Towards “zero” false positives in structural health monitoring
ABSTRACT

Structural Health Monitoring is one aspect of a revolution based on the use of Smart Materials and Structures technologies that have the potential to provide major gains in structural performance and cost-efficient life management. We seek to address the issue of information fidelity from ISHM systems (i.e. minimal or no "false positives") expressed by representatives from Airbus, Boeing, EADS, US FAA, Lockheed Martin, NASA and USAF at the Panel Discussion at the 5th IWSHM. This work will contribute to the first steps towards the transitioning of current state-of-the-art innovations in SHM to their widespread acceptance in the aerospace industry. This initial work is a concerted study that provides the sound scientific and engineering arguments towards the confidence in information fidelity will constitute a significant leap in the knowledge base of ISHM. The work proposed in this document respond to this challenge and will be the first concerted study towards the provision of these sound scientific and engineering arguments towards the widespread acceptance of ISHM.
Research Team

Sponsor:
Dr Jim Chang
USAF-AOARD

University Collaborators:
Monash University
W.K. Chiu

Stanford University
F.K. Chang

PhD Candidate:
Daniel Tan Tian
Monash University
Technical Objectives

• Aim (1): Characterize the scattering of stress waves by defects or service-induced damage in representative aircraft structures with multi-layered construction and geometry variation. This knowledge shall be used in the development of a robust structural health monitoring scheme.

• Aim (2): Develop and validate robust approaches for determining and enhancing the “inspectability” of non-surface penetrating defects in such structures with the objective of eliminating “false positives”.
Rationale for work

- Discovery of crack on the lower wing skin of F111 aircraft
- Structure repaired with bonded composite patch
- Can in-situ structural health monitoring be used to monitor crack?
- What are the effects of geometry variation on the propagating stress wave?

Findings to date

- Use of finite element analysis to investigate the effects of geometry changes on the ability monitor crack growth under a bonded repair patch

- NEi/Nastran + FEMap used. Analysis method validated for the study of propagation of stress wave

Findings to date

Finite element model of F111 lower wing skin

Crack configurations considered

View from Section ZZ
Findings to date

Finite element model of F111 lower wing skin

Location of actuator and sensors used in analysis

View from Section yy

Excitation Node subject to broadband excitation

Simulation of crack growth

Monash University
Engineering

www.monash.edu.au
Findings to date

Insensitive to crack growth

Good sensitivity to crack growth

Confusing results (increase in response signal with increasing crack growth?)

Insensitive to crack growth
Findings to date

- Finite element analysis of the effects of geometry variation on the propagating stress wave
- Results show that the ability to determine the presence of crack is frequency dependent (Why?)
Future plans

- Current research proposal seek to develop an understanding on the above to develop a criteria for the usage of stress wave based SHM methodology
- What are the implications of wave scattering of stress waves resulting from geometry variation on SHM?
Towards “zero” false positives in structural health monitoring

Program Manager:
Dr Jim Chang
USAF AOARD

Team Members:
W.K. Chiu
Department of Mechanical Engineering
Monash University, Clayton, Victoria, Australia

F.K. Chang
Department of Aeronautics and Astronautics
Stanford University
Palo Alto, California, United States of America

Abstract
Structural Health Monitoring is one aspect of a revolution based on the use of Smart Materials and Structures technologies that have the potential to provide major gains in structural performance and cost-efficient life management. We seek to address the issue of information fidelity from ISHM systems (i.e. minimal or no “false positives”) expressed by representatives from Airbus, Boeing, EADS, US FAA, Lockheed Martin, NASA and USAF at the Panel Discussion at the 5th IWSHM. This work will contribute to the first steps towards the transitioning of current state-of-the-art innovations in SHM to their widespread acceptance in the aerospace industry. This initial work is a concerted study that provides the sound scientific and engineering arguments towards the confidence in information fidelity will constitute a significant leap in the knowledge base of ISHM. The work proposed in this document respond to this challenge and will be the first concerted study towards the provision of these sound scientific and engineering arguments towards the widespread acceptance of ISHM.