EVALUATION TRANSPORTABILITY TESTING OF THE JOINT MODULAR INTERMODAL PLATFORM (JMIP) UNIT #4 TP-94-01, "TRANSPORTABILITY TESTING PROCEDURES"

Prepared for:

TACOM/ARDEC
Logistics Research and Engineering Directorate
ATTN: AMSRD-AAR-AIL-F
Picatinny Arsenal, NJ 07806

Distribution Unlimited:

DEFENSE AMMUNITION CENTER
VALIDATION ENGINEERING DIVISION
MCALESTER, OKLAHOMA 74501-9053
AVAILABILITY NOTICE

A copy of this report will be furnished each attendee on automatic
distribution. Additional copies or authority for reprinting may be obtained by written
request from:

Director
U.S. Army Defense Ammunition Center
ATTN: SJMAC-DEV
1 C Tree Road, Bldg. 35
McAlester, OK 74501-9053

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

Citation of trade names in this report does not constitute an official
endorsement.

The information contained herein will not be used for advertising purposes.
ABSTRACT

The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMAC-DEV), was tasked by the Logistics Research and Engineering Directorate (AMSRD-AAR-AIL-F), Picatinny Arsenal, NJ to conduct Evaluation Transportability Testing on the Joint Modular Intermodal Platform (JMIP) Unit #4 manufactured by SEA BOX, Inc, East Riverton, NJ. The testing was conducted in accordance with TP-94-01, Revision 2, June 2004 “Transportability Testing Procedures.” The test loads consisted of two-high stacks of Joint Modular Intermodal Containers (JMICs).

The objective of the testing was to identify the adequacy of the JMIP for demonstration use and not final approval when transportability tested in accordance with TP-94-01, Revision 2, June 2004.

The following observations resulted from the testing of JMIP Unit #4:

1. Inspection following completion of the Hazard Course revealed the JMIP rail on the driver’s side front dropped down 0.38 inches.
2. The bottom plate on the JMIP rail was deforming and delaminating when contacting the Palletized Load System (PLS) roller.
3. Inspection following the completion of the Hazard Course revealed that the JMIP main rails were slanted and no longer centered in the channels.
4. Inspection following the completion of Hazard Course revealed that the JMIP main rail on the passenger side had moved back.
5. One (1) handle of the A-Frame PLS position transport pin partially opened. This was most likely caused by the locking nuts moving. The pin remained safely engaged.

6. The JMIP had to be craned onto the PLS trailer. The JMIP, as currently designed, cannot be rolled back on the PLS trailer using the vehicle load handling system due to the outward location of the rollers. The outward roller location prevents the JMIP from staying properly aligned when rolled back onto the PLS trailer. Additionally, the top JMICs had to be removed to prevent interference with the slings when loading/unloading the JMIP from the trailer.

7. Throughout testing the JMIP moved forward and aft on the PLS trailer due to the JMIP not properly engaging the trailer stops.

8. Following the completion of the testing, the JMIP was difficult to disengage from the PLS trailer. The JMIP had to be manipulated so that the trailer DIN locks would disengage the JMIP DIN locks.

9. One (1) JMIC locking pin on one (1) side panel had disengaged. The load was still safely secured and retained.

 The JMIP, as tested, is adequate, to transport double-stacked Navy JMICs and to transport ammunition for demonstration purposes. The operational condition of the JMIP should be closely monitored during the demonstrations. Also, the Defense Ammunition Center, Transportation Engineering Division, shall be consulted for the ammunition and loading instructions.

 The JMIP, as currently designed, is **not adequate**, to be used on the PLS trailer.

Prepared by: PHILIP W. BARICKMAN

Reviewed by: JERRY W. BEAVER

PHILIP W. BARICKMAN
Lead Validation Engineer

JERRY W. BEAVER
Chief, Validation Engineering Division
U.S. ARMY DEFENSE AMMUNITION CENTER
VALIDATION ENGINEERING DIVISION
MCALESTER, OK 74501-9053

REPORT NO. 06-04E

Evaluation Transportability Testing of the
Joint Modular Intermodal Platform (JMIP) Unit #4
TP-94-01, Revision 2, June 2004 “Transportability Testing Procedures”

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>A. BACKGROUND</td>
<td>1-1</td>
</tr>
<tr>
<td>B. AUTHORITY</td>
<td>1-1</td>
</tr>
<tr>
<td>C. OBJECTIVE</td>
<td>1-1</td>
</tr>
<tr>
<td>D. OBSERVATIONS</td>
<td>1-1</td>
</tr>
<tr>
<td>E. CONCLUSION</td>
<td>1-2</td>
</tr>
<tr>
<td>2. ATTENDEES</td>
<td>2-1</td>
</tr>
<tr>
<td>3. TEST EQUIPMENT</td>
<td>3-1</td>
</tr>
<tr>
<td>4. TEST PROCEDURES</td>
<td>4-1</td>
</tr>
<tr>
<td>A. RAIL TEST</td>
<td>4-1</td>
</tr>
<tr>
<td>B. ON/OFF ROAD TESTS</td>
<td>4-3</td>
</tr>
<tr>
<td>1. HAZARD COURSE</td>
<td>4-3</td>
</tr>
<tr>
<td>2. ROAD TRIP</td>
<td>4-4</td>
</tr>
<tr>
<td>3. PANIC STOPS</td>
<td>4-4</td>
</tr>
<tr>
<td>4. WASHBOARD COURSE</td>
<td>4-4</td>
</tr>
<tr>
<td>C. OCEAN-GOING VESSEL TEST. Shipboard Transportation Simulator.</td>
<td>4-4</td>
</tr>
<tr>
<td>5. TEST RESULTS</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1 TESTING DATE -25-26 April 2007</td>
<td>5-1</td>
</tr>
<tr>
<td>A. RAIL TEST</td>
<td>5-1</td>
</tr>
<tr>
<td>B. ON/OFF ROAD TESTS</td>
<td>5-2</td>
</tr>
<tr>
<td>1. HAZARD COURSE</td>
<td>5-2</td>
</tr>
<tr>
<td>2. ROAD TRIP</td>
<td>5-4</td>
</tr>
<tr>
<td>3. PANIC STOPS</td>
<td>5-4</td>
</tr>
<tr>
<td>4. HAZARD COURSE</td>
<td>5-4</td>
</tr>
<tr>
<td>5. WASHBOARD COURSE.</td>
<td>5-4</td>
</tr>
<tr>
<td>C. OBSERVATIONS.</td>
<td>5-5</td>
</tr>
</tbody>
</table>
E. CONCLUSIONS ... 5-8

5.2 TESTING DATE – 20 April 2007 .. 5-9
A. ON/OFF ROAD TESTS ... 5-9
 1. HAZARD COURSE ... 5-9
 2. ROAD TRIP .. 5-10
 3. PANIC STOPS .. 5-10
 4. HAZARD COURSE .. 5-10
 5. WASHBOARD COURSE .. 5-10
B. ON/OFF ROAD TESTS ... 5-11
 1. HAZARD COURSE ... 5-11
 2. ROAD TRIP .. 5-13
 3. PANIC STOPS .. 5-13
 4. HAZARD COURSE .. 5-13
 5. WASHBOARD COURSE .. 5-15
C. OBSERVATIONS .. 5-15
D. CONCLUSIONS .. 5-17

6. DRAWINGS .. 6-1
PART 1 – INTRODUCTION

A. **BACKGROUND.** The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMAC-DEV), was tasked by the Logistics Research and Engineering Directorate (AMSRD-AAR-AIL-F), Picatinny Arsenal, NJ to conduct Evaluation Transportability Testing on the Joint Modular Intermodal Platform (JMIP) Unit #4 manufactured by SEA BOX, Inc, East Riverton, NJ. The testing was conducted in accordance with TP-94-01, Revision 2, June 2004 “Transportability Testing Procedures.” The test loads consisted of two-high stacks of Joint Modular Intermodal Containers (JMICs).

B. **AUTHORITY.** This test was conducted IAW mission responsibilities delegated by the U.S. Army Joint Munitions Command (JMC), Rock Island, IL. Reference is made to the following:

C. **OBJECTIVE.** The objective of the testing was to identify the adequacy of the JMIP for demonstration use and not final approval when transportability tested in accordance with TP-94-01, Revision 2, June 2004.

D. **OBSERVATIONS.**

1. Inspection following completion of the Hazard Course revealed the JMIP rail on the driver’s side front dropped down 0.38 inches.
2. The bottom plate on the JMIP rail was deforming and delaminating when contacting the Palletized Load System (PLS) roller.
3. Inspection following the completion of the Hazard Course revealed that the JMIP main rails were slanted and no longer centered in the channels.
4. Inspection following the completion of Hazard Course revealed that the JMIP main rail on the passenger side had moved back.

5. One (1) handle of the A-Frame PLS position transport pin partially opened. This was most likely caused by the locking nuts moving. The pin remained safely engaged.

6. The JMIP had to be craned onto the PLS trailer. The JMIP, as currently designed, cannot be rolled back on the PLS trailer using the vehicle load handling system due to the outward location of the rollers. The outward roller location prevents the JMIP from staying properly aligned when rolled back onto the PLS trailer. Additionally, the top JMICs had to be removed to prevent interference with the slings when loading/unloading the JMIP from the trailer.

7. Throughout testing the JMIP moved forward and aft on the PLS trailer due to the JMIP not properly engaging the trailer stops.

8. Following the completion of the testing, the JMIP was difficult to disengage from the PLS trailer. The JMIP had to be manipulated so that the trailer DIN locks would disengage the JMIP DIN locks.

9. One (1) JMIC locking pin on one (1) side panel had disengaged. The load was still safely secured and retained.

E. CONCLUSIONS. The JMIP, as tested, is adequate to transport double-stacked Navy JMICs and to transport ammunition for demonstration purposes. The operational condition of the JMIP should be closely monitored during the demonstrations. Also, the Defense Ammunition Center, Transportation Engineering Division, shall be consulted for the ammunition and loading instructions.

The JMIP, as currently designed, is not adequate, to be used on the PLS trailer.
<table>
<thead>
<tr>
<th>ATTENDEE</th>
<th>MAILING ADDRESS</th>
</tr>
</thead>
</table>
| Philip Barickman | Director
U.S. Army Defense Ammunition Center
ATTN: SJMAC-DEV
1 C Tree Road, Bldg. 35
McAlester, OK 74501-9053 |
| Michael S. Bartosiak | Director
U.S. Army Defense Ammunition Center
ATTN: SJMAC-DET
1 C Tree Road, Bldg. 35
McAlester, OK 74501-9053 |
| Joseph Cappetta | Logistics Research & Engineering Dir.
U.S. Army Armament Research,
Development and Engineering Center
ATTN: AMSRD-AAR-AIL-F
Picatinny Arsenal, NJ 07806-5001 |
| Bob Cook | Logistics Research & Engineering Dir.
U.S. Army Armament Research,
Development and Engineering Center
ATTN: AMSRD-AAR-AIL-F
Picatinny Arsenal, NJ 07806-5001 |
PART 3 - TEST EQUIPMENT

1. Joint Modular Intermodal Platform Unit #4
 Manufactured by SEA BOX, Inc., East Riverton, NJ
 Model Number: J-MIP
 Serial Number: 00004
 Date of Manufacture: 26 January 2007
 Tare Weight: 4,240 lbs (without straps, rings and end gates)

2. Joint Modular Intermodal Container
 Designed by Naval PHST Center - Earle, NJ
 Length: 51-3/4 inches
 Width: 43-3/4 inches
 Height: 43 inches

3. Palletized Load System Truck
 Model #: M1074
 Manufactured by Oshkosh Truck Corporation, Oshkosh, WI
 ID #: 10T2P1NH6N1044011
 NSN: 2320-01-304-2277
 Serial #: 44011
 Curb Weight: 55,000 lbs

4. Truck, Tractor, MTV, M1088 A1
 ID #: J0229
 NSN: 2320 01 447 3893
 VSN: NL1FSC
 MFG Serial #: T-018488EFJM
 Weight: 19,340 lbs
5. Semitrailer, flatbed, breakbulk/container transporter, 34 ton
 Model #: M872A1
 Manufactured by Heller Truck Body Corporation, Hillsdale, NJ
 ID #: 11-1505 NX05NZ
 NSN: 2330 01 109 8006
 Weight: 19,240 lbs

8. Truck, 8 X 8, Cargo
 Model Number: M977
 Manufactured by Oshkosh Truck Corporation
 Serial Number: 10TZK1J2-2F1026025
 NSN 2320-01-097-0260
 GVWR: 62,000 lbs

9. Trailer, Palletized Load System
 Model Number: M1076
 Manufactured by Oshkosh Truck Corporation
 Serial Number: 42879
 NSN: 2330-01-303-5197
 Curb Weight: 16,500 lbs
 GVWR: 49,500 lbs

10. Railcar DODX 42353
 Manufactured by Thrall Car
 Length: 89 feet – 4 inches
 Empty Weight: 85,000 lbs.
PART 4 - TEST PROCEDURES

The test procedures outlined in this section were extracted from TP-94-01, "Transportability Testing Procedures," Revision 2, June 2004, for validating tactical vehicles and outloading procedures used for shipping munitions by tactical truck, railcar, and ocean-going vessel.

The rail impact will be conducted with the test load secured directly to the railcar. Inert (non-explosive) items were used to build the load. The test loads were prepared using the blocking and bracing procedures proposed for use with munitions (see Part 6 - Drawings for procedures). The weight and physical characteristics (weights, physical dimensions, center of gravity, etc.) of the test loads were similar to live (explosive) ammunition.

A. RAIL TEST. RAIL IMPACT TEST METHOD. The test load or vehicle will be secured to a flatcar. The equipment needed to perform the test will include the specimen (hammer) car, four empty railroad cars connected together to serve as the anvil, and a railroad locomotive. The anvil cars will be positioned on a level section of track with air and hand brakes set and with draft gears compressed. The locomotive unit will push the specimen car toward the anvil at a predetermined speed, then disconnect from the specimen car approximately 50 yards away from the anvil cars allowing the specimen car to roll freely along the track until it strikes the anvil. This will constitute an impact. Impacting will be accomplished at speeds of 4, 6, and 8.1 mph in one direction and at a speed of 8.1 mph in the reverse direction. The tolerance for the speeds is plus 0.5 mph, minus 0.5 mph for the 4 mph and 6 mph impacts, and plus 0.5 mph, minus 0 mph for the 8.1 mph impacts. The impact speeds will be determined by using an electronic counter to measure the time for the specimen car to traverse an 11-foot distance immediately prior to contact with the anvil cars (see Figure 1).
ASSOCIATION OF AMERICAN RAILROADS (AAR)

STANDARD TEST PLAN

4 BUFFER CARS (ANVIL)
WITH DRAFT GEAR
COMPRESSED AND AIR BRAKES IN A SET
POSITION

ANVIL CAR TOTAL WT. 250,000 LBS (APPROX)

SPECIMEN CAR IS RELEASED BY SWITCH ENGINE TO
ATTAIN: IMPACT NO. 1 @ 4 MPH
IMPACT NO. 2 @ 6 MPH
IMPACT NO. 3 @ 8.1 MPH

THEN THE CAR IS REVERSED AND RELEASED BY
SWITCH ENGINE TO ATTAIN:

IMPACT NO. 4 @ 8.1 MPH

Figure 1. Rail Impact Sketch
B. **ON/OFF ROAD TEST.**

1. **HAZARD COURSE.** The test load or vehicle will be transported over the 200-foot-long segment of concrete-paved road consisting of two series of railroad ties projecting 6 inches above the level of the road surface. The hazard course will be traversed two times (see Figure 2).

![Figure 2. Hazard Course Sketch](image)

- a. The first series of 6 ties are spaced on 10-foot centers and alternately positioned on opposite sides of the road centerline for a distance of 50 feet.

- b. Following the first series of ties, a paved roadway of 75 feet separates the first and second series of railroad ties.
c. The second series of 7 ties are spaced on 8-foot centers and alternately positioned on opposite sides of the road centerline for a distance of 48 feet.

d. The test load is driven across the hazard course at speeds that will produce the most violent vertical and side-to-side rolling reaction obtainable in traversing the hazard course (approximately 5 mph).

2. **ROAD TRIP.** The test load or vehicle will be transported for a distance of 30 miles over a combination of roads surfaced with gravel, concrete, and asphalt. The test route will include curves, corners, railroad crossings and stops and starts. The test load or vehicle will travel at the maximum speed for the particular road being traversed, except as limited by legal restrictions.

3. **PANIC STOPS.** During the road trip, the test load or vehicle will be subjected to three (3) full airbrake stops while traveling in the forward direction and one in the reverse direction while traveling down a 7 percent grade. The first three stops are at 5, 10, and 15 mph while the stop in the reverse direction is approximately 5 mph. This testing will not be required if the Rail Impact Test is performed.

4. **WASHBOARD COURSE.** The test load or vehicle will be driven over the washboard course at a speed that produces the most violent response in the vertical direction.

C. **OCEAN-GOING VESSEL TEST.** Shipboard Transportation Simulator (Test Method 5). The Shipboard Transportation Simulator (STS) is used for testing loads in 8-foot-wide by 20-foot-long intermodal freight containers. The specimen shall be positioned onto the STS and securely locked in place using the cam lock at each corner. Using the procedure detailed in the operating instructions, the STS shall begin oscillating at an angle of 30 degrees, plus or minus 2 degrees, either side of vertical center and a frequency of 2 cycles-per-
minute (30 seconds, plus or minus 2 seconds) for a duration of two (2) hours. This frequency shall be observed for apparent defects that could cause a safety hazard. The frequency of oscillation shall then be increased to 4 cycles-per-minute (15 seconds, plus or minus one second per cycle) and the apparatus operated for two (2) hours. If an inspection of the load does not indicate an impending failure, the frequency of oscillation shall be further increased to 5 cycles-per-minute (12 seconds, plus or minus one second per cycle), and the apparatus operated for four (4) hours. The operation does not necessarily have to be continuous; however, no changes or adjustments to the load or load restraints shall be permitted at any time during the test. After once being set in place, the test load (specimen) shall not be removed from the apparatus until the test has been completed or is terminated.

![Figure 3. Washboard Course Sketch](image-url)
5.1
Test Specimen: SEA BOX Joint Modular Intermodal Platform Unit #4
Payload: 8 Navy Joint Modular Intermodal Containers (JMICs).
Payload Configuration: Double Stack on each End
Testing Date: 25-26 April 2007
Gross Weight: 21,895 lbs (Including JMIP and JMICs).

A. RAIL TEST.

Photo 1. Rail Impact Testing of the JMIP (Prior to Testing)

<table>
<thead>
<tr>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flatcar Number: DODX 42353</td>
<td>85,000 lbs.</td>
</tr>
<tr>
<td>8 JMICs with JMIP</td>
<td>21,895 lbs.</td>
</tr>
<tr>
<td>M1 Flatrack with MLRS Pods</td>
<td>28,265 lbs.</td>
</tr>
<tr>
<td>Total Specimen Wt.</td>
<td>135,160 lbs.</td>
</tr>
<tr>
<td>Buffer Car (four cars)</td>
<td>257,900 lbs.</td>
</tr>
</tbody>
</table>

Figure 4.
Remarks: Figure 4 lists the test components and weights of the items used during the Rail Impact Tests.

<table>
<thead>
<tr>
<th>Impact Number</th>
<th>Avg. Velocity (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>6.2</td>
</tr>
<tr>
<td>3</td>
<td>8.4</td>
</tr>
<tr>
<td>4</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Figure 5.

Remarks:
1. Figure 5 lists the average speeds of the specimen car immediately prior to impact with the anvil. Impact #4 is the reverse impact.
2. The JMIP was secured directly to the railcar for testing.

B. ON/OFF ROAD TESTS.

1. HAZARD COURSE.

Photo 2. Hazard Course Testing of the JMIP
Remarks:
1. Figure 6 lists the average speeds of the test load through the Hazard Course.
2. The JMIP was transported on the PLS trailer.
3. The JMIP had to be craned onto the PLS trailer. The JMIP, as currently designed, cannot be rolled back on the PLS trailer using the vehicle load handling system due to the outward location of the rollers. The outward roller location prevents the JMIP from staying properly aligned when rolled back onto the PLS trailer. Additionally, the top JMICs had to be removed to prevent interference with the slings when loading/unloading the JMIP from the trailer.
4. Inspection did not reveal any damage to the JMIP.
2. **ROAD TRIP:**

Remarks:
1. The Road Trip was conducted between the Hazard Course Passes #2 and #3.
2. Inspection following the Road Trip revealed no damage or movement of the JMIP.

3. **PANIC STOPS:** Testing was not required since the load was rail impact tested.

4. **HAZARD COURSE:**

![Figure 7](image)

<table>
<thead>
<tr>
<th>Pass No.</th>
<th>Elapsed Time</th>
<th>Avg. Velocity (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>32 Seconds</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>30 Seconds</td>
<td>5</td>
</tr>
</tbody>
</table>

Remarks:
1. Figure 7 lists the average speeds of the test load through the Hazard Course.
2. Inspection did not reveal any damage to the JMIP.

5. **WASHBOARD COURSE:**

Remarks: Inspection following the Washboard Course revealed no damage to the JMIP.
C. OBSERVATIONS:

1. Throughout testing the JMIP moved forward and aft on the PLS trailer due to the JMIP not properly engaging the trailer stops.

2. Following the completion of the testing, the JMIP was difficult to disengage from the PLS trailer. The JMIP had to be manipulated so that the trailer DIN locks would disengage the JMIP DIN locks.
D. ON/OFF ROAD TESTS.

1. HAZARD COURSE.

![Photo 6. Hazard Course Testing of the JMIP](image)

<table>
<thead>
<tr>
<th>Pass No.</th>
<th>Elapsed Time</th>
<th>Avg. Velocity (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24 Seconds</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>24 Seconds</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 8.

Remarks:

1. Figure 8 lists the average speeds of the test load through the Hazard Course.
2. The JMIP was secured directly to the M872 trailer.
3. Inspection did not reveal any damage to the JMIP.
2. **ROAD TRIP:**

Remarks:
1. The Road Trip was conducted between the Hazard Course Passes #2 and #3.
2. Inspection following the Road Trip revealed no damage or movement of the JMIP.

3. **PANIC STOPS:** Testing was not required since the load was rail impact tested.

4. **HAZARD COURSE:**

<table>
<thead>
<tr>
<th>Pass No.</th>
<th>Elapsed Time</th>
<th>Avg. Velocity (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>25 Seconds</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>25 Seconds</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 9.

Remarks:
1. Figure 9 lists the average speeds of the test load through the Hazard Course.
2. Inspection did not reveal any damage to the JMIP.

5. **WASHBOARD COURSE:**

Remarks: Inspection following the Washboard Course revealed no damage to the JMIP.
E. CONCLUSIONS:

1. The JMIP, as currently designed, is adequate to transport the double-stacked JMICs for demonstration purposes.

2. The operational condition of the JMIP should be closely monitored during the demonstration. Also, the Defense Ammunition Center, Transportation Engineering Division, shall be consulted for the ammunition and loading instructions.

3. The JMIP, as currently designed, is not adequate to be used on the PLS trailer.
5.2

Test Specimen: SEABOX Joint Modular Intermodal Platform Unit #4
Payload: 8 Navy Joint Modular Intermodal Containers (JMIC).
Payload Configuration: Alternating Double Stack
Testing Date: 20 April 2007
Gross Weight: 26,085 lbs (Including JMIP and JMICs).

A. **ON/OFF ROAD TESTS.**

1. **HAZARD COURSE.**

![Photo 8. Hazard Course Testing of the JMIP](image)

<table>
<thead>
<tr>
<th>Pass No.</th>
<th>Elapsed Time</th>
<th>Avg. Velocity (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24 Seconds</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>25 Seconds</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 10.

Remarks:
1. Figure 10 lists the average speeds of the test load through the Hazard Course.
2. The JMIP was secured directly to the M872 trailer.
3. Inspection did not reveal any damage to the JMIP.
2. **ROAD TRIP:**

Remarks:
1. The Road Trip was conducted between the Hazard Course Passes #2 and #3.
2. Inspection following the Road Trip revealed no damage or movement of the JMIP.

3. **PANIC STOPS:** Testing was not required since the load was rail impact tested.

4. **HAZARD COURSE:**

 ![Table](image)

 Figure 11.

 Remarks:
 1. Figure 11 lists the average speeds of the test load through the Hazard Course.
 2. Inspection did not reveal any damage to the JMIP.

5. **WASHBOARD COURSE:**

 Remarks: Inspection following the Washboard Course revealed no damage to the JMIP.
B. **ON/OFF ROAD TESTS.**

1. **HAZARD COURSE.**

Photo 9. Washboard Course Testing of the JMIP

Photo 10. Hazard Course Testing of the JMIP
Pass No.	Elapsed Time	Avg. Velocity (mph)
1 | 24 Seconds | 6
2 | 21 Seconds | 7

Figure 12.

Remarks:
1. Figure 12 lists the average speeds of the test load through the Hazard Course.
2. The JMIP was transported on the PLS truck.
3. The main JMIP rail on the driver's side front dropped down 0.38 inches.
4. The bottom plate on the JMIP rail deformed when contacting the PLS roller. See Photo 12 for deformation and Photo 17 on related delaminating damage.

Photo 11. Movement of JMIP Main Rail
2. ROAD TRIP:

Remarks:
1. The Road Trip was conducted between the Hazard Course Passes #2 and #3.
2. Inspection following the Road Trip revealed no damage or movement of the JMIP.

3. PANIC STOPS: Testing was not required since the load was rail impact tested.

4. HAZARD COURSE:

<table>
<thead>
<tr>
<th>Pass No.</th>
<th>Elapsed Time</th>
<th>Avg. Velocity (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>21 Seconds</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>18 Seconds</td>
<td>8</td>
</tr>
</tbody>
</table>

Figure 13.
Remarks:

1. Figure 13 lists the average speeds of the test load through the Hazard Course.

2. Inspection following the completion of Pass #4 revealed that the JMIP main rails were slanted and no longer centered in the channels.

3. Inspection following the completion of Pass #4 revealed that the JMIP main rail on the passenger side had moved back.

Photo 13. Main Rail No Longer Centered

Photo 14. Backward Movement of Main Rail
5. **WASHBOARD COURSE:**

Remarks: Inspection following the Washboard Course revealed no damage to the JMIP.

![Photo 15. Washboard Course Testing of the JMIP](image)

C. **OBSERVATIONS:**

1. One (1) handle of the A-Frame PLS position transport pin partially opened. This was most likely caused by the locking nuts moving. The pin remained safely engaged.

2. The bottom plate on the main rail was delaminating when loaded onto/off the PLS truck.

3. One (1) JMIC locking pin on one (1) side panel had disengaged. The load was still safely secured and retained.
Photo 16. Partially Opened Handle

Photo 17. Delaminating Main Rail
D. CONCLUSIONS:

1. The JMIP, as currently designed, is adequate to transport the double-stacked JMICs for demonstration purposes.

2. The operational condition of the JMIP should be closely monitored during the demonstrations. Also, the Defense Ammunition Center, Transportation Engineering Division, shall be contacted for the ammunition and loading instructions.
PART 6 – DRAWINGS

The following drawing represents the load configuration that was subjected to the test criteria.
TEST SKETCH

LOADING AND BRACING OF JOINT MODULAR INTERMODAL CONTAINERS (JMICS) ON THE JOINT MODULAR INTERMODAL PLATFORM (JMIP)

THIS TEN PAGE DOCUMENT DEPICTS NAVY JMIC ON A SEABOX JMIP FOR TRANSPORTABILITY TESTING THE WORST CASE STACKING CONFIGURATIONS FOR RAIL IMPACT AND ON/OFF ROAD TESTING

PREPARED DURING APRIL 2007 BY:
U.S. ARMY DEFENSE AMMUNITION CENTER
ATTN: SJMAC-DET
POC: MICHAEL BARTOSIAK
DSN 956-8083
COMM (918) 420-8083
FAX (918) 420-8811
E-MAIL: MICHAEL.BARTOSIAK@US.ARMY.MIL

LAURA A. FIEFFER
CHIEF, TRANSPORTATION ENGINEERING DIVISION
NOTE: BASED ON PULL TEST DATA ON JMIC SECUREMENT RINGS, ARDEC HAS PERFORMED AND ANALYSIS THAT DETERMINED THE MAXIMUM STACKED LOAD ON THE REAR POSITION OF THE JMIP ONLY BE IN COMBINATIONS OF 2,000 LBS - 2,000 LBS OR 3,000 LBS - 1,600 LBS LOAD JMICS

LOAD AS SHOWN

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANTITY</th>
<th>WEIGHT (APPROX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVY JMIC LOAD A</td>
<td>2</td>
<td>4,022 LBS</td>
</tr>
<tr>
<td>NAVY JMIC LOAD B</td>
<td>2</td>
<td>5,942 LBS</td>
</tr>
<tr>
<td>NAVY JMIC LOAD C</td>
<td>2</td>
<td>3,908 LBS</td>
</tr>
<tr>
<td>NAVY JMIC LOAD D</td>
<td>2</td>
<td>3,192 LBS</td>
</tr>
<tr>
<td>JMIP</td>
<td></td>
<td>4,240 LBS</td>
</tr>
<tr>
<td>TOTAL WEIGHT</td>
<td>21,304 LBS (APPROX)</td>
<td></td>
</tr>
</tbody>
</table>
Load as Shown

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Weight (Approx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVY JMIC LOAD A</td>
<td>2</td>
<td>4,022 LBS</td>
</tr>
<tr>
<td>NAVY JMIC LOAD B</td>
<td>6</td>
<td>17,826 LBS</td>
</tr>
<tr>
<td>JMIP</td>
<td></td>
<td>4,240 LBS</td>
</tr>
</tbody>
</table>

Total Weight 26,088 LBS (Approx)

8 JMIC LOAD ON JOINT MODULAR INTERMODAL PLATFORM (JMIP) FOR ON/OFF ROAD TEST
NAVY JMIC UNIT LOAD A
(2 REQD FOR RAIL IMPACT)
(2 REQD FOR ON/OFF ROAD TEST)

12 M548 BOXES @ 125 LBS
8 M548 BOXES (EMPTY) @ 5 LBS
DAMAGE
CUBIC WEIGHT

TOTAL WEIGHT
CUBE

2,011 LBS (APPROX)
56.4 CU FT (APPROX)

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>LINEAR FEET</th>
<th>BOARD FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1" X 4"</td>
<td>52</td>
<td>18</td>
</tr>
<tr>
<td>2" X 4"</td>
<td>64</td>
<td>43</td>
</tr>
<tr>
<td>NAILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d (1-1/4")</td>
<td>84</td>
<td>.16</td>
</tr>
<tr>
<td>6d (2")</td>
<td>60</td>
<td>.35</td>
</tr>
<tr>
<td>10d (3")</td>
<td>36</td>
<td>.54</td>
</tr>
<tr>
<td>NAVY PANEL JMIC</td>
<td>1 REQD</td>
<td>325 LBS</td>
</tr>
<tr>
<td>1/2 PLYWOOD</td>
<td>17 SQ FT</td>
<td>23 LBS</td>
</tr>
</tbody>
</table>
NAVY JMIC UNIT LOAD B
(2 REQD FOR RAIL IMPACT)
(6 REQD FOR ON/OFF ROAD TEST)

20 M548 BOXES @ 125 LBS --------------- 2,500 LBS
DUNNAGE -------------------------- 146 LBS
CLOSED PANEL NAVY JMIC --------------- 325 LBS

TOTAL WEIGHT ------------------- 2,971 LBS (APPROX)
CUBE --------------------- 56.4 CU FT (APPROX)

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>LINEAR FEET</th>
<th>BOARD FEET</th>
<th>NAILS</th>
<th>NO.</th>
<th>REQD</th>
<th>POUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" X 4"</td>
<td>52</td>
<td>18</td>
<td>3d</td>
<td>84</td>
<td></td>
<td>.16</td>
</tr>
<tr>
<td>2" X 4"</td>
<td>64</td>
<td>43</td>
<td>6d</td>
<td>60</td>
<td></td>
<td>.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d</td>
<td>36</td>
<td></td>
<td>.54</td>
</tr>
<tr>
<td>NAVY PANEL JMIC</td>
<td>1 REQD</td>
<td></td>
<td></td>
<td></td>
<td>325 LBS</td>
<td></td>
</tr>
<tr>
<td>1/2 PLYWOOD</td>
<td>17 SQ FT</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAGE 5
PLYWOOD 40-1/2" X 29" X 1/2" (1 REQD). NAIL TO VERTICAL PIECES W/1-3d NAILS EVERY 4".

VERTICAL PIECE 2" X 4" X 29" (3 REQD).

HORIZONTAL PIECE 2" X 4" X 40 1/2" (3 REQD). NAIL TO VERTICAL PIECES W/2-10d NAILS AT EACH JOINT.

SIDE FILL ASSEMBLY DETAIL (2 REQD)

VERTICAL PIECE 1" X 4" X 29" (3 REQD). NAIL TO HORIZONTAL PIECES W/2-3d NAILS AT EACH JOINT.

HORIZONTAL PIECE 1" X 4" X 41-1/4" (3 REQD).

FRONT/REAR FILL ASSEMBLY DETAIL (2 REQD)

SECONDARY LONGITUDINAL PIECE, 1" X 4" X 40 1/2" (5 REQD). NAIL TO LATERAL PIECES W/2-6d NAILS AT EACH JOINT.

LATERAL PIECE 2" X 4" X 45-1/2" (3 REQD). NAIL TO LONGITUDINAL PIECES W/2-6d NAILS AT EACH JOINT.

TOP FILL ASSEMBLY DETAIL (1 REQD)

LONGITUDINAL PIECE 2" X 4" X 40 1/2" (5 REQD).
NAVY JMIC UNIT LOAD C
(2 REQD FOR RAIL IMPACT TEST)
(NONE REQD FOR ON/OFF ROAD TEST)

13 C445 BOXES @ 120 LBS = 1,560 LBS
DUNNAGE = 69 LBS
CLOSED PANEL NAVY JMIC = 325 LBS
TOTAL WEIGHT = 1,954 LBS (APPROX)
CUBE = 6.4 CU FT (APPROX)

<table>
<thead>
<tr>
<th>LUMBER</th>
<th>LINEAR FEET</th>
<th>BOARD FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" X 4"</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>2" X 4"</td>
<td>22</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAILS</th>
<th>NO. REQD</th>
<th>POUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d (1-1/4")</td>
<td>24</td>
<td>.05</td>
</tr>
<tr>
<td>6d (2")</td>
<td>48</td>
<td>.28</td>
</tr>
</tbody>
</table>

| NAVY PANEL JMIC | 1 REQD | 325 LBS |
| 1/2 PLYWOOD | 22 SQ FT | 30 LBS |
END FILL ASSEMBLY A DETAIL
(1 REQD)

END FILL ASSEMBLY B DETAIL
(1 REQD)
NAVY JMIC UNIT LOAD D
(2 REQD FOR RAIL IMPACT)
(NONE REQD FOR ON/OFF ROAD TEST)

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>LUMBER</th>
<th>LINEAR FEET</th>
<th>BOARD FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" x 4"</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>2" x 4"</td>
<td>23</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAILS</th>
<th>NO. REQD</th>
<th>POUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d (1-1/4")</td>
<td>24</td>
<td>.05</td>
</tr>
<tr>
<td>6d (2")</td>
<td>48</td>
<td>.28</td>
</tr>
</tbody>
</table>

| NAVY PANEL JMIC | 1 REQD | 325 LBS |
| 1/2 PLYWOOD | 22 SQ FT | 30 LBS |

10 C445 BOXES @ 120 LBS = 1,200 LBS
DUNNAGE = 71 LBS
CLOSED PANEL NAVY JMIC = 325 LBS
TOTAL WEIGHT = 1,596 LBS (APPROX)
CUBE = 56.4 CU FT (APPROX)
END FILL ASSEMBLY A DETAIL
(1 REQD)

END FILL ASSEMBLY B DETAIL
(1 REQD)