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Abstract 
 

We have implemented several enhancements to the US Naval Observatory (USNO) Master 
Clock system.  Design changes to the system include the use of a Kalman filter for phase and 
frequency estimates, decreasing the time interval between steers, and the redesign of control 
parameters.  The present control system utilizes “real-time” data estimates of the differences 
between the Master Clock and a timescale that combines hydrogen masers and commercial 
cesium frequency standards with a time-varying weighting scheme.  We are researching a 
Master Clock system design that utilizes as its reference a hydrogen maser ensemble that is 
steered to an ensemble of cesium standards.  We present system designs, simulations, and 
performance data.   
 
 

INTRODUCTION 
 
We are implementing and investigating techniques to increase the robustness of the U.S. Naval 
Observatory (USNO) Master Clock (MC) system while maintaining and/or improving overall 
performance. There are roughly 60 cesium standards and 20 hydrogen masers contributing to the 
operational timescale at any given time.  These standards are spread throughout several locations and 
housed in 15 separate environmental chambers at USNO in Washington, DC.   Hydrogen masers are 
approximately an order of magnitude more stable than high-performance commercial cesium standards in 
the short term, while the cesium standards show better long-term characteristics.  Strategies on how to 
combine these frequency standards to best benefit from their respective strengths are shown along with 
the evolution of the MC system design.  We also discuss the minimal control energy technique and its 
implementation in steering the MC to UTC as derived by BIPM. 
 
 
MASTER CLOCK SYSTEM 
 
The USNO MC system consists of atomic frequency standards, signal measurement and distribution 
components, frequency synthesizers, timescales, and control algorithms.  The overall concept of the MC 
system is to create a physical realization of a robust and stable timescale that represents our best real-time 
estimate of UTC. 
 
PREVIOUS  SYSTEM  DESIGN 
 
The previous MC system used dynamic weighting to combine the cesium and hydrogen maser frequency 
standards into a timescale (also referred to as a mean or ensemble) [1,2].  This timescale weighted masers 
highly in the recent past with the cesiums receiving a higher weight further into the past.  This created a 
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non-causal timescale that was stable in the short term due to the higher weighted hydrogen masers and 
gained long-term stability from the cesiums. Clock models were used to mathematically remove best 
estimates of the characteristic frequency and drift (for masers) from the free-running clock data.  In order 
to create a physical output representing the paper clock timescale, a hydrogen maser was steered to the 
timescale via a low-noise, high-resolution frequency synthesizer.  A block diagram of the system is 
shown in Figure 1.  Steers were made daily based on phase and frequency estimates of the dynamic 
timescale at the time of the steer.  The frequency estimates were particularly sensitive to discrepancies 
between the cesium and hydrogen maser means. 
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Figure 1.  Previous design block diagram. 
 

 
PRESENT  OPERATIONAL  SYSTEM  DESIGN 
 
The present operational system utilizes the dynamic mean as described in the previous section, but uses a 
Kalman filter to estimate the phase and frequency offsets between the MC and the mean [3,4].  This gives 
an optimal real-time estimate that approximates an all hydrogen maser-based mean and solves the 
frequency bias issue of the previous design.  With the goal of increasing robustness, the steering rate was 
increased from daily to hourly (see Figure 2).  The lower-noise estimates and increased data rate allow for 
a tighter control design that can better react to perturbations that can occur in the reference, or steered, 
frequency standard.  These perturbations may be caused by internal physical changes in the reference 
standard or external factors such as environmental disturbances. 
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Figure 2.  Present design block diagram. 
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The state-space model for a frequency standard steered by discrete frequency steps is given as: 
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Given the gain function G, the state-space equation can be written as: 
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Figure 4 compares the controls of the daily steers of the previous system to the hourly steers of the 
present system.  As expected, the hourly steers created a smoother response in the short term.  The 
experimental setup used a common hydrogen maser with two separate frequency synthesizers and is 
shown in Figure 3. 
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Figure 3.  Common maser reference signal.            Figure 4.  Comparison of accumulated 
frequencies from hourly and daily steering. 

 
 
Actual performance of the present setup versus the real-time reference and a cesium mean are shown in 
Figure 5.  The small (~<1 ns) phase steps characteristic of the postprocessed model changes can be seen 
in the data.  The MC steers are given in Figure 6 and are dominated by values within a band of ±10-16.  
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              Figure 5.  Time difference data.                   Figure 6.  Master Clock steers. 
 
 

FUTURE  SYSTEM  DESIGN 
 
We are testing a design with separate means from the respective collections of hydrogen masers and 
cesiums [5].  The maser mean (MM) is steered to the cesium mean (CM) with a time constant of several 
weeks (see Figure 7).  The steered MM preserves the short-term stability of the maser mean and gains the 
long-term performance of the CM.  Like the previously described systems, the physical output is created 
by steering a hydrogen maser-based signal.  In this design, models are used to remove initial characteristic 
rates and drifts from a maser when it is first introduced into the MM.  The control design of the MM to 
CM is then expected to remove any nominal clock divergence from the initial model that would normally 
create a postprocessed recharacterization of the clock in the dynamic mean.  Large changes in model or 
significant performance degradation result in the maser being removed from the mean.  The smoother 
real-time MM allows for a tighter, more robust, control design for the physical output.  The MM is 
created with data from a recently upgraded measurement system that is approximately an order of 
magnitude quieter than the measurement system used in the dynamic mean calculations and previous 
experiments [5]. 
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Figure 7.  Future system block diagram. 
 
 

The state-space model for the system described in Figure 7 is: 
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where x is phase difference, y is frequency difference, the control , and G is the control gain. ttu GX−=
The above equation can be rewritten as . ( ) tτt XBGΦX −=+

 
Figure 8 shows the performance of the frequency synthesizer AOG06 versus the MM reference and also 
the MM versus the CM (see Figure 10).  The small disturbance in the MM-AOG06 data near 53960 was 
caused by an issue with the environmental chamber that housed the reference maser.  The Allan 
deviations of AOG06 and its reference maser are shown in Figure 9.  The plot shows that the control has 
effectively removed the drift of the maser.  There were 17 maser recharacterizations and weight changes 
over this period in the dynamic timescale compared to two maser deweightings in the MM over the same 
interval.   The new design is more robust and exhibits excellent performance compared to the MC.  This 
system is presently operating as a backup MC and is planned to transition to the primary MC after further 
evaluation. 
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       Figure 8.  Measured time difference data.     Figure 9.  Stability comparison. 
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Figure 10.  System setup for Figures 8 and 9. 
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STEERING  TO  UTC 
 
One of the goals of the MC is to represent a high-quality real-time physical realization of UTC (the 
postprocessed international paper timescale defined by the BIPM).  A block diagram describing how the MC 
is steered to UTC, using the month of December as an example, is shown in Figure 11. 
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Figure 11.  Example of control sequence calculation for December data. 
 
 

Data from the BIPM are published monthly with a time lag ranging from approximately 15 to 45 days. 
Present time and frequency offsets are predicted from the given data, and then the sequence of frequency 
steers minimizing the control effort is determined. 
 
The goal is to minimize the control effort, or so-called control energy, 
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of the frequency steers u(k) used to steer the MC to UTC [6,7].  The solution using the model given in (1) 
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Figure 12 shows how the simulated control system using the above equation reacts to removing 3 ns of 
phase and 2 × 10-15 of frequency offsets with varying steering update intervals.  As expected, the shorter 
intervals produced a smoother response. 
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Figure 12.  Response to removing 3 ns and 3 × 10-15        Figure 13.  Top plot is UTC – UTC (USNO); 
offsets.                                                                               bottom plot is the steers applied to UTC 
(USNO). 

 
 

Figure 13 shows the time difference between UTC and UTC (USNO) and the associated frequency steers. 
 Prior to MJD 53960, steers were software-limited to an update rate of every 3 days; past that point, daily 
steers have been implemented.  The outlying points on the plot are steers that match the TAI steers 
implemented by the BIPM. 
 
  
CONCLUSION 
 
Efforts are underway to improve both the robustness and performance of USNO Master Clock system.  
Designs are decreasing the time intervals between updates and tightening control parameters in both the 
internally derived systems and those referencing UTC.  Performance tests verified the results that were 
predicted by simulations.  Future work will include how to best incorporate atomic fountains into an 
appropriate reference timescale.  We will also look into steering each maser independently to the CM and 
improving the predictors utilized in calculating the control sequences for steering to UTC.   
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