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Abstract .  This paper presents an approach to modeling discrete features on a U.S. Army 
endurance test course.  The features in this case are 39 moguls with heights varying between 
0.36 and 0.63 m built into a portion of the course.  Because they are enumerable and localized, 
they do not lend themselves to traditional modeling techniques such as RMS, PSD, IRI, etc.  We 
assume that the mogul has a well defined shape and we evaluate five different approaches to 
modeling this shape assuming that each mogul may be thought of as an ideal shape 
superimposed with stationary noise.  The models that we evaluate are the Gaussian function, 
the Hanning window, the support vector machine, a two-Gaussian function and a two-Gaussian 
function with fixed width and amplitude ratios.  We evaluate these models by computing the 
RMS error of each best fit and by evaluating the stationarity of the residue.  We further evaluate 
each mogul model by running a HMMWV dynamics model over each and comparing several 
responses to those obtained from the profiled mogul.  In our analysis we find that a model 
consisting of two Gaussian functions with related widths and amplitudes yields an unbiased 
estimate of a mogul and can be made to approximate any mogul by adjusting its width and 
amplitude. 

 

Keywords.   Terrain profile, mogul, model, curve fitting, Gaussian, SVM, Hanning window, 
HMMWV.  

1 Introduction 

The U.S. Army performs endurance testing of its vehicles at several proving grounds each of 
which have various courses to represent primary, secondary and cross-country terrains.  These 
courses are used by the Army to evaluate vehicles against contractual reliability requirements. It 
is, therefore, in the interest of both the Army and its vehicle developers to measure, characterize, 
and understand the essential features of these courses.  Such an understanding helps the Army 
monitor and maintain course severity and helps the contractor know how its vehicle will be 
evaluated.  All terrain monitoring begins with a measurement of the terrain profile, for which 
there are many available techniques which are nicely summarized by Sayers and Karamihas 
(1998).  A road profile is a measurement of terrain elevation vs. horizontal distance along the 
course.  The horizontal resolution of such profiles varies from 0.3 m to 1 mm; they may have 
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lengths varying from 30 m to 10 km (or more) and are typically measured for two vehicle tracks.  
The volume of information and the random nature of the raw profile data motivates their 
reduction to some essential features which are preferably invariant to the statistical variation 
observed in the profile measurement.  It is desired that these features correlate to a vehicle 
performance metric such as ride quality or durability.  A one statistic traditionally used by the 
Army has been the root mean square (RMS) of the detrended terrain profile which works well for 
terrains which are stationary.  It is appealing because it captures the roughness in one number.  
Recently, the Amy has begun to characterize its profiles with the power spectrum density (PSD) 
(or more correctly the wave number spectrum).  Typically these PSDs are then used to 
generalize the frequency-domain shape to a sloped line which approximates the PSD.  Such 
representations are usually documented in the form of a frequency-domain plot with labeled 
slopes and breakpoints.  The PSD is again appealing in that it captures the essential terrain 
information in a few parameters represented in a plot; it however assumes that the terrain profile 
is statistically stationary (see Steinwolf et al, 2005).  The automotive industry has developed 
their own metrics for road roughness called the International Roughness Index (IRI), and the 
Speed Roughness Index (SRI).  The IRI is a computation based on the cumulative suspension 
displacement of the so called “Golden car model” run over the profile at a fixed speed.  The SRI 
adjusts the IRI for speed.   

Given these characterizing features (e.g. RMS, PSD, IRI), it is often desired to reverse this 
process; that is, given some roughness metric, synthesize a terrain profile which is a faithful 
representation of the original terrain profile.  In the synthesis problem, it is important that enough 
features be retained from the original profile to allow proper reconstruction.  Single-value 
metrics such as RMS, IRI, and SRI are not suited to profile synthesis.  The PSD feature of a 
profile has been used by the Army in terrain synthesis, however, the resulting profiles are 
stationary and have random phase relationships, normally not like the actual profile.  Sandu et 
al (2005) has proposed terrain synthesis based on polynomial chaos.  Sandu and Li (2007) 
recently proposed terrain synthesis based on ARMA and ARIMA models.  Sun et al (2005) 
applied uniform modulated processes (UMP) and empirical mode decomposition (EMD) to the 
synthesis of non-stationary terrain profiles such as are typically measured at Army proving 
grounds.   

Each of these methods of terrain characterization and synthesis approach the problem in an 
agnostic manner, treating the terrain profile as a time-series with certain assumed properties (i.e. 
Gaussian, stationary, correlated, etc).  None of them however, address the circumstance in 
which there is a mix of random and non-random features in a terrain profile.  Although this is 
normally a valid assumption, it is not always the case.  The topic of this paper is to present an 
approach to modeling particular non-random features (moguls) on a particular Army proving 
ground course for the purposes of both characterization and synthesis.  It is the intent of this 
paper to statistically characterize these moguls using a number of candidate functions and 
determine which is most suitable.  We choose direct metrics based on quality of fit and indirect 
metrics derived from HMMWV dynamics model traversing the moguls.  Functions which are fit 
to the moguls are Gaussian, Hanning, Support Vector Machines, two summed Gaussians, and 
to ratio-related Gaussians. 

2 Profile Description 

The particular course in view is used by the Army for endurance testing and has a particular 
section containing 39 moguls with heights varying between 0.35 and 0.65 m spaced at 
approximate 30 m intervals.  Figure 1 shows a section of this terrain which attempts to place the 
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moguls in reference to the entire profile.  The profile data used in the following analysis was 
taken from this course in 2002.  The profile consists of correlated right and left track separated 
by 1.22 m (4 ft) and the longitudinal resolution is 7.62cm (3 in.).  The device which measured 
the profile was developed by the U.S. Army Aberdeen Proving Ground (APG) for the monitoring 
of course roughness (Castaldo et al, 1991). 

3 Modeling Approaches 

To begin we note that most of the moguls are situated on graded terrain and since we are 
interested in modeling the ride and shock aspects of them we will remove the grade information 
in our analysis.  We selected each mogul by finding its center point.  Each mogul was extracted 
from the terrain profile by taking 120 sample points ahead and behind this center point, so each 
mogul was roughly contained at the center of a 18.28 m (60 ft) stretch of terrain (segment).  
Each segment was then subjected to a linear least squares analysis and the prevailing bias and 
slope were removed.  A plot of these detrended mogul segments is shown in Figure 2.  Next we 
chose the point in the horizontal axis where we regard the mogul to begin and end.  By 
observing Figure 2 it is clear that the traces of the moguls agree fairly well in the interval [-6m, 
+6m] and that the agreement between the moguls lessens at distances more than 6 m from the 
center.  We will therefore perform our analysis on an interval of ± 6m (± 20 ft) resulting in an 
assumed width of 12.2 m (40 ft).  It is clear in Figure 2 that the heights of the moguls vary from 

 
Figure 1. Three plots of the course being analyzed.  (left) 2 km section of the course 
containing the 39 moguls, (middle) view of a single pass of moguls, (right) view of three 
moguls on a representative grade.  The plots are not to scale. 
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Figure 2. Plot of 39 moguls overlaid.  (left) plot over the segment [-9m, 9m]. (right) plot 
over the horizontal interval [-6m, 6m] for comparison to the fit moguls.  Right track traces 
are in blue and left track traces are in green.  Observe that the moguls range in height 
from 0.36 m to 0.63 m. 
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approximately 0.36 m to 0.63m and we expect our analysis to show that the widths vary as well.  

In our modeling approaches we will seek to minimize the mean squared error (MSE) between 
the actual mogul data and our model.  We will regard each mogul as a set of ordered pairs 

( ){ }
1

,i ix y
ℓ

 where ix  is the horizontal distance, iy  is the corresponding elevation and ℓ  is the 

number of samples, which, in our case is 161.  Our models will take the continuous form 
ˆ ( ; )y f x= p  where x  is the independent variable, p  is a vector of parameters to be optimized.  

We use the “hat” notation to denote an estimated value.  Finally we define the particular 
estimates as ˆ ( ; )i iy f x= p .  Our optimization problem will then consist of minimizing the 
functional 

 ( )( ) ( )2

1

min : ;i i
i

f x y C
=

− +∑
p

p p
ℓ

P  (1) 

where ( )iP  is a regularization functional and C  is a regularization constant (which we will 

normally choose to be zero).  Then by observing Figure 2 we are inclined be believe that the 
shape of these moguls closely resembles a bell type curve, so our first attempts will be based 
on the Gaussian function and the Hanning window. 

3.1 The single Gaussian function 

We will begin our search for the best fit of the mogul by choosing a Gaussian function of the 
following form 

 ( )
( )2

22;
x x

f x ae bx cσ
− −

= + +p  (2) 

where the vector of free parameters is [ ]T
a x b cσ=p .  Although the position x , bias c  

and slope b  are products of the optimization, they are present to eliminate biased errors due to 
shifts in the reference data.  In this representation, we will take the value a  to be the mogul 
amplitude and since σ  is the standard deviation, we will regard the width of the bump as 

6w σ=  (i.e. 3σ± ).  After optimizing (1) given (2) the fit functions are shown in Figure 3.  There it 
may be observed that the error is biased based on the distance from the center of the mogul.  
The RMS errors for the right track are on the interval [0.95 cm, 2.58 cm] with an average of 1.63 
cm.  Likewise, for the left track the RMS error falls in the range [0.79 cm, 2.27 cm] with an 
average of 1.62 cm.  This bias in the error motivates us to look for a better candidate function.   
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Figure 3. (left) Plot of the Gaussian best fit for the 39 moguls.  (middle) Plot of the mogul 
amplitude ( a ) vs. the mogul width ( 6σ ).  (right) Plot of the error from the Gaussian best 
fit.  Note scales are not the same. 
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3.2 The Hanning window function 

Our next candidate function is the so called Hanning window which has been used on some 
occasions as a road disturbance input (see Lin et al, 1995).  In our case the Hanning function 
takes the following form 

 ( ) ( )2
1 cos ,

; 2 2 2

0, otherwise

a w w
x x bx c x x

f x w

π   + − + + − ≤ − ≤   =    



p  (3) 

where the vector of free parameters is [ ]T
a x w b c=p .  In this representation, we will take 

the value a  to be the mogul amplitude and w  as the width.  After optimizing (1) given (3) the fit 
functions are shown in Figure 4.  There it may be observed the error is biased based on the 
distance from the center of the mogul as it was for the Gaussian function.  The RMS errors for 
the right track are on the interval [1.29 cm, 3.18 cm] with an average of 2.33 cm.  Likewise, for 
the left track the RMS error falls in the range [1.33 cm, 3.08 cm] with an average of 2.28 cm.  
Examining these results with those of the Gaussian best fit it appears that, in general, the 
Gaussian function is a better representation of the moguls than the Hanning window, we 
therefore will eliminate the Hanning function from further consideration.  

3.3 The Support Vector Machine (SVM) function 

Since our analysis thus far has shown that one Gaussian function provides a reasonable fit, we 
speculate that a set of superimposed Gaussian functions may perform better.  We therefore will 
employ a recently developed technology called Support Vector Machines (SVM) (see Crisianini 
and Shawe-Taylor (2000) for a full development of the theory) to find a suitable class of 
functions with which to fit our moguls.  The form of the SVM estimator is as follows 

 ( ) ( )2

1

; ix x
i

i

f x e bγβ − −

=

= +∑p
ℓ

 (4) 

where the vector of free parameters is [ ]1 2

T
bβ β β=p ℓ⋯  consisting of the weights iβ  

and the bias b  and the values ix  are the horizontal distances from our mogul center.  In SVM 

theory ( ) ( )2

, x yk x y e γ− −
≜  is called the Gaussian kernel function for which we are free to choose 
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Figure 4.  (left) Plot of the Hanning window best fit for the 39 moguls.  (middle) Plot of 
the mogul amplitude ( a ) vs. the mogul width ( w ).  (right) Plot of the error from the 
Hanning window best fit.  Note scales are not the same. 
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the kernel parameter γ .  The parameters p  are found by solving the following quadratic 
programming problem 

 
{ }

( )2

1 1 1 1

1

min :

subject to: 0,

i j

i

x x

i j i i i
i j i i

i i
i

e y

C C

γ

β
β β β ε β

β β

− −

= = = =

=

+ −

= − ≤ ≤

∑∑ ∑ ∑

∑

ℓ ℓ ℓ ℓ

ℓ
 (5) 

where ε  indicates an upper absolute bound on the error we wish to tolerate and C  is a 
regularization constant.  In our analysis we chose γ = 0.149 1/m2 (0.0138 1/ft2) as the kernel 
parameter, which corresponds to a width of 10.97 m (36 ft) and was determined by examining 
the average width generated in the Gaussian fit (Figure 3).  We chose the error bound ε  to be 
2.54 cm (1 inch) and the regularization constant to be 63.5 cm (25 inches).  By design, the 

solution of (5) is sparse in the set of weights { }1iβ ℓ
 and those ix  for which 0iβ ≠  are called 

support vectors.  Also the value of the bias b  is uniquely determined by the so called KKT 

conditions and the values of { }1iβ ℓ
.  In the optimization it was found that the number of support 

vectors varied from 5 to 16.  After optimization of (5) the fit functions are shown in Figure 5.  We 
observe that the error for the most part is unbiased and is mostly clamped at ε± , which the 
SVM algorithm does by design.  The RMS errors for the right track are on the interval [1.27 cm, 
1.63 cm] with an average of 1.42 cm.  Likewise, for the left track the RMS error falls in the range 
[1.20 cm, 1.65 cm] with an average of 1.42 cm.  Comparing these results to both the Gaussian 
Hanning window approaches, the SVM clearly out performs them both in terms of average RMS 
error however, the Gaussian function does better for some of the moguls as indicated by the 
minimum RMS error.  The strength of the SVM approach is that by adjusting the parameter ε  
we can obtain an (almost) arbitrary amount of precision.  The weakness of the SVM approach is 
that it is a black box algorithm that yields no particular insight to the generalized shape of a 
typical mogul.  Since our goal is find a mogul model with two parameters, amplitude and width, 
we will continue to evaluate other models. 

3.4 The Two-Gaussian function 

Knowing that the superposition of several Gaussians improves the fit (at least for some moguls) 
we will next build a hypothesis function composed of two Gaussian functions.  These functions 
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Figure 5. (left) Plot of the SVM best fit for the 39 moguls.  (middle) Plot of the weights iβ  

vs. the support vectors ix  for 0iβ ≠ .  (right) Plot of the error from the SVM best fit.  Note 
scales are not the same. 
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will have freedom to vary independently in amplitude and width, however they will be centered 
on the same point, x .  Our candidate function takes the following form 

 ( )
( ) ( )2 2

2 2
1 22 2

1 2;

x x x x

f x a e a e bx cσ σ
− − − −

= + + +p  (6) 

where the vector of free parameters is [ ]1 2 1 2

T
a a x b cσ σ=p .  (It is worth noting that 

(6) may be thought of as a 1-2-1 artificial neural network with Gaussian activation functions in 
the hidden layer and a linear output function.)  In this representation, we will take the sum 

1 2a a+  to be the mogul amplitude and width we will regard as ( ) ( )1 1 2 2 1 26w a a a aσ σ+ +≜  which 

is a weighted average of the two Gaussian widths.  In this case, it was discovered that the 
optimization problem was ill-posed (see Tikhonov & Arsenin, 1977) and we therefore introduced 
the regularization functional ( ) 2 2 2 2

1 2 1 2a a σ σ+ + +p ≜P  and the regularization constant 0.1C =  

from (1) to stabilize the solution.  After optimizing (1) given (6) the fit functions are shown in 
Figure 6.  There it may be observed that the error is for the most part unbiased.  The RMS 
errors for the right track are on the interval [0.57 cm, 2.07 cm] with an average of 1.13 cm.  
Likewise, for the left track the RMS error falls in the range [0.58 cm, 2.03 cm] with an average of 
1.06 cm.  Examining these results with those of the prior models it appears that the 
superposition of two independent Gaussian functions provides the best fit thus far.  It is 
encouraging to see that the addition of the second function is able to effectively compensate for 
the positional bias found in the single Gaussian approach.  In this case we currently have 
doubled the number of significant parameters from two to four.  We may now ask if the 
parameters 1a , 2a , 1σ , and 2σ  are truly independent.  Shown in Figure 7 are two plots which 
will help answer this question.  The left plot shows the width and amplitudes of both Gaussians 
independently which after training the wider/taller Gaussians were labeled with 1a  and 1σ  while 

the narrower/shorter ones were labeled with 2a  and 2σ .  In this plot we observe that the first 
and second Gaussian parameter sets tend to cluster into two groups indicating that there may 
be a relationship between the parameters which we will hypothesize to be proportional.  To test 
this hypothesis we compute the ratios of widths (i.e. 2 1σ σ ) and amplitudes (i.e. 2 1a a )  for all 
39 moguls.  These ratios are plotted in Figure 7 on the right.  Furthermore we compute the 
average value of each of these ratios to obtain the desired proportional relationships as 

2 1 0.431pσ σ σ =≜  and 2 1 0.551ap a a =≜ .  Our next and last set of functions to evaluate will 
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Figure 6. (left) Plot of the two-Gaussian best fit for the 39 moguls.  (middle) Plot of the 
mogul amplitude vs. width as estimated.  (right) Plot of the error from the two-Gaussian 
best fit.  Note scales are not the same. 
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consist of two Gaussians with widths and amplitudes related by these ratios. 

3.5 The Fixed-Ratio Two-Gaussian Function 

Knowing that the superposition of two independent Gaussians improves the fit and that the 
parameters appear to be proportionally related, we will next build a hypothesis function 
composed of two Gaussian functions based on these ratios.  This function will have freedom to 
vary in amplitude and width only.  The widths and amplitudes of the superimposed Gaussians 
will then be derived from these meta-parameters.  In our construction we will always assume 
that 1 2σ σ>  and 1 2a a>  and we desire that the width be defined as 16w σ=  and the amplitude 

1 2a a a= + .  Taking these relations along with the ratios 2 1pσ σ σ≜  and 2 1ap a a≜  we derive 
the Gaussian parameters from w  and a  as follows: 

 
1 2

1 2

(a) (b)
6 6

(c) (d)
1 1 1a a

p ww

a a
a a

p p

σσ σ= =

= =
+ +

 (7) 

where, again, we define 0.431pσ =  and 0.551ap = .  Our function then is constrained by the 
relations in (7) and takes the form 

 ( )
( ) ( )2 2

2 2
1 22 2

1 2;

x x x x

f x a e a e bx cσ σ
− − − −

= + + +p  (8) 

where the vector of free parameters is now [ ]T
a x w b c=p .  Because of the constraints in 

(7) the optimization problem is once again well-posed and we will therefore set the 
regularization parameter C  to zero.  After optimizing (1) given (7) and (8) the fit functions are 
shown in Figure 8.  There it may be observed that the error is for the most part unbiased based 
on the distance from the center of the mogul.  The RMS errors for the right track are on the 
interval [0.65 cm, 2.13 cm] with an average of 1.24 cm.  Likewise, for the left track the RMS 
error falls in the range [0.57 cm, 2.08 cm] with an average of 1.19 cm.  Although the 
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Figure 7. Plot of the parameter relationships for the two-Gaussian best fit for the 39 

moguls. (left) The raw parameters.  The △ symbol represents 16σ  vs. 1a  (red = right, 

black = left) and the ▽ symbol represents 26σ  vs. 2a (blue=right, green=left).  (right) The 

parameter ratios 2 1a a  vs. 2 1σ σ .  The red lines represent the average value for each 
of these ratios. 
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performance is very slightly worse than the independent two-Gaussian fit this model is 
appealing because its shape is fixed and the tunable parameters are intuitive. 

3.6 Mogul Model Comparisons 

Now that we have computed the results of the five models, we desire to get a sense as to how 
the different approaches performed.  For each model, our optimization produces estimates of 78 
moguls (right & left tracks for 39 moguls) for which we compute the RMS error.  To gain insight 
into the performance of each model we then compute some basic statistics of these 78 
measures.  Table 1 shows these results for the minimum, maximum and mean RMS errors.   

Figure 9 shows pictorially how well our mogul approximations did.  It is interesting to note that 
regardless of the chosen model, there are some moguls which fit remarkably well and that the 
worst case for each mogul model subjectively looks like a good fit as well.  That is why we will 
now turn to vehicular response evaluation. 

4 Vehicular Response Evaluation 

We now turn our attention to the evaluation of the modeled mogul shapes from the point of view 
of a vehicle dynamics model.  In this section we will evaluate each mogul model with respect to 
its affect on the response of an Army vehicle, specifically the HMMWV.  For the original mogul 
and each of our five models we will generate a short profile and run the HMMWV dynamics 
model over the mogul at speeds varying between 8 kph (5 mph) and 48 kph (30 mph) at 8 kph 
(5 mph) intervals (only four of these speeds are reported in this paper).  We will then examine 
measures from the dynamics model to assess the pitch/heave dynamics of the model under 
various representations of the same mogul.  We begin with a description of the HMMWV model. 
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Figure 8. (left) Plot of the ratio-Gaussian best fit for the 39 moguls.  (middle) Plot of the 
mogul amplitude vs. width as estimated.  (right) Plot of the error from the two-Gaussian 
best fit.  Note scales are not the same. 

Table 1. Statistics of the RMS error for 39 moguls.  

 Gauss Hann SVM 2-Gauss Ratio-Gauss  

min [cm] 0.87 1.31 1.24 0.57 0.61 
max [cm] 2.43 3.13 1.64 2.05 2.11 

mean [cm] 1.62 2.30 1.42 1.10 1.21 
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4.1 Dynamics Model 

The dynamics model is a rigid-body model of the M1114 High Mobility Multi-purpose Wheeled 
Vehicle (HMMWV).  Figure 10 shows the exterior dimensions.  The Gross Vehicle Weight 
(GVW) of 5,970 kg (13,160 lbs), consisting of 21 rigid bodies, includes a crew weight of 490 kg 
(1,080 lbs) and a 1,034 kg (2,280 lbs) payload.   Tire pressures are set at 276/345 kPa (40/50 
psi) for the front and rear tires, respectively.  

The vehicle’s tire model is based on a distributed contact method.  The normal deflection and 
velocity are computed based upon the intersection of the undeformed tire circle and terrain 
profile.  The tire circle is divided into vertical ‘slices’.  Once the total intersected area is found, an 
equivalent normal deflection is found by equating the intersected area with that for the tire on a 
flat surface, where the intersection would define a chord of the circle.  The point of application 
for the tire force is found through a weighted average of the centroids of the partial intersected 
areas for each slice.  Likewise, the direction of the force is found through a weighted average of 
the terrain normal vectors associated with the partial intersected areas of each slice.  The tire 

G
au

ss
H

an
n

S
V

M
2-

G
au

ss

Best Median Worst

R
at

io
-G

au
ss

 
Figure 9. Pictorial representation of the fit of the five different mogul models.  Shown in 
the rows are each of the five different modeling schemes and in the columns are the 
best, median and worst fit for each mogul model.  Axes for all plots are [-6m, +6m] for 
the horizontal axis and [-0.1m, +0.7m] for the vertical axis. 
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model incorporates vertical force versus deflection curves, as provided by the manufacturer, 
including the nonlinear effect of contacting the run-flat. 

The suspension model consists of four independent double "A" arm suspension units, one 
upper and lower control arm for each wheel.  Each "A" arm is connected to the chassis by a 
revolute joint, which allows vertical rotation. The "A" arms are also connected to the wheel 
spindles by a spherical joint, which permits each wheel to rotate laterally and about the vertical 
axis.  This combination allows each wheel to move vertically relative to the chassis and to rotate 
around a fore-aft or roll axis.  Front tie-rods and rear radius rods, connected between the 
chassis frame and each wheel assembly, control the static toe-in angle, roll steer effect, and the 
wheel steer direction.  The rear radius rods prevent the rear wheels from steering.  

Vertical suspension forces are provided by four constant-rate coil springs with stiffness of 350 
kN/m (2,000 lbs./in) in the front and 525 kN/m (3,000 lbs./in) in the rear and four telescoping 
translational shock absorbers (located inside the spring elements) represented by eight 
translational springs attached between the chassis and the lower "A" arms.  Jounce and 
rebound travel is limited by these shock absorbers.  The shocks provide a damping force 
proportional to the relative velocity between the shock piston rod and the shock piston cylinder.  
The shock has three ranges of operation; a midstroke region and two hydraulic bump stop 
regions (jounce and rebound).  The hydraulic bump stops are built into the shocks near the end 
of travel in each direction to increase the damping force before metal to metal contact occurs. 

The model was built in the Dynamic Analysis and Design System (DADS®) version 9.6 analysis 
tool.  There were six variants of each of the 39 moguls to be run at 6 speeds resulting in 1,404 

 
Figure 10. HMMWV Exterior Dimensions [inches]. 
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model runs in support of this analysis.  For each run the DADS model generated 32 channels of 
data reported at a rate of 100 Hz.  The channels reported include the linear position, velocity, 
and acceleration of the vehicle chassis, acceleration at the driver’s position, the vehicle pitch 
and roll positions and velocities, the vehicle speed, the terrain elevation under each of the front 
wheels, the four suspension deflections, the four tire deflections and forces. 

4.2 Results 

In our analysis we compare the response generated by the mogul model ( )mr t  to the response 

generated by the actual mogul profile segment ( )pr t  by computing the error as ( ) ( ) ( )m pe t r t r t= −  

with the time t  ranging from the time that the vehicle initially impacts the mogul to the time 
corresponding to 18.54 m (50 ft. + 130 in.) after impact.  We reduce the error time history to a 
single statistic by computing its RMS value for selected channels and only report relative errors 
which are computed as ( ) ( )rel RMS ( ) RMS ( )pe e t r t≜ .  Of the 32 channels reported by the 

dynamics model we will chose the driver’s seat vertical acceleration, vehicle pitch angle, vehicle 
pitch angle rate, suspension deflection, tire deflection and tire force on which to compute error 
statistics.  For the channels which are reported per wheel, we report the statistic taken over all 
four corners.  These statistics are shown in Table 2.  To clarity these results we have plotted the 

Table 2. Statistics of the HMMWV model response for 39 moguls.   

Gauss Hann SVM 2-Gauss Ratio-Gauss 
Speed/Channel 

min  max avg min  max avg min  max avg min max avg min  max avg  

Driver's zdd 56.6 94.7 80.7 67.9 125.2 113.3 48.6 82.0 63.5 23.3 76.0 44.8 24.6 139.6 53.0 

Pitch 5.0 16.6 12.3 9.7 23.6 18.5 8.0 13.5 10.4 2.1 14.3 6.7 2.1 14.6 7.5 

Pitch rate 11.1 32.8 23.5 16.6 49.0 34.1 14.9 27.0 19.7 5.4 24.1 12.9 6.4 25.6 14.9 

Avg Susp Defl  42.7 53.6 48.7 60.2 79.3 70.4 33.3 41.0 37.9 23.3 26.1 25.0 26.8 31.5 29.8 

Avg Tire Defl 8.2 9.1 8.6 11.0 12.7 11.8 6.9 7.1 7.0 4.5 5.6 5.0 5.4 6.3 5.8 

16
.1

 k
ph

 (
10

 m
ph

) 

Avg Tire Force  10.4 10.6 10.5 13.6 14.8 14.2 8.4 9.2 8.8 5.7 7.6 6.6 6.7 8.3 7.5 

Driver's zdd 37.9 87.7 62.3 63.7 111.7 97.9 31.8 66.8 47.7 17.0 65.8 32.2 18.6 96.9 36.8 

Pitch 4.3 15.3 11.1 9.0 23.1 17.1 6.9 12.4 9.5 1.5 14.6 6.5 2.2 17.3 7.3 

Pitch rate 6.4 29.2 18.2 12.4 44.3 27.7 8.5 23.0 14.7 3.0 20.9 10.2 4.4 21.0 11.7 

Avg Susp Defl  37.6 43.2 40.1 59.0 64.5 61.3 27.5 32.6 29.7 18.3 20.2 18.9 21.0 24.2 22.3 

Avg Tire Defl 12.1 15.3 13.8 19.1 22.1 20.6 9.3 12.4 10.8 6.3 8.1 7.1 7.2 9.3 8.3 

24
.1

 k
ph

 (
15

 m
ph

) 

Avg Tire Force  13.7 17.4 15.6 21.8 25.3 23.5 10.7 14.2 12.4 7.8 10.4 9.1 8.7 11.6 10.2 

Driver's zdd 21.6 66.8 44.7 35.4 82.7 64.2 24.9 49.6 36.5 16.2 59.8 28.4 18.8 63.3 31.3 

Pitch 5.1 20.0 13.2 12.3 30.3 20.4 8.2 14.8 11.6 1.7 21.5 6.5 1.2 24.1 7.8 

Pitch rate 7.6 28.2 18.9 16.6 42.4 29.0 11.0 20.2 14.8 2.5 25.7 9.0 2.5 29.4 10.8 

Avg Susp Defl  26.5 29.2 27.8 39.1 43.9 41.5 20.0 22.5 21.2 13.3 15.0 14.0 15.5 17.7 16.5 

Avg Tire Defl 12.1 15.6 13.8 18.3 23.0 20.6 9.7 13.3 11.5 7.2 8.6 7.9 8.0 10.2 9.1 

32
.2

 k
ph

 (
20

 m
ph

) 

Avg Tire Force  15.0 18.4 16.6 21.9 26.4 24.0 11.6 15.8 13.7 9.4 11.4 10.4 10.4 13.1 11.7 

Driver's zdd 22.9 61.3 38.1 18.5 75.1 52.8 19.9 64.8 40.0 9.2 68.9 26.9 9.5 74.7 28.2 

Pitch 3.9 21.0 10.8 4.8 27.8 16.9 3.3 21.8 12.0 1.0 29.7 7.6 1.7 32.0 7.7 

Pitch rate 5.8 26.0 15.1 6.8 38.4 23.5 5.2 29.0 16.1 1.6 36.6 9.7 2.5 39.3 10.2 

Avg Susp Defl  19.3 24.9 22.1 29.1 37.4 33.1 17.9 23.8 20.8 13.5 13.8 13.6 13.8 15.6 14.6 

Avg Tire Defl 11.9 18.2 15.0 17.5 26.9 21.8 13.0 20.0 16.0 10.1 11.4 10.8 9.7 12.4 11.2 

40
.2

 k
ph

 (
25

 m
ph

) 

Avg Tire Force  14.9 22.2 18.4 22.0 32.0 26.5 17.1 24.6 20.1 12.8 14.2 13.7 12.3 15.5 14.1 
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same statistics in Figure 11.  There we observe that typically the best performer is the two-
Gaussian model followed closely by the ratio-Gaussian model, the next best model appears to 
be the SVM followed by the Gaussian model.  The worst performer is the Hanning window.  We 
may also examine Figure 11 from the perspective of speed.  It appears that for the vehicle 
sprung mass there appears to be a negligible to slight improvement in the relative error with 
increasing speed.  On the other hand for the tire deflection and force, there is a slight increasing 
trend with vehicle speed.  The worst performing channel is the driver’s vertical acceleration.  We 
suggest that this is the case because of the roughness in the original profile which is not present 
in the mogul model.  Acceleration signals are particularly sensitive to the high-frequency nature 
of the roughness and thus the relative roughness/smoothness is highlighted in acceleration 
signals.   

Since the two-Gaussian and ratio-Gaussian models perform similarly it is reasonable to ask: 
which is the better model?  Although the two-Gaussian function performs slightly better, it does 
not define a shape for the prototypical mogul due to its mathematical structure.  Our desire is to 
obtain a prototypical shape which may be parameterized by width and amplitude.  In this case 
we choose the ratio-Gauss function to be the best representation of the 39 moguls that we have 
examined.  Given this conclusion, we illustrate (in Figure 12) the performance of this model for 
the median performer, mogul number 39.  There we observe time histories of the channels used 
in this study.  By observing the driver’s vertical acceleration, it is evident that the high-frequency 
components of the signal are largely contributing to the error.  Some of this high frequency 
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Figure 11. Plots showing the relative errors vs. speed for each of the five mogul 
models.  The plots show the driver’s vertical acceleration, pitch, pitch rate, suspension 

deflection, tire deflection and tire force respectively.  The △, ▽, and ○ symbols 

represent the minimum, maximum and mean respectively.  The × symbol shows 
individual relative errors for each of the moguls.  The bottom three plots are shown for 
each of the four corners.  For each speed the mogul models from left to right are the 
Gaussian, Hanning Window, SVM, 2-Gaussian and ratio-Gaussian.  Note that plots are 
at different scales. 
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behavior may be observed in the tire deflection and forces as well.  We should note that at 
higher speeds, the shape of the mogul dominates the vehicle response, while at the lower 
speeds, the surface roughness tends to dominate the response.  Although the responses shown 
in Figure 12 subjectively appear to be very good, they would be worse at the slower speeds. 

5 Conclusion 

In this paper we have discussed modeling the shape of discrete features on an Army endurance 
test course.  We illustrated why existing statistical techniques are not well suited for 
characterizing and synthesizing these features.  We offer five functions as candidates with 
which to model the shape of the moguls.  These shape functions varied in the number of free 
parameters available.  The Gaussian and the Hanning window shapes were parameterized by 
width and amplitude, the SVM function technically has 161 free parameters, although most 
vanish in the optimization.  The two-Gaussian function has four free parameters and the ratio-
Gauss has two free parameters.  We evaluated the quality of each model by computing the 
RMS elevation error of each fit and by examining the dynamic response of a HMMWV model.  
For the HMMWV model we examined six different types of signals related to the chassis, 
suspension and tires.  We evaluated the quality of the mogul model by again computing the 
RMS error over each reference signal for four different speeds.  After examining the response 
errors, we concluded that the two-Gaussian and ratio-Gaussian functions give the best 
approximation of the moguls.  Among these two functions we conclude that the ratio-Gauss 
function is preferred because it has fewer free parameters and has a definite shape.  We 
therefore conclude that the 39 moguls on this test course are best modeled by (7) and (8) with 

0.431pσ = , 0.551ap =  and the distribution of width and amplitude given by the distribution 
shown in Figure 8. 
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Figure 12. Plots showing the reference (blue) and the model (green) responses for the 
ratio-Gauss mogul at 32.2 kph (20 mph), shown are responses from mogul 39 which 
represents the responses whose error are closest to the median error. 
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The analysis in this paper was conducted for the profile as measured in 2002.  This profile has 
been periodically surveyed by the Army’s profilometer for a decade.  Future work may include 
an analysis of how these moguls change over time.  Also, there are other potential candidate 
functions which were not evaluated in this study.  Future work may include the evaluation of 

functions such as sech( )⋅  and 2tanh( ) 1 tanh ( )d
dx

x x= − . 
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