ASYMMETRY IN PLATINUM ACETYLIDE COMPLEXES: CONFINEMENT OF THE TRIPLET EXCITON TO THE LOWEST ENERGY LIGAND (Postprint)

Thomas M. Cooper, Douglas M. Krein, Aaron R. Burke, Daniel G. McLean, Joy E. Rogers, and Jonathan E. Slagle

AUGUST 2006

Approved for public release; distribution unlimited.

STINFO COPY

©2006 American Chemical Society
The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work.

MATERIALS AND MANUFACTURING DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750
As part of an ongoing investigation of structure-optical property relationships in asymmetric platinum acetylide complexes, we synthesized the compounds trans-Pt(PBu$_3$)$_2$(C≡C-CC$_6$H$_5$)-(C≡C-CC$_6$H$_4$-C≡C-CC$_6$H$_4$)-(PE1-2), trans-Pt(PBu$_3$)$_2$(C≡C-CC$_6$H$_5$)-(C≡C-CC$_6$H$_4$-C≡C-CC$_6$H$_4$-C≡C-CC$_6$H$_5$)-(PEI-3), and trans-Pt(PBu$_3$)$_2$(C≡C-CC$_6$H$_4$-C≡C-CC$_6$H$_4$-C≡C-CC$_6$H$_4$-C≡C-CC$_6$H$_5$)-(PE2-3) that have different ligands on either side of the central platinum and compared their spectroscopic properties to the symmetrical compounds PE1, PE2, and PE3. We measured trends in ground state absorption, fluorescence, phosphorescence, and triplet state absorption spectra. We also performed density functional theory calculations of the triplet state geometries and energies. The ground state absorption and fluorescence spectra give evidence the singlet exciton is delocalized across the central platinum atom. In contrast, the behavior of the phosphorescence spectra suggests the triplet exciton is confined to one ligand. The phosphorescence from the asymmetric complexes comes from the lowest energy, most delocalized ligand. The triplet state geometries obtained from the density functional theory calculations show distortion on the lowest energy ligand, while the other ligand has the ground state geometry. The calculated trend in the triplet state energies agrees very well with the experimental trend. Calculations of triplet state spin density also show the triplet exciton is confined to one ligand. In the asymmetric complexes the spin density is confined to the more conjugated, lowest energy ligand. The results show Kasha's rule applies to these complexes, where following excitation and intersystem crossing, the triplet exciton moves to the lowest energy ligand.
Asymmetry in Platinum Acetylide Complexes: Confinement of the Triplet Exciton to the Lowest Energy Ligand

Thomas M. Cooper, *1,4 Douglas M. Krein, *1,4 Aaron R. Burke, *1,4 Daniel G. McLean, *1,8 Joy E. Rogers, *1,8 and Jonathan E. Slagle *1,4

Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, Anteon Corporation, Dayton, Ohio 45431, SAIC, Dayton, Ohio 45434, UES, Inc., Dayton, Ohio 45432, and AT&T Corporation, Dayton, Ohio 45434

Received: August 23, 2006; In Final Form: October 11, 2006

To determine the compounds trans-Pt(PBu3)2(C≡CPh2)(C≡C−C=N−C≡CPh3) (PE1-2), trans-Pt(PBu3)2(C≡CPh2)(C≡C−C=N−C≡CPh4−C≡CPh3) (PE1-3) and trans-Pt(PBu3)2(C≡C−C=N−C≡CPh4−C≡CPh3) (PE2-3) that have different ligands on either side of the platinum and compared their spectroscopic properties to the symmetrical compounds PE1, PE2 and PE3. We measured ground state absorption, fluorescence, phosphorescence and triplet state absorption spectra and performed density functional theory (DFT) calculations of frontier orbitals, lowest lying singlet states, triplet state geometries and energies. The absorption and emission spectra give evidence that the singlet exciton is delocalized across the central platinum atom. The phosphorescence from the asymmetric complexes comes from the largest ligand. Time-dependent (TD) DFT calculations show the S1 state has mostly highest occupied molecular orbital (HOMO) → lowest unoccupied molecular orbital (LUMO) character, with the LUMO delocalized over thechromophore. In the asymmetric chromophores, the LUMO resides on the larger ligand, suggesting the S1 state has interligand charge transfer character. The triplet state geometries obtained from the DFT calculations show distortion on the lowest energy ligand, whereas the other ligand has the ground state geometry. The calculated trend in the triplet state energies agrees very well with the experimental trend. Calculations of the triplet state spin density also show the triplet exciton is confined to one ligand. In the asymmetric complexes the spin density is confined to the largest ligand. The results show Kasha’s rule applies to these complexes, where the triplet exciton moves to the lowest energy ligand.

Introduction

There has been considerable interest in the synthesis, spectroscopy, nonlinear optics and structure–property relationships of platinum acetylides.1–7 They are exceptional systems for investigating triplet state phenomena like ground state absorption to the triplet state, intersystem crossing, and the triplet state absorption spectrum and phosphorescence.3 In our laboratory, we have been investigating the relation between chemical structure and spectroscopic properties in platinum acetylide complexes.1,5,6 We recently published a detailed investigation of the photophysical properties of a series of butadiynes having the formula H−(C≡CC≡C)n−(C≡C−C≡CH)n−H, n = 1−3, and ligands H−(C≡C−C≡C)n−H, n = 1−3, and compared these to previous work done on a complimentary series of platinum-containing complexes having the formula trans-Pt(P(C6H5)3)2(C≡C−C≡CH)=CH=C≡CH)n−H2, n = 1−3.1,11 More recently, we synthesized a series of half-platinum acetylide complexes having the formula trans-Pt(PBu3)2((C≡CPh2)n−H)Cl, n = 1−3.15 In all these articles, analysis of the dependence of singlet and triplet state energies on chromophore length gives evidence that the singlet exciton is delocalized through the central platinum, whereas the triplet exciton is confined to one ligand. Time-resolved infrared spectra of the triplet state trans-Pt(PBu3)2((C≡C−C≡CH)=CH=C≡CH3)n−H3 give evidence the triplet state geometry has cumulene and quinone character. A related time-resolved infrared spectroscopy and theoretical study of trans-Pt(PBu3)2(C≡CPh2)n−H gives evidence the triplet exciton is confined to one ligand.6 Another theoretical study of the same compound also suggests the triplet state is confined to one ligand.14 A suggested intersystem crossing mechanism in platinum acetylides involves an initial delocalized singlet state exciton converging to a triplet exciton confined to one ligand.

In this paper we describe the synthesis and characterization of three platinum acetylides trans-Pt(PBu3)2(C≡CPh2)=CH=C≡CPh3) (PE1-2), trans-Pt(PBu3)2(C≡CPh2)=CH=C≡CPh4−C≡CPh3) (PE1-3) and trans-Pt(PBu3)2(C≡C−C≡CH)=CH=C≡CPh3 (PE2-3) that have different ligands on either side of the central platinum. These compounds have Cs symmetry and we compare their spectroscopic properties to the C2v symmetry compounds PE1, PE2 and PE3. The nomenclature is described in Figure 1. With the lower symmetry we can distinguish between two possible intersystem crossing mechanisms where the triplet exciton goes to either ligand or preferentially goes to one ligand. We found the singlet exciton to be delocalized throughout the molecule, and the triplet exciton to be confined...
Asymmetry in Platinum Acetylide Complexes

Figure 1. Chemical formulas and nomenclature. Arrows show molecular axes. Nonacetylene for the asymmetric compound a-Pt(PBu₃)=b, designated as PEa-b, labels two ligands of the compound. In discussions below, ligand a is designated as the “left ligand” and ligand b is the “right ligand”. When a = Cl, the chromophore is designated as “half-PEb”. The butadiyne PEa-n-C≡C–C≡C–PEb is labeled as “PEa-n-BD”.

to the lowest energy ligand. We also did density functional theory (DFT) calculations on the ground and lowest triplet state of PE1, PE2, PE3, PE1-2, PE1-3 and PE2-3. The experimental trends are reproduced very well by the DFT calculations.

General Synthesis Methods

All reactions were carried out using dry, distilled solvents and under dry, high purity nitrogen. All reagents were purchased from Aldrich Chemical Co. and used without further purification. Reverse phase column refers to Alltech Extract-Clean C18. The ligands PE2-H and PE3-H and complexes Pt(C≡C-C≡C-CH₃)(PBU₃)₂ (half-PE1), Pt(C≡C-C≡C-CH₃)(C≡C-C≡C-CH₃)Cl-(PBU₃)₂ (half-PE2), Pt(C≡C-C≡C-CH₃)(C≡C-C≡C-CH₃)(PBU₃)₂ (PE2) and Pt(C≡C-C≡C-CH₃)(C≡C-C≡C-CH₃)(PBU₃)₂ (PE3) were synthesized as described previously.₁,²

Synthesis

Pt(C≡C-C≡C-CH₃)(C≡C-C≡C-CH₃)(PBU₃)₂ (PE1-2) In a 100 mL three-neck round-bottom flask 480 mg (0.6535 mmol) of half-PE1 was dissolved in 35 mL of diethylamine, followed by addition of 12.5 mg of Cul and 133 mg (0.6535 mmol) of PE2-H. The solution was heated to reflux and stirred overnight. The solvent was removed on a rotovap, and the remaining solid was then dissolved in dichloromethane (DCM) and adsorbed to a small amount of silica gel. This was layered over a 4 in. column of silica gel and eluted with first hexane and then varying percentages of a hexane/DCM mixture. Approximately 200 mg of the light yellow solid product was isolated. MA Found: C, 64.18; H, 7.36. C₈H₁₂P₂Cl₂Pt Requires: C, 63.91; H, 7.60. MW = 901. IR (KBr, thin film): 2095 cm⁻¹ [v(Pt–C≡C)].¹² NMR (CDCl₃): 0.96 (m, 18H, CH₃), 1.47 (m, 12H, CH₂), 1.60 (m, 12H, CH₂), 2.17 (m, 12H, CH₂), 7.25–7.40 ppm (m, 14H, ArH).¹³ C NMR (CDCl₃): 0.9 (s, CH₂), 23.96 (t, J(CP) = 17 Hz, CH₂), 24.19 (t, J(CP) = 7 Hz, CH₂), 24.68 (t, J(CP) = 17 Hz, CH₂), 26.64 (s, CH₂), 108.0 (t, J(CP) = 14 Hz, Pt–C≡C), 112.4 (t, J(CP) = 14 Hz, Pt–C≡C), 90.0 (s, C≡C), 90.4 (s, C≡C), 109.3 (s, C≡C), 109.4 (s, C≡C), 119.4, 123.9, 125.1, 128.1, 128.3, 128.6, 129.3, 129.5, 130.3, 130.1, 131.5, 131.7 ppm (Ar).¹⁵ P NMR (CDCl₃): s and d centered at 0.425 ppm (J(PtPpt) = 2351 Hz, Pbpp) ppm. EIMS: m/z 901.

Pt(C≡C-C≡C-CH₃)(C≡C-C≡C-CH₃)(PBU₃)₂ (PE1-3) In a 100 mL three-neck round-bottom flask 418 mg (0.5721 mmol) of half-PE1 was dissolved in 40 mL of diethylamine, followed by addition of 12.5 mg of Cul and 173 mg (0.5721 mmol) of PE3-H. The solution was heated to reflux and stirred overnight. The solvent was removed on a rotovap, and the remaining solid was then dissolved in DCM and adsorbed to a small amount of silica gel. This was layered over a 4 in. column of silica gel and eluted with first hexane and then varying percentages of a hexane/DCM mixture. Two fractions of the hexane/DCM eluents showed a mixture of product and PE1 by NMR. These mixtures were combined and put through a 1 in. reversed phase column using acetone/DCM as eluents. Approximately 130 mg of a waxy light yellow solid was isolated in an acetone/DCM fraction. MA Found: C, 67.68; H, 6.90. C₈H₁₂P₂Cl₂Pt Requires: C, 67.11; H, 7.24. MW = 1001. IR (KBr, thin film): 2095 cm⁻¹ [v(Pt–C≡C)].¹¹ NMR (CDCl₃): 0.99 (m, 18H, CH₃), 1.49 (m, 12H, CH₂), 1.66 (m, 12H, CH₂), 2.19 (m, 12H, CH₂), 7.29–7.55 ppm (m, 18H, ArH).¹² C NMR (CDCl₃): 0.14 (t, J(CP) = 17 Hz, CH₂), 24.19 (t, J(CP) = 17 Hz, CH₂), 24.42 (t, J(CP) = 7 Hz, CH₂), 24.82 (s, CH₂), 26.66 (s, CH₃), 107.96 (t, J(CP) = 14 Hz, Pt–C≡C), 112.89 (t, J(CP) = 14 Hz, Pt-C≡C), 89.5 (s, C≡C), 89.9 (s, C≡C), 91.5 (s, C≡C), 92.4 (s, C≡C), 109.4 (s, C≡C), 109.5 (s, C≡C), 119.2, 123.1, 123.4, 123.7, 125.2, 128.2, 128.7 (br), 129.3, 129.7, 131.1 (br), 131.6, 131.7, 131.8, 131.9 ppm (Ar).¹³ P NMR (CDCl₃): s and d centered at 0.42 ppm (J(PtPpt) = 2351 Hz, Pbpp) ppm. EIMS: m/z 1001.

Pt(C≡C-C≡C-CH₃)(C≡C-C≡C-CH₃)(C≡C-C≡C-CH₃)(PBU₃)₂ (PE2-3) In a 100 mL three-neck round-bottom flask 546 mg (0.653 mmol) of half-PE2 was dissolved in 40 mL of diethylamine, followed by addition of 12.5 mg of Cul and 157.5 mg (0.521 mmol) of PE3-H, and the mixture stirred for 4 days at room temperature. The solvent was removed on a rotovap, and the remaining solid was then dissolved in DCM and concentrated to a small amount of silica gel. This was layered over a 4 in. column of silica gel and eluted with first hexane and then varying percentages of a hexane/DCM mixture. The fraction eluted with a hexane/5% DCM mixture contained the product with a small amount of half-PE2. This fraction was put through a 1 in. reversed phase column using methanol and varying MeOH/DCM mixtures as the eluent. Approximately 280 mg of a waxy light yellow solid was isolated from the MeOH/25% DCM fraction. MA Found: C, 69.71; H, 6.69. C₈H₁₂P₂Cl₂Pt Requires: C, 69.73; H, 6.95. MW = 1101. IR (KBr, thin film): 2095 cm⁻¹ [v(Pt–C≡C)].¹¹ NMR (CDCl₃): 0.97 (m, 18H, CH₃), 1.49 (m, 12H, CH₂), 1.66 (m, 12H, CH₂), 2.19 (m, 12H, CH₂), 7.26–7.60 (m, 22H, ArH) ppm.¹³ C NMR (CDCl₃): 0.14 (t, J(CP) = 17 Hz, CH₂), 24.47 (t, J(CP) = 17 Hz, CH₂), 24.69 (t, J(CP) = 14 Hz, Pt–C≡C), 112.5 (t, J(CP) = 14 Hz, Pt–C≡C), 109.7 (s, br, C≡C), 89.5 (s, C≡C), 89.9 (s, C≡C), 90.1 (s, C≡C), 90.3 (s, C≡C), 91.4 (s, C≡C), 92.3 (s, C≡C), 119.2, 119.5, 123.1, 123.4, 123.7, 123.8, 128.3, 128.6, 128.9 (br), 129.4, 129.6, 131.0 (br), 131.5, 131.5, 131.6, 131.7, 134.1 ppm (Ar).¹³ P NMR (CDCl₃): s and d centered at 0.434 ppm (J(PtPpt) = 2351 Hz, Pbpp) ppm. EIMS: m/z 1101.

Computational Methods

Calculations were done using Gaussian 03W, revision D.01.¹⁵ The presence of the heavy platinum center required a basis set that includes relativistic effects through an effective core potential. We used DFT with the B3LYP functional and the relativistic LANL2DZ basis set.¹⁶,¹⁷ To save computer time, the phosphine portion of the molecule was converted from tributylphosphine to trimethylphosphate. We performed geometry
TABLE 1: Summary of 13C NMR Data

<table>
<thead>
<tr>
<th>compd</th>
<th>δa</th>
<th>δb</th>
<th>δc</th>
<th>δd</th>
<th>dipole moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1-2</td>
<td>108.0</td>
<td>-0.3</td>
<td>112.4</td>
<td>+0.4</td>
<td>1.153</td>
</tr>
<tr>
<td>PE1-3</td>
<td>108.0</td>
<td>-0.3</td>
<td>112.9</td>
<td>+0.5</td>
<td>1.627</td>
</tr>
<tr>
<td>PE2-3</td>
<td>111.9</td>
<td>-0.1</td>
<td>112.5</td>
<td>+0.1</td>
<td>0.458</td>
</tr>
<tr>
<td>PE1</td>
<td>108.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE2</td>
<td>112.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE3</td>
<td>112.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*In the asymmetric PEa-b complexes, ligand a is the left ligand and ligand b is the right ligand. Chemical shifts are in ppm. Change in chemical shift from reference symmetric complex. Chemical shift values (δa) for symmetric complexes obtained from the literature. Dipole moment (debye) calculated as described in the methods.

Optimizations for the ground and T1 states. For the ground state, energy minimizations were performed with the symmetrical complexes PEa having the ligand plane perpendicular to the P-Pt-P axis, constraining the symmetry to C2h and the asymmetric complexes PEa-b to C2v. We used DFT to calculate the T1 state geometry of the triplet state. DFT is known as a ground state theory only rigorously valid for the ground state of a given symmetry (including spin symmetry). In this instance the T1 state is the "ground state". Our starting geometry for these minimizations was that previously found for PE1, where the ligand plane was parallel to the P-Pt-P axis and the symmetry allowed to be C2h. We used the ASCF method to estimate ET as given by the expression

\[E_T = E(\text{triplet state relaxed geometry}) - E(\text{ground state relaxed geometry}) \]

The singlet excited states were investigated by density functional response theory (TDDFT), where the 6 lowest singlet roots were obtained.

General Spectroscopy Techniques

All absorption and fluorescence spectra were obtained in benzene solutions. Ground state UV/vis absorption spectra were measured on a temperature-controlled Cary 500 spectrophotometer. Emission spectra at 5 nm slit width were measured using a Perkin-Elmer model LS 50B fluorometer. Low-temperature phosphorescence was done in methyltetrahydrofuran as a frozen glass at 77 K and exciting at 350 nm. Nanosecond transient absorption measurements were carried out using the third and fourth harmonics (355 and 266 nm) of a Q-switched Nd:YAG laser (Quamtel Brilliant, pulse width ca. 5 ns). All samples were deoxygenated with three freeze-pump-thaw cycles. Pulse fluences of up to 8 mJ cm\(^{-2}\) are typically used at the excitation wavelength. Ground state absorption spectra were obtained before and after the flash photolysis experiment. Most samples showed less than 10% degradation. If necessary, spectra were collected from photosensitive samples by collecting the spectrum in a 100 nm increment and then putting a fresh sample into the instrument. A detailed description of the laser flash photolysis apparatus has been published.

Results

Table 1 lists selected 13C NMR data for the mixed compounds. The table lists the chemical shift for the Pt–C carbon. Also included are corresponding chemical shifts for the PEa complexes that have been previously published. The magnitude of the shifts was similar to those seen in the symmetric complexes. For example, \(\delta_{\text{PEa-2, ligand 1}} \sim \delta_{\text{PEa-1}} \) and \(\delta_{\text{PEa-2, ligand 2}} \sim \delta_{\text{PE2}} \). The chemical shifts for the asymmetric complexes split into two values. For a complex

Figure 2. Ground state absorption and emission spectra of the complexes dissolved in benzene at room temperature. For the emission spectra, the excitation wavelength was 350 nm.

TABLE 2: Summary of Spectroscopic Data

<table>
<thead>
<tr>
<th>compd</th>
<th>λmax(GS)'</th>
<th>εmax'</th>
<th>f</th>
<th>ωmax(ΔT)'</th>
<th>λmax(ΔT)'</th>
<th>τ(ΔT)'</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1-2</td>
<td>349</td>
<td>57665</td>
<td>1.34</td>
<td>377</td>
<td>524</td>
<td>590</td>
</tr>
<tr>
<td>PE1-3</td>
<td>357</td>
<td>69414</td>
<td>1.97</td>
<td>403</td>
<td>555</td>
<td>650</td>
</tr>
<tr>
<td>PE2-3</td>
<td>359</td>
<td>101815</td>
<td>2.74</td>
<td>401</td>
<td>553</td>
<td>650</td>
</tr>
</tbody>
</table>

*Maximum of ground state absorption spectrum in benzene (nm). Extinction coefficient (M\(^{-1}\) cm\(^{-1}\)). Oscillator strength was obtained by fitting absorption spectra to three Gaussians. Maximum of fluorescence spectrum in benzene (nm). Excitation wavelength 355 nm. Peak of 0–0 band of phosphorescence of complex in methyl-THF glass at 77 K. Peak of triplet state absorption spectrum obtained from flash photolysis experiment. Triplet lifetime in μs.

PEab, the interaction between ligands a and b is determined by calculating the difference

\[\Delta_{\text{ab}} = \delta_a - \delta_b \]

and

\[\Delta_{\text{ba}} = \delta_b - \delta_a \]

where \(\delta_a \) is the chemical shift of the Pt–C carbon of ligand a of the complex and \(\delta_b \) is the corresponding chemical shift for the complex PEa. \(\Delta_{\text{ab}} \) is the influence of ligand b on ligand a. Similarly, the value \(\Delta_{\text{ba}} \) is calculated from values for ligand b of the complex and the complex PEb. For a complex PEa-b, the interaction effect caused a small upfield shift in the left ligand a and a corresponding small downfield shift in the right ligand b. The magnitude of \(\Delta_{\text{ab}} \) behaves as PE1-3 ⊃ PE1-2 > PE2-3. The dipole moment calculated by DFT follows a similar ordering: \(\mu(\text{PE1-3}) > \mu(\text{PE1-2}) > \mu(\text{PE2-3}) \).

In Figure 2, the absorption spectrum of PE1-2 has an absorption maximum of 349 nm, and that for PE1-3 red-shifts to 357 nm. The band shape and absorption maximum of PE2-3 are identical to those of PE1-3, although its spectrum has an increased extinction coefficient, as given in Table 2. All three absorption spectra have at least two closely spaced bands near the absorption maximum. A Gaussian fit of the spectra shows the spacing between the two bands is ~0.2 eV. The oscillator strengths increase according to the order \(\mu(\text{PE1-2}) < \mu(\text{PE1-3}) < \mu(\text{PE2-3}) \). The behavior of the fluorescence spectra mirrors that of the absorption spectra, with PE1-2 blue-shifting from...
Asymmetry in Platinum Acetylide Complexes

Figure 3. Triplet state absorption spectra obtained from excitation at 355 nm of a degassed benzene solution at room temperature.

Figure 4. Phosphorescence spectra of chromophores dissolved in methyltetrahydrofuran glass at 77 K resulting from excitation at 350 nm. The peak marked with an asterisk is the weak emission from the PE2 ligand of PE2-3.

PE1-3 and PE2-3, both of which have similar emission spectra. Unlike the absorption spectra, each of the emission spectra have only one band and do not show distinct vibronic structure.

The triplet state absorption spectra (Figure 3) are similar to ground state absorption and emission spectra. PE1-2’s spectrum is blue-shifted from those of PE1-3 and PE2-3, which are nearly identical. All three spectra have a major band: 590 nm for PE1-2 and 650 nm for PE1-3 and PE2-3 as well as a minor band: ~485 nm for PE1-2 and ~525 nm for PE1-3 and PE2-3. The bleaching region shows PE1-2 bleaching at ~350 nm, whereas PE1-3 and PE2-3 bleach at ~370 nm. The average energy difference between the two bands is ~0.4 eV. The triplet state lifetimes (Table 2) follow the trend \(\tau(\text{PE1-2}) < \tau(\text{PE1-3}) \sim \tau(\text{PE2-3}) \).

We collected phosphorescence spectra of PE1-2, PE1-3 and PE2-3 and compared these spectra to phosphorescence from PE2 and PE3 (Figure 4). We find that the phosphorescence spectrum of PE1-2 to be identical to that of PE2, and the spectrum of PE1-3 and PE2-3 to be identical to that of PE3.

Table 3: Summary of State Energies

<table>
<thead>
<tr>
<th>compd</th>
<th>(E_{g}^{\mu})</th>
<th>(E_{t})</th>
<th>(\Delta E_{ST})</th>
<th>(E_{TT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1-2</td>
<td>3.44</td>
<td>2.38</td>
<td>1.06</td>
<td>2.10</td>
</tr>
<tr>
<td>PE1-3</td>
<td>3.21</td>
<td>2.26</td>
<td>0.95</td>
<td>1.91</td>
</tr>
<tr>
<td>PE2-3</td>
<td>3.21</td>
<td>2.26</td>
<td>0.95</td>
<td>1.91</td>
</tr>
<tr>
<td>PE1-2*</td>
<td>3.58</td>
<td>2.82</td>
<td>0.76</td>
<td>1.97</td>
</tr>
<tr>
<td>PE2</td>
<td>3.29</td>
<td>2.38</td>
<td>0.91</td>
<td>2.14</td>
</tr>
<tr>
<td>PE3</td>
<td>3.21</td>
<td>2.26</td>
<td>0.95</td>
<td>1.94</td>
</tr>
</tbody>
</table>

* eV. * State energies for PE1, PE2 and PE3 were previously published. * \(\Delta E_{ST} \) was measured from the intersection of the ground state absorption and phosphorescence spectra and \(E_{T} \) from the blue edge of the phosphorescence spectrum.

Table 4: Various DFT Calculation Results

<table>
<thead>
<tr>
<th>compd</th>
<th>(E_{g}^{\mu})</th>
<th>(E_{t}^{\mu})</th>
<th>(E_{t}^{\alpha})</th>
<th>(\mu^{\alpha})</th>
<th>(E_{g}^{\alpha})</th>
<th>(f)</th>
<th>Cl result</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1</td>
<td>-987.2223</td>
<td>-987.1177</td>
<td>7.85</td>
<td>1.49</td>
<td>4.25</td>
<td>0.10</td>
<td>0.48 (H-1 < L)</td>
</tr>
<tr>
<td>PE2</td>
<td>-1601.5540</td>
<td>-1601.4691</td>
<td>2.31</td>
<td>3.17</td>
<td>3.37</td>
<td>2.49</td>
<td>0.67 (H < L)</td>
</tr>
<tr>
<td>PE3</td>
<td>-2215.8844</td>
<td>-2215.8045</td>
<td>2.17</td>
<td>5.05</td>
<td>2.96</td>
<td>3.88</td>
<td>0.65 (H < L)</td>
</tr>
<tr>
<td>PE1-2</td>
<td>-1294.3882</td>
<td>-1294.3032</td>
<td>2.31</td>
<td>4.55</td>
<td>3.48</td>
<td>1.52</td>
<td>0.62 (H < L)</td>
</tr>
<tr>
<td>PE1-3</td>
<td>-1601.5534</td>
<td>-1601.4737</td>
<td>2.17</td>
<td>6.86</td>
<td>3.03</td>
<td>2.08</td>
<td>0.67 (H < L)</td>
</tr>
<tr>
<td>PE2-3</td>
<td>-1908.7192</td>
<td>-1908.6394</td>
<td>2.17</td>
<td>5.56</td>
<td>3.02</td>
<td>2.40</td>
<td>0.46 (H < L)</td>
</tr>
</tbody>
</table>

* Ground state energy (\(H \)) calculated from optimized singlet state geometry. PE1, PE2 and PE3 are assumed to have \(C_{3v} \) symmetry. PE1-2, PE1-3, and PE2-3 are assumed to have \(C_{1} \) symmetry. * Triplet state energy (\(H \)) calculated from optimized triplet state geometry. All chromophores are assumed to have \(C_{1} \) symmetry. * \(E_{T} \) (eV) is the difference between triplet state energy and ground state energy. * Triplet state dipole moment (D). * Transition energy (eV) calculated from a TD-DFT calculation. In PE1, the state shown is state 5. For all others, the state shown is state 1. / Oscillator strength. * PE1 also had 0.48 (H-1 \(\rightarrow \) L+1).

In the PE2-3 emission spectrum, we also observe a weak emission attributable to the 0-0 emission band from the PE2 ligand. Table 2 summarizes data obtained from ground state absorption and emission spectra.

Table 3 lists all the state energies plus previously published state energy data for PE1, PE2 and PE3.\(^{1,11} \) The trend in state energies for \(E_{g} \) is PE1 > PE1-2 > PE2 > PE1-3 ~ PE2-3 ~ PE3. The trend for the \(E_{t} \) state energy is PE1 > PE1-2 = PE2 > PE1-3 = PE2-3 = PE3. With the exception of PE1, all \(\Delta E_{ST} \) values are around 1 eV. The \(E_{TT} \) values follow the trend PE1-2 ~ PE2 ~ PE1-3 ~ PE2-3 ~ PE3.

Table 4 lists results of various calculations. Listed is the ground state energy after geometry optimization and the corresponding energy of the triplet-state-optimized geometry. As a test of our method, we did similar ASCF calculations for the monosubstituted half-PE\(\alpha \) chromophores and compared them to experimental \(E_{t} \) values.\(^{12} \) For the half-PE\(\alpha \) compounds, we found the calculated (experimental) \(E_{t} \) values to be half-PE1: 2.88 (2.92); half-PE2: 2.32 (2.39); half-PE3: 2.17 (2.28). By calculating the difference between the two energies, we determine the \(E_{T} \) trend to be half-PE1 ~ PE1 > half-PE2 ~ PE2 = PE1-2 > half-PE3 = PE1-3 = PE2-3 = PE3. The calculated triplet state dipole moments follow the trend PE1 < PE1-2 < PE2 < PE1-3 < PE2-3 < PE3. \(E_{g} \) and \(E_{T} \) values follow the trend PE1 > PE1-2 > PE2 > PE1-3 ~ PE2-3 ~ PE3. The lowest-lying allowed transition having oscillator strength greater than 0.1. The Supporting Information lists all the electronic states obtained from the TD-DFT calculation. The next most intense state is at 0.3–0.4 eV higher in energy with 70–80% lower oscillator strength. The \(E_{g} \) and \(E_{T} \) values follow the trend PE1 > PE1-2 > PE2 > PE1-3 ~ PE2-3 ~ PE3. PE2-3 < PE2 < PE3. Examination of the configuration interaction (CI) coefficients show the largest configuration of this state is a highest occupied molecular orbital (HOMO) ~ lowest unoccupied molecular orbital (LUMO) transition.
Figure 5. Comparison of calculated and experimental state energies. The triplet state energy E_T was calculated by the ASCF DFT method. The singlet state energy was calculated by the TDDFT method.

Figure 5 shows a plot of the calculated vs measured E_S and E_T values. A plot of E_T(experimental) vs E_T(calculated) have an excellent linear correlation. The linear fit gives the expression (in eV).

$$E_T(\text{expt}) \text{ (eV)} = 0.4758 + 0.8228E_T(\text{calc}) \quad r = 1$$

A similar plot for E_S gives the expression

$$E_S(\text{expt}) \text{ (eV)} = 2.3014 + 0.3048E_S(\text{calc}) \quad r = 0.9649$$

Although there is a lower correlation, the calculated E_S predicts the correct ordering of state energies with chromophore size.

Figure 6 shows images of the HOMO and LUMO for the chromophores. Neglecting the phosphines, PE1, PE2 and PE3 have D_{2h} symmetry. The HOMO consists of p orbitals on each of the phenylacetylene units and a d orbital on the platinum and has b_{2g} symmetry. The nodes cut through the bonds. Each phenylacetylene unit has two nodes, one through the phenyl group and one through the phenylacetylene carbon—carbon bond. There is another node between the platinum-carbon bond and a node between the lobes of the d orbital on the platinum atom. The LUMO consists of p orbitals on the phenylacetylene units and an empty d orbital on the platinum and has b_{2u} symmetry. The nodes cut through the bonds. Each phenylacetylene unit has three nodes, two in the phenyl group and one bisecting the acetylene group. There is another node bisecting the Pt–C bond and the Pt d orbital. An allowed HOMO \rightarrow LUMO transition is the z-polarized B_{2u} state and is assigned as an 1L_a state. In PE1, there are 7 nodes in the HOMO, and 6 in the LUMO, showing the allowed optical transition follows the $\Delta Q = \pm 1$ selection rule, as well as the $g \rightarrow u$ rule. The same analysis holds true for PE2 and PE3.

If the phosphines in PE1-2, PE1-3 and PE2-3 are neglected, the chromophores have C_{2v} symmetry. Both B_{2g} and B_{3u} representations in D_{2h} transform as B_1 in C_{2v}. Similarly, both A_g and B_{1u} representations in D_{2h} transform as A_1 in C_{2v}. Like the PEn complexes, the HOMO consists of p orbitals on the phenylacetylene groups and a d orbital on the platinum and has b_{1g} symmetry. By looking at the “inversion” symmetry through the platinum atom, the p orbitals of corresponding atoms on opposite sides of the ligand have the same sign, giving them “g” symmetry. In PE1-3 and PE2-3 there is less electron density on the outer phenyl of the PE3 ligand. The phenylacetylene node pattern is the same as seen in the PEn complexes. The LUMO consists of p orbitals on the phenylacetylene units and smaller contribution from the d orbital on the platinum atom and has b_1 symmetry. The “inversion” symmetry through the platinum atom shows the p orbitals of corresponding atoms on opposite sides of the ligand have opposite signs, giving them “u” symmetry. Because the d orbital has “g” symmetry, there is bonding between the platinum d orbital and one of the acetylene p orbitals. As in PEn, each phenylacetylene unit has three nodes. An allowed HOMO \rightarrow LUMO transition is a z-polarized A_1 state. In PE1-2 the HOMO has 10 nodes, and the LUMO has 11 nodes, showing a $\Delta Q = \pm 1$ selection rule.

Analysis of the p orbital signs shows “$g” \rightarrow “u$” character in the HOMO \rightarrow LUMO transition. Similar analyses hold true for PE1-3 and PE2-3.

Table 5 summarizes ground and triplet state geometry data for PE2. Complete geometry data for all the other chromophores are listed in Table S1 of the Supporting Information. In Table S1, a comparison of two chromophores PEa-b and PEc-d shows that when $a = c$, the ground and triplet state geometries of the two left ligands are identical. When $b = d$, the ground and triplet state geometries of the two right ligands are identical. Table 5 shows ground and triplet state bond lengths for the right PE2 ligand. The bond lengths for the left ligand triplet state are the same as the ground state. For a given number of phenylacetylene units in a ligand, the ground and triplet state geometries in both the left and right ligands are the same. The average ground state acetylene bond length, 1.23 Å, is close to the standard bond length of 1.20 Å. The bonds R_1, R_2 and R_0 have an average length of 1.43 Å, making them intermediate between a single bond (1.54 Å) and a double bond (1.36 Å). The average bond length in the phenyl rings is 1.41 Å, close to the standard length for a benzene carbon—carbon bond (1.39 Å). In the geometry optimizations, the PE ligand is constrained to be planar. A published X-ray structure of PE2 gives $R_1 = 1.214$ Å and $R_2 = 1.199$ Å4 vs our calculated values of 1.243 and 1.229 Å. Our calculated bond lengths are 0.03 Å larger than the experimental values, but there is good agreement for the difference between R_2 and R_0, 0.015 Å. In the triplet state there are only small geometry changes in the ligand. In the right ligand, the acetylene bond lengths increase, whereas the adjoining carbon—carbon bonds decrease in length, giving the linkage more allene character. There are also decreases in the 2α—3α bond lengths, while the 1α—2α and 3α—4α lengths increase.

The net result of these changes give the ligand more quinone character. Table S1 also lists root mean square (rms) bond length changes in each of the phenylethynyl units of the right ligand as a function of position from the central platinum. The largest rms bond length changes occur in PE1, with smaller changes in larger ligands. In PE3, the largest geometry distortion occurs in the central phenylethynyl unit. To estimate ligand flexibility, we calculated the barrier to rotation about the phenylethynyl linkage in the PE2-H ligand to be 1.6 kcal/mol. The rotation barrier of the PE2-H ligand in the triplet state is estimated to be 9.4 kcal/mol. For each of the ligands, the electron affinity ($-\Delta E_{\text{LUMO}}$ in eV from optimized geometry) calculated is PE1-H: 0.78; PE2-H, 1.61; PE3-H, 1.92.

Figure 7 shows plots of the spin density of the triplet state. The chromophores are divided into the individual phenylacetylene units of either the left or right ligand, and the central platinum/phosphine units. With the exception of the platinum/phosphine unit of PE1, having a spin density of 0.20, there is
no significant spin density on the platinum/phosphine unit. For all the compounds, the left ligand has virtually no spin density. Instead, most of the spin density is confined to the right ligand. In the asymmetric complexes, the triplet exciton is confined to the larger, lower energy ligand. The magnitude of the spin density is only a function of the right ligand size. The right ligand spin densities are identical in PE1-2 and PE2. The spin densities of the right ligands of PE1-3, PE2-3 and PE3 are also identical. As the length of the right ligand increases from one to three phenylacylene units, the spin density of the phenylacetylene nearest the platinum atom decreases from 0.70 to 0.25. The spin density of the second phenylacetylene unit increases from 0.59 to 0.95. The spin density on the third phenylacetylene unit is 0.73. The average spin density per functional group follows the trend Pt/phosphine, 0.086; ethynyl, 0.694 and phenyl, 1.22. As a comparison, a geometry optimization for the T1 state of the butadiyne PE1-BD (C6H5-C≡C-C≡C-C6H5) shows the spin densities are symmetrically placed throughout the molecule, with the acetylene carbons having a
spin density of 1.064 and the phenyl groups having a spin density of 0.936.

Discussion

What is the relation between molecular structure and the delocalization of the singlet and triplet excitons? A theoretical and experimental investigation of the polymer polyFPt(PBu3)2-
(C=CC6H5) finds the T1 exciton is localized on a single
phenylene ring and the S1 states are delocalized over several
monomer units.13 The spectra of a series of oligomers having the formula Cn6H12(C=CC6H5-Pt(PBu3)2-C=CC6H5)x-H, n = 1–5, 7, show similar trends. The ground state absorption and
fluorescence spectra have systematic red shifts as the
oligomer length increases. In contrast, the phosphorescence
spectra have only small red shifts with increasing oligomer
length. An investigation of the photophysics and
photochemistry of platinum acetylide stilbenes also gives evidence that triplet state resides on one ligand.24 Our group has done several studies on the relationship between platinum acetylide length and singlet
state energy, including PEn2 and PEn2 complexes13 and
acetylene-containing complexes.19 In all these studies the singlet state energy ES decreases as the molecular length increases, whereas the triplet state energy ET has less dependence on molecular length, supporting the idea that the triplet state is more localized than the singlet state.

The HOMO consists of π orbitals resident on the phenyl-
acetylene units and 5d orbitals on the platinum. As shown
in Table 1, the Pt–C carbon chemical shifts of the asymmetric complexes split into two values. The result suggests the Pt–C
carbon chemical shift is more strongly influenced by the carbon’s own ligand environment rather than by the ligand across the platinum
atom. Examining Figure 6, the antibonding nature of the
Pt–C bond increases the influence of the ligand on the
Pt–C chemical shift and decreases the influence of the other
ligand. The 13C NMR data and DFT calculations on the
asymmetric complexes give evidence of a ground state
dipole moment. Polar asymmetric complexes have been described in the literature, where the asymmetrical complexes Pt(C6H4
CC6H4OCCH3)(C=CC6H5NO2)(PBU3)2 and (Pt(C6H4CC6H5
(C3H3))C6H4NO2)(PBU3)2 have been shown to have dipole
moments of 5 D.35

Our TDDFT calculations of the ES values correlate well with the experimental values. There does appear to be a limit to the conjugation length, as the ES values of PE1-3, PE2-3 and PE3
are about the same, a trend also seen in the TDDFT calculations.
The CI coefficients depict the S1 state as having predominantly HOMO → LUMO character. The LUMO consists of π* orbitals on the ligands with the central d orbital empty. Inspection of the PE-b LUMOs (Figure 6) reveals transfer of electron density from the left to the right ligand, giving them charge transfer (CT)
character. From these results we conclude the S1 state in
PEa-b is a metal to ligand charge transfer (MLCT) with ligand
to-ligand CT character. A simple picture of the LUMO is a linear
combination of excited ligand orbitals situated between an empty platinum d orbital.

In the symmetric PEn complexes, c1 = c2 = 2−1/2. The LUMO of the asymmetric PEa-b chromophores has CT character, so c2 > c1. When the LUMO is only located on ligand b, c2 ~ 1.

The phosphorescence spectra of the asymmetric complexes PEa-b are nearly identical to those of the symmetric complexes PEb, where b is the more conjugated ligand. Our DFT calculations give a strong correlation between calculated and experimental ET values. The accuracy of our calculations agrees with previous theoretical work, where DFT successfully calculates ET within 0.1 eV of experiment.

A simple picture of the triplet state is a linear combination of localized triplet excitons.

\[3\psi^* = c_1 \phi^*_a + c_2 \phi^*_b \] (2)

The triplet exciton is confined to one ligand, and the other ligand is in the ground state. The triplet exciton migrates along a reaction coordinate describing ligand distortion, with the exciton migration potential energy surface having a double minimum.14

During a phosphorescence experiment, emission of a photon occurs from the ligand carrying the excitation, and the spectrum gives no information about excitation migration, so the data are interpreted as describing "confinement". When the triplet energy difference between a and b is small, the chromophore behaves more like the symmetric PEa chromophores, with the excitation migrating between the two ligands. In symmetric PEa chromophores, the excitation has an equal probability of residing in either ligand, so \(c_1 = c_2 = 2^{-1/2} \). In the asymmetric PEa-b chromophores, our experimental and computational results show the triplet exciton resides in the more conjugated, lower energy ligand, so \(c_2 > c_1 \). When the difference between the ligand energies is large, the excitation migration rate becomes small and the triplet exciton becomes confined to the lower energy ligand and \(c_2 \sim 1 \).

Does the distance between the ligands affect the localization of the triplet state? When electron exchange is small, energy transfer between the two ligands will occur via Forster transfer.27

As electron exchange increases, energy transfer occurs by the Dexter mechanism. Very strong electron exchange causes the two ligands to behave as a single chromophore and our picture of localized triplet excitons migrating between the two ligands breaks down. As an example of this behavior, we did DFT calculations on PE1-BD and find the triplet state is symmetrically delocalized throughout the chromophore. The triplet state is then described by the following expression.

\[3\psi^* = c_1 3\phi^*_a + c_2 3\phi^*_b \] (3)

In the platinum complexes, the greater distance between the two ligands and the presence of the platinum center decreases their coupling. The triplet state can potentially reside on either ligand, having energies \(E_T \) and \(E_S \). Intramolecular triplet energy transfer occurs between ligand a and ligand b via Dexter coupling, resulting in phosphorescence only from ligand b.28 The average singlet–triplet splitting is 0.93 ± 0.1 eV in our compounds. Our calculated \(\Delta E_{ST} \), 1.02 ± 0.23 eV, is within 0.1 eV of the measured value but has a larger standard deviation. Our measured splitting contrasts to a \(\Delta E_{ST} \) of 0.7 eV in polymeric platinum acetylides complexes.5 The splitting energy is proportional to the overlap integral between the singlet and triplet excitons. Because the singlet state exciton resides in a chromophore than in the polymeric systems, it results in a larger energy gap.

Recent published data support our picture of the triplet state. A recently synthesized PE1–hexabenzocoronene shows a phosphorescence band at 578 nm from the hexabenzocoronene ligand and no emission from the PE1 ligand.29 Similar evidence of confinement of the triplet exciton to the core of a series of branched platinum acetylide complexes rather than the outer PE1-like ligands has been described.30 All these results derive from Kasha’s rule, where emission occurs from the lowest energy electronically excited-state of the molecule. This behavior
is observed in PE1-2 and PE1-3, where the energy of ligand 1 is considerably higher than that of the other ligand. However, in PE2-3, we observe a small emission from ligand 2. The LUMOs depicted in Figure 6 give evidence for the CT character of the excited states in the asymmetric complexes. In PE1-2 and PE1-3, the difference in ligand electron affinity between ligand 1 and ligands 2 and 3, calculated as 0.83 and 1.14 eV, respectively, is large enough that the triplet excitation resides only on ligands 2 or 3 (c2 ≈ 1). However, the difference in ligand electron affinity in PE2-3, 0.31 eV, is small enough that some measurable triplet excitation population of ligand 2 is possible (c1 > 0). The measured energy difference between the 0–0 bands of the phosphorescence of ligands 2 and 3 is small enough (0.12 eV) that, during intersystem crossing, some of the excitation goes to ligand 2. A similar result from the literature describes photoluminescence from a platinum acetylide polymer containing both phenyl and thiophene monomer units. Most of the emission comes from the lower energy thiophene units, but some emission is also observed from the higher energy phenyl units. The study describes similar excited-state dynamics, where intersystem crossing results in the T1 excitation residing on the phenyl unit with some phosphorescence from the phenyl, followed by energy transfer to the thiophene unit and subsequent phosphorescence from the thiophene unit.

In contrast to the behavior of the phosphorescence spectra, the T1 → Tn spectrum red-shifts with increasing chromophore size. A comparison of the T1 → Tn transition energy of the PEEn chromophores vs the monosubstituted half-PEEn chromophores gives evidence this is an LMCT transition delocalized across the platinum center. In the current work, the T1 → Tn transition shows increased conformation when PE1-2 and PE1-3 are compared, but the Tn state conjugation length of PE2-3 is the same as that of PE1-3. The trend in triplet state lifetimes supports this idea, with the lifetimes of PE1-3 and PE2-3 being nearly equal. The conjugation length trends in the T1 → Tn spectra mirror those seen in the ground state absorption and fluorescence spectra, showing the conjugation length of the Tn state changes in a similar manner as the S1 and T1 states.

The expression for the intersystem crossing rate constant can be used to analyze the factors underlying the conversion from the singlet to triplet state:

\[k_{isc} = \frac{k_{max} (S_1 | H_{ISC} | T_1)^2}{\Delta E^2} \frac{(S_1 | H_{ISC} | T_1)^2}{\Delta E^2} \frac{(S_1 | x_{T1})^2}{\Delta E^2} \]

This equation describes the interactions between S1 and T1 contributing to the rate of intersystem crossing. The first term describes electronic interactions. The second term describes spin–orbit coupling and the third term describes Franck–Condon factors.

Our experiments involve excitation of these chromophores initially in the ground state and observing the steady state and time-resolved behavior of the triplet state. We have previously shown the singlet state lifetime of these compounds is less than 30 ps and the intersystem crossing quantum yield is nearly unity. Our calculations give good information about the S0 state, the Franck–Condon S1 state, and the T1 state. We currently have no information about the S1 and T1 potential energy surfaces and the dynamics underlying the intersystem crossing process. Intersystem crossing occurs at geometries where the energy difference between the surfaces is small, and there is a strong electronic and vibrational interaction between the S1 and T1 states. These critical geometries may correspond to an avoided crossing minimum or a conical intersection between the S1 and T1 surfaces where a nonadiabatic transition will occur.

A possible critical geometry is described by theoretical calculations of excited-state dynamics in phenylacetylene and diphenylacetylene, which suggest the formation of a stilbene-like biradicaloid S1 state prior to the nonadiabatic jump to the T1 state. This type of mechanism may occur in platinum acetylide complexes, where the initial D2h symmetry Franck–Condon S1 state relaxes to a biradicaloid state stilbene-like geometry, followed by conversion to the triplet state. Evidence for symmetry breaking during intersystem crossing has been obtained from a time-resolved infrared spectroscopy study of PE1, which shows a splitting of the Pt=C=C stretch vibration into two peaks, suggesting the intersystem crossing mechanism, which includes symmetry breaking from the S1 state having D2h symmetry to the T1 state having C2v symmetry. The authors of this paper propose the intersystem crossing process occurs by coupling of S1 state B2u symmetry Pt=C=C antisymmetric stretch vibration to two uncoupled A1 modes in the T1 state. Similar spectroscopic behavior is observed in PE2, where a cumulated C=C=C stretch vibration appears in the T1 state vibration spectrum. All of these experimental studies suggest, during intersystem crossing, conversion from aromatic ethynyl linkages to allene linkages occurs. The calculated bond length data given in Table 5 and Table S1 support this mechanism. The bonds undergoing greater than rms length change between the ground and triplet state in the right ligand are R2 to R6 in PE1, R3 to R5 in PE1-2 and PE2 and R6, R3, R8, and R16 in PE1-3, PE2-3 and PE3. All of these geometry changes involve the bonds connecting the phenyl groups. There are smaller distortions with the phenyl groups involving conversion from aromatic to quinone character. During intersystem crossing, the reaction coordinate for distortion of the molecule moves toward the critical geometry involved in the nonadiabatic transition between the singlet and triplet potential energy surfaces. Does the symmetry-breaking process begin while the chromophore is still in the singlet state, or during the spin flip to the triplet state? Perhaps the relaxed singlet state is delocalized throughout the molecule, resulting from a Jahn–Teller distortion mechanism, leading to a geometry similar to the triplet state, promoting a nonadiabatic crossing to the triplet state. To understand these processes, it is necessary to monitor the rates of Franck–Condon S1 state conversion to the relaxed S1 state, followed by conversion to the triplet state, including possible possible population of both ligands, formation of stilbene intermediates and energy transfer to the lowest energy ligand. Future work will focus on the structure changes occurring on a subpicosecond time scale following excitation.

Conclusions

We have synthesized the asymmetric complexes PE1-2, PE1-3 and PE2-3 and have determined various spectroscopic trends. The singlet state energy ES decreases with increasing chromophore length, giving evidence that the singlet state is delocalized through the platinum. The DFT calculations suggest the S1 state contains both intraligand CT and MLCT character. The triplet state energy ET is a function of the longest ligand. The ET trends suggest that the intersystem crossing mechanism involves movement of the triplet excitation to the lowest energy ligand. Our calculated ET energies correlate well with the experimental values. The calculated triplet state geometry shows the geometry changes occur only on the lowest energy ligand. Spin density calculations also show the triplet state is confined to one ligand.
Acknowledgment. We thank Jean-Philippe Blaudeau, Gary Kedziora, and Kiet Nguyen for very helpful guidance in DFT calculations and Edward Lim for insightful discussions on the triplet state potential energy surface.

Supporting Information Available: Complete results of the TDDFT calculations, complete geometry and spin density data are available free of charge via the Internet at http://pubs.acs.org.

References and Notes