Award Number: W81XWH-04-1-0780

TITLE: Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

PRINCIPAL INVESTIGATOR: Michael V. Pishko, Ph.D.

CONTRACTING ORGANIZATION: Pennsylvania State University
University Park, PA 16802

REPORT DATE: September 2007

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Glucose sensor arrays were fabricated on gold electrodes on flexible polyimide sheets by cross-linking glucose oxidase and redox polymer using UV-initiated free radical reaction. Using conventional silicon fabrication methods, five-element array Au microdisks were initially fabricated using mid-UV photolithography. Active glucose oxidase were entrapped by hydrogel by UV-initiated photo polymerization with poly(ethylene glycol) diacrylate or PEG-DA on the array electrodes. The fabricated microarray sensors were individually addressable and with no cross-talk between adjacent array elements as assessed using cyclic voltammetry. We have fabricated an array of glucose sensors on flexible polyimide sheets that exhibit the desired linear response in the biological range. We have also tested the sensors using other electrochemical methods including amperometry and square wave voltammetry (which is known for its background reduction).
Table of Contents

Introduction .. 4

Body .. 5
 - Glucose Sensors .. 5
 - Sensor Design .. 18
 - Lactate Sensors ... 19
 - Animal Testing .. 19

Key Research Accomplishments .. 19

Reportable Outcomes .. 20

Conclusions .. 21

References .. 22
Introduction

Intensive treatment with the goal of maintaining blood glucose concentrations close to the normal range can prevent or delay the occurrence of diabetic-related complications.\(^1\) Diabetic patients, therefore, have to frequently monitor their blood glucose levels by drawing blood necessary for conventional glucose monitoring. The blood data obtained gives no indication of direction or trend of blood sugar levels. Even the most motivated diabetic patient performing frequent tests may miss reoccurring highs or lows, particularly at night. Development of simple and painless techniques of monitoring glucose with increased frequency would be beneficial to diabetic patients.

A number of strategies for measuring the blood glucose are continuously under development to allow pain-free, more frequent glucose monitoring. Transdermal spectroscopic\(^2,\,3\) and interstitial fluid sampling\(^4,\,5\) are some of the techniques under investigation. A major advantage of transdermal spectroscopic techniques is painless testing; however, their main drawback is measurement of glucose in a highly complex matrix of water, proteins, polysaccharides, and lipids. The result is a complex signal with glucose measurement having to be extracted through other mathematical programs hence introducing errors at every stage. Reverse iontophoresis\(^6\) and sonophoresis\(^7\) techniques for interstitial blood sampling have been studied. One advantage of these techniques is that a physiologically relevant fluid sample with glucose concentration closely related to glucose in blood is collected. There still exists significant difference between the blood plasma glucose and interstitial fluid glucose.\(^8\)

Implantable sensors for glucose have been under investigation for nearly three decades with mixed and promising results. Implantation of sensors can be done either in subcutaneous tissue to measure glucose in interstitial fluid\(^9-12\) or intravascular.\(^13\) These sensors have enormous potential for long-term monitoring of glucose in humans as demonstrated from limited clinical trials. As with any foreign object introduced into the body, biocompatibility is one of the most important requirements of these sensors. For blood-contacting devices, hemocompatibility of *in vivo* sensors is also an important consideration, as well. Adsorption of proteins on surfaces of implanted sensors and devices constitutes the first step of several biological responses, including the activation of the coagulation cascade. Following protein adsorption, cell adhesion occurs. This is not a desirable event, since it could lead not only to the alteration of the sensor output but can also cause harmful side effects on the subject, e.g., thrombi formation after adsorption and activation of platelets.\(^14\) In this work we have used PEG-DA hydrogel networks that provide an ideal three-dimensional, aqueous in vivo-like surrounding\(^15-18\) to entrap both the redox polymer and glucose oxidase on polyimide sheets. We have used biocompatible PEG-DA hydrogel networks that have shown to be provide an ideal three-dimensional environment\(^15-18\) to entrap both the redox polymer and glucose oxidase on polyimide sheets.

We have used silicon microsensor fabrication technologies to fabricate sensor arrays and using mid-UV photolithography to polymerize and pattern on a micrometer scale three-dimensional redox polymer hydrogels containing glucose oxidase for glucose monitoring. An osmium-based redox polymer replaced oxygen as a non-physiological
electron acceptor. We have used square wave voltammetry, amperometry, and cyclic voltammetry to monitor catalytic oxidation of glucose by glucose oxidase enzyme in a reaction mediated by a redox polymer.

Body

In the proposal for this project there were many different aspects that were to be examined for the implantable continuous monitoring sensors. The first of which was to do the bench-top work on the glucose sensors and test and optimize the sensor, which is described in the glucose sensor section of the report. Other aspects have been and are still currently being examined, such as the design of the sensor, lactate sensors, and animal testing, and are discussed in subsequent sections.

Glucose Sensors

In this report we will discuss glucose sensors developed with photolithographic methods and using PEG-DA as the hydrogel encapsulating sensing elements. In the proposal we wanted to encapsulate the redox polymer (POs-EA) and the enzyme (e.g. GOX) in the PEG-DA hydrogel simultaneously, but this method proved to have difficulties. We altered the sensor by electrostatically attaching POs-EA to the surface of the self-assembled monolayer on the gold and then used photolithography methods to encapsulate GOX in the PEG-DA hydrogel. This method proved to work and the results for glucose sensors below is using this method.

Materials and Methods

Glucose oxidase (GOX, EC 1.1.3.4, Type X-S, 128 units/mg solid from *Aspergillus niger*), Ammonium hexachloroosmate(IV), 11-mercaptoundecanoic acid (MUA), poly(4-vinylpyridine), β-D-glucose, acetone, ammonium hexafluorophosphate, sodium dithionite, ether, 2-bromoethyamine hydrobromide, N,N-Dimethylformamide, anion exchange beads, hydrochloric acid, poly(ethylene glycol) diacrylate (MW 575), and 2,2’-dipyridyl (bpy) were obtained from the Aldrich Chemical Co. (Milwaukee, WI). Ethyl alcohol, ethylene glycol and acetonitrile were obtained from Fisher Scientific Co. (Pittsburgh, PA). DAROCUR, the photo initiator, was obtained from Ciba. All reagents, unless otherwise stated, were used as received. Polyimide sheets (1/16” thick) were purchased from McMaster Carr (New Brunswick, NJ). Phosphate buffered saline (PBS) consisted of 1.1 mM potassium phosphate monobasic, 3 mM sodium phosphate dibasic heptahydrate. Conductive silver epoxy was obtained from Ladd Research (Williston, VT). Ma-P 100, positive photoresist, and ma-D 330, Developer, were purchased from MicroChem Corp. (Newton, MA). The polycationic redox polymer, poly[vinyl pyridine Os(bipyridine)_2Cl]-co-ethyamine (POs-EA as seen in Figure 1) was synthesized according to a procedure described previously.10
Synthesis of poly[vinylpyridine Os(bipyridine)$_2$Cl]-co-ethylamine (POs-EA)

Synthesis of poly[vinylpyridine Os(bipyridine)$_2$Cl]-co-ethylamine (POs-EA), an osmium based polycationic redox polymer was done following modifications of established protocols. Os(bpy)$_2$Cl$_2$ was synthesized according to a standard procedure with minor modifications. In brief two equivalents of bipyridine (1440 mg) were mixed with one equivalents ammonium hexachloroosmate (IV) (2000 mg) in 100mL ethylene glycol. The mixture was heated to reflux for 45 minutes and then precipitated with supersaturated sodium diothionate. The precipitate was repeatedly washed with water and finally with ether.

Os(bpy)$_2$Cl$_2$ (0.988 g, 1.728 mmol) and poly(4-vinyl-pyridine) (0.860 g, 8.18 mequiv) were heated under nitrogen at reflux in 36 mL of ethylene glycol for 2 hours. The solution was then cooled down to room temperature and 60 mL of DMF and 3.0 g of 2-bromoethylamine hydrobromide (14.6 mmol) were added and then stirred overnight at 45 °C. A crude polymer precipitate was formed by pouring the solution into rapidly stirred acetone. The hygroscopic precipitate was collected and dissolved in water. The solution was filtered and precipitated as the PF$_6^-$ salt by addition of a solution of ammonium hexafluorophosphate. The precipitate was dried in a vacuum at 40 °C. Dry PF$_6^-$ salt (0.98 g) was dissolved in 40 mL of acetonitrile and then diluted with 100 mL of water and stirred over 10.4 g of anion exchange beads for 2 hours. The solution was filtered and evaporated under vacuum to ~20 mL. Concentrated HCl was added to the solution to adjust to pH 2. The solution was then dripped into rapidly stirred acetonitrile. A precipitate that formed was filtered and dried in a vacuum desiccator. The pure product was analyzed.

Fabrication of electrode arrays on polyimide sheets

Polyimide sheets are flexible insulating materials and ideal platforms for electrode manufacturing. Square pieces of polyimide were cut and washed with ethanol before
coating with positive photoresist (ma-P 100). Modified literature procedure was used to fabricate the electrode arrays. In brief positive photoresist (ma-P 100) was deposited on square polymer sheets and spin coated at 4000 rpm for 30 seconds and then soft baked at 100 °C for 5 minutes. These polymer sheets with dry photoresist were brought in close contact with the photo-mask and exposed to 365 nm UV light. The polymer sheets were then placed in developer solution (ma-D 330) for seventy seconds to remove the portions of photoresist that were exposed to UV light. The sheets were then rinsed with distilled water.

The photoresist patterns were then sputter coated with 10 nm adhesion layer of chrome followed by 150 nm layer of gold (done at Pennsylvania State University using Lesker CMS-18 sputtering tool and by Lance Goddard Associates at Foster City, CA). The photoresist was removed using acetone to lift-off chrome and gold from all non-patterned areas. The result was distinct patterns of gold with 500 µm diameter electrodes with leads 10 µm and contact pads at 2.5 mm x 2.5 mm; a completed sensor array can be seen in Figure 2. Wires were attached to the contact pads by using conductive silver epoxy resin (Ladds Research, Williston, VT).

Figure 2: Fabricated Electrode Array where only the part to the left of the line will be inserted into the skin (where the scale is in inches).

Immobilization and patterning of biosensor films on gold surfaces

The electrode arrays were functionalized with a carboxylic end group by immersing in 2 mM MUA in ethanol for 20 minutes and then washed with ethanol. The electrodes were then dried under nitrogen. The thiol end group was chemisorbed to gold to provide an anchor. Next, the redox polymer was immobilized on the electrodes by depositing 2µL of 10 mg/mL POs-EA, solution on electrode surface and left to cure overnight in the dark. Strong electrostatic interactions occur between the negative MUA and the positive POs-EA. The excess POs-EA was removed by washing with water and dried with nitrogen. The PEG-DA precursor was made by mixing 5 µL of a GOX solution (50 mg/mL in HEPES buffer), 5 µL PEG-DA, and 0.5 µL DAROCUR and then
placed onto the electrode surface. UV light was then applied and PEG-DA hydrogels were formed on the five different electrode array elements.

Figure 3: Schematic of the fabrication of sensor

Electrochemical Techniques

All electrochemical experiments were performed using Princeton Applied Research (PAR) 273 potentiostat on a three electrode system with platinum wire used as counter electrode and Ag/AgCl as reference electrode. The array electrodes with redox polymer and enzyme encapsulated with a PEG-DA hydrogel were used as working electrodes. All experiments were conducted in 0.1 M PBS buffer pH 7.0 with varying amounts of a glucose solution (200 mM glucose in 0.1 M PBS) added for the desired concentration.

Results and Discussion

Amperometric biosensors based on redox polymer/enzyme complexes were shown to be miniaturizable and implantable. Previously, enzymes entrapped in redox hydrogels using photo polymerization were shown to retain their activity. Enzyme-containing redox polymer films were formed through the UV-initiated free radical cross linking of a redox polymer and PEG-DA in each electrode array element. Each sensor array element after microfabrication was smooth and without any discontinuities.

Cyclic Voltammetry

To determine whether the array elements had any defects or whether they functioned independently, cyclic voltammetry was performed initially without the analyte (glucose) to evaluate the reproducibility of micro-fabrication process and the stability of the film. The micro-fabrication process was quite reproducible as observed from almost overlaid cyclic voltammograms for each element of the array (not shown). The entrapment of the redox polymer, glucose oxidase and PEG-DA was also uniform on all the electrodes, which is especially important when summing sensor signals of the arrays. The signal from all the array sensor elements mimics the behavior of one large sensor.
with electrode area equal to the sum of all the electrode array elements. Figure 4 shows cyclic voltammograms of increasing number of array elements. Measurements done after combination of different array members show increasing peak currents with increasing number of array elements combined. With such a sensor array, multiple analytes can be measured simultaneously and through the introduction of redundancy, measurements can be derived from the average of the signal resulting from each array element. There was no cross-talk between the array members.

![Graph](image.png)

Figure 4: Cyclic voltammograms of different combinations of micro-array electrodes at 20 mV/s scan rate

The formal potential of this redox polymer was around 0.3 V versus Ag/AgCl electrode about the same as what has been reported for this molecule. Anodic and cathodic peaks were observed at 0.32 and 0.25 V versus Ag/AgCl reference electrode at 20 mV/s scan rate. The peak separation was approximately 60 mV. Figure 5 shows cyclic voltammograms of one element of microarray at different scan rates. Plots of peak current versus scan rate were linear at scan rates 0.01-0.50 V s\(^{-1}\). At high scan rates (above 50 mV/s) a deviation from linearity was observed (not shown). A plot of peak current \(i_p\) versus square root of scan rate \(\sqrt{\nu}\) yielded a straight line (Figure 6). The dependence of the current function \(i_p\) on the scan rate, \(\sqrt{\nu}\), is an important diagnostic criterion for establishing the type of reaction mechanism by cyclic voltammetry. The ratio of anodic to cathodic peak currents was unity indicating chemical reversibility. The CV is consistent with non-ideal, reversible, thin layer electrochemistry. Cyclic
voltammetry of the electroactive polymer film showed a reversible response for the OsII/OsIII redox couple, with forward and reverse peaks at similar potentials (Figure 4-6).

Figure 5: Cyclic voltammograms of one element of the micro-array at different scan rates.

Figure 6: Scan rate dependence of film containing GOX, redox polymer and PEG-DA in phosphate buffer
Properly cross-linked GOX and POs-EA molecules are expected to retain the activity of glucose oxidase and to present signal stability. Signal stability would degrade if enzyme leaching from the hydrogel occurred. Figure 7 shows cyclic voltammograms of five combined elements of the microarrays in buffer and in buffer containing 5, 10, and 20 mM glucose solutions. In the presence of increasing glucose concentration, the current is found to increase. The rate of this catalytic reaction is proportional to the concentration of glucose present. Flavin adenine dinucleotide of glucose oxidase GOX(FAD) reacts with β-D-glucose to form a reduced form GOX(FADH$_2$) and gluconic acid inside the hydrogel. The reduced form of GOX(FADH$_2$) is in turn oxidized by the electrochemically generated Os$^{3+}$ form of the redox polymer, setting up a catalytic pathway which produces an enhanced oxidation peak.

![Cyclic Voltammograms of one sensor element at different glucose concentrations](image)

Figure 7: Cyclic Voltammograms of one sensor element at different glucose concentrations
(— in buffer, … in 5mM glucose, - - in 10 mM glucose, and --.. in 20 mM glucose).

The electrons are transferred from the enzyme to the redox polymer, shuttled between the redox sites in self exchange reaction until being transferred to an electrode surface. The catalytic current produced is proportional to the glucose concentration. Presence of oxygen does not influence the rate of the reaction and hence the catalytic current obtained. Glucose oxidase is securely trapped in the hydrogel network and glucose diffuses through to access the glucose oxidase sites. Photopolymerization of the acrylate end groups of the PEG-DA by the photo initiator DAROCUR occurs and entraps the glucose oxidase enzyme on the redox polymer film. We are yet to find out how different thicknesses of the hydrogel affect the glucose movement in and out of the
hydrogel and how the catalytic signal is affected. We believe that the thickness of the hydrogel network ultimately affects the communication of enzyme and the redox polymer. Hence optimum thickness will be very important in this sensor.

![Graph showing collective response of five sensor elements to increased glucose concentration.](image)

Figure 8: Collective response of five sensor elements to increasing glucose concentration

Figure 8 indicates that the sensor signal is proportional to the concentration of glucose (0-20 mM).

Amperometry

Another electrochemical method for testing is amperometry where a constant potential is applied over a given time and then the current is monitored. With amperometry the current is proportional to the reaction rate, which in this case is proportional to the glucose concentration. In Figure 9 the potential is maintained at 0.35 V and the current is monitored when the amount of glucose in solution is increased. In Figure 10 the steady state value of the current density versus the glucose concentration is
graphed and displays the expected linear relationship. At higher concentrations the data is not as linear due to the nature of the enzyme.

![Graph showing amperometric response of glucose concentration](image)

Figure 9: Amperometric response of one sensor array element to varying concentration of glucose
Square Wave Voltammetry (SWV)

Square wave voltammetry (SWV) is an electrochemical technique suitable for both qualitative and quantitative analysis. In SWV the current signal is repeatedly sampled at two points relative to the time of application of a square wave voltage signal to the electrode. The difference between the two current values can be plotted as a function of the applied potential. Forward, reverse and difference scans are obtained. The resultant peaks correspond to the electroactivity of the species in the electrochemical cell. The major component of this difference current is the faradaic current, which flows due to an oxidation or reduction at the electrode surface. One major advantage of this technique is that the charging current component, due to electrical charging of electrode double layer, is largely eliminated and the signal to noise ratio is enhanced.

In this work redox polymers exchanged electrons with glucose oxidase entrapped in biocompatible poly (ethylene glycol) diacrylate (PEG-DA) hydrogels. SWV of the electroactive polymer film showed a reversible response for the Os$^\text{II}$/Os$^\text{III}$ redox couple, with forward and reverse peaks at similar potentials (figure 11). The formal potential of this redox polymer entrapped in PEG-DA hydrogel was around 0.3 V versus Ag/AgCl.

Figure 12 shows square wave voltammograms of one element of the micro-array at different frequencies. The SWV difference peak current was proportional to frequency.
from 1 to 5 Hz consistent with thin-layer electrochemical behavior. At frequencies higher than 15 Hz, the plots plateau (Figure 13).

Figure 11: Forward, reverse and difference curves of SWV of redox polymer of one element of the array with GOX entrapped in PEG-DA hydrogel

Figure 12: Square wave voltammograms of sensor electrodes at different frequencies
Figure 13: Frequency dependence of film containing redox polymer and glucose oxidase enzyme entrapped in PEG-DA hydrogel

Each sensor array element was smooth and without any discontinuities. To determine whether the array elements had any connectivity problems, or whether they functioned independently, SWV was done on each array member. Each electrode 500 µm in diameter was individually addressable. The micro-fabrication process was quite reproducible as observed from almost overlaid square wave voltammograms for each member (data not shown). The entrapment of the redox polymer, glucose oxidase and PEG-DA was uniform on all the electrodes, which is especially important when the arrays sensors signals are to be summed. The signal from all the array sensor elements mimics the behavior of one large sensor with electrode area equal to the sum of all the electrode array elements. Figure 14 shows square wave voltammograms of different combinations of increasing number of array elements. Measurements done after combination of different array members show increasing peak currents with increasing number of array elements combined (Figure 15). The sensor arrays portray a situation where the area of the array elements is almost the same and the film assembly on each element being reproducible. With such a sensor array, multiple analytes can be measured simultaneously and through the introduction of redundancy, measurements can be derived from the average of the signal resulting from each array element. There is no evidence of cross-talk between the array members in these sensors.
Figure 14: SWV of different combinations of array sensor elements in PBS at pH 7
Biocompatible PEG-DA was used to cross-link glucose oxidase enzyme with electroactive redox polymer, POs-EA. Properly cross-linked molecules are expected to retain the activity of glucose oxidase enzyme and to present signal stability. If enzyme is lost through leaching from the electrode surface the signal stability would suffer. Figure 16 shows square wave voltammograms of one element of the micro-array in buffer without glucose and in buffer containing 10 mM, 20 mM and 50 mM glucose solutions. In the presence of increasing glucose concentrations the current is found to increase. Flavin adenine dinucleotide of glucose oxidase GOX(FAD) reacts with β-D-glucose to form a reduced form GOX(FADH$_2$) and gluconic acid. The reduced form of GOX (FADH$_2$) is in turn oxidized by the electrochemically generated Os$^{3+}$ form of the redox polymer, setting up a catalytic pathway which produces an enhanced oxidation peak. The electrons are transferred from the enzyme to the redox polymer, shuttled between the redox sites in a self exchange reaction until being transferred to an electrode surface. The catalytic current produced is proportional to the glucose concentration (Figure 17). As expected high concentrations of glucose (above 30 mM) there is deviation of linearity due to the nature of enzymes.
Glucose oxidase is securely trapped in the hydrogel network and glucose diffuses inside the hydrogel to access the glucose oxidase sites. Photopolymerization of the acrylate end groups of the PEG-DA by the photoinitiator DAROCUR occurs and entraps the glucose oxidase enzyme on the redox polymer film. This reaction does not diminish the activity of the glucose oxidase enzyme.

Sensor Design

We have worked with a company, State of the Art, to design a new sensor design that will include all electrodes necessary for the sensors to work and can be implanted.
The newly designed sensor will include the working (Chrome/Gold, as an array for redundancy to increase reliability), reference (Silver/Silver Chloride), and counter (Platinum) electrodes and a schematic of the sensor design can be seen below. The current projected diameter for the working electrodes is 500 μm, but can be miniaturized for more electrodes per sensor.

![Sensor Design Schematic](image)

Lactate Sensors

To develop the lactate sensors we are using the enzyme lactate oxidase. This enzyme loses activity quickly when in solution34 and therefore has been difficult to test with. Currently we are lyophilizing the enzyme into small aliquots for use and testing stabilizers with the enzyme inside the PEG-DA hydrogel to determine optimum storage and testing conditions.

Animal Testing

Male Sprague Dawley rats were obtained from Harlan ranging from 350 to 400 grams. The rats were anesthetized using Inactin with a dosage of 80-100 mg/kg weight of rat and were kept in the proper anesthetic window throughout the experiments and euthanized with CO$_2$ after completion of the experiments. (IACUC approved protocol #23204) When the rat was anesthetized fully the hair was removed and the skin scrubbed in the area where the sensor was to be inserted. The rat was then placed and remained on a heating water jacket to keep the rat from hypothermic conditions. A hole was cut into the side of the rat and blunt dissection was used to make a pocket in the subcutaneous tissue where the sensor end was inserted. The reference electrode was applied to the surface of the shaved skin and the electrodes were held in place by pressure applied to gauze pads on the outside of the animal.

The reference electrode applied acted as the reference and counter electrode and each array member in the sensor array was tested as the working electrode by applying a Square Wave from 0 to 0.6 V vs. Ag/AgCl using the Model 283 Princeton Applied Research potentiostat. Blood samples were obtained every ten minutes and the blood
glucose values determined with the FreeStyle Freedom meter (Therasense, Inc., Alameda, CA).

Many different experimental setups were tested to determine the optimum in vivo setup. For the initial tests the sensors were inserted subcutaneous in the stomach facing outward toward the skin and held in place with VetBond. The array was inserted as one piece with alligator clips attaching separate wires to the sensor array. In the optimum experimental setup, the exposed wires below the insertion of the sensor array are protected with a non-conductive gel, while the inserted part of the sensor has the PEG-DA hydrogel covering the sensor. To make the array and wires into one unit, conductive wire glue was used to adhere the ends of wires that are all combined into one. As seen in Figure 18, the other ends of the wires are stripped and are made easily accessible for fast switching between working electrodes. The sensor array unit was then inserted into subcutaneous tissue on the side of the rat facing down toward the tissue and held in place by applying pressure to gauze pads that were placed over the sensor area (Figure 19).

Figure 18: Sensor array for in vivo experimentation as a single unit
For *in vivo* experimentation, all electrodes were first hydrated in PBS buffer with no glucose added and tested *in vitro* to determine the viability of the sensor. Once the rat was determined to be in the correct anesthetic window, blunt dissection was performed in the subcutaneous region of the side and isotonic saline injected to decrease the possibility of air pockets that could cause higher resistance and interfere with the sensor. The sensor is then inserted and testing begun. As seen in Figure 20 the *in vivo* measurements are demonstrate an increase in peak potential and decrease in peak current than that *in vitro*, this can be caused by an increase in uncompensated resistance. This behavior may be attributed to numerous factors: the

Figure 19: Experimental setup for *in vivo* testing
reference electrode being placed on the surface of the skin forces the current to flow through the skin, the subcutaneous tissue consists of densely packed cells that may increase resistance, the sensor is facing away from the reference electrode which can increase the resistance, and other factors. When the electrodes were explanted from the rat and re-tested in vitro the peak current returned to the initial potential (data not shown). The peak current was lower after sensor implantation but was increasing as a function of time and may return to its previous peak current if allowed time. This problem with uncompensated resistance can be reduced by altering the sensor design to include reference and counter electrodes that would be in solution with the working electrodes. Another method for reduction of the uncompensated resistance is to decrease the frequency.

As seen in Figure 20, an increased background current appears on the right side of the curve. This excess current can be caused by the oxidation of the polymer coating on the
sensor wires. The coating was thought to be a true insulator, but at higher potentials when exposed to the electrolyte solution it displays oxidation. This oxidation occurred in vitro when the polymer gel was in contact with the electrolyte. When the gel was not in the solution no excess signal was observed, but in vivo the gel was coated on the electrodes high enough to be exposed to interstitial fluid. Future experiments would need to have truly non-conductive gels utilized, such as poly(methyl methacrylate) or poly(dimethylsiloxane). Since the excess background was seen past the peak potential of the Os polymer in vivo the observed peak potential at 0.4 V was the position in each concurrent SWV scan that the peak current was assumed.

In Figure 21, the SWV scans of one sensor can be seen, and the highest peaks occur during the time the sensor is still equilibrating. When the sensor has reached an equilibration state (when the gel has been allowed to swell properly, approximately 30 minutes—since it had already been allowed to swell in vitro prior to insertion), the sensor response is monitored with respect to changing the rat’s glucose concentrations with injections of dextrose and insulin.

Figure 21: SWV scans of one sensor while implanted in vivo
Figure 22 shows the trend of the glucose sensor current and blood glucose measurements. The arrows indicate the addition of glucose (up arrows) and insulin (down arrows) via an intraperitoneal (IP) injection. The glucose sensor showed an increase and decrease in sensor response when compared to the altering of glucose concentrations. The sensor value peaks and valleys were shifted compared to the blood glucose level obtained by the Freestyle Freedom meter, which has been seen previously with other sensors implanted subcutaneous. These shifts can be decreased by slower infusion rates and smaller amounts injected per infusion as seen in Armour et al.
For sensor calibration a two-point calibration was utilized on the descending section of the glucose curve. Figure 23 displays one sensor calibrated with the two-point calibration and the corresponding blood glucose levels. The glucose curve is still shifted and the calibration method needs to be improved, the decrease in resistance with a sensor array including working, counter and reference electrode should help with the calibration.
To determine the relevance of glucose sensors tested \textit{in vivo}, the Clarke error grid analysis was utilized. As seen in Figure 24, the grid is split into five sections: A is clinically accurate, B is clinically relevant, C, D and E are clinically irrelevant. Three sensors were analyzed with the method and gave 7% in the D region, 5% fall in the B region and 88% fall within the A section. If the resistance was decreased and more testing completed (IACUC approval necessary) then the percentage in the clinically relevant section should increase.
Key Research Accomplishments

- We have determined the sensor fabrication techniques for optimum sensor performance and developed a glucose sensor and tested it with cyclic voltammetry, amperometry, and square wave voltammetry.
- We have developed a new design for the sensor that includes all electrodes that need to be included to test inside the body in one platform and are currently working to fabricate it.
- We tested glucose sensors in vivo and demonstrated tracking of blood glucose concentrations in a limited physiological concentration range.
- We developed and test lactate and pyruvate sensors in vitro.
- We graduated one Ph.D. student who is currently employed at Xerox R&D in Portland, OR.

Reportable Outcomes

Figure 24: Clarke Error Grid for Glucose sensors tested in vivo. Three sensors (n=42)
Publication of 2 manuscripts:

Oral Presentations:

Mugweru, A.: Clark, B.L.; Pishko, M. V. “Implantable Electrochemical Redundant Microsensor Arrays for glucose monitoring Patterned Polymer films” the Pittsburgh Conference, Orlando, FL, United States, March 12-17, **2006**

Clark, B.L.; Mugweru, A. Pishko, M. V. “Electrochemical glucose sensor” 210th Electrochemical society Meeting, Cancun, Mexico Oct. 29-Nov. 3, **2006**

Poster Presentations:

Progression of people on the grant:

Amos Mugweru, a postdoc supported by this grant, applied for and obtained a position as an Assistant Professor in the Department of Chemistry at Rowan University in New Jersey.

Becky Clark, the graduate student supported by this grant, completed her PhD. and is currently employed at Xerox R&D.

Conclusions

We have fabricated a glucose sensor array on flexible polyimide sheets. Using conventional silicon micro-fabrication methods, we have initially formed a five-element microelectrode array consisting of gold microdisks. Enzyme-containing redox polymer films on five micro-arrays were formed through the UV-initiated free radical cross linking of a redox polymer and PEG-DA. These microarray sensors were individually addressable and were without discontinuities. There was no cross-talk between adjacent members. When sampled together the micro-array electrodes behaved as one large electrode with peak current equivalent to the sum of the individual elements of array, especially important when diagnosing any array element failure. We have shown catalysis of glucose oxidation resulting from glucose oxidase enzyme exchanging electrons with redox polymer in PEG hydrogel. We are exploring other parameters such as the extent of free radical cross-linking to ensure optimum catalytic performance of the enzyme and also electron exchange between enzyme and the redox polymer. We successfully tested glucose sensors in vivo and developed and tested lactate and pyruvate sensors in vitro.
References

