAMP-C2, and TRAMP-C3) (Greenberg et al., 1995; Foster et al., 1997; Gingrich et al., 1997) were maintained in DMEM supplemented with 5% FBS (HyClone, Logan, UT) plus 5% Nu-serum™ IV (BD Bioscience, Bedford, MA) and 50 ng/ml insulin (Sigma St. Louis, MO). The NIH-3T3 cell line was maintained in DMEM with 10% fetal bovine serum, and the PC3 cell line was maintained in T medium supplemented with 5% FBS. Total RNA from variant organs and cell lines were isolated using the RNAzol B (Tel-Test Inc., Friendswood, TX) according to the manufacturer’s instructions. For tissue RNA isolation, various organs (approximate 50 mg) were harvested from nude mice after euthanasia and were snap-frozen in liquid nitrogen until analysis was performed. Tissues were submerged with RNAzol B, quickly homogenized, then subjected to the same isolation procedure.

To study the effect of hisone acteylation, different concentrations (20, 40, and 100 nM) of Trichostatin (TSA), a histone deacetylase (i.e., HDAC) inhibitor, was changed every 24 h for 48 h. For studying the effect of DNA methylation, different concentrations (1, 2, and 5 \(\mu \)M) of 5-aza-2-deoxycytidine (5'-Aza), a DNA methyltransferase (DNMT) inhibitor, was changed every 48 h for 96 h. For the combination, 5'-Aza was first added and changed every 48 h; then TSA was added 72 h after treatment. Cells were collected at 96 h after treatment.

Cloning mouse \textit{Dab2ip} gene and sequence analysis

To obtain the entire coding region of mouse \textit{Dab2ip} cDNA, we performed RT-PCR from total cellular RNA from the mouse brain. Based on the high homology sequences between human and rat \textit{DAB2IP} cDNA (Chen et al., 2002; Wang et al., 2002), two sets of primer were synthesized (Table 1). PCR products were cloned into pCR2.1-TOPO vector (Invitroge, Carlsbad, CA) and sequenced, then used as probes for screening the \textit{mDab2ip} gene.

A mouse bacterial artificial chromosomal (BAC, RPCI.22) library (ResGen Invitrogen Corp., Huntsville, AL) was screened. The positive clones were subjected to Southern blot analysis and DNA sequencing for confirmation.

<table>
<thead>
<tr>
<th>Application</th>
<th>Primer name</th>
<th>Primer 5'–3' sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>5' RACE</td>
<td>Sp1 (outer)</td>
<td>ATACAGCAGACATCGTCCAGG</td>
</tr>
<tr>
<td></td>
<td>Sp2 (inner)</td>
<td>GTTCTCCATCACCACACCCGC</td>
</tr>
<tr>
<td>Real-time RT-PCR</td>
<td>F-mDab2ip</td>
<td>CGATAAGTGATGGAGAACCTGAG</td>
</tr>
<tr>
<td></td>
<td>R-mDab2ip</td>
<td>AGATGCTGACGGTCTGGTAGCGTC</td>
</tr>
<tr>
<td></td>
<td>F-Actin</td>
<td>TGTGTTGATGGTGCTCTATTC</td>
</tr>
<tr>
<td></td>
<td>R-Actin</td>
<td>CTGCTTGTGCTCCACATCTG</td>
</tr>
<tr>
<td>Probe 1 (800 bp)</td>
<td>F1-DAB2IP</td>
<td>TCGTGGAAGGACTCATGACC</td>
</tr>
<tr>
<td></td>
<td>R1-DAB2IP</td>
<td>TCCAACCCCTGCTCTGTA</td>
</tr>
<tr>
<td>Probe 2 (300 bp)</td>
<td>F2-DAB2IP</td>
<td>TGGACGATGTCGTCATGCCC</td>
</tr>
<tr>
<td></td>
<td>R2-DAB2IP</td>
<td>GATATGTTGATGTTGTTAG</td>
</tr>
<tr>
<td>Promoters</td>
<td>F1</td>
<td>GCTCCTCCACCTGCTCTTTTAG</td>
</tr>
<tr>
<td></td>
<td>F6</td>
<td>CCTGCTCCTCCACGCTTATTC</td>
</tr>
<tr>
<td></td>
<td>F8</td>
<td>CACCAAGAGCCAGCCAAAC</td>
</tr>
<tr>
<td></td>
<td>F10</td>
<td>ACCCTTGCTGCTTTCCACC</td>
</tr>
<tr>
<td></td>
<td>F12</td>
<td>GAGTCCTCGTGCTCCGATAC</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>TGCTCCTCCACCTCGATGTT</td>
</tr>
<tr>
<td>Mutagenesis</td>
<td>F-△Sp1</td>
<td>GCCGGGGGGGACGCGGCGGGAAGG</td>
</tr>
<tr>
<td></td>
<td>R-△Sp1</td>
<td>CTCGCGGCGCGCTGCCCCGCCC</td>
</tr>
<tr>
<td></td>
<td>F-△AP2</td>
<td>CTTCTCCCCCTTGAGGCTCTCCTAG</td>
</tr>
<tr>
<td></td>
<td>R-△AP2</td>
<td>CTGAGGAGAGCCCTGCAAGAGGGGAAG</td>
</tr>
<tr>
<td>Bisulfite-treated DNA</td>
<td>Fm</td>
<td>ATTAAGAGTTAGTTAAAAATGGAT</td>
</tr>
<tr>
<td></td>
<td>Rm</td>
<td>ACCTCACAACACCTCACAAATAC</td>
</tr>
<tr>
<td>Immunoprecipitated DNA (ChiP)</td>
<td>F (outer)</td>
<td>CCTGCTCTCCACGCTTTAGTT</td>
</tr>
<tr>
<td></td>
<td>R (outer)</td>
<td>TGTGTTGCTGCTCCAGTTTG</td>
</tr>
<tr>
<td></td>
<td>F (inner)</td>
<td>ATGGCACAGGCGGCTTACC</td>
</tr>
<tr>
<td></td>
<td>R (inner)</td>
<td>TTTGGGCTGGCTCTGTTG</td>
</tr>
</tbody>
</table>
Identification of transcriptional starting site (TSS) by 5’ RACE

To determine the transcriptional starting site of the mDab2ip gene, the total cellular RNA (10 µg) from two mouse organs (the brain and kidney) and two TRAMP-C lines (TRAMP-C1 and TRAMP-C2) was subjected to 5’ RACE using the FirstChoice™ RLM-RACE Kit (Ambion Inc., Austin, TX) according to the manufacturer’s manual. A random-primed reverse-transcription reaction and nested PCR (Fig. 2B and Table 1) were performed to amplify the 5’ end of the mDab2ip mRNA transcript. We analyzed the PCR product in a 2% NuSieve® 3:1 agarose gel (Cambrex BioScience, Rockland, MA) and then cloned it into pCR2.1-TOPO for sequence identification.

Determination of mDAB2IP mRNA levels by real-time quantitative RT-PCR (qRT-PCR) assay

Two micrograms of total cellular RNA were reversely transcribed into cDNA and amplified using either the mDab2ip primer set (2 ng/µl) or Actin primer set (6 ng/µl) (Table 1) in a 40-µl reaction mixture containing 20-µl IQ™ SYBR® Green Supermix (Bio-Rad, Hercules, CA). The PCR was performed using an iCycler machine (Bio-Rad) and the reaction condition was as follow: 95°C (3 min) and 40 cycles amplification cycle (95°C [30 sec], 55°C [30 sec], and 72°C [1 min]). To assure the quality of each reaction, melting curves analysis was performed using 95°C (1 min), 55°C (1 min), and 80 cycles of 0.5°C increment beginning at 55°C. Each sample was performed in duplicate. The level of mDab2ip mRNA from each organ was calculated as follows: ΔCt (threshold cycle) of each sample = mean of Ct(Dab2ip) − mean of Ct(Actin). The relative expression of mDab2ip in each organ was calculated as 1/2ΔCt(sample tissue) − ΔCt(spleen), since the spleen had the lowest Dab2ip mRNA level. Meanwhile, the levels of the mDab2ip mRNA from each cell line were calculated as 1/2ΔCt(sample cell) − ΔCt(TRAMP-C3), since TRAMP-C3 had the lowest expression of mDab2ip.

Fluorescence in situ hybridization (FISH) analysis

To determine the chromosomal localization of the mDab2ip gene, cells were steriley isolated from the spleens of 6-week-old mice.
old mice and set up in RPMI 1640 with glutamine, 20% FBS, and 50 µg lipopolysaccharide at 37°C for 42 h. At 42 h 0.75 µl of 10 µg/ml colcemid was added and incubated for 10 min. Cells were pelleted, resuspended in 1 ml of hypotonic KCl (prewarmed to 37°C), and incubated at room temperature for 15 min. The cells were then fixed in methanol:acetic acid (3:1) and spread on slides using heat treatment. DNA probes from BAC clones 22N15 and 301E21 were fluorescently labeled by nick translation using standard conditions. The probe was hybridized to mouse metaphase slides overnight in a HYBrite (Vysis, Inc., Downers Grove, IL) hybridization chamber and washed. The hybridization signal was viewed and analyzed on an Olympus AX70 fluorescence microscope and images captured using MacProbe software (version 4.4, Applied Imaging, San Jose, CA).

Construction of luciferase reporter plasmid containing the 5'-upstream regulatory sequence of the mDab2ip gene

To analyze the 5'-upstream regulatory sequence of the mDab2ip gene, a 1.3-kb fragment from -730 to +545 (transcription initial site as +1 predicted by 5'RACE data) containing the upstream region, exon Ia and partial intron Ia was amplified by PCR from clone 22N15. To further define the promoter region in the mDab2ip gene, a series of deletion mutants were generated by PCR (Table 1). The PCR products were subcloned into the pCR(-Blunt II TOPO vector (Invitrogen, Carlsbad, CA). After sequencing confirmation, they were further cloned a into pGL3 basic vector (Promega, Madison, WI) using KpnI/Xhol sites to generate pGL3–F1/R2 (from -730 to +545), pGL3–F6/R2 (from -421 to +545), pGL3–F8/R2 (from +6 to +545), pGL3–F10/R2 (from +249 to +545), pGL3–F12/R2 (from +445 to +545). The pGL3–F7/R2 contains a NcoI fragment (from -147 to +545) of mDab2ip. The pGL3–F6/NcoI contains a 0.3-kb insert from -421 to -157 and pGL3–F6/SacI contains a 0.4-kb insert from -421 to -97.

For mutagenesis studies, we used pGL3–F7/R2 as a template to generate deletion mutants: pGL3–ΔSp1 (deletion of potential Sp1 site from -124 to -114) and pGL3–ΔAP2 (deletion of potential AP2 site from -47 to -26) using a Quikchange® II XL Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA) with the primer set (Table 1).

Measurement of mDab2ip putative promoter activity using reporter gene assay

Both TRAMP-C1 and TRAMP-C3 were plated at a density of 0.6 × 10⁵ cells per well in a six-well plate. After 16 h, cells were transfected with both 0.8 µg of reporter vectors and the 0.2 µg β-galactosidase (β-gal) vector (pCH110) using LipoFectamine Plus transfection reagent (Invitrogen). Twenty-four hours after incubation, the transfected cells were treated with TSA for 24 h, 5’-Aza for 48 h, or a combination of both drugs by incubating 5’-Aza for 24 h then adding TSA for an additional 24 h. Cells were washed twice with cold phosphate-buffered saline (PBS) and harvested them in lysis buffer (Promega); then cell lysate was subjected to luciferase and β-gal assays as described previously (Chen et al., 2003). The relative luciferase activity (RLA) from each sample was determined by normalizing the luciferase activity with its β-gal activity. All experiments were repeated at least three times in triplicate.

FIG. 2. Chromosomal localization of the mDab2ip gene by FISH analysis. (A) A DAPI stained chromosomes (blue) with hybridized probe (red), and (B) a reversed image of the chromosomal staining.

CLONING OF MOUSE Dab2ip GENE
Chromatin immunoprecipitation (ChIP) assay

Chromatin Immunoprecipitation (ChIP) assay was performed as described previously (Chen et al., 2003) with a specific PCR primer set (Table 1). Precleared chromatin from 2 × 10⁶ cells was used for each ChIP sample. The 5-µg anti-Acetyl Histone H3 (Upstate, Lake Placid, NY) antibodies were used in the per ChIP assays. The immunoprecipitated DNA was amplified by genomic-PCR, and the PCR products were subjected to gel electrophoresis.

Bisulfite genomic sequencing

High molecular weight genomic DNA was obtained from NIH-3T3, TRAMP-C1, TRAMP-C2, and TRAMP-C3 cell lines and subjected to bisulfite modification as previously described (Chen et al., 2003). Bisulfite-modified DNA was amplified by PCR with specific primer set (Table 1). The PCR products were further subcloned into a TA cloning vector pCR2.1-TOPO, and at least five individual clones were sequenced using a reverse M13 primer.

RESULTS

Characterization of the mDab2ip gene

A mouse bacterial artificial chromosomal (BAC) library was screened with two partial mDab2ip cDNA probes. Three positive clones were identified (22N15, 301E21, and 538A16). Two of them (22N15 and 301E21) were chosen for further study because both contained the mDab2ip gene confirmed by PCR and Southern blot analysis using a 800-bp partial mDab2ip cDNA probe (data not shown). We performed sequencing analysis using Sp6 and T7 primers to analyze both clones. With the BLAST program (National Center for Biotechnology Information [NCBI], http://www.ncbi.nlm.nih.gov), we matched these two clones with the Mus musculus chromosome 2 genomic contig sequence (accession no. NT_039206). The sequence data showed the 3’ end sequencing (T7 primer) of clone 22N15 aligned with the middle portion of the mDab2ip gene and the 5’ end sequence (Sp6 primer) aligned with 5’ upstream of NT_039206. The sequence of clone 301E 21 spans the entire mDab2ip gene except the 5’ upstream regulation region (Fig. 1A). Furthermore, we performed fluorescence in situ hybridization (FISH) analysis using 22N15 and 301E21 as probes; we were able to locate the mDab2ip gene at chromosome 2B (Fig. 2A and B).

We deduced the exon–intron junction of mDab2ip by aligning its cDNA sequence with NT_039206. Furthermore, we confirmed all predicted exon–intron boundaries by PCR and DNA sequencing, which junction coincides with the GT . . . AG rule. It appears that the mDab2ip gene contains 14 exons and 13 introns (Fig. 1A and Tables 2 and 3). Noticeably, exon 1 is a non-coding exon that was separated from exon 2 by a large intron (>10 kb). The translation initiation site (ATG) is mapped at the 11-bp downstream from the 5’-end of exon 2 and the protein termination site (TAA) is located at exon 14 followed with a large untranslated sequence.

To further determine the transcription starting site(s) of the mDab2ip gene, we designed two mDab2ip-specific primers (Sp1, Sp2) to combine with universal outer and inner adapter primers for nested PCR (Fig. 1B). As shown in Figure 1C, two PCR transcripts (300 and 600 bp) were detected from RNA isolated from the mouse brain and two mouse prostatic epithelial cell lines (TRAMP-C1 and -C2). In contrast, only one single transcript (300 bp) was detected from kidney RNA. DNA sequencing data revealed at least three variants form the exon 1. The mDab2ip mRNA from the mouse brain and TRAMP-C contains both exon 1a and exon 1b; the mDab2ip mRNA from the mouse kidney contains exon 1c.

A high homology of deduced protein sequence among mouse Dab2IP, and human, and rat DAB2IP

In our recent study (Chen et al., 2002), we show that the deduced Dab2IP protein sequence is remarkably similar between

<table>
<thead>
<tr>
<th>Exon</th>
<th>mDab2ip mRNA a</th>
<th>mDab2ip mRNA b</th>
<th>mDab2ip mRNA c</th>
<th>Amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(6109bp)</td>
<td>(6392bp)</td>
<td>(6051bp)</td>
<td>(1065aa)</td>
</tr>
<tr>
<td>Ia</td>
<td>1–134</td>
<td>1–147</td>
<td>1–76</td>
<td>1–48 (48)</td>
</tr>
<tr>
<td>Ib</td>
<td>135–288 (154)</td>
<td>418–571 (154)</td>
<td>77–230 (154)</td>
<td>49–81 (33)</td>
</tr>
<tr>
<td>Ic</td>
<td>*ATG (145–147)</td>
<td>*ATG (428–440)</td>
<td>*ATG (87–89)</td>
<td>82–266 (185)</td>
</tr>
<tr>
<td>IV</td>
<td>388–942 (555)</td>
<td>671–1225 (555)</td>
<td>330–844 (555)</td>
<td>315–363 (49)</td>
</tr>
<tr>
<td>VI</td>
<td>1088–1232 (145)</td>
<td>1371–1515 (145)</td>
<td>1030–1174 (145)</td>
<td>443–590 (67)</td>
</tr>
<tr>
<td>VII</td>
<td>1233–1469 (237)</td>
<td>1516–1752 (237)</td>
<td>1175–1411 (237)</td>
<td>510–569 (60)</td>
</tr>
<tr>
<td>IX</td>
<td>1672–1850 (179)</td>
<td>1955–2133 (179)</td>
<td>1614–1792 (179)</td>
<td>866–915 (50)</td>
</tr>
<tr>
<td>X</td>
<td>1851–2739 (889)</td>
<td>2134–3022 (889)</td>
<td>1793–2681 (889)</td>
<td>916–981 (66)</td>
</tr>
<tr>
<td>XII</td>
<td>2893–3086 (194)</td>
<td>3176–3369 (194)</td>
<td>2835–3028 (194)</td>
<td>1011–1065 (55)</td>
</tr>
<tr>
<td>XIII</td>
<td>3087–3174 (88)</td>
<td>3370–3457 (88)</td>
<td>3029–3116 (88)</td>
<td>3117–6051 (2935)</td>
</tr>
<tr>
<td>XIV</td>
<td>3175–6109 (2935)</td>
<td>3458–6392 (2935)</td>
<td>3117–6051 (2935)</td>
<td>3117–6051 (2935)</td>
</tr>
</tbody>
</table>

* TAA (3340–3342) * TAA (3623–3625) * TAA (3282–3284)
mDab2ip (Chen et al., 2003). It indicates that the mDab2ip gene is a typical TATA-less promoter.

To analyze the promoter region of the mDab2ip gene, a 1.3-kb fragment from position −730 to +545 (transcription initial site) was detected in the hDAB2IP gene (Chen et al., 2002). Moreover, the reporter gene activity of the mDab2ip promoter constructs was much higher in NIH-3T3 cell line (≈8.5-fold higher than TRAMP-C3); TRAMP-C1 and -C2 lines (≈3-fold) had moderate expressions, and the TRAMP-C3 line had the lowest expression (Fig. 4B). PC-3, a human prostate cancer cell line, was used as a negative control (Chen et al., 2003).

Analysis of the 5′-upstream sequence of the mDab2ip gene

To analyze the promoter region of the mDab2ip gene, a 1.3-kb fragment from position −730 to +545 (transcription initial site) was detected in the hDAB2IP gene (Chen et al., 2002). Moreover, the reporter gene activity of the mDab2ip promoter constructs was much higher in NIH-3T3 cell line than two other mouse prostatic epithelial cell lines (Fig. 5C). In both TRAMP-C1 and TRAMP-C3 cells (Fig. 5D), we observed two constructs (i.e., pGL3–F6/R2 and pGL3–F7/R2) expressed higher luciferase reporter gene activity than that of pGL3–F1/R2 (from −730 to −545); TRAMP-C1 and -C2 lines (≈3-fold) had moderate expressions, and the TRAMP-C3 line had the lowest expression (Fig. 4B). PC-3, a human prostate cancer cell line, was used as a negative control (Chen et al., 2003).

Expression profile of mDab2ip mRNA in different mouse tissues and cell lines

To determine the tissue distribution of mDab2ip mRNA, we performed a real-time RT-PCR analyses (Fig. 4A). Results indicated a unique expression pattern in certain organs. For example, mDab2ip was most abundant in the brain (72.5-fold), salivary gland (38.7-fold), and testis (21.3-fold); quite low expression in the coagulation gland (38.7-fold), and testis (21.3-fold); moderate expression in the kidney (15.0-fold) and heart (11.3-fold); low expression in the spleen, which has the lowest expression level (1.0) among all the organs tested. This pattern of expression is consistent with our previous report (Wang et al., 2002) and gene card expression pattern (http://bioinformatics.weizmann.ac.il/cards-bin/ariddisp?DAB2IP) except the expression level of Dab2ip detected from the heart.

In several established mouse cell lines, we also observed a differential expression level of the mDab2ip transcript. In general, the highest level of mDab2ip mRNA was detected in the NIH 3T3 cell line (≈8.5-fold higher than TRAMP-C3); TRAMP-C1 and -C2 lines (≈3-fold) had moderate expressions, and the TRAMP-C3 line had the lowest expression (Fig. 4B). PC-3, a human prostate cancer cell line, was used as a negative control (Chen et al., 2003).
FIG. 3. The predicted functional domain of the mDab2ip protein. (A) Alignment of mouse (m) Dab2IP, human (h), and rat (r) DAB2IP proteins exhibited a high sequence homology. Potential functional domains are shaded and underlined. Shaded letters indicate the nonidentical amino acids. (B) Schematic representation of mDab2ip protein. PH (phosducin homology domain, amino acids 30–79); C2 (protein kinase C conserved region 2 domain, amino acids 90–189); RasGAP (Ras GTPase-activator domain, amino acids 212–539); PR (proline-rich domain, amino acids 796–805); and LZ (leucine zipper domain, amino acids 911–932).
pGL3–F6/SanDI (from −421 to −97). We therefore conclude that the basal promoter region of the mDab2ip gene is between −147 and +545. Noticeably, a good correlation between the mDab2ip mRNA level and the reporter gene activity was observed in these TRAMP-C cells, indicating that this is a promoter operative in mouse prostatic epithelial cells.

To further identify the role of cis-elements such as Sp1 and AP2 in modulating the basal activity of the mDab2ip gene promoter in both TRAMP-C1 and TRAMP-C3 cells, we examined the reporter gene activity from either pGL3–ΔSp1, or pGL3–ΔAP2 in these cells. The luciferase activity of both mutants did not change compared with that of pGL3–F7/R2 in these two cell lines (Fig. 5D), suggesting that either factor is not critical for maintaining the basal mDab2ip gene promoter activity in TRAMP-C cells. In contrast, the luciferase activities of both mutants in NIH-3T3 cell line reduced dramatically (Fig. 5E), indicating that that either the Sp1 or AP2 site is critical for mDab2ip gene promoter activity in NIH-3T3.

Epigenetic regulation of mDab2ip promoter activity in prostatic epithelium

To understand the underlying mechanism(s) leading to the downregulation of mDab2ip gene expression in TRAMP-C3 cells, two common epigenetic regulatory pathways (ie., histone acetylation and DNA methylation) were analyzed using epigenetic modifiers such as TSA and 5′-Aza. As shown in Figure 6A, TSA or 5′-Aza could increase mDab2ip mRNA levels in the TRAMP-C3 cell in a dose-dependent manner, and the combination exhibited an additive effect, suggesting that both agents might mediate through a similar pathway.

We further investigated whether the status of acetyl histone H3 (H3) in the mDab2ip promoter region correlated with the induction of both agents. As shown in Figure 6B, the elevated levels of acetyl H3 associated with the promoter region (from −154 to +7) were detected in TRAMP-C3 cells treated with a single agent or a combination, and the combination exhibited an additive effect, suggesting that both agents might mediate through a similar pathway.

Moreover, we examined the DNA methylation status of CpG islands (from +8 to +294 region) of the mDab2ip promoter from several mouse prostatic epithelial cells using bisulfite DNA sequencing assay. Data from Figure 6C indicated that DNA methylation was rarely detected at the CpG sites (Fig. 6C). Taken together, we believe that histone acetylation play a more critical role than DNA methylation in modulating the mDab2ip gene expression.
FIG. 5. Characterization of the mDab2ip gene promoters. (A) The predicted regulatory sequences of the mDab2ip gene. Exon 1a sequence of the mDab2ip gene is underlined. The putative cis-acting elements are boxed. Primer sequences (bold letters) and restriction endonucleases sites (bold letters and underlined) were used in subsequent cloning for reporter constructs. The transcription start site (TSS) as +1 was predicted by 5' RACE.
DISCUSSION

The mDab2ip gene spans approximately 65 kb, containing 14 exons and 13 introns with at least three variants: exon Ia, exon Ib, and exon Ic found from different sources of RNA using the 5’RACE assay. All three splicing sequences of mDab2ip P cDNA have been submitted to the GenBank™ (AY305656 [mDab2ip a]; AY 305657 [mDab2ip b]; AY305658 [mDab2ip c]). Using FISH analysis, mDab2ip was localized at chromosome band 2B (Fig. 2), which is consistent with the LocusLink program analysis (http://www.ncbi.nih.gov/LocusLink).

In this study, we performed a real-time RT-PCR to demonstrate the mDab2ip mRNA levels in different organs (Fig. 4A). Very abundant mDab2ip mRNA levels were found in the brain, salivary gland, and testis, and the moderate levels were found in the kidney and heart. In addition, organs such as the lung, seminal vesicle, ventral prostate, epididymis, liver, and bladder only express low levels of Dab2ip mRNA. Also, the lowest level of Dab2ip mRNA was detected in the coagulation gland, skeletal muscles, and spleen. Such a diverse expression pattern of the Dab2ip gene implies that mDab2ip may have a unique physiological function in a specific organ. To gain the insight of the mechanisms of mDab2ip transcriptional regulation, we isolated an ~1.3 kb (Fig. 5A) fragment containing a 5’-upstream region.
from exon Ia, and we found very rich GC-rich sequences and no canonical TATA boxes in this region. Nevertheless, we have shown that the 5'-flanking region from positions −730/+545 could enhance the reporter gene activity, and it contained the basal promoter (−147/+545) and a negative regulatory element (−730/−421) (Fig. 5). In this region, several putative cis-elements could underlie the differential Dab2ip gene expressions in various organs or cells, so we have employed a series of mutants (Fig. 5D and E) to examine the role of two common cis-elements such as Sp1 and AP2 in maintaining the basal promoter activity of the mDab2ip gene. In NIH-3T3, both cis-elements are critical for maintaining the basal promoter activity of the mDab2ip gene (Fig. 5E). However, in prostatic epithelium, either cis-element may not play a critical role in modulating the basal promoter activity of the mDab2ip gene (Fig. 5D). Instead, the status of histone acetylation but not DNA methylation associated with the mDab2ip promoter region correlates with its gene induction in the TRAMP-C3 (Fig. 6). It also appears that 5'-Aza is able to increase the acetylated histone levels associated with the mDab2ip promoter region. A similar observation was demonstrated in our previous studies (Chen et al., 2003), since it is known that the hypomethylation agent can cause the disassociation of the transcription repressor complex containing both DNMT and HDAC (Jones and Baylin, 2002).

FIG. 5. Continued. (D) Mapping core of the mDab2ip promoter region in TRAMP-C1 and TRAMP-C3. (E) Evaluating the role of two cis-elements (Sp1 and AP2) in modulating mDab2ip promoter activity in NIH-3T3 cells. Bars, SD.
In our previous publications (Chen et al., 2002; Wang et al., 2002), we found the translation initiation site (ATG) of DAB2IP at 63-bp from the 5’-H11032-end of exon 3 and predicted a putative open reading frame encoding the 967-amino acid for hDAB2IP or the 996-amino acid for rat DAB2IP (rDAB2IP). However, the updated sequence data from NCBI (accession no. NP_619723) indicate that an additional ATG site is mapped at 11-bp from the 5’-H11032-end of exon 2 that was also detected in mDab2ip. Thus, predicted mDab2ip protein encodes the 1065-amino acid containing an additional 69-amino acid with a PH domain. The PH domain is a short motif that mediates membrane localization, and is found in many proteins involved in signal transduction, including GAPs for Ras (Shaw, 1996; Rebecchi and Scarlata, 1998). The predicted protein sequence alignment between mouse and human DAB2IP is remarkably conserved. Von Bergh et al. (2004) reported that the hDAB2IP is the alias for the AF9Q34 gene (accession no. AY032952) as a novel fusion partner of MLL in the AML patient with (9;11) translocation. The juxtaposition of MLL intron 9 into exon 2 of AF9Q34 will result in the loss of the exon 2 splicing donor site. Consequently, the hDAB2IP/AF9Q34 exon 2 sequences will be spliced out and result in an MLL-exon 9/AF9Q34-exon 3 fusion product. In this case, the AF9Q34-MLL fusion protein does not contain the PH domain, implying that the normal function of the AF9Q34 gene may be altered due to the chromosomal translocation.

Sequence analysis of mDab2ip revealed the presence of a highly conserved GAP-related domains (GRD), the catalytic unit to stimulate the GTPase activity of Ras proteins, in the N-terminus of mDab2ip. GRD is a characteristic domain in all RasGAPs such as human neurofibromin (NF1), rat SynGAP, p120GAP, and human nGAP (Bernards et al., 1992; Davis et al., 1993; Li et al., 1996; Kim et al., 1998; Noto et al., 1998;
Glanzer et al., 2002. Homayouni et al. (2003) suggest that Dab2IP may function as a downstream effector in the Reelin-signaling pathway that influences Ras signaling during brain development. With the cloning of this gene from the mouse, studying the functional role of this gene in brain development as well as prostate carcinogenesis can be feasible.

ACKNOWLEDGMENTS

We thank Dr. Norman Greenberg (Baylor College of Medicine) for providing TRAMP-C cell lines, and Kenneth S. Koeneman (UT Southwestern Medical Center) for reading this manuscript. This work is supported in part by United States Army Grants W81XWH-04-1-0222 and DAMD17-03-2-0033. Sequence data from this article have been deposited into the EMBL/GenBank Data Libraries under accession number AJ305656, AJ305657, and AJ305658.

REFERENCES

Address reprint requests to:

J.-T. Hsieh, Ph.D.
Department of Urology
University of Texas Southwestern Medical Center
5323 Harry Hines Blvd.
Dallas, TX 75390-9110

E-mail: JT.Hsieh@UTSouthwestern.edu

Received for publication June 12, 2005; received in revised form August 15, 2005; accepted January 17, 2006.