NANOPARTICLE LIQUIDS FOR RECONFIGURABLE ELECTRONIC MATERIALS (PREPRINT)

APRIL 2007

Approved for public release; distribution unlimited.

STINFO COPY

This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site (AFRL/WS) Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-ML-WP-TP-2007-482 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

RICHARD VAIA, Project Engineer
Polymer Branch
Nonmetallic Materials Division

JOHN F. MAGUIRE, Chief
Polymer Branch
Nonmetallic Materials Division

SHASHI K. SHARMA, Acting Deputy Chief
Nonmetallic Materials Division
Materials and Manufacturing Directorate

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.
1. REPORT DATE (DD-MM-YY)	April 2007
2. REPORT TYPE | Conference Proceedings Preprint
3. DATES COVERED (From - To) | N/A
4. TITLE AND SUBTITLE | NANOPARTICLE LIQUIDS FOR RECONFIGURABLE ELECTRONIC MATERIALS (PREPRINT)
5a. CONTRACT NUMBER | In-house
5b. GRANT NUMBER | 62102F
5c. PROGRAM ELEMENT NUMBER | 62102F
5d. PROJECT NUMBER | 4347
5e. TASK NUMBER | RG
5f. WORK UNIT NUMBER | M01R1000
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) | Polymer Branch (AFRL/MLBP)
Nonmetallic Materials Division
Materials and Manufacturing Directorate
Air Force Research Laboratory, Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7750
8. PERFORMING ORGANIZATION REPORT NUMBER | AFRL-ML-WP-TP-2007-482
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Materials and Manufacturing Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7750
10. SPONSORING/MONITORING AGENCY ACRONYM(S) | AFRL/MLBP
11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) | AFRL-ML-WP-TP-2007-482
12. DISTRIBUTION/AVAILABILITY STATEMENT | Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES | Conference paper submitted to the Proceedings of the American Chemical Society Fall 2007 National Meeting. This is a work of the U.S. Government and is not subject to copyright protection in the United States.
PAO Case Number: AFRL/WS 07-1262, 30 May 2007. This paper contains color content.
14. ABSTRACT | High inorganic volume fraction, solventless nanoparticle liquids have many potential applications, including reconfigurable electronic materials. Materials such as conductive lubricants could find applications in MEMS devices to increase relay switch performance as one example. The ability of the conductive nanoparticles to reconfigure themselves and fill voids in damaged areas can increase the lifespan of devices where local defects can cause failure states.
Solventless solid nanoparticles with liquid-like properties are an area of recent research interest. For example, Giannelis and colleagues have reported metal oxide and metal nanoparticle liquids which contain no free solvent but still can flow in a liquid-like fashion. These materials contain large organic ligands bound to the surface of the nanoparticle through a combination of covalent and electrostatic bonds. By optimizing the attractive and repulsive forces between the nanoparticles through the surface chemistry of these organic ligands, the properties of the resulting liquids can be tailored.
15. SUBJECT TERMS | Nanoparticle, solventless, MEMS, ligands
16. SECURITY CLASSIFICATION OF: a. REPORT | Unclassified
b. ABSTRACT | Unclassified
c. THIS PAGE | Unclassified
17. LIMITATION OF ABSTRACT: | SAR
18. NUMBER OF PAGES | 8
19a. NAME OF RESPONSIBLE PERSON (Monitor) | Richard Vaia
19b. TELEPHONE NUMBER (Include Area Code) | N/A
Nanoparticle liquids for reconfigurable electronic materials

Materials and Manufacturing Directorate, Air Force Research Laboratory, AFRL/MLBP, Bldg 654, 2941 Hobson Way, Wright-Patterson AFB, OH 45433

INTRODUCTION

High inorganic volume fraction, solventless nanoparticle liquids have many potential applications, including reconfigurable electronic materials. Materials such as conductive lubricants could find applications in MEMS devices to increase relay switch performance as one example. The ability of the conductive nanoparticles to reconfigure themselves and fill voids in damaged areas can increase the lifespan of devices where local defects can cause failure states.

Solventless solid nanoparticle liquids with liquid-like properties are an area of recent research interest. For example, Giannellis and colleagues have reported metal oxide and metal nanoparticle liquids which contain no free solvent but still can flow in a liquid-like fashion. These materials contain large organic ligands bound to the surface of the nanoparticle through a combination of covalent and electrostatic bonds. By optimizing the attractive and repulsive forces between the nanoparticles through the surface chemistry of these organic ligands, the properties of the resulting liquids can be tailored.

EXPERIMENTAL

Synthesis. Gold nanoparticles were synthesized by two methods. The Stucky method was used to generate 6nm citrate capped gold nanoparticles, while the Brust method was used to generate 6nm dodecanethiol capped gold nanoparticles. The Stucky method was chosen for its highly monodisperse nanoparticles and easy ability to scale up to gram-scale quantity reactions. Gold nanoparticles were characterized by XPS, TEM, UV-Vis, Zeta Potential, ICP, and NMR.

Chemical Analysis. Ionic liquid coronas with milliQ water and collected by centrifugation to remove any unreacted alkylthiol. Gold nanoparticles were characterized by XPS, TEM, UV-Vis, Zeta Potential, ICP, and NMR.

MEMS Testing. A series of photographs to display the fluid-like nature of a nanoparticle liquid after the solvent had been evaporated. The material shown comprised 6nm Stucky alkylthiol-capped gold nanoparticles exchanged with alkylthiol:Surface Au atom intensity ratio as well as the presence of an O1s peak.

RESULTS AND DISCUSSION

A series of ligand exchange reactions was performed with varied stoichiometries between the number of surface gold atoms and the number of ligands added to the solution. 3-mercaptopropanesulfonic acid, or MPS, was used to functionalize 6nm citrate gold nanoparticles, and the zeta potential of the washed nanoparticles was then collected to demonstrate the increased functionalization of the nanoparticles with the negatively charged sulfonic acid group. The results are summarized in Table 1, and show that above a 2:1 ratio of MPS:surface gold atoms, the surface of the nanoparticle is maximally functionalized with negatively charged sulfonic acid groups on its surface. This allowed optimization of the functionalization of the gold nanoparticles with MPS to achieve the maximum surface density of MPS possible with the least amount of excess or unused reagents. It is currently under investigation as to why the zeta potential varies near the 1:1 ratio and diminishes above the 2:1 ratio.

Table 1. Zeta Potential vs. MPS Ligand Concentration

<table>
<thead>
<tr>
<th>Ligand:Surface Au atom</th>
<th>Zeta Potential (mV)</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:1</td>
<td>-14.54</td>
<td>1.66</td>
</tr>
<tr>
<td>0.1:1</td>
<td>-19.95</td>
<td>2.56</td>
</tr>
<tr>
<td>0.5:1</td>
<td>-21.27</td>
<td>3.84</td>
</tr>
<tr>
<td>1:1</td>
<td>-21.92</td>
<td>3.28</td>
</tr>
<tr>
<td>2:1</td>
<td>-22.10</td>
<td>2.69</td>
</tr>
<tr>
<td>5:1</td>
<td>-35.61</td>
<td>3.02</td>
</tr>
</tbody>
</table>

In parallel to citrate stabilized Au nanoparticles, ligand exchange of alkane thiol stabilized Au nanoparticles also yielded controlled MPS functionalization. Reactions were performed in chloroform, with alkylthiol gold nanoparticles added dropwise to the chloroformic ligand solution, with a 1:1 ratio of MPS:surface Au atoms. The chloroform was evaporated at room temperature under nitrogen, and the resulting nanoparticles were resuspended in milliQ water. The ligand-exchanged nanoparticles were characterized by XPS, which demonstrated exchange had occurred by the altered C1s:S2p peak intensity ratio as well as the presence of an O1s peak.

In Table 1, the zeta potential changes as the ligand concentration increases. For example, at a 1:1 ratio, the zeta potential is -21.27 mV, whereas at a 5:1 ratio, it is -22.10 mV. This suggests that the functionalization is maximized at a 1:1 ratio, after which the zeta potential decreases, indicating a decrease in the number of negatively charged sulfonic acid groups on the surface of the nanoparticles.

A series of nanoparticle liquids were prepared from a series of cationic surfactants. The cationic species formed an ionic liquid corona around the anionic MPS-functionalized nanoparticles. An example of a nanoparticle liquid formed from 30nm citrate-capped gold nanoparticles exchanged with MPS followed by Adogen 464 is shown in Figure 1. The TEM shows the dark contrast of the 30nm gold nanoparticles, and a faint contrast from the remaining organic corona of Adogen linking the nanoparticles.

Figure 1. TEM of 30nm gold nanoparticle liquid from MPS and Adogen 464. Inset shows magnified region. Scale bars are 50nm.

Macroscopic quantities of nanoparticle liquids were found to flow on the time-scale of tens of minutes. Figure 2 shows a time-lapse series of photographs to display the fluid-like nature of a nanoparticle liquid after the solvent had been evaporated. The material shown comprised 6nm Stucky alkylthiol-capped gold nanoparticles exchanged with MPS, and the resulting nanoparticles showed a fluid-like nature even after the solvent had been evaporated.
with MPS followed by Adogen 464. Figure 2a shows the vial initially after turning onto its side. Figure 2b shows 2.5 minutes, Figure 2c shows 5 minutes, and Figure 2d shows 10 minutes after turning the vial on its side.

Figure 2. Time lapse series of a nanoparticle liquid flowing down the side of a vial. Time points are a) 0min, b) 2.5min, c) 5min, and d) 10 min.

Challenges to increasing the reliability of a MEMS relay switch currently include adhesion and stiction which results in shorting during an intended open circuit condition. Utilizing the MEMS testing platform described in the experimental section, the nanoparticle liquids were studied for their potential application to conductive lubricants for MEMS relay switches. Low and high current conditions were tested, to simulate two typical conditions MEMS relay switches would likely face in future devices. If the contact resistance between the two conductive components of the relay is greater than about two ohms, then the device is considered to be in a failure state.

The bottom contact of the MEMS testing platform shown in Figure 3 was coated with a sub-monolayer of Au nanoparticle liquid via spin-coating. These tests demonstrated that the Au NP liquids increased the durability (relay cycles) of the simulator by one to three orders of magnitude relative to uncoated contacts or self assembled monolayers.

It is speculated that the ability of these nanoparticle liquids, which could be imagined as solventless coated nanoparticles, to reconfigure themselves through fluid-like motion endows a self-healing property to the conductive lubricant layer. As the physical contact between the relay begins to wear out the conductive lubricant layer through physical deformation of the nanoparticles and ashing of the carbonaceous nanoparticle coating, the undamaged sections of the conductive lubricant layer can begin to flow in to the damaged areas and heal the coating.

CONCLUSION

A series of nanoparticle liquids were synthesized and characterized in detail. The ligand exchange efficiency of several beta-functional alkylthiol ligands was studied by a variety of chemical analysis methods in order to gain an understanding towards maximizing the efficiency of the synthetic protocol. A series of nanoparticle liquids with varied cationic corona molecules was synthesized, and the resulting materials were characterized for their application in MEMS relay switch conductive lubricants. The nanoparticle liquids had a self-healing properties and increased the useful life of the relay switch by one to three orders of magnitude. Future studies will focus on variations of the nanoparticle sizes and metal composition for their application towards conductive lubricants, as well as the uniformity and thickness of the conductive lubricant layer on the switch surfaces.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Ben Phillips for assistance with the XPS, Angela Campo for assistance with the ICP, Peter Mirau for insightful discussion about nanoparticle ligand exchange reactions, and Hilmar Koerner for insightful discussion about nanoparticle growth mechanisms.

REFERENCES