Award Number: W81XWH-05-1-0582

TITLE: Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

PRINCIPAL INVESTIGATOR: Rumi S. Bhattacharyya, Ph.D.

CONTRACTING ORGANIZATION: Leland Stanford Junior University
Stanford, CA 94305-4125

REPORT DATE: October 2007

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

E-Mail: rumib@stanford.edu

Leland Stanford Junior University
Stanford, CA 94305-4125

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

The androgen receptor (AR) plays a key role in the development and progression of prostate cancer. Targeting the AR for down-regulation would be a useful strategy for treating prostate cancer, especially hormone-refractory or androgen independent prostate cancer (AIPC). In the present study we showed that the antiestrogen Fulvestrant (ICI 182,780, ICI) effectively suppressed AR expression in several human prostate cancer cells including androgen-independent cells. In LNCaP cells, ICI (10 µM) treatment decreased AR mRNA expression by 43% after 24 hours and AR protein expression by approximately 50% after 48 hours. We further examined the mechanism of AR down-regulation by ICI in LNCaP cells. ICI did not bind to the T877A mutant AR present in the LNCaP cells nor did it promote proteasomal degradation of the AR. ICI did not affect AR mRNA or protein half-life. However, ICI decreased the activity of an AR promoter-luciferase reporter plasmid transfected into LNCaP cells, suggesting a direct repression of AR gene transcription. As a result of AR down-regulation by ICI, androgen induction of PSA mRNA and protein expression were substantially attenuated. Importantly, LNCaP cell proliferation was significantly inhibited by ICI treatment. Following 6 days of ICI treatment a 70% growth inhibition was seen in androgen stimulated LNCaP cells. These data demonstrate that the antiestrogen ICI is a potent AR down-regulator that causes significant inhibition of prostate cancer cell growth. Our study suggests that AR down-regulation by ICI would be an effective strategy for the treatment of all prostate cancer, especially AR-dependent AIPC.

Prostate Cancer (PCa), Androgen-Independent Prostate Cancer (AIPC), Estrogens, Antiestrogens, Selective Estrogen Receptor Modulators (SERMs)
INTRODUCTION

Prostate cancer (PCa) is the most commonly diagnosed cancer and the second leading cause of cancer death in men in the United States (1). For patients with localized PCa, initial treatment includes surgery or radiation as a means of removing or destroying tumor cells localized within the prostate capsule (2, 3). For those men not cured by primary therapy, androgen deprivation therapy is often successful in causing cancer regression since these cancers almost always express the androgen receptor (AR) and exhibit androgen-dependent growth (4). Unfortunately, most men eventually fail androgen deprivation therapy and their disease transforms from androgen-dependent to an androgen-independent PCa (AIPC), progressing even in the presence of castrate levels of androgens (2-4). Currently, there is no therapy that successfully treats AIPC.

A significant proportion of AIPC exhibits AR expression (5, 6) and some AIPC patients express up to 70-fold higher levels of AR mRNA and increased AR protein compared to primary PCa patients (5, 7). In a recent study by Chen et al, AR mRNA was found to be universally upregulated in all of the hormone-refractory PCa (AIPC) models that were examined (6). Several mechanisms or pathways influence the development of AIPC allowing the AR to stimulate proliferation even in the absence of androgens. These include the presence of i) a “hypersensitive” AR, often resulting from AR overexpression due to gene amplification or increased sensitivity to very low androgen levels, ii) a “promiscuous” AR harboring mutations in its ligand binding domain (LBD) that allow non-androgen ligands to bind and activate the AR, and iii) an “outlaw” AR which is activated in a ligand-independent manner, often through cross-talk with other signal transduction pathways (8). Regardless of the mechanisms underlying AIPC development, the AR appears to be a key protein involved in many cases of AR-dependent AIPC and is critical for promoting PCa cell growth.

Since the AR is clearly a critical factor in PCa and AIPC development, down-regulating or reducing the AR would be a very useful strategy for treating AR-dependent PCa (9). Thus far, the techniques that have been used to down-regulate the AR include antisense oligonucleotides (10, 11), ribozyme treatments (12, 13), AR dominant negatives (14) and small interfering RNAs (siRNA) (15-17). Reducing AR levels by these various means results in the inhibition of PCa cell growth and PSA expression while the siRNA knock-down of AR expression also leads to significant apoptotic cell death in androgen-sensitive and androgen-independent PCa cells (15-17).

Estrogens and androgens are known to exert opposing effects on each other’s actions in many tissues (18-20). We have shown in earlier studies that estrogens repress AR expression in human breast cancer cells (20). We hypothesized that a group of compounds that potentially down-regulated the AR (Selective Androgen Receptor Down-Regulators, SARDs) would also decrease the growth of AR-dependent PCa cells. Of the compounds examined, the antiestrogen Fulvestrant, also known as ICI 182,780 or Faslodex (abbreviated as ICI), exhibited the most potent AR down-regulatory effect. ICI caused significant suppression of AR mRNA and protein expression, AR mediated functional responses, and cell proliferation in LNCaP PCa cells. Further studies carried out to unravel the mechanism of the down-regulation suggested that the ICI effect was due to a direct transcriptional repression of the AR gene.
The objective of this study was to examine a group of compounds that could potentially down-regulate the androgen receptor (Selective Androgen Receptor Down-Regulators, SARDs). Based on our preliminary data, we identified a candidate SARD, the anti-estrogen ICI 182,780 (also called Fulvestrant or Faslodex, abbreviated as ICI). The effects of ICI on androgen receptor down-regulation were studied in depth in this project. The results of this study were published in Molecular Cancer Therapeutics. Please see the attached manuscript in the appendix for full experimental details and description of methods. Figure numbers (1-6) referred to in the text below correspond directly with the figures in the attached manuscript.

This project was divided into three parts, as described in the statement of work. The results for each section of the project are summarized below.

Task 1: To screen candidate compounds for SARD activity, study their actions on the androgen receptor (AR), and to more fully characterize the compounds with the best SARD activity profile.

In the first part of the study we screened candidate compounds for SARD activity. We examined the effect of several estrogenic molecules and antiestrogens on AR expression in LNCaP human prostate cancer (PCa) cells. These compounds included 17β-estradiol (E$_2$), the phytoestrogens genistein and daidzein, selective estrogen receptor modulators (SERMs) such as tamoxifen and raloxifene, and the antiestrogen ICI 182,780. Of the compounds examined, ICI 182,780 had the greatest inhibitory effects on AR expression (Fig. 1). ICI treatment decreased AR expression as measured by $[^3]$H-DHT binding and western blotting analysis (Fig. 2). The greatest inhibitory effects on AR protein expression were observed after 48 hours of 10 µM ICI treatment.

Since the AR in LNCaP cells has a mutation in its ligand binding domain (21), we determined whether ICI had any effects on cell lines harboring the wild-type AR, such as LAPC-4 human PCa cells and T47D breast cancer cells. In both the LAPC-4 and T47D cells, ICI (10 µM) elicited smaller but statistically significant decreases (15-25% inhibition) in $[^3]$H-DHT binding (Fig. 1B), demonstrating that ICI down-regulated the expression of both mutant and wild-type AR. We also examined the effects of ICI on AR expression in androgen-independent PCa cells such as 22Rv1 (22, 23), LN95, and LN97 (24). In all three cell lines examined, ICI (10 µM) decreased $[^3]$H-DHT binding by 20-25% after 48 hours of treatment (Fig. 1B). These results suggest that ICI decreases AR expression in both androgen-dependent and androgen-independent PCa cells.

The AR expressed in LNCaP cells contains a point mutation (T877A) in its ligand binding domain that relaxes its specificity and allows non-androgenic ligands to bind to and activate the receptor (21). Several non-androgenic steroids such as progestins, glucocorticoids, as well as various estrogenic molecules have been shown to bind to the T877A mutant AR (25, 26). Therefore we examined whether ICI could bind to the T877A mutant AR in LNCaP cells and thereby promote AR protein degradation in a manner similar to its effects on the ER. Competition binding assays were performed in nuclear extracts of LNCaP cells utilizing $[^3]$H-DHT as the ligand and increasing concentrations of radioinert DHT, 17β-estradiol, and ICI as competitors. Unlike radioinert DHT
and E2, increasing concentrations of ICI up to a 1000-fold excess of \[^{3}H\]-DHT did not displace \[^{3}H\]-DHT bound to the AR, demonstrating that ICI did not bind to the mutant AR (Fig. 3A).

Since the antiestrogen ICI is known to down-regulate estrogen receptors (ER) levels and we showed down-regulation of AR (27). We wished to determine whether ICI modulated the expression of other nuclear receptors as well. We examined the ICI effect on vitamin D receptor (VDR) levels in LNCaP cells. ICI treatment of LNCaP cells for 48 hours did not significantly change VDR levels as measured by \[^{3}H\]-1,25(OH)\(_2\)D\(_3\) binding (Control VDR levels = 9.87 ± 2.9 fmol/mg, ICI treated VDR levels = 9.98 ± 1.7 fmol/mg). These data suggest that the ICI mediated down-regulation is not a general effect on all nuclear receptors.

Task 2: To examine the down-stream effects of SARD treatment on AR function and proliferation in PCa cells harboring wild-type, hypersensitive, promiscuous, and outlaw form of the AR

We next examined the ability of ICI to decrease androgen stimulation of LNCaP cell proliferation. LNCaP cells were treated for 6 days with ICI (1-50 µM) in media containing charcoal-stripped serum. The inhibitory effect of ICI on cell proliferation was maximal at 10 µM producing a 48% inhibition in cell growth (Fig. 6A). The effect of ICI on cell proliferation was also examined in LNCaP cells stimulated with a synthetic androgen (R1881). LNCaP cells were cultured for 6 days in media containing 5% charcoal-stripped serum and 0.1 nM R1881 in the presence or absence of ICI (10 µM) (Fig. 6B). R1881 at a low concentration of 0.1 nM stimulated the proliferation of LNCaP cells. ICI (10 µM) alone significantly inhibited basal LNCaP cell proliferation. ICI also significantly attenuated R1881 stimulated growth by approximately 70% (Fig. 6B). Western blotting analysis confirmed that AR expression remained suppressed following 6 days of ICI treatment.

We next assessed whether the decrease in AR levels due to ICI treatment would result in the attenuation of AR-mediated functional responses in LNCaP cells. The effect of ICI on androgen-induced PSA mRNA expression and PSA secretion were determined. LNCaP cells were treated with ICI (10 µM) in the absence or presence of the synthetic androgen R1881. R1881 (0.1-10 nM) substantially induced PSA mRNA expression in LNCaP cells (Fig. 5A). Co-treatment with ICI totally abolished the induction of PSA mRNA seen at 0.1 nM R1881 and restored the values to control levels. ICI partially reversed the induction seen at higher concentrations (1 nM and 10 nM) of R1881 (approximately 20% inhibition). ICI treatment alone appeared to slightly decrease basal PSA mRNA expression.

We also examined the effect of ICI on basal as well as androgen-stimulated secretion of PSA protein (Fig. 5B). LNCaP cells were treated for 6 days with 0.1% ethanol vehicle or 0.1 nM R1881 with and without ICI (1-10 µM) co-treatment. Conditioned media from treated cells were collected during the last three days of treatment and PSA concentrations were determined by an ELISA. Treatment with 0.1 nM R1881 resulted in approximately a 3-fold increase in the levels of secreted PSA. ICI dose-dependently inhibited androgen stimulated PSA secretion. The lowest concentration of ICI (1 µM) elicited a 55% inhibition in the R1881 stimulated PSA secretion and the highest concentration of ICI examined (10 µM) decreased PSA secretion by
90% (Fig. 5B). As shown in Fig. 5C, ICI treatment alone decreased basal PSA secretion to almost undetectable levels. A higher concentration of R1881 (10 nM) caused a much more substantial increase (approximately 25-fold over control) in secreted PSA which was significantly decreased (to approximately 5-fold over control) by ICI co-treatment (Fig. 5C).

Task 3: To determine the mechanisms mediating AR down-regulation by SARD compounds. Based on the results of our preliminary data, we will focus on our “lead candidate” SARD, ICI 182,780.

Previous studies on the effects of ICI on ER have shown that ICI binds to the ER and prevents estrogen signaling thereby acting as an antiestrogen (27). At the same time, by binding to the ER, ICI decreases the stability of the ERα protein and promotes ERα degradation by the proteasome (28, 29). We examined the effect of the proteasomal inhibitor, PS-341 (Bortezomib, Velcade®, Millennium Pharmaceuticals) on AR down-regulation by ICI (30). The ICI effect on ERα protein degradation in MCF-7 breast cancer cells was assessed in parallel assays as a positive control. As expected in the presence of the proteasomal inhibitor PS-341, the down-regulation of ERα by ICI was abolished. PS-341 treatment by itself caused a slight decrease in AR protein in LNCaP cells (Fig. 3B). Co-treatment with PS-341 did not prevent the decrease in AR protein levels elicited by ICI suggesting the lack of involvement of the proteasomal pathway in AR down-regulation by ICI.

We also determined whether ICI treatment altered AR protein half-life. After 24 hours of 0.1 % ethanol vehicle (Control) or ICI (10 µM) treatment, LNCaP cells were treated with the protein synthesis inhibitor, cycloheximide (CHX) at 2.5 µg/ml. Cells were harvested at 2 hour intervals following CHX treatment and AR protein expression was examined by Western blotting analysis (Fig. 3C). ICI treatment did not significantly change AR protein half-life suggesting that ICI does not have any post-translational effects on AR down-regulation.

We examined the effects of ICI on AR mRNA expression by using real time RT-PCR analysis. Time course experiments demonstrated that AR mRNA expression in LNCaP cells was decreased by 34% as early as 4 hours after ICI (10 µM) treatment (Fig. 4A). These inhibitory effects persisted after 6 and 24 hours of ICI treatment, producing a 40-45% decrease in AR mRNA expression. By 48 hours of ICI treatment the down-regulatory effects of ICI subsided. In parallel, we measured VDR mRNA expression after ICI treatment and no significant changes in VDR mRNA were apparent (data not shown) suggesting the selectivity of the down-regulatory effects of ICI on AR mRNA.

We carried out the following experiments to distinguish between transcriptional and post-transcriptional effects of ICI. LNCaP cells were treated with 10 µM ICI in the absence and presence of various concentrations (up to 1 µg/ml) of the protein synthesis inhibitor CHX and AR mRNA levels were measured. Figure 4B illustrates the lack of an effect of 0.25 µg/ml CHX on ICI down-regulation of AR mRNA, demonstrating that new protein synthesis was not required for the suppression of AR mRNA by ICI.
Figure 4C shows the effect of ICI on AR mRNA half-life. LNCaP cells were treated with vehicle or ICI (10 µM). After 24 hours of ICI treatment, the transcriptional inhibitor actinomycin D (4 µM) was added to the cultures. Cells were harvested at 2 hour intervals (following the addition of actinomycin D) and AR mRNA levels were measured by real time RT-PCR. Our results suggest that ICI did not significantly change AR mRNA half-life. The time course of AR mRNA repression by ICI showed that the effect was seen as early as 4 hours (Fig. 4A). This fact coupled with the lack of change in mRNA half-life suggests that ICI may be directly repressing the AR gene at the transcriptional level. To determine whether ICI acted directly on the AR promoter to inhibit AR gene transcription, we examined the effect of ICI on the activity of an AR promoter-reporter construct transfected into LNCaP cells. LNCaP cells were transiently transfected with a plasmid containing a ~6kb AR promoter fragment linked to a luciferase reporter plasmid. A renilla-luciferase plasmid (pRL) was used as a control for transfection efficiency. Transfected cells were treated with either vehicle or ICI (10 µM) for 24 hours and reporter and renilla luciferase activities were measured. ICI treatment significantly decreased AR promoter-luciferase activity compared to vehicle treatment (Fig. 4D).

Our current and ongoing studies are examining the role of ERβ in the down-regulation of AR by ICI. ICI is a potent antiestrogen that can bind to both ERα and ERβ and act as an antagonist. LNCaP cells have been shown to express ERβ (31, 32). We found detectable levels of ERβ mRNA and protein in LNCaP cells while ERα protein was undetectable (data not shown).

In order to better understand the role of ERβ in AR down-regulation by ICI, we utilized selective agonists and antagonists for ERβ. The ERβ selective agonist DPN (Tocris, Ellisville, MO) and the ERβ selective antagonist R,R-THC (Sigma-Aldrich, St. Louis, MO) were developed in the laboratory of Dr. John Katzenellenbogen (33, 34). We first examined whether these compounds, DPN or R,R-THC (THC), would alter AR protein or AR mRNA expression in LNCaP cells. LNCaP cells were treated with either the ERβ selective agonist DPN (1 µM) or the selective antagonist THC (1 µM) for 48 hours and [3H]-DHT binding was assessed to determine changes

Figure A: LNCaP cells were treated for 48 hours with 0.1% ethanol vehicle (Control) or 1 µM DPN or 1 µM R-R, THC (THC). AR levels were determined by measuring [3H]-DHT binding in high-salt cellular extracts. Data are represented as % of specific binding in control cells set at 100% which corresponded to 177 ± 22 fmol/mg. Values represent the mean ± SE from 2 determinations.

Figure B: LNCaP cells were treated for 6-48 hours with 0.1% ethanol vehicle (Control) or 1 µM DPN. AR mRNA levels were determined by real time RT-PCR analysis. Results were normalized to TATA binding protein (TBP) expression. Data are represented as fold change in gene expression relative to the 0 hour control.

Figure C: High-salt extracts from LNCaP cells were incubated with increasing concentrations of unlabeled DHT, 17β-estradiol (E2), DPN, and THC in the presence of [3H]-DHT (10 nM). Data are represented as % of specific binding in the absence of competitors set at 100% which was equivalent to 153 fmol/mg protein.
in AR expression. THC or DPN treatment alone did not alter AR protein levels in LNCaP cells (Figure A). Preliminary dose response experiments with THC and DPN also did not show any changes in AR protein expression in LNCaP cells (data not shown). DPN (1 µM) did not significantly change AR mRNA expression in LNCaP cells after 6, 24, or 48 hours of treatment (Figure B).

As described above, the AR in LNCaP cells contains a point mutation (T877A) that relaxes its specificity and allows non-androgenic ligands to bind and activate the receptor. Therefore, we checked to see if the ERβ selective agonist or antagonist would bind to the mutant T877A AR. Competition binding experiments were conducted utilizing nuclear extracts of LNCaP cells with [3H]-DHT as the ligand and increasing concentrations of radioinert DHT, 17β-estradiol (E2), R,R-THC (THC) and DPN as the competitors. Unlike radioinert DHT and E2, increasing concentration of DPN and THC did not displace [3H]-DHT bound to the mutant AR suggesting that these compounds do not bind to the T877A AR (Figure C).

We also examined whether THC, the ERβ selective antagonist, could block the down-regulation of AR by ICI. LNCaP cells were treated with ICI (1-10 µM) alone or in combination with THC (1 µM) and [3H]-DHT binding was assessed to examine AR levels. THC did not block AR down-regulation by ICI. Thus far, these data with the ERβ selective agonists and antagonists do not suggest a role for ERβ in ICI mediated AR down-regulation. However, the optimal inhibitory dose of the ERβ selective antagonist THC still needs to be determined. It is possible that 1 µM THC is not effectively inhibiting ERβ in the LNCaP cells. Concentrations of THC greater than 10 µM were toxic to the cells (data not shown).

Since the use of the ERβ agonist and antagonist is limited by the doses that can be safely employed without toxicity to the cells, we have begun experiments utilizing small inhibitory RNAs (siRNAs) to knock-down ERβ expression in LNCaP cells to investigate the role of ERβ in AR down-regulation by ICI.

In summary, our data indicated that ICI did not bind to the mutant T877A AR (Fig. 3A), did not promote AR degradation through the proteasomal pathway (Fig. 3B), and did not change AR protein half-life (Fig 3C). The down-regulation of AR mRNA by ICI was not prevented by the addition of the protein synthesis inhibitor cycloheximide, indicating that new protein synthesis was not required (Fig. 4B). AR mRNA half-life was also not altered by ICI treatment (Fig 4C). Taken together these data suggest that the ICI down-regulation of AR is not at a post-transcriptional level. We further showed that ICI directly suppressed the activity of an AR promoter-luciferase construct transfected into LNCaP cells (Fig. 4D), suggesting that ICI down-regulation is due to a direct transcriptional repression of the AR gene.
Although the role of ERβ in AR down-regulation by ICI has not yet been elucidated, it is possible that ICI suppresses AR transcription by acting through ERβ via one or more estrogen response elements (EREs) present in the AR promoter. An initial computer analysis of the AR promoter has revealed several potential ERE sites. Although ICI down-regulates ERα expression, ERβ protein is not always similarly degraded after ICI treatment (35, 36). Several studies have examined the role of ERβ in the regulation of AR and PCa cell proliferation by other estrogenic molecules. Bektic et al have shown that AR down-regulation by genistein in LNCaP cells is mediated through ERβ (37). ERβ also plays an important role in the induction of LNCaP cell proliferation by 5α-DHT and 17β-estradiol (38). However, very recently, Taylor et al showed that estradiol down-regulates AR protein expression in the ventral prostate of both ERα and ERβ knock-out mice (39), arguing against a role for ERα or ERβ in the down-regulation of AR. ICI is also capable of acting through progesterone response elements in the promoters of target genes (40). Further studies are necessary to fully elucidate the mechanism of AR transcriptional repression by ICI.
KEY RESEARCH ACCOMPLISHMENTS

The research accomplishments of this ongoing study are summarized below and are fully described in the attached manuscript (41) (See Appendix II).

Task 1:
- To screen candidate compounds for SARD activity, study their actions on the androgen receptor (AR), and to more fully characterize the compounds with the best SARD activity profile.

We have completed the following:
- Screened candidate SARD compounds in LNCaP cells. ICI was the most effective AR down-regulator.
- ICI decreased AR protein expression as demonstrated by ligand binding assays and western blotting techniques in LNCaP cells.
- ICI down-regulated wild-type and mutant T877A (promiscuous) AR expression in PCa cells. ICI also down-regulated AR expression in AIPC cells such as 22Rv1, LN95 and LN97.
- ICI did not bind to the mutant T877A AR at the DHT binding site.
- ICI did not significantly change vitamin D receptor (VDR) levels in LNCaP cells.

Task 2
- To examine the down-stream effects of SARD treatment on AR function and proliferation in PCa cells harboring wild-type, hypersensitive, promiscuous, and outlaw forms of the AR.

We have completed the following:
- ICI significantly inhibited androgen stimulated LNCaP cell proliferation.
- ICI inhibited AR-mediated functional responses. ICI decreased both androgen stimulated PSA mRNA expression and PSA secretion.

Task 3
- To determine the mechanisms mediating AR down-regulation by SARD compounds. Based on the results of our preliminary data, we will focus on our “lead candidate” SARD, ICI 182,780.

We have completed the following:
- ICI decreased AR mRNA expression in LNCaP cells. Maximal inhibition (40-45% decrease) was observed after 24 hours of ICI treatment.
- ICI did not promote proteasomal degradation of the AR. ICI also did not alter AR protein half-life.
- ICI did not change AR mRNA half-life.
- ICI decreased the activity of an AR promoter-luciferase reporter plasmid transfected into LNCaP cells, suggesting a direct repression of AR gene transcription.
- ERβ agonists (DPN) did not down-regulate AR mRNA or protein expression (preliminary data)
- ERβ antagonists (THC) did not block AR down-regulation by ICI (preliminary data)
REPORTABLE OUTCOMES

First author manuscripts
Bhattacharyya, RS, Husbeck, B, Feldman, D, Knox, S. Selenite treatment inhibits LAPC-4 tumor growth and PSA secretion in a human prostate cancer xenograft model. (submitted)

Contributing author manuscripts

Meetings & presentations

Presented research at Endocrinology Grand Rounds, Department of Medicine, Stanford University “Targeting the Androgen Receptor as a Strategy for Treating Prostate Cancer”. March 2006.
CONCLUSIONS

Our studies have demonstrated that the antiestrogen ICI 182,780 is a potent AR down-regulator in LNCaP cells. ICI decreased both AR protein and mRNA expression. In addition to LNCaP cells, ICI-mediated down-regulation was also seen in cells that express wild-type AR, such as LAPC-4 prostate cancer and T47D breast cancer cells. Furthermore, AIPC cells, such as LNCaP sublines LN95 and LN97 as well as 22Rv1 also responded to ICI with AR down-regulation. These results suggest that ICI might be therapeutically useful in AIPC. Importantly, ICI also diminished the functional responses of the AR in LNCaP cells. Both androgen-stimulated cell proliferation and PSA expression were decreased following ICI treatment. Our initial experiments addressing the mechanism of AR down-regulation by ICI suggest that ICI directly suppresses AR gene transcription. The exact mechanism of the transcriptional repression of AR by ICI has yet to be defined. Our current and future studies will continue to further elucidate the mechanism of AR down-regulation by ICI. Specifically, future experiments will address whether estrogen receptor beta (ERβ) plays a role in AR down-regulation utilizing siRNA techniques.

AIPC is a lethal form of PCa and effective treatment options have yet to be established. We hypothesize that reducing AR concentration will be a useful therapeutic strategy in all cases of PCa but especially in AIPC. ICI (Fulvestrant) is a drug currently used to treat women with ER positive metastatic breast cancer. ICI has been shown to be relatively safe and well tolerated by women with advanced breast cancer. Our findings suggest that ICI may present a useful treatment option for patients with AR-dependent PCa. Unlike the ribozyme, antisense, siRNA, or dominant-negative techniques ICI, as an already approved drug, can be rapidly moved to clinical trials in PCa patients. A therapy that down-regulates the AR in AR-dependent AIPC would be particularly beneficial at a time in the course of PCa where effective therapies are currently not available.
REFERENCES

APPENDICES
1. Biosketch for R.S. Bhattacharyya
BIOGRAPHICAL SKETCH

Provide the following information for the key personnel and other significant contributors in the order listed on Form Page 2. Follow this format for each person. **DO NOT EXCEED FOUR PAGES.**

<table>
<thead>
<tr>
<th>NAME</th>
<th>POSITION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rumi S. Bhattacharyya</td>
<td>Postdoctoral Fellow</td>
</tr>
</tbody>
</table>

EDUCATION/TRAINING *(Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.)*

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (if applicable)</th>
<th>YEAR(s)</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Illinois at Urbana-Champaign</td>
<td>B.S.</td>
<td>1992-1996</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Northwestern University</td>
<td>Ph.D.</td>
<td>1997-2003</td>
<td>Pharmacology</td>
</tr>
<tr>
<td>Stanford University</td>
<td></td>
<td>2003-present</td>
<td>Endocrinology</td>
</tr>
</tbody>
</table>

Research & Professional Experience

1995-1996, Research assistant. Department of Physiology, University of Illinois, Urbana-Champaign, IL. Laboratory of Dr. W. T. Greenough.

1997-2003, Graduate student. Department of Molecular Pharmacology & Biological Chemistry, Northwestern University, Chicago, IL. Laboratory of Dr. Paula H. Stern.

2003-present, Postdoctoral fellow. Department of Medicine, Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA. Laboratory of Dr. David Feldman.

Awards & Honors

University of Illinois, James Scholar 1992-1996
National Osteoporosis Foundation's Mazess Student Fellowship, 1999-2000
Gramm Travel Fellowship Award, July 2000
Training Grant, Robert H. Lurie Comprehensive Cancer Center, Northwestern University 1999-2001
First Place, GLC-ASPET Graduate Student Poster Competition, June 2001
NRSA Institutional Training Grant, Endocrinology Division, Stanford University Medical School, 2003-2005
Postdoctoral Traineeship Award, Department of Defense Prostate Cancer Research Program, 2005-2007

Publications: Abstracts

Publications: Full Manuscripts

Fulvestrant (ICI 182,780) down-regulates androgen receptor expression and diminishes androgenic responses in LNCaP human prostate cancer cells

Rumi S. Bhattacharyya, Aruna V. Krishnan, Srilatha Swami, and David Feldman

Division of Endocrinology, Gerontology, and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, California

Abstract
The androgen receptor (AR) plays a key role in the development and progression of prostate cancer. Targeting the AR for down-regulation would be a useful strategy for treating prostate cancer, especially hormone-refractory or androgen-independent prostate cancer. In the present study, we showed that the antiestrogen fulvestrant [ICI 182,780 (ICI)] effectively suppressed AR expression in several human prostate cancer cells, including androgen-independent cells. In LNCaP cells, ICI (10 μmol/L) treatment decreased AR mRNA expression by 43% after 24 hours and AR protein expression by ~50% after 48 hours. We further examined the mechanism of AR down-regulation by ICI in LNCaP cells. ICI did not bind to the T877A-mutant AR present in the LNCaP cells nor did it promote proteasomal degradation of the AR. ICI did not affect AR mRNA or protein half-life. However, ICI decreased the activity of an AR promoter-luciferase reporter plasmid transfected into LNCaP cells, suggesting a direct repression of AR gene transcription. As a result of AR down-regulation by ICI, androgen induction of prostate-specific antigen mRNA and protein expression were substantially attenuated. Importantly, LNCaP cell proliferation was significantly inhibited by ICI treatment. Following 6 days of ICI treatment, a 70% growth inhibition was seen in androgen-stimulated LNCaP cells. These data show that the antiestrogen ICI is a potent AR down-regulator that causes significant inhibition of prostate cancer cell growth. Our study suggests that AR down-regulation by ICI would be an effective strategy for the treatment of all prostate cancer, especially AR-dependent androgen-independent prostate cancer. [Mol Cancer Ther 2006;5(6):1539–49]

Introduction
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer death in men in the United States (1). For patients with localized prostate cancer, initial treatment includes surgery or radiation as a means of removing or destroying tumor cells localized within the prostate capsule (2, 3). For those men not cured by primary therapy, androgen deprivation therapy and their disease transforms from androgen-dependent to an androgen-independent prostate cancer (AIPC), progressing even in the presence of castrate levels of androgens (2–4). Currently, there is no therapy that successfully treats AIPC.

AR expression is retained in a significant proportion of AIPC (5, 6). Several mechanisms or pathways influence the development of AIPC, allowing the AR to stimulate proliferation even in the absence of androgens. These include the presence of (a) a “hypersensitive” AR often resulting from AR overexpression due to gene amplification or increased sensitivity to very low androgen levels, (b) a “promiscuous” AR harboring mutations in its ligand-binding domain that allow nonandrogen ligands to bind and activate the AR, and (c) an “outlaw” AR that is activated in a ligand-independent manner often through cross-talk with other signal transduction pathways (7). Regardless of the mechanisms underlying AIPC development, the AR seems to be a key protein involved in many cases of AR-dependent AIPC and is critical for promoting prostate cancer cell growth. Therefore, targeting the AR for down-regulation or degradation could be a useful approach for decreasing AR-dependent prostate cancer cell growth and for treating AIPC (8, 9).

Estrogens and androgens are known to exert opposing effects on each other’s actions in many tissues (10–12). Androgens and estrogens have also been shown to regulate the expression of each other’s receptors (12–15). We have shown in earlier studies that estrogens repress AR expression in human breast cancer cells (12). In the current study, we examined the possibility that estrogenic and antiestrogenic molecules down-regulate AR expression
in prostate cancer cells. Of the compounds examined, the antiestrogen fulvestrant, also known as ICI 182,780 (ICI) or Faslodex, exhibited the most potent AR downregulatory effect. ICI caused significant suppression of AR mRNA and protein expression, AR-mediated functional responses, and cell proliferation in LNCaP prostate cancer cells. Further studies carried out to unravel the mechanism of the down-regulation suggested that the ICI effect was due to a direct transcriptional repression of the AR gene.

Materials and Methods

Materials

ICI was purchased from Tocris Cookson, Inc. (Ellisville, MO). Tritiated 5α-dihydrotestosterone ([3H]DHT; specific activity 50 Ci/mmol) and tritiated 1α,25-dihydroxyvitamin D₃ ([3H]-1,25(OH)₂D₃; specific activity 106 Ci/mmol) were purchased from Amersham Biosciences (Piscataway, NJ). The synthetic antiestrogen methyltrienolone (R1881) was obtained from DuPont NEN Life Science Products (Boston, MA). Genistein, daidzein, raloxifene, tamoxifen, cycloheximide, and actinomycin D were purchased from Sigma-Aldrich (St. Louis, MO). 5α-DHT and 17β-estradiol (E₂) were purchased from Steraloids, Inc. (Wilton, NH). LNCaP, T47D, and MCF-7 cells were obtained from the American Type Culture Collection (Manassas, VA). LAPC-4 cells were a gift from Dr. Charles Sawyers (University of California at Los Angeles, Los Angeles, CA). LN95 and LN97 cells were a generous gift from Dr. Joel Nelson (Johns Hopkins University, Baltimore, MD). 22Rv1 cells were established from a CWR22R xenograft by Sramkoski et al. (16) and were kindly provided by Dr. Zijie Sun (Stanford University, Stanford, CA). PS-341 was a gift from Millennium Pharmaceuticals (Cambridge, MA). Tissue culture media were from Mediatech (Herdon, VA). Antibiotics and fetal bovine serum (FBS) were from Invitrogen/Life Technologies (Carlsbad, CA). Charcoal-stripped serum (CSS) was purchased from Fisher Scientific (Hampton, NH).

Cell Culture

LNCaP and T47D cells were cultured in RPMI 1640 supplemented with 5% FBS and penicillin (100 units/mL) and streptomycin (100 μg/mL). LAPC-4 cells were maintained in RPMI 1640 without phenol red supplemented with 10% FBS. MCF-7 cells were cultured in DMEM/F-12 medium supplemented with 10% FBS and penicillin (100 units/mL) and streptomycin (100 μg/mL). LN95 and LN97 cells were maintained in RPMI 1640 without phenol red supplemented with 10% CSS and penicillin (100 units/mL) and streptomycin (100 μg/mL). 22Rv1 cells were cultured in RPMI 1640 supplemented with 10% FBS, 10 mmol/L HEPES, 1.0 mmol/L sodium pyruvate, 4.5 g/L glucose, 100 units/mL penicillin, and 100 μg/mL streptomycin. All cells were routinely cultured in T-75 flasks at 37°C with 5% CO₂ in a humidified incubator. For most experiments, the growth medium was replaced with phenol red–free RPMI 1640 supplemented with 5% CSS. Stock solutions of all test compounds were made in 100% ethanol and added to the treatment medium. All controls received ethanol vehicle at a concentration equal to that in the hormone-treated cells (0.1%, v/v).

Ligand-Binding Assays

Radioligand-binding assays were done using [3H]DHT (for measurement of AR) or [3H]-1,25(OH)₂D₃ [for measurement of vitamin D receptor (VDR)] as the ligand. Semiconfluent cell cultures were treated for 24 to 72 hours with various estrogenic molecules or antiestrogens. Cells were harvested, washed, and pelleted. Cell extracts were prepared by sonication of the cell pellet in a high-salt buffer followed by high-speed centrifugation as described previously (17). Aliquots of cell extracts, which contained both nuclear and cytoplasmic proteins, were incubated overnight at 4°C with saturating concentrations of [3H]DHT (10 nmol/L) or [3H]-1,25(OH)₂D₃ (1 nmol/L). Nonspecific binding was assessed in parallel assays containing 250-fold excess radioinert DHT or 1,25(OH)₂D₃, respectively, and subtracted from total binding to yield specific binding. Specific binding is a quantitative assessment of functional AR or VDR. Protein concentrations were quantitated using the Bradford method (18). AR or VDR concentrations were expressed as femtomoles of ligand bound per milligram of protein.

Competition Analysis

Competition-binding experiments to assess the ability of the test compounds to bind to the T877A-mutant AR present in LNCaP cells were conducted as described previously (19). Briefly, high-salt extracts from LNCaP cells were incubated with [3H]DHT as the ligand and increasing concentrations (1–1,000 molar excess) of the test molecules as competitors.

ImmunobLOTS

Aliquots of high-salt extracts prepared from cells treated with vehicle, estrogenic compounds, or antiestrogens (25–50 μg protein) were separated by NuPAGE gel electrophoresis (Invitrogen) and transferred to nitrocellulose membranes. Membranes were probed with specific primary antibodies against AR (N-20), estrogen receptor-α (ER-α; D-12), and actin (C-2, Santa Cruz Biotechnology, Santa Cruz, CA) at a 1:1,000 dilution or anti α-tubulin (clone DM1A, NeoMarkers, Fremont, CA) at a 1:5,000 dilution in 5% BLOTTO solution (Santa Cruz Biotechnology). Either an anti-rabbit or an anti-mouse secondary antibody was used at a 1:2,000 dilution (Cell Signaling Technology, Beverly, MA). Chemiluminescence reagents (Cell Signaling Technology) were used to visualize immunoreactive protein bands. The blots were simultaneously probed for the expression of actin or α-tubulin as a loading control.

RNA Isolation, Reverse Transcription, and Real-time PCR

RNA was isolated from control or treated cells using the Trizol reagent (Invitrogen), and total cellular RNA (5 μg) was reverse transcribed using the SuperScript III synthesis system for reverse transcription-PCR (RT-PCR; Invitrogen). An aliquot of the reverse transcription product was
amplified by real-time PCR using gene-specific primers and the DyNAmo SYBR Green PCR kit (New England Biolabs, Beverly, MA) using the Opticon 2 Real-time PCR Detection System (Bio-Rad Laboratories, Waltham, MA). Expression levels of mRNA for AR, prostate-specific antigen (PSA), TATA box-binding protein, and glyceraldehyde-3-phosphate dehydrogenase were measured using specific primers for each gene. The mRNA expression of TATA box-binding protein or glyceraldehyde-3-phosphate dehydrogenase was used as a control. AR primers were 5′-AGTTCCACTTGTGTCAAAGC-3′ (forward) and 5′-ACTTCTGTITCCTCAGCG-3′ (reverse). PSA primers were 5′-GCAGCATTGAACCAGAGGAG-3′ (forward) and 5′-CACCATTACAGACAAATCCCATCACCA-3′ (reverse). TATA box-binding protein primers were 5′-TGCTGAGAGAGTGTGCTGAGGAG-3′ (forward) and 5′-TCGTAATAGCTGTGGGTC-3′ (reverse). Changes in gene expression were determined using the comparative Ct method as described (20).

PSA Assay

Conditioned media from control or treated LNCaP cells were collected and centrifuged at low speeds to remove cell debris. PSA concentrations in the conditioned media were determined using an ELISA kit (Diagnostic Systems Laboratories, Webster, TX) according to the manufacturer's instructions.

Cell Proliferation Assay

LNCaP cells were seeded in six-well plates at a density of 3 × 10^5 per well in RPMI 1640 plus 5% FBS. After 24 hours, the cultures were treated with various agents in phenol red–free RPMI 1640 supplemented with 5% CSS for the next 6 days. Media containing the treatments were replenished after 3 days. Cell proliferation was assessed by determining the DNA content at the end of the experiment (21).

Transient Transfections and Luciferase Assays

LNCaP cells were seeded into six-well plates at a cell density of 3 × 10^5 per well in RPMI 1640 plus 5% FBS without antibiotics. Cells were allowed to attach for 24 hours before transfection of a plasmid containing an ~6-kb AR promoter linked to a luciferase reporter in the pGL3-Basic vector (a generous gift from Dr. Donald Tindall, Mayo Clinic, Rochester, MN). Transient transfections of the AR promoter-luciferase plasmid or the pGL3-Basic vector plasmid were carried out using LipofectAMINE (Invitrogen) for 18 hours. Cells were cotransfected with a renilla luciferase plasmid (Promega, Madison, WI) as a control for transfection efficiency. Following transfections, cells were treated with vehicle (0.1% ethanol) or ICI in RPMI 1640 plus 5% CSS. After 24 hours, cells were harvested and reporter and renilla luciferase activities were determined by the Dual-Luciferase Assay System (Promega).

Statistical Analysis

Statistical analysis was carried out using GraphPad Prism software (version 3.02) for Windows (GraphPad Software, San Diego, CA). Significance of results was determined by ANOVA and Newman-Keuls’ post-test or Student’s t test as appropriate. P < 0.05 was considered significant.

Results

AR Down-Regulation by ICI

We examined the effect of several estrogenic molecules and antiestrogens on AR expression in LNCaP human prostate cancer cells. These compounds included E2, the phytoestrogens genistein and daidzein, selective ER modulators, such as tamoxifen and raloxifene, and the antiestrogen ICI. All of the compounds examined, with the exception of genistein, exhibited significant decreases in AR levels as measured by [3H]DHT binding after a 48-hour treatment (Fig. 1A). The antiestrogen ICI (10 μmol/L) was the most effective in reducing AR expression in LNCaP cells, decreasing AR to 56% of control levels after 48 hours of treatment. Significant AR down-regulation was also seen after treatment with the phytoestrogen daidzein (67% of control) and the selective ER modulator raloxifene (66% of control). The effects of E2 (77% of control) and tamoxifen (75% of control) were more modest. In subsequent experiments, we focused on ICI as the most effective down-regulator of AR expression.

Because the AR in LNCaP cells has a mutation in its ligand-binding domain, we determined whether ICI had any effects on cell lines harboring the wild-type AR, such as LAPC-4 human prostate cancer cells and T47D breast cancer cells. In both the LAPC-4 and T47D cells, ICI (10 μmol/L) elicited smaller but statistically significant decreases (15–25% inhibition) in [3H]DHT binding (Fig. 1B), showing that ICI down-regulated the expression of both mutant and wild-type AR. We also examined the effects of ICI on AR expression in AIPC cells, such as 22Rv1, LN95, and LN97. The 22Rv1 cell line was established from the CWR22R human prostate cancer xenograft, which was serially propagated in mice after castration-induced regression and relapse of the parental androgen-dependent CWR22 xenograft (16). 22Rv1 cells represent an androgen-independent but androgen-responsive cell line (16, 22). We also used the LN95 and LN97 androgen-independent human prostate cancer cells. These cells are LNCaP sublines that were established by culturing LNCaP cells under androgen-deprived conditions for prolonged periods. These LNCaP sublines can readily form tumors in both castrate and intact male athymic nu/nu mice (23). In all three cell lines examined, ICI (10 μmol/L) decreased [3H]DHT binding after 48 hours of treatment (20–25% inhibition; Fig. 1B). We also found ~30% decrease in AR mRNA levels in 22Rv1 cells following ICI treatment for 6 to 24 hours (data not shown). These results suggest that ICI decreases AR expression in both androgen-dependent and AIPC cells.

Because the antiestrogen ICI is known to down-regulate ER levels (24) and we showed down-regulation of AR, we wished to determine whether ICI modulated the expression...
of other nuclear receptors as well. We examined the ICI effect on VDR levels in LNCaP cells. ICI treatment of LNCaP cells for 48 hours did not significantly change VDR levels as measured by \(^{3}H\)-1,25(OH)\(_{2}\)D\(_{3}\) binding (control VDR levels, 9.87 ± 2.9 fmol/mg; ICI-treated VDR levels, 9.98 ± 1.7 fmol/mg). These data suggest that the ICI-mediated down-regulation is not a general effect on all nuclear receptors.

Time Course and Dose Response of AR Protein Down-Regulation

The effect of ICI on AR protein expression was determined by both \(^{3}H\)DHT binding and Western blot analysis using an anti-AR antibody (Santa Cruz Biotechnology). Time course experiments in LNCaP cells showed that ICI (10 \(\mu\)mol/L) decreased \(^{3}H\)DHT binding by 41% after 24 hours of treatment (Fig. 2A). Maximal inhibition (52%) was seen at 48 hours, and the inhibitory effect persisted up to 72 hours. Western blot analysis revealed similar decreases in AR immunoreactive bands at 24, 48, and 72 hours following ICI treatment (Fig. 2B). Densitometric analysis of the Western blot shown in Fig. 2B showed that the decreases in AR protein seen at the various time points agreed with the results of the ligand-binding data (an ~50% decrease in AR/actin expression compared with control at each time point). Dose-response studies showed that ICI at 5 and 10 \(\mu\)mol/L significantly decreased \(^{3}H\)DHT binding by 20% and 50% of control, respectively (Fig. 2C). Higher concentrations of ICI (100 \(\mu\)mol/L) did not further down-regulate AR levels. We also examined the effects of ICI on AR protein expression under androgen-replete conditions in the presence of medium supplemented with FBS. After 48 hours, ICI (10 \(\mu\)mol/L) inhibited \(^{3}H\)DHT binding by 55% of control (Fig. 2D). These responses are similar to the effects of ICI observed under androgen-depleted conditions (CSS; Fig. 2A).

Lack of ICI Effect on AR Protein Degradation

Previous studies on the effects of ICI on ER have shown that ICI binds to the ER and prevents estrogen signaling, thereby acting as an antiestrogen (24). At the same time, by binding to the ER, ICI decreases the stability of the ER-\(\alpha\) protein and promotes ER-\(\alpha\) degradation by the proteasome (25, 26). The AR expressed in LNCaP cells contains a point mutation (T877A) in its ligand-binding domain that relaxes its specificity and allows nonandrogenic ligands to bind to and activate the receptor (27). Several nonandrogenic steroids, such as progestins and glucocorticoids, as well as various estrogenic molecules have been shown to bind to the T877A-mutant AR (28, 29). Therefore, we examined whether ICI could bind to the T877A-mutant AR in LNCaP cells and thereby promote AR protein degradation in a manner similar to its effects on the ER. Competition-binding assays were done in nuclear extracts of LNCaP cells using \(^{3}H\)DHT as the ligand and increasing concentrations of radioinert DHT, E\(_{2}\), and ICI as competitors. Unlike radioinert DHT and E\(_{2}\), increasing concentrations of ICI up to a 1,000-fold excess of \(^{3}H\)DHT did not displace \(^{3}H\)DHT bound to the AR, showing that ICI did not bind to the mutant AR (Fig. 3A).

We examined the effect of the proteasomal inhibitor PS-341 (bortezomib, Velcade) on AR down-regulation by ICI (30). The ICI effect on ER-\(\alpha\) protein degradation in MCF-7 breast cancer cells was assessed in parallel assays as a positive control. LNCaP or MCF-7 cells were treated with ICI (10 \(\mu\)mol/L) in the presence or absence of PS-341 (100 \(\mu\)mol/L) for 24 to 48 hours. High-salt cellular extracts were made, and AR and ER-\(\alpha\) protein expression were determined by Western blot analysis. Immunoreactive ER-\(\alpha\) protein was decreased after 24 hours of ICI treatment in MCF-7 cells (Fig. 3B). As expected in the presence of the proteasomal inhibitor PS-341, the down-regulation of ER-\(\alpha\) by ICI was abolished. PS-341 treatment by itself caused a...
slight decrease in AR protein in LNCaP cells (Fig. 3B). Cotreatment with PS-341 did not prevent the decrease in AR protein levels elicited by ICI, suggesting the lack of involvement of the proteasomal pathway in AR down-regulation by ICI.

We also determined whether ICI treatment altered AR protein half-life ($t_{1/2}$). After 24 hours of 0.1% ethanol vehicle (control) or 10 µmol/L ICI, AR levels were determined by measuring $[^3H]$DHT binding in high-salt cellular extracts. Data are represented as % of specific binding in control cells set at 100%, which was equivalent to 238 ± 28 fmol/mg protein. AR levels were determined by Western blot analysis with the AR N-20 monoclonal antibody (Santa Cruz Biotechnology). Equal amounts of protein were loaded into each lane (50 µg), and immunoreactive actin was used as a control. The experiment was carried out thrice. One representative blot. LNCaP cells were treated for 48 h with 0.1% ethanol vehicle (control) or 1 to 100 µmol/L ICI. AR levels were determined by measuring $[^3H]$DHT binding in high-salt cellular extracts. Data are represented as % of specific binding in control cells set at 100%, which was equivalent to 169 ± 60 fmol/mg protein. LNCaP cells were treated for 48 h with 0.1% ethanol vehicle (control) or 10 µmol/L ICI in RPMI 1640 supplemented with 5% FBS. AR levels were determined by measuring $[^3H]$DHT binding in high-salt cellular extracts. Data are represented as % of specific binding in control cells set at 100%, which was equivalent to 220 ± 26 fmol/mg protein. Columns, mean from two to five determinations; bars, SE. *, $P < 0.05$ versus control; **, $P < 0.01$ versus control; ***, $P < 0.001$ versus control.

Figure 2. Time course and dose response of AR protein down-regulation. LNCaP cells were treated for 24 to 72 h with 0.1% ethanol vehicle (control) or 10 µmol/L ICI. A, AR levels were determined by measuring $[^3H]$DHT binding in high-salt cellular extracts. Data are represented as % of specific binding in 24-h control cells set at 100%, which was equivalent to 238 ± 28 fmol/mg protein. B, AR levels were determined by Western blot analysis with the AR N-20 monoclonal antibody (Santa Cruz Biotechnology). Equal amounts of protein were loaded into each lane (50 µg), and immunoreactive actin was used as a control. The experiment was carried out thrice. One representative blot. C, LNCaP cells were treated for 48 h with 0.1% ethanol vehicle (control) or 1 to 100 µmol/L ICI. AR levels were determined by measuring $[^3H]$DHT binding in high-salt cellular extracts. Data are represented as % of specific binding in control cells set at 100%, which was equivalent to 169 ± 60 fmol/mg protein. D, LNCaP cells were treated for 48 h with 0.1% ethanol vehicle (control) or 10 µmol/L ICI in RPMI 1640 supplemented with 5% FBS. AR levels were determined by measuring $[^3H]$DHT binding in high-salt cellular extracts. Data are represented as % of specific binding in control cells set at 100%, which was equivalent to 220 ± 26 fmol/mg protein. Columns, mean from two to five determinations; bars, SE. *, $P < 0.05$ versus control; **, $P < 0.01$ versus control; ***, $P < 0.001$ versus control.

Inhibition of AR mRNA Expression and AR Transcription by ICI

We examined the effects of ICI on AR mRNA expression by using real-time RT-PCR analysis. Time course experiments showed that AR mRNA expression in LNCaP cells was decreased by 34% as early as 4 hours after ICI (10 µmol/L) treatment (Fig. 4A). These inhibitory effects persisted after 6 and 24 hours of ICI treatment, producing a 40% to 45% decrease in AR mRNA expression. By 48 hours of ICI treatment, the down-regulatory effects of ICI subsided. In parallel, we measured VDR mRNA expression after ICI treatment and no significant changes in VDR mRNA were apparent (data not shown), suggesting the selectivity of the down-regulatory effects of ICI on AR mRNA.

We carried out the following experiments to distinguish between transcriptional and post-transcriptional effects of ICI. LNCaP cells were treated with 10 µmol/L ICI in the presence and absence of various concentrations (up to 1 µg/mL) of the protein synthesis inhibitor cycloheximide, and AR mRNA levels were measured. Figure 4B illustrates the lack of an effect of 0.25 µg/mL cycloheximide on ICI down-regulation of AR mRNA, showing that new protein synthesis was not required for the suppression of AR mRNA by ICI.

Figure 4C shows the effect of ICI on AR mRNA $t_{1/2}$. LNCaP cells were treated with vehicle or ICI (10 µmol/L). After 24 hours of ICI treatment, the transcriptional inhibitor actinomycin D (4 µmol/L) was added to the cultures. Cells were harvested at 2-hour intervals (following the addition of actinomycin D), and AR mRNA levels were measured by real-time RT-PCR. Our results suggest that ICI did not significantly change AR mRNA $t_{1/2}$. The time course of AR mRNA repression by ICI showed that the effect was seen as early as 4 hours (Fig. 4A). This fact, coupled with the lack of change in mRNA $t_{1/2}$, suggests that ICI may be directly repressing the AR gene at
the transcriptional level. To determine whether ICI acted directly on the AR promoter to inhibit AR gene transcription, we examined the effect of ICI on the activity of an AR promoter-reporter construct transfected into LNCaP cells. LNCaP cells were transiently transfected with a plasmid containing an ~6-kb AR promoter fragment linked to a luciferase reporter plasmid. A renilla luciferase plasmid (pRL) was used as a control for transfection efficiency. Transfected cells were treated with either vehicle or ICI (10 µmol/L) for 24 hours, and reporter and renilla luciferase activities were measured. ICI treatment significantly decreased AR promoter-luciferase activity compared with vehicle treatment (Fig. 4D).

Inhibition of AR-Mediated Functional Responses by ICI

We next assessed whether the decrease in AR levels due to ICI treatment would result in the attenuation of AR-mediated functional responses in LNCaP cells. The effect of ICI on androgen-induced PSA mRNA expression and PSA secretion was determined. LNCaP cells were treated with ICI (10 µmol/L) in the presence or absence of the synthetic androgen R1881. R1881 alone (0.1–10 nmol/L) substantially induced PSA mRNA expression in LNCaP cells (Fig. 5A). Cotreatment with ICI totally abrogated the induction of PSA mRNA seen at 0.1 nmol/L R1881 and restored the values to control levels. ICI partially reversed the induction seen at higher concentrations (1 and 10 nmol/L) of R1881 (~20% inhibition). ICI treatment alone seemed to slightly decrease basal PSA mRNA expression.

We also examined the effect of ICI on basal as well as androgen-stimulated secretion of PSA protein (Fig. 5B). LNCaP cells were treated for 6 days with 0.1% ethanol vehicle or 0.1 nmol/L R1881 with and without ICI (1–10 µmol/L) cotreatment. Conditioned media from treated cells were collected during the last 3 days of treatment, and PSA concentrations were determined by an ELISA. Treatment with 0.1 nmol/L R1881 resulted in an ~3-fold increase in the levels of secreted PSA. ICI dose-dependently inhibited androgen-stimulated PSA secretion. The lowest concentration of ICI (1 µmol/L) elicited a 55% inhibition in the R1881-stimulated PSA secretion, and the highest concentration of ICI examined (10 µmol/L) decreased PSA secretion by 90% (Fig. 5B). As shown in Fig. 5C, ICI treatment alone decreased basal PSA secretion to almost undetectable levels. A higher concentration of R1881 (10 nmol/L) caused a much more substantial increase (~25-fold over control) in secreted PSA, which was significantly decreased (to ~5-fold over control) by ICI cotreatment (Fig. 5C).

Inhibition of Androgen-Stimulated LNCaP Cell Proliferation by ICI

We next examined the ability of ICI to decrease androgen stimulation of LNCaP cell proliferation. LNCaP cells were cultured for 6 days in CSS medium containing various concentrations of ICI (1–50 µmol/L). ICI at 1 µmol/L significantly decreased basal cell proliferation by 32% (Fig. 6A). This inhibitory effect of ICI was maximal at 10 µmol/L, producing a 48% inhibition in cell growth, an effect that was not further increased by 50 µmol/L. ICI (42% inhibition). The ICI effect was also examined in LNCaP cells stimulated with R1881. LNCaP cells were cultured for 6 days in medium containing 5% CSS treated with R1881 (0.1 nmol/L) in the presence or absence of ICI (10 µmol/L; Fig. 6B). R1881 at a low concentration of 0.1 nmol/L stimulated the proliferation of LNCaP cells. ICI (10 µmol/L) alone significantly inhibited basal LNCaP cell proliferation. ICI also significantly
attenuated R1881-stimulated growth by ~70% (Fig. 6B). Western blotting analysis confirmed that AR expression remained suppressed following 6 days of ICI treatment. The blots were simultaneously probed with either actin or α-tubulin as the loading control. In this experiment shown in Figure 6B, the actin levels showed variations at the end of 6-day hormone treatments. Therefore, we used α-tubulin to normalize the data.

Additionally, we compared the growth-inhibitory effects of ICI with the antiandrogen Casodex (bicalutamide). LNCaP cells were treated for 6 days with ICI (10 μmol/L) or Casodex (1–10 μmol/L) in the presence or absence of 0.1 nmol/L R1881 (Fig. 6C). Both ICI and Casodex suppressed androgen stimulation of cell growth. The degree of inhibition of R1881-stimulated cell proliferation by ICI was comparable with that of 10 μmol/L Casodex at the end of 6 days of treatment. A lower concentration of Casodex (1 μmol/L) exhibited lesser inhibitory effects on androgen-stimulated cell proliferation. AR protein expression was again significantly decreased following ICI treatment for 6 days.

Discussion

A significant proportion of AIPC exhibits AR expression (31, 32), and some AIPC patients express up to 70-fold higher levels of AR mRNA and increased AR protein compared with primary prostate cancer patients (31, 33). In a recent study by Chen et al. (32), AR mRNA was found to be universally up-regulated in all of the hormone-refractory prostate cancer (AIPC) models that were examined. Because the AR is clearly a critical factor in prostate cancer and AIPC development, down-regulating or reducing the AR would be a very useful strategy for treating AR-dependent prostate cancer (8). Thus far, the techniques that have been used to down-regulate the AR include antisense oligonucleotides (34, 35), ribozyme treatments (36, 37), AR dominant negatives (38), and small interfering RNAs (39–41). Reducing AR levels by these various means results in the inhibition of prostate cancer cell growth and PSA expression, while the small interfering RNA knockdown of AR expression also leads to significant apoptotic cell death in androgen-sensitive and AIPC cells (39–41). Various studies have shown that estrogens have the ability...
to down-regulate AR expression in different target cells (12, 14, 42). In particular, studies from our laboratory have shown that MCF-7 breast cancer cells treated with E2 exhibited significantly lower levels of AR (12). The current study examined the effect of estrogenic compounds and antiestrogens on AR expression in prostate cancer cells. In our study, the order of potencies for AR down-regulation was ICI > daidzein > raloxifene > tamoxifen > E2. The selective ER modulators tamoxifen and raloxifene have been shown to cause apoptosis of prostate cancer cells (43, 44). Zeng et al. (45) showed that raloxifene treatment of probasin/SV40 T antigen transgenic rats caused significant inhibition of prostate carcinogenesis and was associated with decreased AR expression in the ventral prostate. Although genistein has been shown to decrease AR levels in prostate cancer cells (46), we did not find an appreciable change in AR concentration following genistein treatment. Our study is the first to show the ICI effect to down-regulate AR in prostate cancer cells. In addition to LNCaP cells, ICI-mediated down-regulation was also seen in cells that express wild-type AR, such as the LAPC-4 prostate cancer and the T47D breast cancer cells. Furthermore, AIPC cells, such as the LNCaP sublines LN95 and LN97 as well as 22Rv1, also responded to ICI with AR down-regulation, suggesting that ICI might be therapeutically useful in AIPC. Importantly, we also showed that ICI significantly decreased both androgen-stimulated cell proliferation and PSA expression in LNCaP cells. ICI is a potent antiestrogen that binds to the ER with high affinity (47) and impairs both ER dimerization (48) and nucleocytoplasmic shuttling (49). ICI binding to ER leads to decreased ER stability and increased turnover of the ER protein through enhanced proteasomal degradation (25, 26). Because the mutant AR in LNCaP cells binds to estrogenic compounds (27), it was possible that ICI could bind to the mutant AR and enhance its proteasomal degradation in a manner similar to its effect on ER. However, our data indicated that ICI did not bind to the mutant T877A AR (Fig. 3A), did not promote AR degradation through the proteasomal pathway (Fig. 3B), and did not change AR protein t1/2 (Fig. 3C). The down-regulation of AR mRNA by ICI was not prevented by the addition of the protein synthesis inhibitor cycloheximide, indicating that new protein synthesis was not required (Fig. 4B). AR mRNA t1/2 was also not altered by ICI treatment (Fig. 4C). Taken together, these data suggest that the ICI down-regulation of AR is not at a post-transcriptional level. We further showed that ICI directly suppressed the activity of an AR promoter-luciferase construct transfected into LNCaP cells (Fig. 4D). These data indicate that ICI down-regulation is due to a direct transcriptional repression of the AR gene.

The exact mechanism of the transcriptional repression of AR by ICI has yet to be defined. The effect of ICI on AR transcription might be mediated through the ER. LNCaP cells have been shown to express ER-β (50, 51). We have detected ER-β protein and mRNA expression in LNCaP cells, whereas ER-α protein was undetectable (data not available).
shown). It is therefore possible that ICI suppresses AR transcription by acting through ER-β via one or more estrogen response elements present in the AR promoter. An initial computer analysis of the AR promoter has revealed several potential estrogen response element sites. Although ICI down-regulates ER-α expression, ER-β protein is not always similarly degraded after ICI treatment (52, 53). Several studies have examined the role of ER-β in the regulation of AR and prostate cancer cell proliferation by other estrogenic molecules. Bektic et al. (46) have shown that AR down-regulation by genistein in LNCaP cells is mediated through ER-β. ER-β also plays an important role in the induction of LNCaP cell proliferation by 5α-DHT and E₂ (54). However, very recently, Taylor et al. (55) showed that estradiol down-regulates AR protein expression in the ventral prostate of both ER-α and ER-β knockout mice, arguing against a role for ER-α or ER-β in the down-regulation of AR. ICI is also capable of acting through progesterone response elements in the promoters of target genes (56). Further experiments need to be done to fully elucidate the mechanism of AR transcriptional repression by ICI.

Our data further showed that, as a consequence of down-regulating AR expression, ICI inhibited AR-mediated functional responses. Androgen stimulation of PSA mRNA expression and PSA protein secretion were both decreased by ICI in LNCaP cells (Fig. 5). Recent studies by Kawashima et al. (57) showed that ICI decreased DHT stimulation of the androgen-responsive mouse mammary tumor virus-luciferase reporter in LNCaP cells. ER ligands, including ICI, have been shown to inhibit DHT stimulation of PSA transcripational activity in PC-3 and DU145 cells cotransfected with AR and ER-α and ER-β expression plasmids (58). Similarly, we have found that ICI inhibited R1881-mediated stimulation of a PSA-luciferase reporter plasmid transfected into LNCaP cells (data not shown). Importantly, ICI caused a significant inhibition of cell proliferation. Androgens exert a biphasic effect on LNCaP cell growth with low concentrations (<0.1 nmol/L) exhibiting growth stimulation, whereas higher concentrations inhibit growth (59). ICI completely blocked the growth stimulation seen with 0.1 nmol/L R1881 (Fig. 6B). The AR is critical for prostate cancer cell growth, and cell proliferation is significantly decreased in prostate cancer cells where AR expression has been decreased or disrupted (39–41). In our study, ICI also caused significant growth...
inhibition under basal conditions possibly due to a blockade of the stimulatory effect of residual androgens present in the CSS. However, other mechanisms, in addition to AR down-regulation, may also be contributing to the inhibition of cell growth by ICI. Lau et al. (50) showed growth-inhibitory effects of ICI on both PC-3 and DU145 prostate cancer cells that do not express AR. Their study concluded that the decrease in cell growth generated by ICI was mediated through ER-β. It is probable that multiple mechanisms are involved in the growth-inhibitory effects of ICI, including regulation of other signaling pathways (60). However, based on our data and that of others (34–41), we believe that the down-regulation of the AR plays an important role in the growth-inhibitory action of ICI.

AIPC is a lethal form of prostate cancer, and effective treatment options have yet to be established. We hypothesize that reducing AR concentration will be a useful therapeutic strategy in all cases of prostate cancer but especially in AIPC. ICI (fulvestrant) is a drug currently used to treat women with ER-positive metastatic breast cancer. ICI is relatively safe and well tolerated by women with advanced breast cancer. Our findings suggest that ICI may present a useful treatment option for patients with AR-dependent prostate cancer. Unlike the ribozyme, antisense, small interfering RNA, or dominant-negative techniques, ICI, as an already approved drug, can be rapidly moved to clinical trials in prostate cancer patients. A therapy that down-regulates the AR in the AR-dependent AIPC would be particularly beneficial at a time in the course of prostate cancer, where effective therapies are currently not available.

Acknowledgments

We thank Dr. Donald Tindall for the AR promoter-luciferase reporter plasmid, Dr. Charles Sawyers for the LAPC-4 prostate cancer cells, Dr. Joel Nelson for the LN95 and LN97 cells, and Millennium Pharmaceuticals for the PS-341 (bortezomib, Velcade).

References

52. Van Den Bemd GJ, Kuiper GG, Pols HA, Van Leeuwen JP. Distinct effects on the conformation of estrogen receptor α and β by both the antiestrogens ICI 164,384 and ICI 182,780 leading to opposite effects on receptor stability. Biochem Biophys Res Commun 1999;256:1 – 5.

